KR20050066899A - Method for fabricating the gate oxide layer in semiconductor device - Google Patents
Method for fabricating the gate oxide layer in semiconductor device Download PDFInfo
- Publication number
- KR20050066899A KR20050066899A KR1020030098383A KR20030098383A KR20050066899A KR 20050066899 A KR20050066899 A KR 20050066899A KR 1020030098383 A KR1020030098383 A KR 1020030098383A KR 20030098383 A KR20030098383 A KR 20030098383A KR 20050066899 A KR20050066899 A KR 20050066899A
- Authority
- KR
- South Korea
- Prior art keywords
- oxide film
- silicon substrate
- gate oxide
- forming
- oxide layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000004065 semiconductor Substances 0.000 title abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 27
- 239000010703 silicon Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000005468 ion implantation Methods 0.000 claims abstract description 16
- 238000004140 cleaning Methods 0.000 claims description 5
- 239000010408 film Substances 0.000 description 42
- 239000010410 layer Substances 0.000 description 10
- 238000002955 isolation Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H01L29/105—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
본 발명에 따른 반도체 소자의 게이트 산화막 형성 방법은, 실리콘 기판 상부의 산화막을 제거하는 단계; 상기 산화막이 제거된 실리콘 기판에 대해 제1 이온 주입 공정을 수행하여 웰 영역을 형성하는 단계: 상기 웰 영역이 형성된 실리콘 기판 상부의 자연 산화막을 제거하는 단계; 상기 자연 산화막이 제거된 실리콘 기판에 대해 제2 이온 주입 공정을 수행하여 문턱 전압을 조절하는 단계; 및 상기 문턱 전압이 조절된 실리콘 기판 위에 게이트 산화막을 형성하는 단계를 포함한다.A method of forming a gate oxide film of a semiconductor device according to the present invention includes removing an oxide film on a silicon substrate; Forming a well region by performing a first ion implantation process on the silicon substrate from which the oxide layer has been removed: removing a native oxide layer on the silicon substrate on which the well region is formed; Adjusting a threshold voltage by performing a second ion implantation process on the silicon substrate from which the natural oxide film is removed; And forming a gate oxide layer on the silicon substrate having the threshold voltage adjusted.
Description
본 발명은 반도체 소자의 제조 방법에 관한 것으로서, 특히 반도체 소자의 게이트 산화막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a gate oxide film of a semiconductor device.
반도체 소자를 제조하는데 있어서, 산화막은 유용한 절연막으로 사용되고 있다. 즉 산화막은 모스(MOS; Metal Oxide Semiconductor) 트랜지스터 소자에서의 게이트 절연막으로 사용되는 것처럼 반도체 소자의 내부에 캐리어들의 이동을 막고 전기적으로 절연시켜주는 절연체의 역할을 한다. 이와 같이 전기적으로 절연체의 역할 외에도 수많은 소자들로 구성되는 집적 회로의 제조 공정에서 소자와 소자간의 격리를 요구하는 로코스(LOCOS) 혹은 트랜치 아이솔레이션과 같은 격리 구조를 형성할 때도, 산화막이 사용된다. 이 외에도 산화막의 중요한 역할은 실리콘 기판상에 원하는 불순물을 주입하는 이온 주입이나 확산과 같은 도핑 과정에서 선택적 도핑을 위한 확산 방지막의 역할을 하기도 하며, 실리콘 기판 혹은 박막의 건식 식각 혹은 습식 식각 공정에서의 식각 방지막으로도 사용된다. 이와 같이 절연막으로서 산화막이 다양하게 사용되는 이유는, 산화막이 반도체 공정에 많이 사용되는 화학 용액에 대체로 안정적이기 때문인 것으로 알려져 있다.In manufacturing semiconductor devices, oxide films are used as useful insulating films. That is, the oxide film serves as an insulator that prevents the movement of carriers and electrically insulates the inside of the semiconductor device, as used as a gate insulating film in a metal oxide semiconductor (MOS) transistor device. In addition to the role of the electrically insulator, an oxide film is also used to form an isolation structure such as LOCOS or trench isolation that requires isolation between devices in the manufacturing process of an integrated circuit composed of many devices. In addition, the important role of the oxide film is to act as a diffusion barrier for selective doping in the doping process such as ion implantation or diffusion injecting the desired impurities on the silicon substrate, and in the dry etching or wet etching process of the silicon substrate or thin film. It is also used as an etch stopper. The reason why the oxide film is variously used as the insulating film is known to be because the oxide film is generally stable to a chemical solution that is used in many semiconductor processes.
이와 같은 산화막은 그 사용되는 용도에 따라 다양한 두께를 요구받는다. 예컨대 층간 절연막으로서의 산화막은 일정 두께 이상의 두께를 요구받는 반면에, 게이트 절연막으로서의 산화막은 얇은 두께일 것을 요구받는다. 게이트 절연막으로서 산화막이 사용되는 경우, 산화막의 두께가 작을수록 보다 많은 반전 전하(inversion charge)들이 생성되어 전류량이 증대되고, 또한 전하 컨트롤이 용이하여 짧은 채널 효과도 방지된다.Such oxide films are required to vary in thickness depending on their use. For example, an oxide film as an interlayer insulating film is required to have a thickness greater than or equal to a certain thickness, while an oxide film as a gate insulating film is required to be thin. When the oxide film is used as the gate insulating film, the smaller the thickness of the oxide film is, the more inversion charges are generated, the amount of current is increased, and the charge control is easy, thereby preventing the short channel effect.
그러나 게이트 절연막으로서 산화막을 형성하는 경우, 산화막의 두께 못지 않게 산화막의 질도 또한 소자의 특성을 유지하는데 중요한 역할을 한다. 종래에는 게이트 절연막으로서 산화막을 형성하기 전에 웰 형성을 위한 이온 주입 공정을 수행하였다. 그러나 이 경우 상기 이온 주입 공정에 의해 유발되는 리코일드-산소(recoiled-oxygen)에 의해 후속 공정에서 형성되는 산화막의 두께가 커지는 문제가 발생된다. 이와 같은 리코일드-산소는 프로젝티드 범위(Rp; projected range)가 낮을수록, 그리고 도우즈(dose)가 높을수록 실리콘 기판 내에 많이 생겨서 산화막의 두께를 두껍게 만들뿐더러 산화막의 질도 또한 열화시킨다.However, in the case of forming an oxide film as the gate insulating film, the quality of the oxide film also plays an important role in maintaining the characteristics of the device as well as the thickness of the oxide film. Conventionally, an ion implantation process for forming a well is performed before forming an oxide film as a gate insulating film. However, in this case, a problem arises in that the thickness of the oxide film formed in a subsequent process is increased by recoiled-oxygen caused by the ion implantation process. Such recoil-oxygen occurs in the silicon substrate with a lower projected range (Rp) and with a higher dose, thereby making the thickness of the oxide film thicker and also deteriorating the quality of the oxide film.
본 발명이 이루고자 하는 기술적 과제는, 이온 주입에 의한 리코일드-산소가 발생되는 것을 억제하여 두께가 얇고 양질을 갖는 반도체 소자의 게이트 산화막을 형성하는 방법을 제공하는 것이다.An object of the present invention is to provide a method of forming a gate oxide film of a semiconductor device having a thin thickness and high quality by suppressing generation of recoil-oxygen due to ion implantation.
상기 기술적 과제를 달성하기 위하여, 본 발명에 따른 반도체 소자의 게이트 산화막 형성 방법은, 실리콘 기판 상부의 산화막을 제거하는 단계; 상기 산화막이 제거된 실리콘 기판에 대해 제1 이온 주입 공정을 수행하여 웰 영역을 형성하는 단계: 상기 웰 영역이 형성된 실리콘 기판 상부의 자연 산화막을 제거하는 단계; 상기 자연 산화막이 제거된 실리콘 기판에 대해 제2 이온 주입 공정을 수행하여 문턱 전압을 조절하는 단계; 및 상기 문턱 전압이 조절된 실리콘 기판 위에 게이트 산화막을 형성하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above technical problem, a method of forming a gate oxide film of a semiconductor device according to the present invention, removing the oxide film on the silicon substrate; Forming a well region by performing a first ion implantation process on the silicon substrate from which the oxide layer has been removed: removing a native oxide layer on the silicon substrate on which the well region is formed; Adjusting a threshold voltage by performing a second ion implantation process on the silicon substrate from which the natural oxide film is removed; And forming a gate oxide film on the silicon substrate having the threshold voltage adjusted.
상기 자연 산화막을 제거하는 단계는 DHF(Dilute HF) 용액을 이용한 클리닝 공정으로 수행하는 것이 바람직하다.Removing the natural oxide layer is preferably performed by a cleaning process using a dilute HF (DHF) solution.
상기 게이트 산화막을 형성하기 전에 상기 실리콘 기판 위를 클리닝하는 단계를 더 포함하는 것이 바람직하다.The method may further include cleaning the silicon substrate before forming the gate oxide layer.
상기 게이트 산화막은 10-20Å의 두께로 성장시키는 것이 바람직하다.The gate oxide film is preferably grown to a thickness of 10-20 GPa.
이하 첨부 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나, 본 발명의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들로 인해 한정되어지는 것으로 해석되어져서는 안된다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention may be modified in many different forms, and the scope of the present invention should not be construed as being limited by the embodiments described below.
도 1은 본 발명에 따른 게이트 산화막 형성 방법을 설명하기 위하여 나타내 보인 플로우챠트이다. 그리고 도 2 내지 도 5는 도 1의 각 단계들을 설명하기 위하여 나타내 보인 단면도들이다.1 is a flowchart showing a method for forming a gate oxide film according to the present invention. 2 to 5 are cross-sectional views illustrating each step of FIG. 1.
도 1과, 도 2 내지 도 5를 참조하면, 먼저 소자 분리막(210)에 의해 활성 영역이 한정되는 실리콘 기판(220) 상부의 모든 산화막을 제거한다(단계 110). 다음에 도 2의 화살표로 나타낸 바와 같이, 소정의 마스크막 패턴(미도시)을 이용한 이온 주입 공정을 수행하여 실리콘 기판(220)의 활성 영역에 웰 영역(220)을 형성한다(단계 120).Referring to FIGS. 1 and 2 to 5, first, all oxide films on the silicon substrate 220 where the active region is defined by the device isolation layer 210 are removed (step 110). Next, as indicated by the arrow of FIG. 2, the well region 220 is formed in the active region of the silicon substrate 220 by performing an ion implantation process using a predetermined mask layer pattern (not shown) (step 120).
다음에 도 3에 도시된 바와 같이, 상기 웰 영역(220)이 형성된 실리콘 기판(200) 상부의 자연 산화막을 제거한다(단계 130). 여기서 상기 자연 산화막의 제거는 DHF(Dilute HF) 용액을 이용한 클리닝 공정을 이용하여 수행한다.Next, as shown in FIG. 3, the native oxide layer on the silicon substrate 200 on which the well region 220 is formed is removed (step 130). Here, the removal of the natural oxide layer is performed using a cleaning process using a dilute HF (DHF) solution.
다음에 도 4의 화살표로 나타낸 바와 같이, 자연 산화막이 제거된 실리콘 기판(200)에 대해 제2 이온 주입 공정을 수행하여 문턱 전압을 조절한다(단계 140). 상기 제2 이온 주입 공정은 소정의 마스크막 패턴(미도시)을 이온 주입 마스크로 하여 수행될 수 있다.Next, as shown by the arrow of FIG. 4, the threshold voltage is adjusted by performing a second ion implantation process on the silicon substrate 200 from which the natural oxide film is removed (step 140). The second ion implantation process may be performed using a predetermined mask layer pattern (not shown) as an ion implantation mask.
다음에 도 5에 도시된 바와 같이, 문턱 전압이 조절된 실리콘 기판(200) 위에 게이트 산화막(230)을 형성한다. 이때 게이트 산화막(230)을 형성하기 전에 상기 실리콘 기판(200) 위를 클리닝하는 것이 바람직하다. 상기 게이트 산화막(230)은 10-20Å의 두께를 갖도록 성장시킨다.Next, as shown in FIG. 5, the gate oxide layer 230 is formed on the silicon substrate 200 with the threshold voltage adjusted. In this case, it is preferable to clean the silicon substrate 200 before the gate oxide film 230 is formed. The gate oxide film 230 is grown to have a thickness of 10-20 kHz.
이상의 설명에서와 같이, 본 발명에 따른 반도체 소자의 게이트 산화막 형성 방법에 의하면, 이온 주입 공정을 수행하기 전에 실리콘 기판 위의 산화막을 제거하는 공정을 수행함으로써 이온 주입에 의한 리코일드-산소를 최소화할 수 있으며, 이에 따라 소망하는 얇은 두께의 게이트 산화막을 형성할 수 있다.As described above, according to the gate oxide film forming method of the semiconductor device according to the present invention, by performing the process of removing the oxide film on the silicon substrate before performing the ion implantation process to minimize the recoil-oxygen by ion implantation As a result, a gate oxide film having a desired thin thickness can be formed.
이상 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능함은 당연하다.Although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art within the technical spirit of the present invention. Do.
도 1은 본 발명에 따른 게이트 산화막 형성 방법을 설명하기 위하여 나타내 보인 플로우챠트이다.1 is a flowchart showing a method for forming a gate oxide film according to the present invention.
도 2 내지 도 5는 도 1의 각 단계들을 설명하기 위하여 나타내 보인 단면도들이다.2 to 5 are cross-sectional views illustrating each step of FIG. 1.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030098383A KR100670401B1 (en) | 2003-12-27 | 2003-12-27 | Method for fabricating the gate oxide layer in semiconductor device |
US11/023,844 US7361562B2 (en) | 2003-12-27 | 2004-12-27 | Method of manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030098383A KR100670401B1 (en) | 2003-12-27 | 2003-12-27 | Method for fabricating the gate oxide layer in semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050066899A true KR20050066899A (en) | 2005-06-30 |
KR100670401B1 KR100670401B1 (en) | 2007-01-16 |
Family
ID=34698615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030098383A KR100670401B1 (en) | 2003-12-27 | 2003-12-27 | Method for fabricating the gate oxide layer in semiconductor device |
Country Status (2)
Country | Link |
---|---|
US (1) | US7361562B2 (en) |
KR (1) | KR100670401B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8629016B1 (en) | 2011-07-26 | 2014-01-14 | Suvolta, Inc. | Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer |
US9070477B1 (en) | 2012-12-12 | 2015-06-30 | Mie Fujitsu Semiconductor Limited | Bit interleaved low voltage static random access memory (SRAM) and related methods |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6294416B1 (en) * | 1998-01-23 | 2001-09-25 | Texas Instruments-Acer Incorporated | Method of fabricating CMOS transistors with self-aligned planarization twin-well by using fewer mask counts |
KR100301246B1 (en) * | 1999-06-30 | 2001-11-01 | 박종섭 | Method of manufacturing a semiconductor device |
TW469648B (en) * | 1999-09-07 | 2001-12-21 | Sharp Kk | Semiconductor device and its manufacture method |
US6248618B1 (en) * | 1999-10-12 | 2001-06-19 | Chartered Semiconductor Manufacturing Ltd. | Method of fabrication of dual gate oxides for CMOS devices |
SE519382C2 (en) * | 2000-11-03 | 2003-02-25 | Ericsson Telefon Ab L M | Integration of self-oriented MOS high voltage components and semiconductor structure including such |
KR100406180B1 (en) * | 2001-12-22 | 2003-11-17 | 주식회사 하이닉스반도체 | Method of manufacturing a flash memory cell |
KR100496551B1 (en) * | 2002-11-20 | 2005-06-22 | 주식회사 하이닉스반도체 | Method of manufacturing a semiconductor device |
-
2003
- 2003-12-27 KR KR1020030098383A patent/KR100670401B1/en not_active IP Right Cessation
-
2004
- 2004-12-27 US US11/023,844 patent/US7361562B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR100670401B1 (en) | 2007-01-16 |
US20050142772A1 (en) | 2005-06-30 |
US7361562B2 (en) | 2008-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7118974B2 (en) | Method of generating multiple oxides by plasma nitridation on oxide | |
US7718506B2 (en) | Isolation structure for MOS transistor and method for forming the same | |
JP2003523629A (en) | Method for eliminating stress-induced dislocations in CMOS devices | |
KR19980084215A (en) | Method of manufacturing transistor of semiconductor device | |
KR100398041B1 (en) | Method of forming a epi-channel in a semicondector device | |
JPH11103050A (en) | Semiconductor device and manufacture thereof | |
KR100670401B1 (en) | Method for fabricating the gate oxide layer in semiconductor device | |
KR100293453B1 (en) | How to Form Dual Gate Oxide | |
US6664151B2 (en) | Method for manufacturing a thin film transistor using steam anneal process to reinforce the surface of the ONO layer | |
US6440809B1 (en) | Method of preventing fluorine ions from residing in a gate to result in boron ion penetration into a gate oxide | |
JP2663946B2 (en) | Method for manufacturing semiconductor device | |
KR100607336B1 (en) | Method of manufacturing flash memory device | |
KR100588777B1 (en) | Semiconductor device and its fabricating method | |
KR20050028573A (en) | Method for fabricating semiconductor device | |
KR100466209B1 (en) | Method of manufacturing semiconductor device | |
KR100271801B1 (en) | Manufacturing Method of Semiconductor Device | |
KR100911103B1 (en) | Method of manufacturing a semiconductor device | |
KR100418855B1 (en) | Method for forming the dual gate of semiconductor device | |
KR20030050595A (en) | Method of fabricating semiconductor device with dual gate oxide | |
KR100588781B1 (en) | Semiconductor Device And Method For Manufacturing The Same | |
KR20000003475A (en) | Production method for memory device | |
JPH11163123A (en) | Formation of narrow thermally oxidized silicon side isolation region in semiconductor substrate and mos semiconductor device manufactured thereby | |
KR20050067822A (en) | Method of manufacturing a semiconductor device | |
KR20030050681A (en) | Method for fabricating dual gate oxide | |
JPH01145831A (en) | Semiconductor integrated circuit and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20111220 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |