KR20070017804A - A Small and Light Wireless Power Transmitting and Receiving Device - Google Patents
A Small and Light Wireless Power Transmitting and Receiving Device Download PDFInfo
- Publication number
- KR20070017804A KR20070017804A KR1020050072402A KR20050072402A KR20070017804A KR 20070017804 A KR20070017804 A KR 20070017804A KR 1020050072402 A KR1020050072402 A KR 1020050072402A KR 20050072402 A KR20050072402 A KR 20050072402A KR 20070017804 A KR20070017804 A KR 20070017804A
- Authority
- KR
- South Korea
- Prior art keywords
- transmission
- coil
- receiving
- circuit
- charging
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 142
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims description 40
- 230000006698 induction Effects 0.000 claims description 27
- 238000009499 grossing Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims 7
- 230000005674 electromagnetic induction Effects 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000001939 inductive effect Effects 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract 1
- 229920001690 polydopamine Polymers 0.000 description 15
- 238000010586 diagram Methods 0.000 description 9
- 238000004804 winding Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 206010014357 Electric shock Diseases 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/50—Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0024—Parallel/serial switching of connection of batteries to charge or load circuit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 발명은 전자파의 유도 자기장을 발생하는 송신패드 및 충전용 전자기기의 내외장형 수신용 모듈을 사용하여 핸드폰, 리모콘, MP3, PMP, PDA 및 배터리 충전이 필요한 다양한 전자기기들의 전원충전을 위하여 송신패드위에서 자유롭게 무접점ㆍ무선으로 동시에 여러 가지 전자기기들의 배터리에 전원을 충전할 수 있는 어댑터 및 송신패드로 구성된 송신모듈과, 송신모듈 및 수신모듈을 구비한 소형ㆍ경량의 무선 전력 송수신 장치에 관한 것이다. 보다 구체적으로 본 발명은 다양한 전자기기 내외장용 수신용 모듈의 사용하여 핸드폰, MP3 및 PDA등의 배터리 충전을 위하여 송신패드위에서 무접점ㆍ무선으로 충전할 수 있는 소형ㆍ경량의 무선 전력 송수신 장치에 있어서, 콘센트로부터 나오는 일반적인 교류전원을 AC 어댑터를 경유하여 수십㎑내지 수백㎑의 교류 정전압 신호로 변환한 후 높은 에너지 효율로 전력을 송신할 수 있도록 구성된 송신코일을 구비하고 전자파의 유도 자기장을 발생하는 송신패드와, 상기 송신패드에서 발생한 전자파의 유도 자기장을 수신하기 위하여 솔레노이드 혹은 스파이럴구조의 수신코일과, 수신코일을 통해서 수신된 전기 에너지를 극대화하기 위한 공진회로와, 공진회로를 거쳐서 나온 신호를 정류하는 정류 회로와, 정류된 소정 전류와 전압을 가진 전기에너지를 충전하는 충전회로 및 보호회로로 구성된 수신모듈을 구비하고 최대 유도 수신전력 변환 및 전력 전송으로 핸드폰, 리모콘, MP3, PMP, PDA 및 충전이 필요한 다양한 전자기기의 배터리에 전원을 충전함으로써 전선의 단선 및 누전에 의한 안전사고를 예방할 수 있고 소형 ㆍ경량으로 취급이 용이하게 하는데 그 특징이 있다.The present invention uses a transmission pad for generating an electromagnetic field of electromagnetic waves and a transmission pad for charging a mobile phone, a remote controller, an MP3, a PMP, a PDA, and various electronic devices that require battery charging using an internal and external reception module of a charging electronic device. The present invention relates to a transmission module comprising an adapter and a transmission pad capable of simultaneously charging a battery of various electronic devices freely and contactlessly and wirelessly, and a small and light wireless power transmission / reception device including a transmission module and a reception module. . More specifically, the present invention provides a compact and lightweight wireless power transmission / reception apparatus capable of charging by a solid state or wirelessly on a transmission pad for charging a battery of a mobile phone, MP3, PDA, etc. by using various internal and external reception modules. It is equipped with a transmission coil configured to convert general AC power from an outlet to an AC constant voltage signal of several tens to several hundreds of AC via an AC adapter, and then transmit power with high energy efficiency. Receiving a pad, a receiving coil of a solenoid or spiral structure to receive the induced magnetic field of electromagnetic waves generated by the transmission pad, a resonant circuit for maximizing the electric energy received through the receiving coil, and a signal from the resonant circuit Rectification circuit and electric energy with rectified predetermined current and voltage It is equipped with a receiving module composed of a charging circuit and a protection circuit to charge the battery, and the power is disconnected by charging power to a battery of a mobile phone, a remote controller, an MP3, a PMP, a PDA, and various electronic devices that need to be charged with the maximum inductive power conversion and power transmission. And it is possible to prevent safety accidents caused by a short circuit and to be easy to handle in a compact and lightweight.
전자파, 무선전력전송, 자기장, 중계코일, 송신패드, 수신모듈 Electromagnetic wave, wireless power transmission, magnetic field, relay coil, transmission pad, receiving module
Description
도1 : 본 발명에 따른 AC 어댑터를 구비한 송신패드와 수신모듈로 구성된 소형ㆍ경량의 무선 전력 송수신장치의 개략도1 is a schematic diagram of a compact and lightweight wireless power transceiver comprising a transmission pad and a receiving module having an AC adapter according to the present invention.
도2 : 본 발명에 따른 AC 어댑터와 송신패드에 내장된 회로의 블록다이야 그램과 수신모듈의 블록다이야 그램2 is a block diagram of a circuit embedded in an AC adapter and a transmission pad and a block diagram of a receiving module according to the present invention.
도3 : 스파이럴 송신코일Figure 3: Spiral Transmission Coil
도4 : 스파이럴 코일로 구성된 중계코일과, 중계코일과 공진회로를 형성하기 위한 공진커패시터 구성의 중계기 및 소정거리의 스파이럴 코일로 구성된 송신코일 4: A relay coil composed of a spiral coil, a repeater of a resonant capacitor configuration for forming a relay coil and a resonant circuit, and a transmission coil composed of a spiral coil of a predetermined distance.
도5 : 스파이럴 코일로 설계 제작된 중계코일과, 상기 중계코일과 공진회로를 형성하기 위한 공진커패시터와, 상기 중계코일 내부에 스파이럴 코일로 구성된 송신코일5 is a relay coil designed and manufactured by a spiral coil, a resonant capacitor for forming the relay coil and a resonant circuit, and a transmission coil composed of a spiral coil inside the relay coil.
도6 : 자성체 코어에 유도코일을 감은 솔레노이드 구조 수신코일6: Solenoid structure receiving coil wound induction coil on magnetic core
도7 : 자성체를 공통코어로 하여 수신코일과 중계코일을 감아서 구성한 수신코일7: Receiving coil constructed by winding a receiving coil and a relay coil using a magnetic material as a common core
도8 : 일반적인 스파이럴 구조로 구성한 수신코일Fig. 8: Receiving coil composed of general spiral structure
도9 : 도5의 송신코일과 동일한 구조로 형성한 수신코일9 is a reception coil formed in the same structure as the transmission coil of FIG.
도10 : 본 발명에 따라 설계 제작된 수신모듈의 회로도10 is a circuit diagram of a receiving module designed and manufactured according to the present invention.
<도면부호의 간단한 설명><Brief Description of Drawings>
11 ; 충전 대상인 핸드폰 12 ; 수신모듈11; The cell phone to be charged 12; Receive Module
13 ; 송신패드 14 ; 접속단자13;
15 ; AC어댑터 16 ; 콘센트15; AC
31 ; 콘덴서 32 ; 노이즈제거회로31;
33 ; 1차 정류회로 34 ; 신호제어부33;
35 ; 트랜스포머 36 ; 2차 정류회로35;
37 ; 출력제어회로 38 ; 주파수변환 및 출력제어37;
39 ; 송신코일 40 ; 수신코일39;
41 ; 공진 및 임피던스 매칭용 가변커패시터 42 ; 정류회로41;
43 ; 평활콘덴서 44 ; 정전압, 보호회로43;
45 ; 접속단자 46 ; 수신모듈내 충전배터리 45; Connecting
47 ; 전자기기 충전배터리 48 ; 송신모듈47; Electronics
49 ; 수신모듈49; Receive Module
51 ; 중계코일 52 ; 송신코일51;
53 ; 공진커패시터 55 ; 중계코일 53;
56 ; 송신코일 57 ; 공진커패시터56;
61 ; 수신코일 62 ; 중계코일61;
63 ; 공진커패시터 65 ; 중계코일63;
66 ; 수신코일 67 ; 공진커패시터66;
71 ; 수신코일 71; Receiving coil
72 ; 공진 및 임피던스 매칭용 가변커패시터72; Variable Capacitors for Resonance and Impedance Matching
73 ; 정류다이오드 74 ; 평활콘덴서73;
75 ; 정전압, 보호회로75; Constant voltage, protection circuit
76 ; 수신모듈 내부 충전용배터리 77 ; 전자기기 충전용 배터리76; Rechargeable battery inside receiving
본 발명은 소정의 전원을 공급받아서 전자파의 유도 자기장을 발생하는 송신패드 및 충전용 전자기기의 배터리 충전용 내외장형 수신용 모듈을 사용하여 핸드폰, 리모콘, MP3, PMP, PDA 및 배터리의 충전이 필요한 다양한 전자기기들의 전원충전을 위하여 송신패드위에 위치시켜 무접점ㆍ무선으로 동시에 충전할 수 있도록 어댑터 및 송신패드로 구성된 송신모듈과, 송신모듈 및 수신모듈을 구비한 소형ㆍ경량의 무선 전력 송수신 장치에 관한 것이다.The present invention requires charging of a mobile phone, a remote controller, an MP3, a PMP, a PDA, and a battery by using a transmission pad generating a magnetic field of electromagnetic waves by receiving a predetermined power and an internal / external reception module for battery charging of a charging electronic device. It is located on the transmission pad for charging power of various electronic devices, and it is a small and light wireless power transmission / reception device including a transmission module composed of an adapter and a transmission pad for charging at the same time by contactless and wireless, and a transmission module and a reception module. It is about.
종래기술로는 전기에너지를 공급하는 전선들의 접촉에 의하여 전력이 전달되도록 구성된 핸드폰, MP3 및 PDA 등의 배터리를 충전하기 위하여서는 각각의 기종에 맞는 배터리 충전기가 필요하며 유선에 의한 충전 시 충전기의 접점단자의 접촉을 확인하여야 하는 번거러움과, 접점단자들이 대기 중에 노출되어 절연물질의 적층 및 부식에 의하여 사용할 수 없는 경우가 발생하거나 습기에 노출되어 충전 시 접점을 통한 감전의 위험성 및 방전이 발생하는 등의 문제점과 이외에 동시에 다양한 기종 및 다양한 전기기기들의 충전이 불가능한 문제점과, 부피가 비교적 크고 무거우며 충전 시 걸려온 전화를 받기가 불편하고, 핸드폰 배터리 방전시 일시적 충전을 위해 일회용 배터리 충전기를 사용하나 재충전이 불가능하다는 문제점이 있다. In the prior art, a battery charger for each model is required to charge a battery such as a cell phone, an MP3, and a PDA configured to transmit power by contact of electric wires for supplying electrical energy. Hassle to check the contact of the terminal, contact terminal is exposed to the air, can not be used due to the stacking and corrosion of the insulating material, or exposed to moisture, risk of electric shock and discharge through the contact when charging At the same time, it is impossible to charge various models and various electric devices at the same time, the volume is relatively large and heavy, and it is inconvenient to receive an incoming call during charging, and a disposable battery charger is used for temporary charging when the mobile phone battery is discharged. There is a problem that is impossible.
본 발명이 이루고자 하는 기술적 과제는 상기와 같은 종래기술의 문제점을 인식하고 창안된 것으로, 노이즈필터, 정류회로, 주파수 변환회로, 정전압 회로 및 다양한 크기와 출력의 전자파의 유도 자기장을 발생할 수 있도록 전기신호를 제어하는 출력제어부로 구성된 AC어댑터와 AC어댑터에서 전송된 전기신호로 전자파의 유도 자기장을 발생하는 송신코일로 이루어진 송신패드로 구성된 송신모듈를 구비하며, 상기 송신패드에서 발생한 전자파의 유도 자기장을 수신하기 위하여 솔레노이드 혹은 스파이럴구조의 수신코일과 수신된 전기에너지를 높은 효율로 출력단으로 전송하기 위한 공진 및 임피던스 매칭용 가변커패시터를 거쳐서 나온 신호를 정류하는 정류 회로와 정류되어 소정의 전류와 전압을 가진 전기에너지를 충전하는 충전회로 및 보호회로로 구성된 수신모듈을 구비하고 최대 유도 무선 전력 송수신 장치를 구현하여 핸드폰, 리모콘, MP3, PMP, PDA 및 충전이 필요한 전기기기의 배터리에 전원을 충전함으로써 전선의 단선, 및 누전에 의한 안전사고를 예방할 수 있고 소형ㆍ경량으로 설치가 간단하고 충전 시 걸려온 전화를 용이하게 받을 수 있도록 하는데 그 목적이 있다.The technical problem to be achieved by the present invention is to recognize the problems of the prior art as described above, the noise filter, rectifier circuit, frequency conversion circuit, constant voltage circuit and electric signal to generate an induced magnetic field of electromagnetic waves of various sizes and outputs And a transmission module comprising an AC adapter configured as an output control unit for controlling a transmission pad and a transmission pad including a transmission coil for generating an induced magnetic field of electromagnetic waves as an electrical signal transmitted from the AC adapter, and receiving an induced magnetic field of electromagnetic waves generated from the transmission pad. In order to transmit the solenoid or spiral structure receiving coil and the received electrical energy to the output terminal with high efficiency, the rectifying circuit rectifies the signal from the variable capacitor for resonance and impedance matching. Charging circuit and protection It is equipped with a receiving module composed of a furnace and implements the maximum inductive wireless power transmission and reception device to prevent power accidents and short circuits and safety accidents by charging power to batteries of mobile phones, remote controllers, MP3, PMP, PDA and electric devices that require charging. Its purpose is to make it easy to install with small size and light weight, and to easily receive incoming calls when charging.
발명의 또 다른 목적은 AC어댑터와 송신용 유도 코일과 상기 유도코일과 공진을 이루기 위한 커패시터를 구비하고 최대한 효율이 높은 전자파의 유도 자기장을 발생하는 송신패드로 구성된 송신모듈과, 수신용 유도코일과 공진회로를 형성하면서 출력단과는 임피던스 매칭을 위한 가변커패시터를 구성하여 최대한 높은 효율로 수신 전기에너지를 얻을 수 있으면서 소형ㆍ경량으로 설계 제작되어 핸드폰, 리모콘, MP3, PMP, PDA 및 충전이 필요한 전기기기들의 충전용 접점단자에 맞는 내외장형 수신모듈을 제공함으로써 하나의 송신패드위에서 무접점ㆍ무선으로 다양한 전기기기들의 충전용 배터리를 효율적으로 신속하게 충전할 수 있고 유선충전 시 발생할 수 있는 여러 가지 불편을 모두 해결하는데 있다.Still another object of the present invention is a transmission module comprising an AC adapter, a transmission induction coil, a transmission pad having a capacitor for resonating with the induction coil, and a transmission pad for generating an electromagnetic field of electromagnetic waves with the highest efficiency, and an induction coil for reception. Forming a resonant circuit and forming a variable capacitor for impedance matching with the output stage, it is possible to obtain the received electric energy with the highest efficiency while being designed and manufactured in a small size and light weight, so as to be a mobile phone, a remote controller, an MP3, a PMP, a PDA, and an electric device requiring charging By providing internal and external receiving module suitable for their charging contact terminal, it is possible to quickly and efficiently charge the rechargeable battery of various electric devices by contactless / wireless on one transmission pad and to avoid various inconveniences that may occur during wired charging. It's all about solving it.
발명의 또 다른 목적은 충전시 수신모듈내의 용량이 작은 충전용 배터리와 핸드폰등 전자기기내의 충전용 배터리를 동시에 충전하여 수신모듈은 무선전력 변환 기능 외에 전자기기내 배터리의 방전시 응급시 짧은 시간 동안 전자기기내 전원공급을 할 수 있는 용도로도 사용되어질 수 있도록 하는데 있다. Another object of the present invention is to charge the rechargeable battery of the small capacity in the receiving module and the charging battery in the electronic devices such as mobile phones at the same time to charge the receiving module for a short time in case of emergency during the discharge of the battery in the electronic device in addition to the wireless power conversion function It is to be used for power supply in electronic equipment.
본 발명은 소정의 전원 공급하여 전자파의 유도 자기장을 발생하는 송신패드 및 충전용 전자기기의 내외장형 수신용 모듈을 사용하여 핸드폰, 리모콘, MP3, PMP, PDA 및 배터리의 충전을 필요로 하는 다양한 전자기기들의 전원충전을 위하여 송신패드위에서 무접점ㆍ무선으로 동시에 여러 대의 충전용 전자기기들을 배터리를 충전할 수 있는 송신패드로 구성된 송신모듈과 상기 송신모듈 및 수신모듈을 구비한 소형ㆍ경량의 무선 전력 송수신 장치에 관한 것이다.The present invention uses a transmission pad that generates a magnetic field of electromagnetic waves by supplying a predetermined power source, and various electronic devices that require charging of a mobile phone, a remote controller, an MP3, a PMP, a PDA, and a battery by using internal and external reception modules of a charging electronic device. Compact and lightweight wireless power with a transmission module consisting of a transmission pad capable of charging a battery of a plurality of rechargeable electronic devices at the same time in a contactless and wireless manner on a transmission pad for charging a device. It relates to a transceiver.
종래기술로는 전기에너지를 공급하는 전선들의 접촉에 의하여 전력이 전달되도록 구성된 핸드폰, MP3 및 PDA 등의 배터리를 충전하기 위하여서는 각각의 기종에 맞는 배터리 충전기가 필요하며 유선에 의한 충전 시 충전기의 접점단자의 접촉을 확인하여야 하는 번거러움과, 접점단자들이 대기 중에 노출되어 절연물질의 적층 및 부식에 의하여 사용할 수 없는 경우가 발생하거나 습기에 노출되어 충전 시 접점을 통한 감전의 위험성 및 방전이 발생하는 등의 문제점과 이외에 동시에 다양한 기종 및 다양한 전기기기들의 충전이 불가능한 문제점과, 부피가 비교적 크고 무거우며 충전 시 걸려온 전화를 받기가 불편하고, 핸드폰 배터리 방전시 일시적 충전을 위해 일회용 배터리 충전기를 사용하나 재충전이 불가능하다는 문제점이 있다.In the prior art, a battery charger for each model is required to charge a battery such as a cell phone, an MP3, and a PDA configured to transmit power by contact of electric wires for supplying electrical energy. Hassle to check the contact of the terminal, contact terminal is exposed to the air, can not be used due to the stacking and corrosion of the insulating material, or exposed to moisture, risk of electric shock and discharge through the contact when charging At the same time, it is impossible to charge various models and various electric devices at the same time, the volume is relatively large and heavy, and it is inconvenient to receive an incoming call during charging, and a disposable battery charger is used for temporary charging when the mobile phone battery is discharged. There is a problem that is impossible.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 창출된 것이다. 본 발명의 용이하게 이해할 수 있도록 하는 도면에 대하여 살펴본다. 도1은 본 발명에 따른 AC 어댑터와 송신패드로 구성된 송신모듈과 수신모듈로 구성된 소형ㆍ경량의 무선 전력 송수신장치의 개략도이며, 도2는 본 발명에 따른 AC 어댑터와 송신패드에 내장된 회로의 블록다이야 그램과 수신모듈에 내장된 회로의 블록다이야그램을 나타낸 것이다. 도3은 본 발명의 실시 예를 위하여 설계 제작된 스파이럴 송신코일을 나타낸 것이고, 도4는 본 발명의 실시 예를 위하여 설계 제작된 스파이널 코일로 구성된 중계코일과, 중계코일과 공진회로를 형성하기 위한 공진커패시터 구성의 중계기 및 소정거리의 스파이널 코일로 구성된 송신코일을 보여주고 있다. 도5는 본 발명의 실시 예를 위하여 설계 제작된 스파이널 코일로 구성한 중계코일 과, 중계코일과 공진회로를 형성하기 위한 공진커패시터와, 상기 중계코일 내부에 스파이널 코일로 구성된 송신코일을 보여주고 있으며, 도6은 본 발명의 실시 예를 위하여 설계 제작된 하나의 자성체 코어에 유도코일을 감은 수신코일을 나타낸 것이다. 도7은 본 발명의 실시 예를 위하여 설계 제작된 하나의 자성체를 공통코어로 사용하여 수신코일과 중계코일을 감아서 구성한 수신코일을 나타낸 것이며, 도8은 일반적인 스파이널 코일로 구성한 수신코일을 보여주고 있다. 도9는 본 발명의 실시 예를 위하여 설계 제작된 도5의 송신코일과 동일한 구조로 형성한 수신코일을 나타낸 것이며, 도10은 본 발명에 따라 설계 제작된 수신모듈의 회로도이다.The present invention has been created to solve the above problems of the prior art. It looks at the drawings to facilitate understanding of the present invention. 1 is a schematic diagram of a compact and lightweight wireless power transceiver comprising a transmission module and a reception module composed of an AC adapter and a transmission pad according to the present invention, and FIG. 2 is a circuit embedded in the AC adapter and transmission pad according to the present invention. The block diagram and the block diagram of the circuits built in the receiving module are shown. Figure 3 shows a spiral transmission coil designed and manufactured for an embodiment of the present invention, Figure 4 is a relay coil composed of a spiral coil designed and manufactured for an embodiment of the present invention, and for forming a relay coil and a resonant circuit A transmission coil composed of a repeater of a resonant capacitor configuration and a spiral coil of a predetermined distance is shown. 5 shows a relay coil composed of a spiral coil designed and manufactured for an embodiment of the present invention, a resonant capacitor for forming a relay coil and a resonant circuit, and a transmission coil composed of a spiral coil inside the relay coil. Figure 6 shows a receiving coil wound the induction coil in one magnetic core designed and manufactured for an embodiment of the present invention. FIG. 7 illustrates a receiving coil formed by winding a receiving coil and a relay coil by using a magnetic material designed and manufactured as a common core for an embodiment of the present invention, and FIG. 8 shows a receiving coil composed of a general spiral coil. have. 9 illustrates a receiving coil formed in the same structure as the transmitting coil of FIG. 5 designed and manufactured for the embodiment of the present invention, and FIG. 10 is a circuit diagram of a receiving module designed and manufactured according to the present invention.
본 발명에 따른 구성수단들을 구체적으로 살펴본다. 본 발명은 무선으로 전력을 수신할 수 있도록 전자파의 유도 자기장을 발생하기 위하여 설계 제작된 AC 어댑터(15)와 송신패드(13)로 구성된 송신모듈과, 상기 송신모듈에서 발생한 전자파의 유도 자기장을 수신하여 유도기전력을 발생하는 수신코일(71)과, 수신된 유도기전력을 극대화하여 출력단으로 전송하기 위하여 수신코일(71)과 병렬로 체결된 공진 및 임피던스 매칭을 위하여 사용되는 가변커패시터(72)와, 가변커패시터(72)를 거쳐서 나온 신호를 다이오드로 정류하는 정류회로(73)와, 정류된 전압을 평활하여 DC전원으로 변환하는 평활콘덴서(74)로 이루어진 수신모듈로 크게 2가지로 구성된 소형ㆍ경량의 무선 전력 송수신장치이다. 상기 송신모듈은 핸드폰, 리모콘, MP3, PMP, PDA 및 배터리의 충전이 필요한 다양한 전기기기들의 전원충전을 위하여 수신모듈이 필요로 하는 전자파의 유도자기장을 발생하는 장치로서 가정 또는 산업용으로 사용되는 일반적인 전원 AC 220V/110V로부터 입력되는 전원에 포함된 노이 즈를 제거하는 노이즈제거필터(32)와, 노이즈가 제거된 교류전원(신호)을 정류하는 1차 정류회로(33)와, 정류된 DC전원을 스위칭 회로를 사용하여 수십㎑내지 수백㎑ 출력의 주파수를 가진 전기신호로 변환하는 신호제어부(34)와, 신호제어부에서 소정의 출력과 주파수를 가진 전기신호를 필요한 전압으로 변환하는 트랜스포머(35)와 이를 정류하는 2차 정류회로를 거쳐서 필요한 정전압 전원으로 만든 후 필요한 출력과 주파수를 가진 전기신호로 변환하여 송신코일로 전송하는 주파수 및 출력을 제어하는 출력제어부(37)와, 출력제어부(37)를 거쳐서 나온 신호를 전송받아서 전자파의 유도 자기장을 발생하는 송신코일로 구성되어 있다. 상기 출력제어부는 다양한 충전용전자(전기)기기에 필요한 전기에너지를 고려하여 송신출력을 제어할 수 있도록 구성되어 있다. 상기 출력제어부에서 출력되는 신호의 출력을 일정하게 유지하기 위하여 출력신호를 감지하여 신호제어부로 피드백시켜 출력제어부에서 송신코일로 전송되는 전기신호의 출력이 증가하면 감소시키고 출력이 감소하면 증가시켜 일정한 송신출력을 유지시켜주는 피드백회로를 가진다. 상기 어댑터에서 발생한 소정의 주파수 및 출력전압을 일정하게 발생하는 신호에 기초하여 충전에 필요한 전자파의 유도 자기장을 높은 효율로 발생하도록 유도코일과 커패시터를 체결시켜 구성한 송신패드가 설계 제작된다. 상기 AC어댑터(15)와 송신패드(13)로 구성되어 전자파의 유도 자기장을 발생하는 송신부를 송신모듈이라 한다. 상기 AC어댑터와 송신패드는 필요에 따라 일체형 또는 다소 거리를 두고 분리하는 분리형으로 설계 제작할 수 있다. 상기 송신모듈에서 발생한 전자파의 유도 자기장을 수신하기 위하여 솔레노이드 혹은 스파이럴구조의 수신코일과 수신된 전기에너지를 높은 효율로 출력단으로 전송하기 위하여 공진회로 및 전자파의 유도 자기장을 중계하는 중계코일이 부가로 연결되며, 상기 공진회로 및 중계코일을 거쳐서 나온 신호를 정류하는 정류회로와 정류되어 소정의 전류와 전압을 가진 전기에너지를 충전하는 충전회로와, 핸드폰, 리모콘, MP3, PMP, PDA 및 배터리의 충전이 필요한 다양한 전자(또는 전기)기기들의 전원충전을 위하여 각각의 전자기기에 전원을 충전하기 위하여 형성된 접점들과 결합되는 접속단자를 구비한 수신모듈(12)로 구성되어 있다. 상기 수신코일, 증폭중계기(상기 중계코일에 해당함) 및 이들의 구성회로에 대하여서는 본원 출원인이 출원한 출원번호 10-2004-0093696호 및 10-2005-0059562호에 자세하게 기재되어 있다. 본 발명에 따른 송신모듈의 출력전압, 주파수 및 출력전력을 제어하여 필요한 송신출력으로 전자파의 유도자기장을 송신패드를 통해서 송신하고, 수신모듈의 접속단자를 충전을 원하는 다양한 전자기기에 형성되어 있는 접점에 맞추어 설계 제작할 경우에 핸드폰(11), MP3, 및 PDA 뿐만 아니라 충전이 필요한 대부분의 전자기기들에 내장시키거나 외부의 접점에 수신모듈(12)에 형성된 접속단자를 체결하여 충전할 수 있다. 본 발명의 송신패드와 AC어댑터는 필요에 따라 일체형 또는 도1에서와 같이 분리형으로 설계 제작할 수 있다. 본 발명에 따른 송신패드와 수신모듈을 구비한 소형ㆍ경량의 무선 전력 송수신 장치에 관한 구체적이고 다양한 실시 예를 살펴본다.The construction means according to the present invention will be described in detail. The present invention receives a transmission module composed of an
[실시 예] EXAMPLES
본 발명에 따른 구체적인 실시 예를 도면에 기초하여 살펴본다. 먼저 본 발명에 따른 송신모듈에 대하여 살펴본다. 송신모듈은 일반적인 전원 AC 220V 또는 다양한 형태로 제공되는 전원으로부터 입력되는 전원에 포함된 노이즈를 제거하는 노이즈제거필터와 노이즈가 제거된 교류전원(신호)을 정류하는 정류회로(33)와, 정류된 DC전원을 스위칭 회로를 사용하여 수십㎑내지 수백㎑ 출력의 주파수를 가진 전기신호로 변환하는 신호제어부(34)와, 신호제어부(34)에서 소정의 출력과 주파수를 가진 전기신호를 필요한 전압으로 변환하는 트랜스포머(35)와, 이를 정류하는 정류회로(36)를 거쳐서 필요한 정전압 전원으로 만든 후 필요한 출력으로 공급하면서 소정의 주파수와 전압을 가진 신호를 송신코일(39)로 전송하는 주파수 및 출력을 제어하는 송신 출력제어부와, 송신 출력제어부(37)를 거쳐서 나온 신호를 전자파의 유도 자기장을 발생하는 송신코일로 구성되어 다양한 충전용전자기기에 필요한 전기에너지를 고려하여 송신출력을 제어하여 공급하는 구성들을 구비한다. 상기 출력제어부에서 출력되는 전기신호의 출력을 일정하게 유지하기 위하여 송신패드로 전송되는 출력신호를 감지하여 신호제어부로 피드백시켜 출력제어부에서 송신코일로 전송되는 전기신호의 출력이 증가하면 감소시키고 출력이 감소하면 증가시켜 항상 일정한 송신출력을 유지시켜주는 피드백회로를 가진다. 상기 송신모듈에서 유도코일이 내장된 송신패드의 앞단에 설치되는 AC어댑터(15)는 다양한 방법에 설계 제작하여 안정된 출력을 가지면서 소정의 주파수와 AC 출력전압을 발생할 수 있도록 구성되어야 한다. 본 발명에 따른 송신패드에 내장된 송신코일의 구성은 수신모듈(12)에 내장된 수신코일에서 최대한 많은 전기에너지가 유도될 수 있도록 전자파의 유도자기장을 발생할 수 있도록 다양하게 형성할 수 있다. 표1은 도3에서 구성한 스파이널 코일의 직경, 감은 수, 내경 및 외경을 나타낸 것이며, 본 발명의 실시 예에서 사용된 송신코일의 샘플1에 해당한다. A specific embodiment according to the present invention will be described with reference to the drawings. First, a transmission module according to the present invention will be described. The transmitting module includes a rectifying
표1. 도3의 스파이널 코일의 직경, 감은 수, 내경 및 외경(송신샘플1) Table 1. Diameter, number of turns, inner diameter and outer diameter of the spiral coil of FIG. 3 (transmission sample 1)
표2는 도4와 같이 설계 제작된 스파이럴 코일로 전자파의 유도자기장을 중계를 위한 중계코일과, 중계코일과 공진을 형성하기 위해 공진커패시터를 연결 구성한 스파이럴형 중계기와 소정거리의 스파이럴 송신코일의 직경, 감은 수, 내경 및 외경을 나타낸 것이며, 본 발명의 실시 예에서 사용된 송신코일의 샘플2에 해당한다.Table 2 is a spiral coil designed and manufactured as shown in FIG. 4, and the diameter of the spiral type coil and the spiral coil having a predetermined distance connected to the relay coil for relaying the induction magnetic field of the electromagnetic wave, and the resonance capacitor for forming resonance with the relay coil. , Represents the number, the inner diameter and the outer diameter, and corresponds to sample 2 of the transmission coil used in the embodiment of the present invention.
표2 :도4의 중계코일 및 송신코일의 직경, 감은 수, 내경 및 외경(송신샘플2)Table 2: Diameter, number of turns, inner and outer diameters of the relay coil and the transmitter coil of FIG. 4 (transmission sample 2)
표3은 도5와 같이 설계 제작된 스파이럴 코일로 전자파의 유도 자기장의 중계를 위한 중계코일과, 중계코일과 공진회로를 형성하기 위한 커패시터로 구성되어진 중계기와 상기 전자파의 유도자기장의 강화를 위한 중계코일 내부에 스파이럴 코일로 송신코일을 구성한 송신코일의 샘플에 대한 중계코일 및 송신코일의 직경, 감은 수, 내경 및 외경을 나타낸 것이며, 본 발명의 실시 예에서 사용된 송신코일의 샘플3에 해당한다. 송신코일과 중계기는 유선으로 연결되어져 있지 않으며, 패 드의 크기와 형태에 따라 중계코일 및 송신코일을 감은 수, 외경 및 내경 등을 다르게 수성할 수 있다.Table 3 is a spiral coil designed and manufactured as shown in FIG. 5, and a relay coil for relaying an induction magnetic field of electromagnetic waves, a relay consisting of a relay coil and a capacitor for forming a resonance circuit, and a relay for strengthening the induction magnetic field of the electromagnetic wave. It shows the relay coil and the diameter, the number of windings, the inner diameter and the outer diameter of the relay coil and the transmitter coil for the sample of the coil configured with the coil in the spiral coil, and correspond to the sample 3 of the coil used in the embodiment of the present invention. . The transmission coil and the repeater are not connected by wire, and depending on the size and shape of the pad, the number of windings of the relay coil and the transmission coil, the outer diameter, and the inner diameter may be different.
표3 :도5의 중계코일 및 송신코일의 직경, 감은 수, 내경 및 외경(송신샘플3)Table 3: Diameter, number of turns, inner diameter and outer diameter of the relay coil and the transmitter coil of FIG. 5 (transmission sample 3)
본 발명에 따라 설계 제작되는 송신코일은 상기 샘플1, 샘플2 및 샘플3에서 설계 제작된 스파이럴로 구성된 송신코일 대신에 본 발명의 특허 출원인 2005년 출원한 출원번호 10-2005-0059562호에 기재된 자성체 코어와 코일을 이용하여 송신코일과 중계코일(상기 특허출원에서는 전자파의 유도자기장 증폭중계기라고 기재되어 있습니다)을 구성할 수 있다. The transmission coil designed and manufactured according to the present invention is a magnetic material described in Application No. 10-2005-0059562 filed in 2005, which is a patent application of the present invention, instead of a transmission coil composed of spirals designed and manufactured in Samples 1, 2, and 3, respectively. By using the core and the coil, a transmission coil and a relay coil (in the patent application, described as an induction magnetic field amplification relay) can be configured.
다음은 본 발명에 따라 설계 제작된 수신코일에 대하여 구체적으로 살펴본다. 핸드폰, MP3 및 PDA 등에 채용될 수 있는 내외장형 수신모듈에 삽입되도록 설계 제작된 소형ㆍ경량의 수신코일의 샘플구조들을 살펴본다. 도6은 자성체 코어에 유도코일을 감은 솔레노이드 코일로 구성한 수신코일이며, 표4는 수신 솔레노이드 코일의 직경, 높이, 코일종류 및 감은 수를 나타낸 것으로 수신코일 샘플1이다. Next, the receiving coil designed and manufactured according to the present invention will be described in detail. The sample structures of small and light receiving coils designed to be inserted into internal and external receiving modules that can be employed in cellular phones, MP3s, and PDAs are described. 6 is a receiving coil composed of a solenoid coil wound around a magnetic core, and Table 4 shows the diameter, height, coil type, and number of windings of the receiving solenoid coil.
표4. 수신코일의 직경, 높이, 코일종류 및 감은 수(수신샘플1)Table 4. Receive coil diameter, height, coil type and number of windings (receive sample 1)
도7은 하나의 자성체(페라이트)를 공통코어로 사용하여 수신코일과 전자파의 유도자기장을 중계하는 중계코일을 감아서 구성한 수신코일이며, 표5는 수신코일 및 중계코일의 직경, 높이, 코일규격 및 감은 수를 표시한 것으로 수신코일샘플2에 해당한다. 7 is a receiving coil formed by winding a relay coil relaying a receiving coil and an induced magnetic field of electromagnetic waves using one magnetic material (ferrite) as a common core, and Table 5 shows the diameter, height, and coil specifications of the receiving coil and the relay coil. And the number of turns and correspond to the received coil sample 2.
표5. 수신코일 및 중계코일의 직경, 높이, 코일규격 및 감은 수(수신샘플2)Table 5. Diameter, height, coil size and number of windings of receiving coil and relay coil (receiving sample 2)
도8은 일반적인 스파이럴 코일로 구성한 수신코일이며, 표6은 코일의 직경, 감은 수, 내경 및 외경을 나타낸 것으로 수신코일샘플3에 해당한다. 8 is a receiving coil composed of a general spiral coil, and Table 6 shows the coil diameter, the number of turns, the inner diameter and the outer diameter, and corresponds to the receiving coil sample 3.
표6. 스파이널 코일의 직경, 감은 수, 내경 및 외경(수신샘플3)Table 6. Diameter, number of turns, inner and outer diameters of the spiral coil (receive sample 3)
도9는 도5의 송신코일과 동일한 구조로 외부에는 스파이럴 중계코일과 공진회로 구성을 위한 커패시터를 사용하여 전자파의 유도 자기장을 강화하는 중계기를 구성하고, 내부에 스파이럴 수신코일로 결합된 구조로 수신코일 샘플4에 해당한다. 표7은 상기 수신코일 샘플4에 사용된 중계코일 및 수신코일의 직경, 감은 수, 내경 및 외경을 나타낸 것이다. FIG. 9 is the same structure as the transmission coil of FIG. 5, and a relay for strengthening the induced magnetic field of the electromagnetic wave by using a spiral relay coil and a capacitor for resonant circuit configuration is received outside, and is coupled with a spiral receiving coil inside. Corresponds to coil sample 4. Table 7 shows the diameter, the number of windings, the inner diameter and the outer diameter of the relay coil and the receiving coil used in the receiving coil sample 4.
표7. 중계코일 및 수신코일의 직경, 감은 수, 내경 및 외경(수신샘플4)Table 7. Diameter, number of turns, inner and outer diameters of relay coil and receiver coil (receive sample 4)
상기 도3내지 도9 및 표1내지 표7에서와 같이 구성한 송신코일 및 수신코일로 설계 제작된 송수신코일의 샘플들을 조합하여 핸드폰, MP3 및 PDA 등에 채용될 수 있는 내외장형 수신모듈에 삽입되어 소형ㆍ경량의 무선 송수신장치를 얻기 위한 샘플구조에 있어서, 상기 송신모듈의 출력제어부에 송신출력을 10W, AC 100㎑ 주파수로 송신하여 전자파의 유도자기장을 발생시키고, 상기 수신코일 샘플1내지 4에서 설계 제작한 다양한 수신 샘플코일들을 사용하여 수신모듈의 충전 회로도를 구성하여 출력단에서 DC 전력이 3.7V 전자기기(핸드폰) 충전용 배터리에 전기에너지를 충전 시에 수신전압, 전류 및 전력 값을 측정한다. 수신모듈은 핸드폰 등의 전자기기에 필요한 전기에너지를 충전하는 수단만 내장시키거나 소정의 용량을 가진 충전용 배터리를 상기 충전수단과 동시에 내장시켜 병렬로 동시에 충전되도록 구성할 수 있다. 상기 수신코일샘플 1내지 4의 뒷단에 높은 효율로 전기에너지를 전송하기 위하여 공진 및 임피던스 매칭용 가변 커패시터가 체결되고, 커패시터를 거쳐서 나온 전기신호를 다이오드를 이용하여 직류신호로 변환하기 위한 정류회로와, 정류된 신 호를 평활하기 위한 커패시터로 구성되며 충전을 필요로 하는 전자기기의 배터리에 전기에너지를 충전하게 된다. 즉, 도10의 수신모듈은 수신코일에서 수신된 유도기전력을 출력단으로 높은 효율로 전기에너지를 전송하기 위하여 공진 및 임피던스 매칭용 가변 커패시터를 수신코일과 병렬로 체결 구성하고, 공진 및 임피던스 매칭용 가변 커패시터를 거쳐서 전송된 신호를 정류 다이오드와 평활커패시터를 거쳐서 정전압 및 보호회로를 거친 후, 수신모듈 내에 내장된 소정용량의 3V내지 4V 충전용 배터리와 전자기기내의 3내지 4V 충전용 배터리에 동시에 전기에너지를 충전할 수 있는 구성으로 이루어지거나 전자기기내의 3내지 4V로 충전용 배터리에만 충전할 수 있도록 수신모듈로 구성할 수 있다. 표8은 상기 본 발명의 실시 예에서 설계 제작한 송신코일의 샘플1내지 샘플3 각각에 대하여 상기 수신코일의 샘플1내지 샘플4에 대한 각각의 수신회로를 구성하여 출력단 전자기기의 충전배터리에서 측정한 충전하는 수신전압, 전류 및 전력 값을 나타낸 것이다. 표8을 통해서 알 수 있듯이 전자파의 유도 자기장을 중계하는 중계코일을 결합한 송신코일과 전자파의 유도 자기장을 중계하는 중계코일을 결합한 수신코일로 전자파의 유도자기장을 발생하고 발생한 전자파 자기장을 수신하는 구조가 전자기기의 충전배터리에 전기에너지를 신속하고 높은 효율로 충전할 수 있는 높은 출력전력을 얻을 수 있다. 즉, 스파이럴코일 외부에 중계코일과 송신코일을 결합한 구성인 송신코일샘플3으로 송신패드를 구성하고, 수신코일 샘플2 구조인 하나의 페라이트 코어에 중계코일과 수신코일을 결합하여 구성한 수신모듈로 전자파의 유도 자기장을 송수신할 경우에 가장 큰 충전 수신전류인 1.32A와 충전전력 5.41W를 얻을 수 있었다. 상기 중계코일을 포함 하지 않는 일반 송신코일 샘플1을 사용하여 송신코일로 구성하고, 중계코일을 사용하지 않은 일반 솔레노이드로 구성된 수신코일 샘플1과 스파이럴 수신코일인 샘플3의 구조에서는 아주 낮은 0.24W, 0.28W의 충전전력을 얻었다. 3 to 9 and Table 1 to Table 7 by inserting a sample of a transmission coil and a receiving coil designed and manufactured by the combination of the coils configured as shown in the internal and external type receiving module that can be employed in mobile phones, MP3 and PDA, etc. In the sample structure for obtaining a light weight wireless transceiver, a transmission output is transmitted to the output control section of the transmission module at a frequency of 10W and AC 100 kHz to generate an electromagnetic field of electromagnetic waves, and is designed in the receiving coil samples 1 to 4. The charging circuit diagram of the receiving module is composed by using the various receiving sample coils manufactured, and the received voltage, current and power value are measured when DC power is charged with 3.7V electronic device (cell phone) rechargeable battery. The receiving module may be configured to include only means for charging electrical energy required for an electronic device such as a mobile phone, or to simultaneously charge in parallel by embedding a rechargeable battery having a predetermined capacity with the charging means. A variable capacitor for resonance and impedance matching is fastened to transmit electrical energy with high efficiency at the rear ends of the receiving coil samples 1 to 4, and a rectifying circuit for converting the electric signal from the capacitor into a DC signal using a diode. It consists of a capacitor to smooth the rectified signal and charges electrical energy to the battery of the electronic device that needs charging. That is, the receiving module of FIG. 10 is configured to fasten the variable capacitor for resonance and impedance matching in parallel with the receiving coil in order to transmit electrical energy with high efficiency to the output terminal of the induced electromotive force received from the receiving coil, and the variable for resonance and impedance matching. After passing through the rectifier diode and the smoothing capacitor, the signal transmitted through the capacitor goes through the constant voltage and protection circuits, and then the electrical energy is simultaneously applied to the 3 V to 4 V rechargeable battery of the predetermined capacity and the 3 to 4 V rechargeable battery in the electronic device. It may be configured as a charging module or configured as a receiving module to charge only the rechargeable battery to 3 to 4V in the electronic device. Table 8 shows each of the receiving circuits for the samples 1 to 4 of the receiving coil for each of the samples 1 to 3 of the transmission coil designed and manufactured in the embodiment of the present invention, and is measured by the rechargeable battery of the output terminal electronic device. The charging voltage shows the received voltage, current and power values. As can be seen from Table 8, the receiving coil combines the transmission coil combining the relay coil relaying the induced magnetic field of the electromagnetic wave and the relay coil relaying the induced magnetic field of the electromagnetic wave to generate the induced magnetic field of the electromagnetic wave and receive the generated electromagnetic magnetic field. It is possible to obtain high output power that can quickly and efficiently charge electrical energy to a rechargeable battery of an electronic device. In other words, a transmission module is composed of a transmission coil sample 3, which is a combination of a relay coil and a transmission coil outside the spiral coil, and a reception module configured by combining the relay coil and the reception coil in one ferrite core having a structure of the reception coil sample 2 The maximum charge receiving current of 1.32A and the charging power of 5.41W were obtained when transmitting and receiving the induced magnetic field. 0.24W, which is very low in the structure of the receiving coil sample 1 and the spiral receiving coil sample 1, which is composed of the transmitting coil using the general transmission coil sample 1 that does not include the relay coil, and the solenoid which does not use the relay coil. A charging power of 0.28 W was obtained.
표8. 본 발명의 실시 예에서 설계 제작한 송신코일의 샘플1내지 샘플3 각각에 대하여 수신코일의 샘플1내지 샘플4에 대하여 수신모듈의 출력단 전자기기내 충전 배터리 에서 측정한 수신전압, 전류, 전력값Table 8. For each of the samples 1 to 3 of the transmission coil designed and manufactured in the embodiment of the present invention, for the samples 1 to 4 of the reception coil, the reception voltage, current, and power value measured by the rechargeable battery in the electronic device at the output terminal of the reception module.
본 발명에 따라 구성되는 전자파 유도자기장 발생을 위한 송신패드를 구성하는 송신코일은 상기 실시 예에서 설계 제작한 다양한 종류의 송신코일 외에 본 발명의 특허 출원인 2005년 출원한 출원번호 10-2005-0059562호에 기재된 자성체 코어와 유도코일을 사용하여 구성한 송신코일과 중계증폭기(본 발명의 중계코일에 해 당한다) 등을 사용하여 다양하게 구성할 수 있으며, 수신코일 또한 상기 실시 예에서 설계 제작한 다양한 종류의 수신코일 외에 본 발명의 특허 출원인 2005년 출원한 출원번호 10-2005-0059562호에 기재된 자성체 코어, 유도코일 및 가변커패시터를 사용하여 구성한 수신코일과 중계증폭기(본 발명의 중계코일에 해당한다) 등을 사용하여 다양하게 구성할 수 있다. 본 발명에 따른 송신모듈의 출력전압, 주파수 및 출력전력을 제어하여 송신출력을 제어하여 송신하고, 수신모듈의 접속단자를 충전을 원하는 다양한 전자기기에 형성되어 있는 접점에 맞추어 설계 제작할 경우에 핸드폰, 리모콘, MP3, PMP, PDA 뿐만 아니라 충전이나 전원공급이 필요한 대부분의 전자기기들에 내장 또는 외장형으로 설계 제작하여 배터리 충전에 적용할 수 있다. 본 발명의 송신패드와 AC어댑터는 필요에 따라 일체형 또는 도1에서와 같이 분리형으로 설계 제작할 수 있다. The transmission coil constituting the transmission pad for generating an electromagnetic wave induced magnetic field configured in accordance with the present invention, in addition to the various types of transmission coils designed and manufactured in the above embodiment, the application number 10-2005-0059562 filed in 2005, the patent application of the present invention The transmission coil and the relay amplifier (corresponding to the relay coil of the present invention) and the like configured using the magnetic core and the induction coil described in the above can be configured in various ways, and the receiving coil is also designed and manufactured in various embodiments. In addition to the receiving coil, the receiving coil and the relay amplifier (corresponding to the relay coil of the present invention) configured using the magnetic core, the induction coil, and the variable capacitor described in Patent Application No. 10-2005-0059562, filed in 2005, filed with the present invention. Can be configured in various ways. Cell phone, in case of designing and manufacturing in accordance with the contacts formed on the various electronic devices to control the transmission output, control the transmission output by controlling the output voltage, frequency and output power of the transmission module according to the present invention It can be applied to battery charging by designing internally or externally in remote control, MP3, PMP, PDA and most electronic devices that need charging or power supply. The transmission pad and the AC adapter of the present invention can be designed or manufactured in one piece or separately as shown in FIG.
본 발명은 노이즈필터, 정류회로, 주파수 변환회로, 정전압 회로 및 다양한 크기와 출력의 전자파의 유도 자기장을 발생할 수 있도록 전기신호를 제어하는 출력제어부로 구성된 AC 어댑터와, 어댑터에서 전송된 전기신호외 연결된 송신코일로 전자파의 유도 자기장을 발생하는 송신패드로 구성된 송신모듈과, 상기 송신모듈에서 발생한 전자파의 유도 자기장을 수신하기 위하여 수신코일과 수신된 전기에너지를 극대화하기 위한 공진 및 임피던스 매칭 회로와 충전용 DC전원으로 변환하는 정류회로로 구성된 수신모듈을 구비하고 최대 유도 무선 전력 송수신 장치를 구현하여 핸드폰, 리모콘, MP3, PMP, PDA 및 충전이 필요한 기기의 배터리에 전원을 충전 함으로써 전선의 단선 및 누전에 의한 안전사고를 예방할 수 있고 소형ㆍ경량으로 설치가 간단하고 충전 시 걸려온 전화를 용이하게 받을 수 있는 작용효과가 있다.The present invention provides an AC adapter comprising a noise filter, a rectifier circuit, a frequency conversion circuit, a constant voltage circuit, and an output controller for controlling an electric signal to generate an induced magnetic field of electromagnetic waves of various sizes and outputs, and an electric signal transmitted from the adapter. A transmission module comprising a transmission pad for generating an induction magnetic field of electromagnetic waves with a transmission coil, and a resonance and impedance matching circuit for maximizing the received coil and received electric energy to receive the induced magnetic field of electromagnetic waves generated by the transmission module. Equipped with a receiving module composed of rectifier circuit converting into DC power and implementing the maximum inductive wireless power transmission and reception device by charging power to the battery of mobile phones, remote controllers, MP3, PMP, PDA and devices that require charging Safety accidents can be prevented due to small size and light weight There is an effect that can easily receive incoming calls.
발명의 또 다른 효과는 AC어댑터와 송신용 유도 코일과 상기 유도코일과 공진을 이루기 위한 커패시터를 구비하고 최대한 효율이 높은 전자파의 유도 자기장을 발생하는 송신패드와, 수신용 유도코일과 공진회로를 형성하면서 출력단과는 임피던스 매칭을 위한 가변커패시터를 구성하여 최대한 높은 효율로 수신 전기에너지를 수신모듈내 소형 충전 배터리와 전자기기내 충전 배터리에 공급하면서 소형ㆍ경량으로 설계 제작되어 핸드폰, 리모콘, MP3, PMP, PDA 및 충전이 필요한 전기기기들의 충전용 접점단자에 맞는 내외장형 수신모듈을 제공함으로써 하나의 송신패드위에서 무접점ㆍ무선으로 다양한 전기기기들의 충전용 배터리를 효율적으로 신속하게 충전할 수 있고 유선충전 시 발생할 수 있는 여러 가지 불편을 모두 해결하고 수신모듈내 소정 크기의 충전용 배터리를 이용하여 전자기기내 충전 배터리의 방전시 응급용 전자기기내 전원 공급으로도 사용할 수 있도록 하는데 있다.Another effect of the present invention is to provide an AC adapter, a transmission induction coil, a capacitor for resonating with the induction coil, a transmission pad for generating an electromagnetic field of electromagnetic waves with the highest efficiency, and a reception induction coil and a resonance circuit. In addition, by constructing a variable capacitor for impedance matching with the output stage, it is designed and manufactured in small size and light weight while supplying received electric energy to the small rechargeable battery in the receiving module and the rechargeable battery in the electronic device with the highest efficiency. By providing internal and external type receiving module suitable for charging contact terminal of PDA, PDA and electric devices that need to be charged, it can efficiently and quickly charge rechargeable battery of various electric devices by contactless / wireless on one transmission pad. Solve all the inconveniences that may occur during When the discharging of the charging battery to the electronic apparatus using the battery, the charging is to be used so that the emergency power supplies in electronic equipment.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050072402A KR100691255B1 (en) | 2005-08-08 | 2005-08-08 | A Small and Light Wireless Power Transmitting and Receiving Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050072402A KR100691255B1 (en) | 2005-08-08 | 2005-08-08 | A Small and Light Wireless Power Transmitting and Receiving Device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070017804A true KR20070017804A (en) | 2007-02-13 |
KR100691255B1 KR100691255B1 (en) | 2007-03-12 |
Family
ID=41622959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050072402A KR100691255B1 (en) | 2005-08-08 | 2005-08-08 | A Small and Light Wireless Power Transmitting and Receiving Device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100691255B1 (en) |
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009036405A1 (en) * | 2007-09-13 | 2009-03-19 | Nigelpower, Llc | Maximizing power yield from wireless power magnetic resonators |
KR100903462B1 (en) * | 2007-04-20 | 2009-06-18 | 엘에스전선 주식회사 | Multi type adapter for charging contact-less chargeable battery and Battery charging set having the same |
KR100911763B1 (en) * | 2008-03-27 | 2009-08-10 | 주식회사 한빛나노바이오테크 | Wireless power transmission apparatus and method for computer peripheral input-output devices |
KR100937627B1 (en) * | 2007-04-30 | 2010-01-19 | (주)제이씨 프로텍 | Non-Directional Charging Device and Wireless Charging Set of Small Electronic Device |
KR100964280B1 (en) * | 2008-05-09 | 2010-06-16 | 알파웨이브(주) | In-home RF repeater system |
CN102270937A (en) * | 2010-06-07 | 2011-12-07 | 三星电机株式会社 | Rectifier circuit of wireless power transmission system |
US8373514B2 (en) | 2007-10-11 | 2013-02-12 | Qualcomm Incorporated | Wireless power transfer using magneto mechanical systems |
US8378523B2 (en) | 2007-03-02 | 2013-02-19 | Qualcomm Incorporated | Transmitters and receivers for wireless energy transfer |
WO2013035986A1 (en) * | 2011-09-09 | 2013-03-14 | Lg Innotek Co., Ltd. | Wireless power repeater |
KR101247419B1 (en) * | 2008-05-13 | 2013-03-25 | 퀄컴 인코포레이티드 | Repeaters for enhancement of wireless power transfer |
WO2013042866A1 (en) * | 2011-09-22 | 2013-03-28 | Lg Innotek Co., Ltd. | Wirless power apparatus, wireless charging system using the same, and power transceiving method |
US8447234B2 (en) | 2006-01-18 | 2013-05-21 | Qualcomm Incorporated | Method and system for powering an electronic device via a wireless link |
KR101278399B1 (en) * | 2009-03-17 | 2013-06-24 | 후지쯔 가부시끼가이샤 | Wireless power supply system |
US8482157B2 (en) | 2007-03-02 | 2013-07-09 | Qualcomm Incorporated | Increasing the Q factor of a resonator |
KR101288433B1 (en) * | 2007-03-27 | 2013-07-26 | 메사추세츠 인스티튜트 오브 테크놀로지 | Wireless energy transfer |
US8629576B2 (en) | 2008-03-28 | 2014-01-14 | Qualcomm Incorporated | Tuning and gain control in electro-magnetic power systems |
KR101343096B1 (en) * | 2011-01-04 | 2014-01-15 | 프리닉스(주) | Apparatus for converting data using pictbridge |
KR101373560B1 (en) * | 2012-05-18 | 2014-03-13 | 전북대학교산학협력단 | System and method for contactless charging with rf signal of wireless communication band |
KR101436063B1 (en) * | 2012-10-18 | 2014-08-29 | (주)기술과가치 | Wiress Power Transmission Apparatus |
US8836172B2 (en) | 2008-10-01 | 2014-09-16 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US8847548B2 (en) | 2008-09-27 | 2014-09-30 | Witricity Corporation | Wireless energy transfer for implantable devices |
US8854224B2 (en) | 2009-02-10 | 2014-10-07 | Qualcomm Incorporated | Conveying device information relating to wireless charging |
US8875086B2 (en) | 2011-11-04 | 2014-10-28 | Witricity Corporation | Wireless energy transfer modeling tool |
US8878393B2 (en) | 2008-05-13 | 2014-11-04 | Qualcomm Incorporated | Wireless power transfer for vehicles |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8901880B2 (en) | 2008-08-19 | 2014-12-02 | Qualcomm Incorporated | Wireless power transmission for portable wireless power charging |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US9054745B2 (en) | 2010-12-22 | 2015-06-09 | Electronics And Telecommunications Research Institute | Apparatus for transmitting/receiving energy using a resonance structure in an energy system |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US9095729B2 (en) | 2007-06-01 | 2015-08-04 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US9124120B2 (en) | 2007-06-11 | 2015-09-01 | Qualcomm Incorporated | Wireless power system and proximity effects |
US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US9252604B2 (en) | 2010-09-15 | 2016-02-02 | Samsung Electronics Co., Ltd. | Apparatus for wireless power transmission and reception |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
US9312924B2 (en) | 2009-02-10 | 2016-04-12 | Qualcomm Incorporated | Systems and methods relating to multi-dimensional wireless charging |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
US9337691B2 (en) | 2010-03-31 | 2016-05-10 | Samsung Electronics Co., Ltd. | Wireless charging set |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9369182B2 (en) | 2008-09-27 | 2016-06-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US9384885B2 (en) | 2011-08-04 | 2016-07-05 | Witricity Corporation | Tunable wireless power architectures |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
WO2016114637A1 (en) * | 2015-01-16 | 2016-07-21 | 주식회사 한림포스텍 | Wireless power transmission device |
US9404954B2 (en) | 2012-10-19 | 2016-08-02 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US9444520B2 (en) | 2008-09-27 | 2016-09-13 | Witricity Corporation | Wireless energy transfer converters |
US9442172B2 (en) | 2011-09-09 | 2016-09-13 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9444265B2 (en) | 2005-07-12 | 2016-09-13 | Massachusetts Institute Of Technology | Wireless energy transfer |
US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US9450456B2 (en) | 2008-04-21 | 2016-09-20 | Qualcomm Incorporated | System and method for efficient wireless power transfer to devices located on and outside a charging base |
US9450421B2 (en) | 2005-07-12 | 2016-09-20 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
KR20170008438A (en) * | 2015-07-14 | 2017-01-24 | 엘지이노텍 주식회사 | Wireless power transmitting-receiving apparatus and method for controlling the same |
US9583953B2 (en) | 2009-02-10 | 2017-02-28 | Qualcomm Incorporated | Wireless power transfer for portable enclosures |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
US9601267B2 (en) | 2013-07-03 | 2017-03-21 | Qualcomm Incorporated | Wireless power transmitter with a plurality of magnetic oscillators |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9754718B2 (en) | 2008-09-27 | 2017-09-05 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US9774086B2 (en) | 2007-03-02 | 2017-09-26 | Qualcomm Incorporated | Wireless power apparatus and methods |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
KR20170141102A (en) * | 2016-06-14 | 2017-12-22 | 삼성전기주식회사 | Coil device and manufacturing method of the same |
US9857821B2 (en) | 2013-08-14 | 2018-01-02 | Witricity Corporation | Wireless power transfer frequency adjustment |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
US10141788B2 (en) | 2015-10-22 | 2018-11-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10218224B2 (en) | 2008-09-27 | 2019-02-26 | Witricity Corporation | Tunable wireless energy transfer systems |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
US10263473B2 (en) | 2016-02-02 | 2019-04-16 | Witricity Corporation | Controlling wireless power transfer systems |
CN109921328A (en) * | 2019-03-26 | 2019-06-21 | 国家电网有限公司 | It is a kind of can overcurrent proof magnetic disturbance manipulator livewire work part flow arrangement |
US10424976B2 (en) | 2011-09-12 | 2019-09-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
KR20190002881U (en) * | 2018-05-12 | 2019-11-20 | 박두혁 | Wirless charger with holder |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
US11115082B2 (en) | 2016-07-07 | 2021-09-07 | Samsung Electronics Co., Ltd | Wireless power transmission/reception device and method used in electronic apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101136917B1 (en) | 2010-07-13 | 2012-04-20 | 주식회사 아울테크놀로지 | Wireless charger and charging method |
KR101922530B1 (en) * | 2018-04-17 | 2018-11-28 | 엘지이노텍 주식회사 | Wiress antenna for wireless charging and nfc communication, and wireless device having the same |
KR102194806B1 (en) * | 2019-07-25 | 2020-12-24 | 엘지이노텍 주식회사 | Wireless antenna for wireless charging and nfc communication, and wireless device having the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990086135A (en) * | 1998-05-26 | 1999-12-15 | 어수곤 | Magnetic field transceiver |
-
2005
- 2005-08-08 KR KR1020050072402A patent/KR100691255B1/en active IP Right Grant
Cited By (199)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11685271B2 (en) | 2005-07-12 | 2023-06-27 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9509147B2 (en) | 2005-07-12 | 2016-11-29 | Massachusetts Institute Of Technology | Wireless energy transfer |
US9450421B2 (en) | 2005-07-12 | 2016-09-20 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US10666091B2 (en) | 2005-07-12 | 2020-05-26 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9444265B2 (en) | 2005-07-12 | 2016-09-13 | Massachusetts Institute Of Technology | Wireless energy transfer |
US11685270B2 (en) | 2005-07-12 | 2023-06-27 | Mit | Wireless energy transfer |
US9450422B2 (en) | 2005-07-12 | 2016-09-20 | Massachusetts Institute Of Technology | Wireless energy transfer |
US10097044B2 (en) | 2005-07-12 | 2018-10-09 | Massachusetts Institute Of Technology | Wireless energy transfer |
US10141790B2 (en) | 2005-07-12 | 2018-11-27 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9831722B2 (en) | 2005-07-12 | 2017-11-28 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
US8447234B2 (en) | 2006-01-18 | 2013-05-21 | Qualcomm Incorporated | Method and system for powering an electronic device via a wireless link |
US8482157B2 (en) | 2007-03-02 | 2013-07-09 | Qualcomm Incorporated | Increasing the Q factor of a resonator |
US9774086B2 (en) | 2007-03-02 | 2017-09-26 | Qualcomm Incorporated | Wireless power apparatus and methods |
US8378523B2 (en) | 2007-03-02 | 2013-02-19 | Qualcomm Incorporated | Transmitters and receivers for wireless energy transfer |
KR101288433B1 (en) * | 2007-03-27 | 2013-07-26 | 메사추세츠 인스티튜트 오브 테크놀로지 | Wireless energy transfer |
KR100903462B1 (en) * | 2007-04-20 | 2009-06-18 | 엘에스전선 주식회사 | Multi type adapter for charging contact-less chargeable battery and Battery charging set having the same |
KR100937627B1 (en) * | 2007-04-30 | 2010-01-19 | (주)제이씨 프로텍 | Non-Directional Charging Device and Wireless Charging Set of Small Electronic Device |
US10420951B2 (en) | 2007-06-01 | 2019-09-24 | Witricity Corporation | Power generation for implantable devices |
US9101777B2 (en) | 2007-06-01 | 2015-08-11 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9095729B2 (en) | 2007-06-01 | 2015-08-04 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9318898B2 (en) | 2007-06-01 | 2016-04-19 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US10348136B2 (en) | 2007-06-01 | 2019-07-09 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9843230B2 (en) | 2007-06-01 | 2017-12-12 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9943697B2 (en) | 2007-06-01 | 2018-04-17 | Witricity Corporation | Power generation for implantable devices |
US9124120B2 (en) | 2007-06-11 | 2015-09-01 | Qualcomm Incorporated | Wireless power system and proximity effects |
WO2009036405A1 (en) * | 2007-09-13 | 2009-03-19 | Nigelpower, Llc | Maximizing power yield from wireless power magnetic resonators |
US8373514B2 (en) | 2007-10-11 | 2013-02-12 | Qualcomm Incorporated | Wireless power transfer using magneto mechanical systems |
KR100911763B1 (en) * | 2008-03-27 | 2009-08-10 | 주식회사 한빛나노바이오테크 | Wireless power transmission apparatus and method for computer peripheral input-output devices |
US8629576B2 (en) | 2008-03-28 | 2014-01-14 | Qualcomm Incorporated | Tuning and gain control in electro-magnetic power systems |
US9450456B2 (en) | 2008-04-21 | 2016-09-20 | Qualcomm Incorporated | System and method for efficient wireless power transfer to devices located on and outside a charging base |
US9979230B2 (en) | 2008-04-21 | 2018-05-22 | Qualcomm Incorporated | Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop |
KR100964280B1 (en) * | 2008-05-09 | 2010-06-16 | 알파웨이브(주) | In-home RF repeater system |
US9190875B2 (en) | 2008-05-13 | 2015-11-17 | Qualcomm Incorporated | Method and apparatus with negative resistance in wireless power transfers |
US9954399B2 (en) | 2008-05-13 | 2018-04-24 | Qualcomm Incorporated | Reverse link signaling via receive antenna impedance modulation |
US8629650B2 (en) | 2008-05-13 | 2014-01-14 | Qualcomm Incorporated | Wireless power transfer using multiple transmit antennas |
US8487478B2 (en) | 2008-05-13 | 2013-07-16 | Qualcomm Incorporated | Wireless power transfer for appliances and equipments |
US9991747B2 (en) | 2008-05-13 | 2018-06-05 | Qualcomm Incorporated | Signaling charging in wireless power environment |
US8611815B2 (en) | 2008-05-13 | 2013-12-17 | Qualcomm Incorporated | Repeaters for enhancement of wireless power transfer |
US9236771B2 (en) | 2008-05-13 | 2016-01-12 | Qualcomm Incorporated | Method and apparatus for adaptive tuning of wireless power transfer |
KR101247419B1 (en) * | 2008-05-13 | 2013-03-25 | 퀄컴 인코포레이티드 | Repeaters for enhancement of wireless power transfer |
US9184632B2 (en) | 2008-05-13 | 2015-11-10 | Qualcomm Incorporated | Wireless power transfer for furnishings and building elements |
US8965461B2 (en) | 2008-05-13 | 2015-02-24 | Qualcomm Incorporated | Reverse link signaling via receive antenna impedance modulation |
US9178387B2 (en) | 2008-05-13 | 2015-11-03 | Qualcomm Incorporated | Receive antenna for wireless power transfer |
US9130407B2 (en) | 2008-05-13 | 2015-09-08 | Qualcomm Incorporated | Signaling charging in wireless power environment |
US8892035B2 (en) | 2008-05-13 | 2014-11-18 | Qualcomm Incorporated | Repeaters for enhancement of wireless power transfer |
US8878393B2 (en) | 2008-05-13 | 2014-11-04 | Qualcomm Incorporated | Wireless power transfer for vehicles |
US8901880B2 (en) | 2008-08-19 | 2014-12-02 | Qualcomm Incorporated | Wireless power transmission for portable wireless power charging |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US11958370B2 (en) | 2008-09-27 | 2024-04-16 | Witricity Corporation | Wireless power system modules |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US11479132B2 (en) | 2008-09-27 | 2022-10-25 | Witricity Corporation | Wireless power transmission system enabling bidirectional energy flow |
US11114897B2 (en) | 2008-09-27 | 2021-09-07 | Witricity Corporation | Wireless power transmission system enabling bidirectional energy flow |
US11114896B2 (en) | 2008-09-27 | 2021-09-07 | Witricity Corporation | Wireless power system modules |
US10673282B2 (en) | 2008-09-27 | 2020-06-02 | Witricity Corporation | Tunable wireless energy transfer systems |
US9806541B2 (en) | 2008-09-27 | 2017-10-31 | Witricity Corporation | Flexible resonator attachment |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US10559980B2 (en) | 2008-09-27 | 2020-02-11 | Witricity Corporation | Signaling in wireless power systems |
US10536034B2 (en) | 2008-09-27 | 2020-01-14 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US10446317B2 (en) | 2008-09-27 | 2019-10-15 | Witricity Corporation | Object and motion detection in wireless power transfer systems |
US9369182B2 (en) | 2008-09-27 | 2016-06-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US10410789B2 (en) | 2008-09-27 | 2019-09-10 | Witricity Corporation | Integrated resonator-shield structures |
US10340745B2 (en) | 2008-09-27 | 2019-07-02 | Witricity Corporation | Wireless power sources and devices |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US9444520B2 (en) | 2008-09-27 | 2016-09-13 | Witricity Corporation | Wireless energy transfer converters |
US10300800B2 (en) | 2008-09-27 | 2019-05-28 | Witricity Corporation | Shielding in vehicle wireless power systems |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US10264352B2 (en) | 2008-09-27 | 2019-04-16 | Witricity Corporation | Wirelessly powered audio devices |
US9843228B2 (en) | 2008-09-27 | 2017-12-12 | Witricity Corporation | Impedance matching in wireless power systems |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US10230243B2 (en) | 2008-09-27 | 2019-03-12 | Witricity Corporation | Flexible resonator attachment |
US9496719B2 (en) | 2008-09-27 | 2016-11-15 | Witricity Corporation | Wireless energy transfer for implantable devices |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US9515495B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless energy transfer in lossy environments |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US10218224B2 (en) | 2008-09-27 | 2019-02-26 | Witricity Corporation | Tunable wireless energy transfer systems |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9780605B2 (en) | 2008-09-27 | 2017-10-03 | Witricity Corporation | Wireless power system with associated impedance matching network |
US9584189B2 (en) | 2008-09-27 | 2017-02-28 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US10097011B2 (en) | 2008-09-27 | 2018-10-09 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US9596005B2 (en) | 2008-09-27 | 2017-03-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and systems monitoring |
US10084348B2 (en) | 2008-09-27 | 2018-09-25 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US9662161B2 (en) | 2008-09-27 | 2017-05-30 | Witricity Corporation | Wireless energy transfer for medical applications |
US8847548B2 (en) | 2008-09-27 | 2014-09-30 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9698607B2 (en) | 2008-09-27 | 2017-07-04 | Witricity Corporation | Secure wireless energy transfer |
US9711991B2 (en) | 2008-09-27 | 2017-07-18 | Witricity Corporation | Wireless energy transfer converters |
US9742204B2 (en) | 2008-09-27 | 2017-08-22 | Witricity Corporation | Wireless energy transfer in lossy environments |
US9748039B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9754718B2 (en) | 2008-09-27 | 2017-09-05 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US8836172B2 (en) | 2008-10-01 | 2014-09-16 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US9831682B2 (en) | 2008-10-01 | 2017-11-28 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US9583953B2 (en) | 2009-02-10 | 2017-02-28 | Qualcomm Incorporated | Wireless power transfer for portable enclosures |
US8854224B2 (en) | 2009-02-10 | 2014-10-07 | Qualcomm Incorporated | Conveying device information relating to wireless charging |
US9312924B2 (en) | 2009-02-10 | 2016-04-12 | Qualcomm Incorporated | Systems and methods relating to multi-dimensional wireless charging |
KR101278399B1 (en) * | 2009-03-17 | 2013-06-24 | 후지쯔 가부시끼가이샤 | Wireless power supply system |
US9685825B2 (en) | 2009-03-17 | 2017-06-20 | Fujitsu Limited | Wireless power supply system |
KR101341258B1 (en) * | 2009-03-17 | 2013-12-13 | 후지쯔 가부시끼가이샤 | Wireless power supply system |
US9283894B2 (en) | 2009-03-17 | 2016-03-15 | Fujitsu Limited | Wireless power supply system |
US9337691B2 (en) | 2010-03-31 | 2016-05-10 | Samsung Electronics Co., Ltd. | Wireless charging set |
CN102270937A (en) * | 2010-06-07 | 2011-12-07 | 三星电机株式会社 | Rectifier circuit of wireless power transmission system |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9252604B2 (en) | 2010-09-15 | 2016-02-02 | Samsung Electronics Co., Ltd. | Apparatus for wireless power transmission and reception |
US9054745B2 (en) | 2010-12-22 | 2015-06-09 | Electronics And Telecommunications Research Institute | Apparatus for transmitting/receiving energy using a resonance structure in an energy system |
KR101343096B1 (en) * | 2011-01-04 | 2014-01-15 | 프리닉스(주) | Apparatus for converting data using pictbridge |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
US11621585B2 (en) | 2011-08-04 | 2023-04-04 | Witricity Corporation | Tunable wireless power architectures |
US9787141B2 (en) | 2011-08-04 | 2017-10-10 | Witricity Corporation | Tunable wireless power architectures |
US10734842B2 (en) | 2011-08-04 | 2020-08-04 | Witricity Corporation | Tunable wireless power architectures |
US9384885B2 (en) | 2011-08-04 | 2016-07-05 | Witricity Corporation | Tunable wireless power architectures |
WO2013035986A1 (en) * | 2011-09-09 | 2013-03-14 | Lg Innotek Co., Ltd. | Wireless power repeater |
US9866278B2 (en) | 2011-09-09 | 2018-01-09 | Lg Innotek Co., Ltd. | Wireless power repeater |
US10778047B2 (en) | 2011-09-09 | 2020-09-15 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10027184B2 (en) | 2011-09-09 | 2018-07-17 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9442172B2 (en) | 2011-09-09 | 2016-09-13 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US11097618B2 (en) | 2011-09-12 | 2021-08-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US10424976B2 (en) | 2011-09-12 | 2019-09-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
KR101327049B1 (en) * | 2011-09-22 | 2013-11-20 | 엘지이노텍 주식회사 | A wireless power reception apparatus and a wireless charging system using the same |
WO2013042866A1 (en) * | 2011-09-22 | 2013-03-28 | Lg Innotek Co., Ltd. | Wirless power apparatus, wireless charging system using the same, and power transceiving method |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
US8875086B2 (en) | 2011-11-04 | 2014-10-28 | Witricity Corporation | Wireless energy transfer modeling tool |
US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
KR101373560B1 (en) * | 2012-05-18 | 2014-03-13 | 전북대학교산학협력단 | System and method for contactless charging with rf signal of wireless communication band |
US10158251B2 (en) | 2012-06-27 | 2018-12-18 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
KR101436063B1 (en) * | 2012-10-18 | 2014-08-29 | (주)기술과가치 | Wiress Power Transmission Apparatus |
US10211681B2 (en) | 2012-10-19 | 2019-02-19 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9404954B2 (en) | 2012-10-19 | 2016-08-02 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9465064B2 (en) | 2012-10-19 | 2016-10-11 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10686337B2 (en) | 2012-10-19 | 2020-06-16 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10186372B2 (en) | 2012-11-16 | 2019-01-22 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US9601267B2 (en) | 2013-07-03 | 2017-03-21 | Qualcomm Incorporated | Wireless power transmitter with a plurality of magnetic oscillators |
US11720133B2 (en) | 2013-08-14 | 2023-08-08 | Witricity Corporation | Impedance adjustment in wireless power transmission systems and methods |
US11112814B2 (en) | 2013-08-14 | 2021-09-07 | Witricity Corporation | Impedance adjustment in wireless power transmission systems and methods |
US9857821B2 (en) | 2013-08-14 | 2018-01-02 | Witricity Corporation | Wireless power transfer frequency adjustment |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US10186373B2 (en) | 2014-04-17 | 2019-01-22 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10371848B2 (en) | 2014-05-07 | 2019-08-06 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10923921B2 (en) | 2014-06-20 | 2021-02-16 | Witricity Corporation | Wireless power transfer systems for surfaces |
US11637458B2 (en) | 2014-06-20 | 2023-04-25 | Witricity Corporation | Wireless power transfer systems for surfaces |
US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US11722010B2 (en) | 2015-01-16 | 2023-08-08 | Ge Hybrid Technologies, Llc | Wireless power transmission device |
WO2016114637A1 (en) * | 2015-01-16 | 2016-07-21 | 주식회사 한림포스텍 | Wireless power transmission device |
US11381113B2 (en) | 2015-01-16 | 2022-07-05 | Ge Hybrid Technologies, Llc | Wireless power transmission device |
US10523055B2 (en) | 2015-01-16 | 2019-12-31 | Ge Hybrid Technologies, Llc | Wireless power transmission device |
US10903694B2 (en) | 2015-01-16 | 2021-01-26 | Ge Hybrid Technologies, Llc | Wireless power transmission device |
KR20170008438A (en) * | 2015-07-14 | 2017-01-24 | 엘지이노텍 주식회사 | Wireless power transmitting-receiving apparatus and method for controlling the same |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10651688B2 (en) | 2015-10-22 | 2020-05-12 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10141788B2 (en) | 2015-10-22 | 2018-11-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10651689B2 (en) | 2015-10-22 | 2020-05-12 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
US10637292B2 (en) | 2016-02-02 | 2020-04-28 | Witricity Corporation | Controlling wireless power transfer systems |
US10263473B2 (en) | 2016-02-02 | 2019-04-16 | Witricity Corporation | Controlling wireless power transfer systems |
US11807115B2 (en) | 2016-02-08 | 2023-11-07 | Witricity Corporation | PWM capacitor control |
US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
US10913368B2 (en) | 2016-02-08 | 2021-02-09 | Witricity Corporation | PWM capacitor control |
KR20170141102A (en) * | 2016-06-14 | 2017-12-22 | 삼성전기주식회사 | Coil device and manufacturing method of the same |
US11115082B2 (en) | 2016-07-07 | 2021-09-07 | Samsung Electronics Co., Ltd | Wireless power transmission/reception device and method used in electronic apparatus |
US11637452B2 (en) | 2017-06-29 | 2023-04-25 | Witricity Corporation | Protection and control of wireless power systems |
US11588351B2 (en) | 2017-06-29 | 2023-02-21 | Witricity Corporation | Protection and control of wireless power systems |
US11043848B2 (en) | 2017-06-29 | 2021-06-22 | Witricity Corporation | Protection and control of wireless power systems |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
KR20190002881U (en) * | 2018-05-12 | 2019-11-20 | 박두혁 | Wirless charger with holder |
CN109921328A (en) * | 2019-03-26 | 2019-06-21 | 国家电网有限公司 | It is a kind of can overcurrent proof magnetic disturbance manipulator livewire work part flow arrangement |
CN109921328B (en) * | 2019-03-26 | 2023-08-25 | 国家电网有限公司 | Manipulator live working flow distribution device capable of preventing strong electromagnetic interference |
Also Published As
Publication number | Publication date |
---|---|
KR100691255B1 (en) | 2007-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100691255B1 (en) | A Small and Light Wireless Power Transmitting and Receiving Device | |
CN104659931B (en) | An Amplification Relay Device Of Electromagnetic Wave And A Radio Electric Power Conversion Apparatus Using The Above Device | |
US9590445B2 (en) | Apparatus for transferring energy to an accumulator and system for charging an electric accumulator | |
KR101646305B1 (en) | Parasitic devices for wireless power transfer | |
KR101438910B1 (en) | The Wired-Wireless Combined Power Transmission Apparatus and The Method using the same | |
KR100937627B1 (en) | Non-Directional Charging Device and Wireless Charging Set of Small Electronic Device | |
EP2608419B1 (en) | Apparatus for detecting signal and wireless power transmitting apparatus having the same | |
US10205351B2 (en) | Wireless power transmitter, wireless power repeater and wireless power transmission method | |
KR101882800B1 (en) | Wireless power receiver and method for controlling thereof | |
KR20150057783A (en) | Apparatus and method for for wireless charge | |
US20090096412A1 (en) | Inductive charging device | |
EP2867976B1 (en) | Miniature low-power remote battery charging systems and methods | |
CN101345438A (en) | Wireless power supply | |
CN104578222A (en) | Wireless charging device and system | |
KR20080074640A (en) | The apparatus of battery charging for the mobile communication terminal unit by using wireless frequency | |
JP2013198260A (en) | Power transmission system | |
KR20120116802A (en) | A wireless power transmission system and a wireless power receiver using a relay device | |
KR100898059B1 (en) | Wireless Mouse Set and/or Small Electronic Device Set using Wireless Electric Power | |
EP3024120B1 (en) | Resonant power transfer system | |
CN105024408A (en) | Tandem-type wireless charging system and charging method thereof | |
KR101396497B1 (en) | Relay Device Using Wireless Power Transmission Apparatus | |
KR20170139319A (en) | A wireless power transmitter and a wireless power receiver | |
KR101920216B1 (en) | Wireless power transmitter and wireless power receiver | |
KR101305828B1 (en) | Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power | |
KR101786086B1 (en) | A transmitter and receiver for wireless power transmission with minimized flux linkage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20111215 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130115 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140929 Year of fee payment: 8 |
|
R401 | Registration of restoration | ||
FPAY | Annual fee payment |
Payment date: 20150129 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160128 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170125 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180130 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20190130 Year of fee payment: 13 |