Nothing Special   »   [go: up one dir, main page]

KR20100030024A - Stack semiconductor package with through silicon via and method for manufacturing the same - Google Patents

Stack semiconductor package with through silicon via and method for manufacturing the same Download PDF

Info

Publication number
KR20100030024A
KR20100030024A KR1020080088775A KR20080088775A KR20100030024A KR 20100030024 A KR20100030024 A KR 20100030024A KR 1020080088775 A KR1020080088775 A KR 1020080088775A KR 20080088775 A KR20080088775 A KR 20080088775A KR 20100030024 A KR20100030024 A KR 20100030024A
Authority
KR
South Korea
Prior art keywords
semiconductor package
silicon
film
manufacturing
via hole
Prior art date
Application number
KR1020080088775A
Other languages
Korean (ko)
Inventor
장동혁
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020080088775A priority Critical patent/KR20100030024A/en
Publication of KR20100030024A publication Critical patent/KR20100030024A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13009Bump connector integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16146Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A stack semiconductor package with a through-silicon via and a method for manufacturing the same are provided to protect a semiconductor chip from cracking using a buffer layer which is composed of an oxide layer. CONSTITUTION: A via-hole(103) is formed by etching the pad region of a silicon wafer(101). A bulb pattern is formed by etching the lower part of the via-hole. A buffer layer(104) is formed on the sidewall of the via-hole and the bulb pattern. A through-silicon via(200) including a through part(200A) and a convex part(200B) is formed. The through part is buried in the via-hole and the convex part is buried in the bulb pattern. The rear side of the silicon wafer is removed in order to expose the convex part. The divided semiconductor chips(110) of the silicon wafer are stacked through the through-silicon via.

Description

관통실리콘비아를 이용한 적층 반도체 패키지 및 그 제조 방법{STACK SEMICONDUCTOR PACKAGE WITH THROUGH SILICON VIA AND METHOD FOR MANUFACTURING THE SAME}Stacked semiconductor package using through silicon via and manufacturing method thereof {STACK SEMICONDUCTOR PACKAGE WITH THROUGH SILICON VIA AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 반도체장치 패키지에 관한 것으로, 특히 관통실리콘비아를 이용한 적층 반도체 패키지 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device package, and more particularly, to a laminated semiconductor package using a through silicon via and a manufacturing method thereof.

반도체 집적 장치에 대한 패키징 기술은 소형화 및 고용량화에 대한 요구에 따라 지속적으로 발전되어 왔다, 최근에는 소형화 및 고용량화와 더불어 실장 효율성을 만족시킬 수 있는 적층 반도체 패키지에 대한 다양한 기술들이 개발되고 있다. Packaging technologies for semiconductor integrated devices have been continuously developed in accordance with the demand for miniaturization and high capacity. Recently, various technologies for multilayer semiconductor packages that can satisfy the miniaturization and high capacity and the mounting efficiency have been developed.

적층 반도체 패키지는 크게 개별 반도체 칩들을 적층한 후에, 한번에 적층된 반도체 칩들을 패키징해주는 방법과, 패키징된 개별 반도체 패키지들을 적층하는 방법으로 제조할 수 있으며, 적층 반도체 패키지의 개별 반도체칩들은 금속 와이어 또는 관통 실리콘 비아(Through Silicon Via; TSV) 등을 통하여 전기적으로 연결된 다. The stacked semiconductor package may be manufactured by stacking individual semiconductor chips, packaging the stacked semiconductor chips at a time, and stacking the packaged individual semiconductor packages, and the individual semiconductor chips of the stacked semiconductor package may be formed of metal wires or It is electrically connected through a through silicon via (TSV).

그러나, 종래의 금속 와이어를 이용한 적층 반도체 패키지는 금속 와이어를 통하여 전기적인 신호 교환이 이루어지므로 속도가 느리고, 많은 수의 와이어가 사용되어 전기적 특성 열화가 발생한다. 또한, 금속 와이어를 형성하기 위해 기판에 추가 면적이 요구되어 패키지의 크기가 증가되고, 반도체 칩들 사이에 와이어 본딩을 하기 위한 갭(Gap)이 요구되므로 패키지의 높이가 높아진다.However, the conventional laminated semiconductor package using the metal wire is slow because the electrical signal exchange is made through the metal wire, a large number of wires are used to cause electrical characteristics deterioration. In addition, an additional area is required in the substrate to form a metal wire, thereby increasing the size of the package, and a height of the package is increased because a gap Gap for wire bonding between semiconductor chips is required.

이에, 최근에는 관통 실리콘 비아(Through silicon via : TSV)를 이용한 적층 반도체 패키지가 제안되었다. 상기와 같은 적층 반도체 패키지는 일반적으로 반도체칩 내에 반도체칩을 관통하는 비아홀(Via hole)을 형성하고, 관통된 비아홀 내에 전도성 물질을 채워 관통실리콘비아(Through Silicon Via; TSV)라는 관통 전극을 형성하며, 관통 전극을 매개로 상부 반도체칩과 하부 반도체칩 간을 전기적으로 연결하는 방식으로 구현하고 있다. Thus, recently, a multilayer semiconductor package using through silicon vias (TSVs) has been proposed. The stacked semiconductor package generally forms a via hole penetrating the semiconductor chip in the semiconductor chip, and forms a through electrode called a through silicon via (TSV) by filling a conductive material in the penetrated via hole. In addition, the semiconductor device is implemented by electrically connecting the upper semiconductor chip and the lower semiconductor chip through the through electrode.

도 1a 내지 도 1c는 종래기술에 따른 관통실리콘비아를 이용한 적층반도체 패키지 제조 방법을 도시한 도면이다.1A to 1C illustrate a method of manufacturing a laminated semiconductor package using through silicon vias according to the prior art.

도 1a에 도시된 바와 같이, 실리콘 재질의 웨이퍼(11) 상에 패드영역을 오픈시키는 보호막(12)을 형성한 후, 비아마스크(Via mask)를 이용하여 패드영역을 식각하여 비아홀(Via hole, 13)을 형성한다. As shown in FIG. 1A, after forming the passivation layer 12 opening the pad region on the silicon wafer 11, the pad region is etched using a via mask to form a via hole. 13).

이어서, 비아홀(13)에 금속막을 매립하여 관통실리콘비아(TSV, 14)를 형성한다.Subsequently, a through silicon via (TSV) 14 is formed by filling a metal film in the via hole 13.

도 1b에 도시된 바와 같이, 웨이퍼(11)의 후면(backside)을 백그라인딩(back grinding) 및 후식각(After etch)하여(도면부호 '15' 참조) 관통실리콘비아(14)를 노출시킨다. As shown in FIG. 1B, the backside of the wafer 11 is back ground and after etched (see reference numeral 15) to expose the through silicon vias 14.

도 1c에 도시된 바와 같이, 웨이퍼(11A)를 쏘잉(Sawing)하여 개별 반도체칩들(C1, C2)로 분리시킨 후, 적어도 둘 이상의 반도체칩(C1, C2)을 관통실리콘비아(14)를 이용해서 수직으로 적층한다.As shown in FIG. 1C, the wafer 11A is sawed to separate the individual semiconductor chips C1 and C2, and then the at least two semiconductor chips C1 and C2 are separated from the through silicon vias 14. It is laminated vertically using.

그러나, 종래 기술은 다음과 같이 문제점이 있다.However, the prior art has a problem as follows.

먼저, 적층되는 반도체칩들간을 연결하기 위해 사용되는 관통실리콘비아(14)로서 저항을 줄이기 위해 금속막(Metal)을 사용하고 있는데, 이때 금속막과 웨이퍼 사이의 열팽창계수가 틀려서 발생하는 문제가 있다. 이러한 열팽창계수 차이는 단위 소자의 사용 연한을 보증하기 위한 신뢰성 평가의 한 방법인 열사이클시험(Thermal cycle test)에서 금속막과 웨이퍼 사이의 경계면에 크랙(Crack, 도면부호 'A' 참조)을 발생시키게 된다.First, as the through-silicon via 14 used to connect the stacked semiconductor chips, a metal film is used to reduce the resistance, and there is a problem that occurs due to a different coefficient of thermal expansion between the metal film and the wafer. . This difference in thermal expansion coefficient causes cracks (see reference numeral 'A') at the interface between the metal film and the wafer in the thermal cycle test, which is a method of reliability evaluation to guarantee the service life of a unit device. Let's go.

또한 2단 이상의 다층 적층 패키지 집적시 사용되는 열공정으로 인해 단위 소자의 특성이 열화되는 구조를 가지고 있다.In addition, due to the thermal process used when integrating two or more multi-layer stacked packages, the characteristics of the unit device are deteriorated.

마지막으로, 기존의 금속와이어 대비 개선은 되었지만 구조가 갖는 특성상 여러개의 반도체칩을 적층할 경우 계면저항이 커져서(도면부호 'B' 참조) 속도지연(Speed delay)을 초래하는 단점을 갖고 있다.Lastly, compared to the existing metal wires, although the structure has the characteristics of stacking a plurality of semiconductor chips, the interface resistance increases (see reference numeral 'B') has a disadvantage of causing a speed delay (speed delay).

본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 열핑창계수 차이에 의한 크랙을 방지할 수 있는 적층 반도체 패키지 및 그 제조 방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above-mentioned problems of the prior art, and an object thereof is to provide a laminated semiconductor package and a method of manufacturing the same, which can prevent cracking due to a difference in thermal windowing coefficient.

또한, 본 발명의 다른 목적은 적층되는 반도체칩간 계면저항을 낮추어 속도를 향상시킬 수 있는 적층 반도체 패키지 및 그 제조 방법을 제공하는데 있다.In addition, another object of the present invention is to provide a laminated semiconductor package and a method of manufacturing the same which can improve the speed by lowering the interfacial resistance between the stacked semiconductor chips.

상기 목적을 달성하기 위한 본 발명의 적층 반도체 패키지 제조 방법은 실리콘웨이퍼의 패드영역을 식각하여 비아홀을 형성하는 단계; 상기 비아홀 아래를 식각하여 벌브패턴을 형성하는 단계; 상기 비아홀과 벌브패턴의 측벽에 버퍼막을 형성하는 단계; 상기 비아홀에 매립되는 관통부와 상기 벌브패턴에 매립되는 볼록부로 이루어진 관통실리콘비아를 형성하는 단계; 상기 볼록부가 노출되도록 상기 실리콘웨이퍼의 후면을 제거하는 단계; 상기 실리콘웨이퍼를 반도체칩 레벨로 분리하는 단계; 및 상기 분리된 반도체칩들을 상기 관통실리콘비아를 매개로 하여 적층하는 단계를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of manufacturing a multilayer semiconductor package, the method comprising: forming a via hole by etching a pad region of a silicon wafer; Etching below the via hole to form a bulb pattern; Forming a buffer layer on sidewalls of the via hole and the bulb pattern; Forming a through silicon via including a through part embedded in the via hole and a convex part embedded in the bulb pattern; Removing a back surface of the silicon wafer to expose the convex portion; Separating the silicon wafer at the semiconductor chip level; And stacking the separated semiconductor chips through the through silicon vias.

그리고, 본 발명의 적층 반도체 패키지는 관통실리콘비아를 통해 복수의 반도체칩이 적층된 적층패키지에 있어서, 상기 관통실리콘비아는 상기 각 반도체칩을 관통하는 관통부와 상기 관통부에 연결되면서 상기 반도체칩의 저면 밖으로 돌출된 볼록부를 포함하는 것을 특징으로 한다. 상기 관통부의 상부 표면은 리세스된 둥근 표면을 갖고, 상기 관통부의 측벽을 에워싸는 버퍼막을 더 포함하며, 버퍼막은 산화막을 포함한다.In the multilayer semiconductor package of the present invention, in the multilayer package in which a plurality of semiconductor chips are stacked through through silicon vias, the through silicon vias are connected to the through parts penetrating through the semiconductor chips and the through parts. It characterized in that it comprises a convex portion protruding out of the bottom of the. The upper surface of the penetrating portion has a recessed rounded surface, and further includes a buffer film surrounding the sidewall of the penetrating portion, the buffer film including an oxide film.

상술한 본 발명은 관통실리콘비아 구조 적용시 열팽창 계수 차이에서 오는 크랙을 버퍼막을 사용하여 미연에 방지할 수 있고, 아울러 산화막질의 버퍼막이 완충막으로 사용되어 온도 변화에 따른 반도체칩의 크랙을 보호할 수 있는 효과가 있다.The present invention described above can prevent cracks from the difference in coefficient of thermal expansion when applied to the through-silicon via structure by using a buffer film, and an oxide buffer film is used as a buffer film to protect cracks in semiconductor chips according to temperature changes. It can be effective.

또한, 본 발명은 관통실리콘비아 형성시 벌브패턴을 이용한 볼록부 구조를 사용하므로써 여러개의 반도체칩을 적층할 때 콘택저항을 개선할 수 있는 효과가 있다. 이로써 속도지연을 개선할 수 있는 효과가 있다.In addition, the present invention has an effect of improving contact resistance when stacking a plurality of semiconductor chips by using a convex structure using a bulb pattern when forming through silicon vias. This has the effect of improving the speed delay.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the most preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the technical idea of the present invention. .

도 2는 본 발명의 제1실시예에 따른 적층 반도체패키지를 도시한 도면이다.2 is a diagram illustrating a laminated semiconductor package according to a first embodiment of the present invention.

도 2를 참조하면, 두 개의 반도체칩(110)이 수직으로 적층되어 있으며, 두 개의 반도체칩(110)은 관통실리콘비아(200)를 통해 전기적으로 연결되어 있다.Referring to FIG. 2, two semiconductor chips 110 are vertically stacked, and two semiconductor chips 110 are electrically connected through the through silicon vias 200.

반도체칩(110)을 자세히 살펴보면, 실리콘웨이퍼(101) 상에 패드영역을 노출시키는 보호막(102)이 형성되어 있고, 실리콘웨이퍼(101)의 패드영역을 관통하는 비아홀(103)이 구비된다.Looking at the semiconductor chip 110 in detail, the passivation layer 102 exposing the pad region is formed on the silicon wafer 101, and the via hole 103 penetrating the pad region of the silicon wafer 101 is provided.

비아홀(103)에는 관통실리콘비아(200)가 매립되는데, 관통실리콘비아(200)는 금속막으로 형성된다. 특히, 관통실리콘비아(200)는 관통부(200A)와 볼록부(200B)로 이루어지는데, 관통부(200A)는 비아홀(103)을 매립하는 형태이고, 볼록부(200B)는 외부로 돌출되는 형태이다. 따라서, 상층의 반도체칩(110)에 구비된 볼록부(200B)는 하층의 반도체칩(110)의 관통부(200A) 표면에 접촉한다. 그리고, 관통부(200A)의 표면은 리세스되어 둥근 표면을 갖는다. 이에 따라 볼록부(200B)가 잘 콘택되도록 하므로 콘택면적이 증가하고, 결국 콘택저항을 개선시킬 수 있다.The through-silicon vias 200 are filled in the via holes 103, and the through-silicon vias 200 are formed of a metal film. In particular, the through-silicon via 200 consists of a through part 200A and a convex part 200B. The through part 200A is a form in which the via hole 103 is buried, and the convex part 200B protrudes outward. Form. Therefore, the convex portion 200B of the upper semiconductor chip 110 contacts the surface of the penetrating portion 200A of the lower semiconductor chip 110. The surface of the penetrating portion 200A is recessed to have a rounded surface. Accordingly, since the convex portion 200B is well contacted, the contact area is increased, and thus the contact resistance can be improved.

그리고, 비아홀(103)의 측벽에는 버퍼막(104)이 구비된다. 버퍼막(104)은 비아홀(103)에 매립되는 관통부(200A)의 측벽을 에워싸면서 볼록부(200B)의 측벽도 에워싸는 구조가 될 수 있다. 이와 같은 버퍼막(104)은 관통실리콘비아(200)와 실리콘웨이퍼(101) 사이의 완충막으로 사용되어 열팽창계수 차이에 의한 크랙을 방지하게 된다. 아울러, 버퍼막(104)은 온도변화에 따른 반도체칩의 크랙을 방지하는 역할도 한다.The buffer film 104 is provided on the sidewall of the via hole 103. The buffer film 104 may have a structure that surrounds the sidewall of the through part 200A embedded in the via hole 103 and also surrounds the sidewall of the convex part 200B. The buffer film 104 is used as a buffer film between the through-silicon vias 200 and the silicon wafer 101 to prevent cracks due to thermal expansion coefficient differences. In addition, the buffer film 104 also serves to prevent cracking of the semiconductor chip due to temperature changes.

도 3a 내지 도 3g는 본 발명의 제2실시예에 따른 적층 반도체 패키지 제조 방법을 도시한 도면이다.3A to 3G illustrate a method of manufacturing a multilayer semiconductor package according to a second embodiment of the present invention.

도 3a에 도시된 바와 같이, 실리콘웨이퍼(21) 상에 보호막(22)을 형성한다. 이때, 보호막은 PIQ(Polyimide Isoindro Quindzoline) 또는 절연막을 포함하고, 바 람직하게 PIQ와 산화막을 적층할 수 있다. 여기서, 산화막은 열응력을 흡수, 완화하는 완충 역할 및 전기적으로 절연 기능을 한다.As shown in FIG. 3A, a protective film 22 is formed on the silicon wafer 21. In this case, the protective film may include a PIQ (Polyimide Isoindro Quindzoline) or an insulating film, and preferably the PIQ and the oxide film may be stacked. Here, the oxide film serves as a buffer for absorbing and mitigating thermal stress and an electrically insulating function.

이어서, 감광막을 이용한 비아마스크(Via mask, 23)를 이용하여 보호막(22)을 식각하여 패드영역을 노출시킨 후, 패드영역을 일정 깊이 이방성식각하여 비아홀(24)을 형성한다. 이 경우 후속 후면연마(Back griding)시 타겟을 고려하여 선택적으로 식각하므로써 비아홀(24)의 깊이를 조절할 수 있다.Subsequently, the passivation layer 22 is etched by using a via mask 23 using a photoresist layer to expose the pad region, and then the via region 24 is formed by anisotropically etching the pad region. In this case, the depth of the via hole 24 may be adjusted by selectively etching considering the target during the subsequent back grinding.

도 3b에 도시된 바와 같이, 비아마스크를 제거한 후에 보호막(22)을 식각장벽으로 하여 비아홀(24)의 저면을 등방성식각하여 벌브패턴(Bulb pattern, 25)을 형성한다. 이때, 벌브패턴(25)은 비아홀(24)의 바닥선폭보다 선폭이 더 크고, 일정 곡률을 갖는 둥근 패턴이다. 이와 같이 큰 선폭은 등방성식각에 의해 얻어질 수 있다.As shown in FIG. 3B, after removing the via mask, a bulb pattern 25 is formed by isotropically etching the bottom surface of the via hole 24 using the protective layer 22 as an etch barrier. In this case, the bulb pattern 25 is a round pattern having a larger line width than the bottom line width of the via hole 24 and having a predetermined curvature. This large line width can be obtained by isotropic etching.

상술한 바와 같이 비아홀(24) 아래에 벌브패턴(25)을 형성하면, 관통실리콘비아의 콘택면적을 증가시켜 콘택저항을 개선시킬 수 있다.As described above, when the bulb pattern 25 is formed under the via hole 24, the contact resistance of the through silicon via may be increased to improve contact resistance.

벌브패턴(25)을 형성하기 위한 등방성식각은 TCP(Transformer Coupled Plasma), ICP(Inductively Coupled Plasma), MDS(Microwave Down Stream), ECR(Electron Cyclotron Resonance), 헬리칼(HELICAL)타입의 플라즈마 소스에서 식각을 실시할 수 있다.Isotropic etching for forming the bulb pattern 25 is performed in a plasma coupled plasma (TCP), inductively coupled plasma (ICP), microwave down stream (MDS), electro cyclone resonance (ECR), and helical plasma type. Etching can be performed.

도 3c에 도시된 바와 같이, 열팽창계수 차이에 의한 크랙을 미연에 방지하기 위해 비아홀(24)과 벌브패턴(25)의 측벽에 스페이서 형태를 갖는 버퍼막(26)을 형성한다. 여기서, 버퍼막(26)은 전면에 산화막을 증착한 후 블랭킷식각(Blanket Etch)하여 형성할 수 있다.As shown in FIG. 3C, a buffer layer 26 having a spacer shape is formed on sidewalls of the via hole 24 and the bulb pattern 25 in order to prevent cracking due to a difference in thermal expansion coefficient. Here, the buffer layer 26 may be formed by depositing an oxide layer on the entire surface and blanket etching.

도 3d에 도시된 바와 같이, 비아홀(24)과 벌브패턴(25)을 매립하도록 전면에 금속막(27)을 형성한다. 금속막(27)은 적층되는 반도체칩간 연결물질이다. 바람직하게, 금속막(27)은 알루미늄막(Al)을 포함하며, 금속막(27) 형성전에 실리콘웨이퍼(21)와 버퍼막(26)의 배리어 역할을 하는 배리어막을 미리 형성할 수도 있다. 배리어막은 티타늄(Ti)과 티타늄질화막(TiN)을 순차적으로 형성할 수 있다.As shown in FIG. 3D, a metal film 27 is formed on the entire surface of the via hole 24 and the bulb pattern 25 to be embedded. The metal film 27 is a connection material between semiconductor chips stacked. Preferably, the metal film 27 includes an aluminum film Al, and a barrier film may be formed in advance as a barrier between the silicon wafer 21 and the buffer film 26 before the metal film 27 is formed. The barrier film may sequentially form titanium (Ti) and titanium nitride film (TiN).

도 3e에 도시된 바와 같이, 블랭킷 에치백(Blanket etch back)을 진행하여 금속막을 식각한다. 이때, 블랭킷에치백은 보호막(22)의 표면이 드러날때까지 진행하며, 블랭킷에치백의 특성상 금속막의 표면은 리세스되어 실리콘웨이퍼(21)의 표면보다 낮아질 수 있다.As shown in FIG. 3E, a blanket etch back is performed to etch the metal film. In this case, the blanket etch bag proceeds until the surface of the protective film 22 is exposed, and the surface of the metal film may be recessed to be lower than the surface of the silicon wafer 21 due to the characteristics of the blanket etch bag.

위와 같은 블랭킷에치백후에 비아홀과 벌브패턴 내부에는 관통실리콘비아(100)가 형성되며, 관통실리콘비아(100)는 비아홀(24)에 매립된 관통부(27A)와 벌브패턴(25)에 매립된 볼록부(27B)로 이루어진다. 그리고, 관통실리콘비아(100)는 아래로 리세스된 상부 표면을 갖게 되고, 이러한 리세스된 상부표면은 여러개의 반도체칩을 적층할 때 관통실리콘비아(100)의 볼록부(27B)가 보다 넓은 콘택면적을 갖고 접촉하도록 하여 콘택저항을 개선시킨다.After the blanket etch back as described above, the through-silicon via 100 is formed in the via hole and the bulb pattern, and the through-silicon via 100 is embedded in the through-hole 27A and the bulb pattern 25 embedded in the via hole 24. It consists of the convex part 27B. The through silicon via 100 has a top surface recessed downward, and the recessed top surface has a wider convex portion 27B of the through silicon via 100 when a plurality of semiconductor chips are stacked. The contact resistance is improved by making contact with the contact area.

도 3f에 도시된 바와 같이, 실리콘웨이퍼(21)에 대해 저면 연마(Back griding) 및 추가 식각을 진행한다(도면부호 '28' 참조).As shown in FIG. 3F, back grinding and further etching are performed on the silicon wafer 21 (see reference numeral 28).

이와 같은 저면연마 및 추가식각에 의해 실리콘웨이퍼는 도면부호 '21A'와 같이 저면 두께가 얇아지게 되고, 이로써 벌브패턴에 매립된 볼록부(27B)가 노출된 다.By the bottom polishing and additional etching, the bottom surface of the silicon wafer is thinned as shown by reference numeral 21A, thereby exposing the convex portion 27B embedded in the bulb pattern.

도 3g에 도시된 바와 같이, 실리콘웨이퍼(21A)를 반도체칩레벨로 쏘잉(Sawing) 등의 방법으로 개별 반도체칩들(C11, C12)로 분리시킨 후, 적어도 둘 이상의 반도체칩(C11, C12)을 관통실리콘비아(100)를 이용해서 수직으로 적층한다. 반도체칩을 적층하는 다른 방법은 관통실리콘비아가 형성된 복수의 실리콘웨이퍼를 적층한 후에 한꺼번에 반도체칩 레벨로 쏘잉할 수도 있다.As shown in FIG. 3G, the silicon wafer 21A is separated into individual semiconductor chips C11 and C12 by a sawing method at the semiconductor chip level, and then at least two or more semiconductor chips C11 and C12. It is stacked vertically using the through-silicon via (100). Another method of stacking semiconductor chips may be sawing at the semiconductor chip level at once, after stacking a plurality of silicon wafers having through silicon vias formed thereon.

상술한 실시예에 따르면, 열팽창 계수의 차이에서 초래되는 크랙을 방지하기 위해 버퍼막(Buffer Layer, 26)으로서 산화막(Oxide)을 사용하며, 계면 저항을 높이기 위해 스페이서(Spacer) 형태로 식각하여 측면에 형성한다. 이럴 경우 금속막(관통실리콘비아)-산화막(버퍼막)-실리콘웨이퍼의 계면이 형성되어 크랙이 방지된다.According to the above-described embodiment, an oxide is used as the buffer layer 26 to prevent cracks caused by the difference in thermal expansion coefficient, and the side surface is etched in the form of a spacer to increase the interface resistance. To form. In this case, an interface between the metal film (through silicon via), the oxide film (buffer film), and the silicon wafer is formed to prevent cracking.

또한, 콘택 저항을 낮추기 위해 관통실리콘비아 형태를 벌브(Bulb) 형태로 형성하였으며, 이후 금속막 식각시 블랭킷식각(Blanket etch)을 진행하면 자연스럽게 리세스된 표면 구조로 형성되어 볼록부와 리세스된 표면이 접촉하게 됨에 따라 콘택 면적이 늘어나고 안정적인 공정을 이룰 수 있으며 속도지연을 개선할 수 있다. In addition, the through-silicon via is formed in the form of a bulb to reduce contact resistance, and when the blanket is etched during the etching of the metal film, the through silicon via is formed into a naturally recessed surface structure and is recessed with the convex portion. As the surfaces come into contact, the contact area can be increased, a stable process can be achieved, and the speed delay can be improved.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

도 1a 내지 도 1c는 종래기술에 따른 관통실리콘비아를 이용한 적층반도체 패키지 제조 방법을 도시한 도면.1A to 1C illustrate a method of manufacturing a laminated semiconductor package using through silicon vias according to the prior art.

도 2는 본 발명의 제1실시예에 따른 적층 반도체패키지를 도시한 도면.2 is a diagram illustrating a laminated semiconductor package according to a first embodiment of the present invention.

도 3a 내지 도 3g는 본 발명의 제2실시예에 따른 적층 반도체 패키지 제조 방법을 도시한 도면.3A to 3G illustrate a method of manufacturing a laminated semiconductor package according to a second embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

101 : 실리콘웨이퍼 102 : 보호막101: silicon wafer 102: protective film

103 : 비아홀 104 : 버퍼막103: via hole 104: buffer film

110 : 반도체칩 200 : 관통실리콘비아110: semiconductor chip 200: through silicon via

200A : 관통부 200B : 볼록부200A: penetrating portion 200B: convex portion

Claims (11)

실리콘웨이퍼의 패드영역을 식각하여 비아홀을 형성하는 단계;Etching the pad region of the silicon wafer to form a via hole; 상기 비아홀 아래를 식각하여 벌브패턴을 형성하는 단계; Etching below the via hole to form a bulb pattern; 상기 비아홀과 벌브패턴의 측벽에 버퍼막을 형성하는 단계;Forming a buffer layer on sidewalls of the via hole and the bulb pattern; 상기 비아홀에 매립되는 관통부와 상기 벌브패턴에 매립되는 볼록부로 이루어진 관통실리콘비아를 형성하는 단계;Forming a through silicon via including a through part embedded in the via hole and a convex part embedded in the bulb pattern; 상기 볼록부가 노출되도록 상기 실리콘웨이퍼의 후면을 제거하는 단계;Removing a back surface of the silicon wafer to expose the convex portion; 상기 실리콘웨이퍼를 반도체칩 레벨로 분리하는 단계; 및Separating the silicon wafer at the semiconductor chip level; And 상기 분리 반도체칩들을 상기 관통실리콘비아를 매개로 하여 적층하는 단계Stacking the separated semiconductor chips through the through silicon via 를 포함하는 적층 반도체 패키지 제조 방법.Laminated semiconductor package manufacturing method comprising a. 제1항에 있어서,The method of claim 1, 상기 버퍼막은 산화막을 증착한 후에 블랭킷식각(Blanket etch)하여 형성하는 적층 반도체 패키지 제조 방법.The buffer layer is a method of manufacturing a laminated semiconductor package formed by blanket etching after the deposition of the oxide film (Blanket etch). 제1항에 있어서,The method of claim 1, 상기 관통실리콘비아를 형성하는 단계는,Forming the through silicon vias, 상기 비아홀과 벌브패턴을 매립하도록 상기 웨이퍼의 전면에 금속막을 증착하는 단계; 및Depositing a metal film on an entire surface of the wafer to fill the via hole and the bulb pattern; And 상기 금속막을 블랭킷식각하는 단계Blanket etching the metal film 를 포함하는 적층 반도체 패키지 제조 방법.Laminated semiconductor package manufacturing method comprising a. 제3항에 있어서,The method of claim 3, 상기 금속막 증착전에 배리어막을 미리 형성하는 적층 반도체 패키지 제조 방법.A method of manufacturing a laminated semiconductor package, wherein a barrier film is formed in advance before the metal film is deposited. 제4항에 있어서,The method of claim 4, wherein 상기 배리어막은 티타늄막과 티타늄질화막을 적층하여 형성하는 적층 반도체 패키지 제조 방법.The barrier film is a laminated semiconductor package manufacturing method formed by laminating a titanium film and a titanium nitride film. 제1항에 있어서,The method of claim 1, 상기 웨이퍼의 후면을 제거하는 단계는,Removing the back side of the wafer, 저면 연마(Back grinding) 및 추가 식각의 순서로 진행하는 적층 반도체 패키지 제조 방법.A method of manufacturing a laminated semiconductor package, which proceeds in the order of back grinding and further etching. 관통실리콘비아를 통해 복수의 반도체칩이 적층된 적층패키지에 있어서,In a stacked package in which a plurality of semiconductor chips are stacked through through silicon vias, 상기 관통실리콘비아는 상기 각 반도체칩을 관통하는 관통부와 상기 관통부에 연결되면서 상기 반도체칩의 저면 밖으로 돌출된 볼록부The through silicon vias are penetrating portions penetrating the semiconductor chips and convex portions projecting out of the bottom surface of the semiconductor chip while being connected to the penetrating portions. 를 포함하는 적층 반도체 패키지.Laminated semiconductor package comprising a. 제7항에 있어서,The method of claim 7, wherein 상기 관통부의 상부 표면은 리세스된 둥근 표면을 갖는 적층 반도체 패키지.And the upper surface of the through portion has a recessed rounded surface. 제7항에 있어서,The method of claim 7, wherein 상기 관통부의 측벽을 에워싸는 버퍼막을 더 포함하는 적층 반도체 패키지.And a buffer film surrounding the sidewalls of the through part. 제9항에 있어서,The method of claim 9, 상기 버퍼막은 산화막을 포함하는 적층 반도체 패키지.The buffer layer is a laminated semiconductor package comprising an oxide film. 제7항 내지 제10항 중 어느 한 항에 있어서,The method according to any one of claims 7 to 10, 상기 관통비아는, 금속막으로 형성된 적층 반도체 패키지.The through via is a laminated semiconductor package formed of a metal film.
KR1020080088775A 2008-09-09 2008-09-09 Stack semiconductor package with through silicon via and method for manufacturing the same KR20100030024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080088775A KR20100030024A (en) 2008-09-09 2008-09-09 Stack semiconductor package with through silicon via and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080088775A KR20100030024A (en) 2008-09-09 2008-09-09 Stack semiconductor package with through silicon via and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20100030024A true KR20100030024A (en) 2010-03-18

Family

ID=42180066

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080088775A KR20100030024A (en) 2008-09-09 2008-09-09 Stack semiconductor package with through silicon via and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20100030024A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130077628A (en) * 2011-12-29 2013-07-09 에스케이하이닉스 주식회사 Semicondcutor apparatus and method of manufacturing the same
US8872351B2 (en) 2012-02-02 2014-10-28 Samsung Electronics Co., Ltd. Semiconductor devices having through electrodes
US8957526B2 (en) 2012-04-09 2015-02-17 Samsung Electronics Co., Ltd. Semiconductor chips having through silicon vias and related fabrication methods and semiconductor packages
US8987869B2 (en) 2012-01-11 2015-03-24 Samsung Electronics Co., Ltd. Integrated circuit devices including through-silicon-vias having integral contact pads
KR20160033489A (en) * 2014-09-18 2016-03-28 에스케이하이닉스 주식회사 Semiconductor device having through via, semiconductor package including the same and the method for manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130077628A (en) * 2011-12-29 2013-07-09 에스케이하이닉스 주식회사 Semicondcutor apparatus and method of manufacturing the same
US8987869B2 (en) 2012-01-11 2015-03-24 Samsung Electronics Co., Ltd. Integrated circuit devices including through-silicon-vias having integral contact pads
US8872351B2 (en) 2012-02-02 2014-10-28 Samsung Electronics Co., Ltd. Semiconductor devices having through electrodes
US8957526B2 (en) 2012-04-09 2015-02-17 Samsung Electronics Co., Ltd. Semiconductor chips having through silicon vias and related fabrication methods and semiconductor packages
US9698051B2 (en) 2012-04-09 2017-07-04 Samsung Electronics Co., Ltd. Semiconductor chips having through silicon vias and related fabrication methods and semiconductor packages
KR20160033489A (en) * 2014-09-18 2016-03-28 에스케이하이닉스 주식회사 Semiconductor device having through via, semiconductor package including the same and the method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR100895813B1 (en) Method for fabricating of semiconductor package
KR100871382B1 (en) Through silicon via stack package and method for manufacturing of the same
TWI511253B (en) Chip package
KR100945504B1 (en) Stack package and method for manufacturing of the same
KR101918608B1 (en) Semiconductor package
KR100887479B1 (en) Crack resistant semiconduct package and fabrication method thereof
KR20120035719A (en) Semiconductor package and method for manufacturing same
US10804150B2 (en) Semiconductor structure
CN109841576B (en) Semiconductor device, semiconductor wafer including the same, and semiconductor package
US9343364B2 (en) Semiconductor device and method for manufacturing the same
CN112018027A (en) Semiconductor structure, forming method thereof and wafer cutting method
KR20100030024A (en) Stack semiconductor package with through silicon via and method for manufacturing the same
US20120013010A1 (en) Bonding pad for anti-peeling property and method for fabricating the same
US20120032339A1 (en) Integrated circuit structure with through via for heat evacuating
US20230411249A1 (en) Semiconductor device including a through silicon via structure and method of fabricating the same
US7276440B2 (en) Method of fabrication of a die oxide ring
US11640950B2 (en) Semiconductor chip and semiconductor package
KR100984729B1 (en) Semiconductor device and method for manufacturing the same
US20240055372A1 (en) Highly integrated semiconductor device containing multiple bonded dies
KR20240078089A (en) Semiconductor chip, and semiconductor package including the same
TWI527152B (en) Semiconductor device and method of fabricating the same
KR20120022142A (en) Semiconductor chip and method of fabricating the same
KR20210053537A (en) A semiconductor package
KR20120125915A (en) Contact of semiconductor device and method for forming the same
KR101150464B1 (en) Semiconductor device and method for forming the same

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid