KR20030075985A - Method for the preparation of Lithium ion polymer batteries - Google Patents
Method for the preparation of Lithium ion polymer batteries Download PDFInfo
- Publication number
- KR20030075985A KR20030075985A KR1020020015600A KR20020015600A KR20030075985A KR 20030075985 A KR20030075985 A KR 20030075985A KR 1020020015600 A KR1020020015600 A KR 1020020015600A KR 20020015600 A KR20020015600 A KR 20020015600A KR 20030075985 A KR20030075985 A KR 20030075985A
- Authority
- KR
- South Korea
- Prior art keywords
- battery
- electrolyte
- lithium ion
- electrolyte solution
- ion polymer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
본 발명은 겔형 고분자 전해질을 채택하고 있는 리튬 이온 고분자 전지에 관한 것으로서, 더욱 상세하게는 종래의 리튬 이온 고분자 전지의 제조공정이 겔형고분자 전해질의 기계적 물성에 의존함에 따른 많은 공정상의 제약을 해결하므로써 제조 공정의 단순화와 비용절감을 이룬 리튬 이온 고분자 전지의 제조 방법에 관한 것이다.The present invention relates to a lithium ion polymer battery employing a gel polymer electrolyte, and more particularly, to manufacture a lithium ion polymer battery by solving a number of process constraints due to the dependence of the mechanical properties of the gel polymer electrolyte. The present invention relates to a method for manufacturing a lithium ion polymer battery, which simplifies and reduces costs.
1975년 라이트(Wright)가 PEO(polyethylene oxide)와 Na이온으로 제작한 고분자 전해질을 아르만드(Armand)가 전지에 적용함에 의해 개발이 시작된 고분자전지 전해질은 박막화, 대용량, 안정성의 특성에 따라 현대의 휴대용 전자제품과 차세대 전기 자동차의 동력원으로 기대되고 있다. 현재 고분자 전해질은 저분자 용매를 포함하지 않은 순수 고분자 전해질과 액체 전해질을 고분자에 함침시킨 겔형 고분자 전해질의 두 형태로 크게 나누어진다. 순수 고분자 전해질은 높은 에너지 밀도와 뛰어난 물성을 나타내지만 실온에서 낮은 이온 전도도를 갖기 때문에 실제로 상업화된 순수 고분자 전해질의 이차 전지는 없는 것으로 알려져 있다. 이러한 낮은 이온 전도도를 보완하기 위해 겔형 고분자 전해질이 개발되기 시작했으며 현재 일부가 상업화되고 있다. 그러나, 누액 우려가 없는 겔형 고분자 전해질은 낮은 기계적 물성으로 인해 전지의 제조 과정에서 공정상의 많은 제약을 받고 있다.In 1975, Lightman developed a polymer electrolyte made of polyethylene oxide (PEO) and Na ions in a battery by Armand. It is expected to be the power source for portable electronics and next-generation electric vehicles. Currently, the polymer electrolyte is divided into two types, a pure polymer electrolyte containing no low molecular solvent and a gel polymer electrolyte impregnated with a liquid electrolyte. Pure polymer electrolytes have high energy density and excellent physical properties, but since they have low ionic conductivity at room temperature, there are no known secondary batteries of commercially available pure polymer electrolytes. To compensate for this low ionic conductivity, gel polymer electrolytes have been developed and some are now commercialized. However, gel polymer electrolytes, which have no fear of leakage, are subject to many process restrictions due to low mechanical properties.
한편, 종래의 겔형 고분자 전해질을 제조하는 방법 중 하나로 고분자 중합 후 액체 전해액을 함침하는 방법이 있는데, 전극과의 계면 특성이 좋지 못한 단점을 가지고 있다. 또 다른 방법으로 액체 전해질상에서 중합하여 겔을 형성하는 방법이 있는데, 전해질의 특성이 좋은 장점을 가지고 있다. 또한 이러한 경화 방식은 일반적으로 자외선 경화와 열 경화 방식으로 크게 나눌 수가 있는데, 자외선 경화방식은 저온에서 겔화가 가능한 것이 장점이고 열 경화 방식은 설비가 간단한 것이장점이다.On the other hand, there is a method of impregnating a liquid electrolyte after polymer polymerization as one of the methods of manufacturing a conventional gel polymer electrolyte, there is a disadvantage that the interface characteristics with the electrode is not good. Another method is to polymerize on a liquid electrolyte to form a gel, which has the advantage of good electrolyte properties. In addition, such a curing method can be generally divided into UV curing and thermal curing method, the UV curing method has the advantage that it can be gelled at a low temperature, and the thermal curing method has the advantage of simple equipment.
이와 같이 종래의 겔형 고분자 전해질의 겔화 방식에 따라 고분자 전지의 전체 공정이 달라지게 되며, 특히 자외선 방식은 알루미늄 파우치내에 셀을 조립하기 전에 겔화 되어야 하므로 겔의 기계적 물성에 따라 제조 공정이 달라진다.As such, the overall process of the polymer battery is changed according to the gelling method of the conventional gel polymer electrolyte, and in particular, the ultraviolet light method must be gelated before assembling the cells in the aluminum pouch, and thus the manufacturing process is changed according to the mechanical properties of the gel.
본 발명은 겔형 고분자 전해질 채용시 겔의 기계적 물성이 제조 공정이 크게 영향을 받지 않는 고분자 전지를 제공하는 것을 목적으로 한 것이며, 아울러 전지의 제조 공정을 단순화하고 공정 비용을 절감할 수 있는 겔형 고분자 전해질을 제공하는 것을 또 다른 목적으로 한 것이다.The present invention aims to provide a polymer battery in which the mechanical properties of the gel are not significantly affected by the gel polymer electrolyte when the gel polymer electrolyte is employed, and a gel polymer electrolyte which can simplify the battery manufacturing process and reduce the process cost. It is another purpose to provide.
도 1은 실시예 1, 2, 3에 의해 제조된 이차전지의 수명특성을 나타낸 그래프이며,1 is a graph showing the life characteristics of secondary batteries manufactured by Examples 1, 2, and 3,
도 2는 실시예 4, 5, 6, 7에 의해 제조된 이차전지의 수명 특성을 나타낸 그래프이며,Figure 2 is a graph showing the life characteristics of the secondary battery prepared in Examples 4, 5, 6, 7,
도 3은 실시예 7, 8, 9 10에 의해 제조된 이차전지의 수명 특성을 나타낸 그래프이며,3 is a graph showing the life characteristics of the secondary battery manufactured by Example 7, 8, 9 10,
도 4는 실시예 11에 의해 제조된 이차전지의 수명 특성을 나타낸 그래프이며,Figure 4 is a graph showing the life characteristics of the secondary battery manufactured by Example 11,
도 5는 실시예 12에 의해 제조된 이차전지의 방전 특성을 나타낸 그래프이다.5 is a graph showing the discharge characteristics of the secondary battery prepared in Example 12.
본 발명은 상기에서 언급된 발명의 목적을 달성하기 위해 전극과 분리막으로 조립된 알루미늄 파우치내에서 액체 전해액과 중합성 단량체, 개시제를 함침시킨 후 열 경화하여 겔을 형성하는 겔형 고분자 전해질을 채용하는 것을 특징으로 하는 고분자 전지의 제조법을 개시한다.In order to achieve the object of the above-mentioned invention, the present invention proposes to employ a gel polymer electrolyte in which an electrolytic solution, a polymerizable monomer, and an initiator are impregnated in a aluminum pouch assembled with an electrode and a separator to form a gel by thermal curing. Disclosed is a method for producing a polymer battery.
이하에서 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 불포화 탄화수소로 구성된 중합성 단량체와 열 분해성 개시제를 전해액과 혼합하는 단계; 양극판과 음극판 사이에 분리막을 넣어 적층하여 조립한 후 알루미늄 파우치에 삽입한 후 한면만 남기고 각 면을 실링하는 단계; 상기 조립된 전지에 상기 혼합된 전해액을 주입한 후 진공 실링하지 않은 면을 진공 실링하는 단계; 및 용액이 전극에 충분히 함침 후 열을 가해 열경화시키는 단계로 이루어진다. 상기 겔형 고분자 전해질의 리튬 이차 전지는 전극과 분리막에 잘 함침시킨 후 열 경화하여 겔화하므로 전해질과 전극, 분리막사이의 계면적 특성이 우수하고, 전지를 조립한 후에 최종 경화하므로써 겔형 고분자 전해질의 기계적 물성에 크게 의존하지 않아 공정이 단순하고 비용 절감을 가져올 수 있다.The present invention comprises the steps of mixing a polymerizable monomer composed of an unsaturated hydrocarbon and a thermally decomposable initiator with the electrolyte solution; Putting a separator between the positive electrode plate and the negative electrode plate, stacking and assembling, inserting the separator into an aluminum pouch, and sealing each side with only one side remaining; Injecting the mixed electrolyte into the assembled battery and vacuum sealing the unsealed surface; And heat curing after the solution is sufficiently impregnated with the electrode by applying heat. The lithium secondary battery of the gel polymer electrolyte is well impregnated in the electrode and the separator and then thermally cured to gel, so that the interfacial property between the electrolyte, the electrode and the separator is excellent, and the mechanical properties of the gel polymer electrolyte are finally cured after assembling the battery. It does not rely heavily on the process, making the process simple and cost-effective.
이와 같이 본 발명에 따른 고분자 이차 전지에는 불포화 탄화수소로 구성된 중합성 단량체와 열 분해성 개시제를 전해액과 혼합 사용한다.As described above, the polymer secondary battery according to the present invention uses a polymerizable monomer composed of an unsaturated hydrocarbon and a thermal decomposition initiator mixed with an electrolyte solution.
본 발명에 사용가능한 중합성 단량체는 주쇄에 에틸렌 옥사이드를 기본 단위로 하고 라디칼 반응이 가능한 이중결합이 사슬 내에 2∼6개 범위인 단량체가 바람직하며, 그 사용량은 전해액에 대해 대략 1∼10 중량% 범위가 바람직하다. 만일 중합성 단량체 함량이 1 중량% 미만이면 경화가 진행되지 않아 겔이 형성되지 않는 문제가 있고, 10 중량%를 초과하면 겔의 표면에 전해액이 충분치 못하므로 계면저항이 상승하는 문제가 있다.The polymerizable monomer usable in the present invention is preferably a monomer having a main unit of ethylene oxide in the main chain and having a double bond in the chain of 2 to 6 in the chain, and the amount of the monomer used is approximately 1 to 10% by weight based on the electrolyte. Range is preferred. If the polymerizable monomer content is less than 1% by weight, there is a problem that the gel does not form due to hardening not progressing, and when the content of the polymerizable monomer exceeds 10% by weight, the electrolyte resistance is insufficient on the surface of the gel, thereby increasing the interface resistance.
또한 열분해 개시제는 전해액에 대해 0.02∼0.2 중량% 사용하는 것이 바람직하며, 특히 과산화물계 개시제와 아조계 개시제를 사용하는 것이 좋다.In addition, the pyrolysis initiator is preferably used in an amount of 0.02 to 0.2% by weight based on the electrolyte solution, and particularly preferably a peroxide initiator and an azo initiator.
한편, 전해액과 중합성 단량체, 개시제를 섞은 혼합용액을 알루미늄 파우치로 조립된 전지에 주입하고 760mmHg의 진공상태에서 실링한 후 대략 20∼90 ℃범위에서 경화시켜 겔화하는 것이 바람직한데, 20℃미만에서 겔화시키는 경우에는 경화 반응이 일어나지 않아 겔화되지 않고 90℃ 초과시에는 겔 특성이 좋지 못한 문제를 가지고 있다.On the other hand, it is preferable to inject a mixed solution of an electrolyte solution, a polymerizable monomer, and an initiator into a battery assembled with aluminum pouches, seal in a vacuum state of 760 mmHg, and then harden in a range of about 20 to 90 ° C. to gel it. In the case of gelation, there is a problem in that the curing reaction does not occur and thus gelation is not performed and the gel property is not good at the temperature exceeding 90 ° C.
이하에서 본 발명을 실시예를 들어 좀 더 상세하게 설명하지만, 본 발명이범위가 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the Examples.
[실시예 1∼7]EXAMPLES 1-7
전해액을 1.1M LiPF6/EC:PC:EMC(30:10:60)로 용해시키고 중합성 단량체로 이중결합의 수가 3인 폴리 옥시 에틸렌 글리콜 아크릴레이트(TA-140, Mw : 11,000)을 사용해 전해액에 대해 각각 3중량%(실시예 1), 3.5중량%(실시예 2), 4중량%(실시예 3)씩 첨가하고 또 개시제로 Bis(4-tert-butylcyclohexyl) peroxydicarbonate (perkdox 16)을 사용해 0.13중량%씩 첨가하여 전구체 혼합용액을 제조하였다.Electrolyte solution was dissolved in 1.1M LiPF 6 / EC: PC: EMC (30:10:60), and polyoxyethylene glycol acrylate (TA-140, Mw: 11,000) having 3 double bonds as polymerizable monomer was used. 3 wt% (Example 1), 3.5 wt% (Example 2), and 4 wt% (Example 3), respectively, and Bis (4-tert-butylcyclohexyl) peroxydicarbonate (perkdox 16) as an initiator. By adding 0.13% by weight to prepare a precursor mixture solution.
이차 전지의 규격은 600mAh 급383360으로 양극은 알루미늄 호일에 LiCoO2을 박막 코팅하고, 음극은 구리 호일에 흑연을 박막 코팅하여 제조된 전극을 분리막과 함께 적층 조립하여 알루미늄 파우치에 삽입한 후 한 면만 남기고 각 면을 실링하였다.The size of the secondary battery is 600mAh class 383360. The anode is coated with LiCoO 2 on aluminum foil and the cathode is coated with graphite on copper foil. The electrode is laminated together with a separator and inserted into an aluminum pouch. Each side was sealed.
상기 조립된 전지에 전해액을 충분히 주입하고 진공하에서 실링을 한 후에 용액이 전극에 충분히 함침 후, 80℃ 오븐에서 각 시간별로 10분(실시예 4), 20분(실시예 5), 30분(실시예 6), 40분(실시예 7)씩 열 경화를 시킨 후 정전류120mAh로 4.2V까지 충전하여 포메이션(Formation) 하였다. 상기 전지를 안정화 시킨 후 3.0V까지 방전하고 600mAh의 충전과 방전을 통해 전지의 수명특성을 측정하였고, 그 결과를 도 1과 도 2에 각각 나타내었다.After sufficiently injecting the electrolyte solution into the assembled battery and sealing under vacuum, the solution was sufficiently impregnated into the electrode, followed by 10 minutes (Example 4), 20 minutes (Example 5), 30 minutes (80 minutes) in an oven at 80 ° C. Example 6) After thermal curing for 40 minutes (Example 7), the battery was formed by charging to 4.2V with a constant current 120mAh. After the battery was stabilized, the battery was discharged to 3.0V, and the life characteristics of the battery were measured by charging and discharging 600mAh, and the results are shown in FIGS. 1 and 2, respectively.
[실시예 7∼10]EXAMPLES 7-10
전해액을 1.1M LiPF6/EC:PC:EMC(30:10:60)로 용해시키고 중합성 단량체로 이중결합의 수가 3인 폴리 옥시 에틸렌 글리콜 아크릴레이트(TA-140)를 사용해 전해액에 대해 각각 3.5중량% 첨가하고 개시제로 Bis(4-tert-butylcyclohexyl) peroxydicarbonate (perkdox 16)를 사용해 각각 0.06중량%(실시예 8), 0.09중량%(실시예 9), 0.12중량%(실시예 10), 0.15중량%(실시예 11)씩 첨가 혼합한 후 상기 실시예 1과 동일하게 실시하여 이차 전지를 제조하였다.The electrolyte was dissolved in 1.1 M LiPF 6 / EC: PC: EMC (30:10:60) and 3.5 parts of the electrolyte was prepared using polyoxyethylene glycol acrylate (TA-140) having 3 double bonds as the polymerizable monomer. Add% by weight and use 0.06% by weight (Example 8), 0.09% by weight (Example 9), 0.12% by weight (Example 10), 0.15 using Bis (4-tert-butylcyclohexyl) peroxydicarbonate (perkdox 16) as an initiator, respectively. Secondary batteries were prepared in the same manner as in Example 1 after mixing by weight (Example 11).
상기 전지를 안정화 시킨 후 3.0V까지 방전하고 600mAh로 충전과 방전을 통해 전지의 수명특성을 측정하였고, 그 결과를 도 3에 나타내었다.After the battery was stabilized, the battery was discharged to 3.0V, and the battery life characteristics were measured by charging and discharging at 600 mAh. The results are shown in FIG. 3.
[실시예 11]Example 11
중합성 단량체로 이중결합의 수가 3인 폴리 옥시 에틸렌 글리콜 아크릴레이트(TA-140)를 사용해 전해액에 대해 3중량% 첨가하고 개시제로 Bis(4-tert-butylcyclohexyl) peroxydicarbonate (perkdox 16)를 사용해 0.15중량% 첨가 혼합하여 전구체 혼합용액을 제조하였고, 이 혼합용액을3.8V, 1800mAh급 전지에 주입하고, 상기의 실시예 1과 동일하게 실시하여 이차 전지를 제조하였다. 상기 전지를 안정화 시킨 후 3.0V까지 방전하고 1800mAh의 충전과 방전을 통해 수명특성을 측정하였고, 그 결과를 도 4에 나타내었다.3 wt% of the polymerizable monomer was added to the electrolyte using polyoxyethylene glycol acrylate (TA-140) having 3 double bonds, and 0.15 wt% using Bis (4-tert-butylcyclohexyl) peroxydicarbonate (perkdox 16) as the initiator. A precursor mixed solution was prepared by mixing%, and the mixed solution was injected into a 3.8V, 1800 mAh battery, followed by the same procedure as in Example 1 to prepare a secondary battery. After the battery was stabilized, the battery was discharged to 3.0V, and life characteristics were measured by charging and discharging 1800mAh, and the results are shown in FIG. 4.
[실시예 12]Example 12
전해액을 1.1M LiPF6/EC:PC:EMC(30:10:60)로 용해시키고 중합성 단량체로 이중결합의 수가 3인 폴리 옥시 에틸렌 글리콜 아크릴레이트(TA-140)를 사용해 전해액에 대해 3.5중량% 첨가하고 개시제로 Bis(4-tert-butylcyclohexyl) peroxydicarbonate (perkdox 16)를 사용해 0.15중량% 첨가 혼합하여 전구체 혼합용액을 제조하였고, 상기 실시예 1과 동일하게 실시하여 이차 전지를 제조하였다. 상기 전지를 안정화 시킨 후 3.0V까지 방전하고 그 방전 특성을 측정하였고, 그 결과를 도 5에 나타내었다.The electrolyte was dissolved in 1.1M LiPF6 / EC: PC: EMC (30:10:60) and 3.5% by weight of the electrolyte using polyoxyethylene glycol acrylate (TA-140) having 3 double bonds as the polymerizable monomer. 0.15% by weight was added and mixed with Bis (4-tert-butylcyclohexyl) peroxydicarbonate (perkdox 16) as an initiator to prepare a precursor mixture solution, and the same procedure as in Example 1 was carried out to prepare a secondary battery. After the battery was stabilized, the battery was discharged to 3.0V and its discharge characteristics were measured. The results are shown in FIG. 5.
상기 실시예에서 측정된 전지의 수명과 방전 특성은 다음 방법에 의해 평가하였다.The life and discharge characteristics of the battery measured in the above examples were evaluated by the following method.
〈충방전으로 전지 수명 평가〉<Battery life evaluation by charge and discharge>
전지 제조 공정에 따라 충방전간의 전지 수명을 알기 위하여 실시예 1 ~ 11의 리튬 이온 고분자 전지를 충방전 테스트기(TOSCAT-3100U)를 이용하여 23℃에서 측정하였고, 그 결과를 도 1 ~ 4에 나타내었다.In order to know the battery life between charge and discharge according to the battery manufacturing process, the lithium ion polymer batteries of Examples 1 to 11 were measured at 23 ° C. using a charge / discharge tester (TOSCAT-3100U), and the results are shown in FIGS. 1 to 4. It was.
〈방전 특성 평가〉<Discharge characteristic evaluation>
전지 제조 공정에 따라 충방전간의 전지의 가용용량을 확인하기 위하여 실시예 12의 리튬 이온 고분자 전지를 충방전 테스트기(TOSCAT-3100U)를 이용하여 23℃에서 0.2C, 0.2C(capacity), 0.5C, 1.0C, 2.0C로 측정하였고, 그 결과를 도 5에 나타내었다.In order to confirm the available capacity of the battery between charge and discharge according to the battery manufacturing process, the lithium ion polymer battery of Example 12 was charged at 23 ° C. at 0.2 C, 0.2 C (capacity) and 0.5 C using a charge and discharge tester (TOSCAT-3100U). , 1.0C, 2.0C, and the results are shown in FIG. 5.
상술한 바와 같이 본 발명에 따른 리튬 이온 고분자 전지의 제조 공정은 겔형 고분자 전해질의 기계적 물성에 따른 리튬 이온 고분자 전지가 갖는 공정 상의 제약을 해결하므로써 조립 공정의 단순화와 비용절감을 이룰 수 있기 때문에 이차 전지의 시장 경쟁성을 높일 수가 있다.As described above, the manufacturing process of the lithium ion polymer battery according to the present invention can simplify the assembly process and reduce the cost by solving the process constraints of the lithium ion polymer battery according to the mechanical properties of the gel polymer electrolyte secondary battery. To increase market competitiveness.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020015600A KR20030075985A (en) | 2002-03-22 | 2002-03-22 | Method for the preparation of Lithium ion polymer batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020015600A KR20030075985A (en) | 2002-03-22 | 2002-03-22 | Method for the preparation of Lithium ion polymer batteries |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030075985A true KR20030075985A (en) | 2003-09-26 |
Family
ID=32225848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020015600A KR20030075985A (en) | 2002-03-22 | 2002-03-22 | Method for the preparation of Lithium ion polymer batteries |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030075985A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100440830B1 (en) * | 2002-10-11 | 2004-07-19 | 새한에너테크 주식회사 | Structure of gel-type polymer electrolyte for lithium ion polymer batteries |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1032019A (en) * | 1996-07-17 | 1998-02-03 | Matsushita Electric Ind Co Ltd | Polymer electrolyte and lithium polymer battery using polymer electrolyte |
JP2001006740A (en) * | 1999-06-25 | 2001-01-12 | Sanyo Electric Co Ltd | Lithium secondary battery provided with polymer electrolyte, and manufacture thereof |
KR20020008581A (en) * | 2000-07-24 | 2002-01-31 | 김순택 | Polymer electrolyte compositions polymerized acrylate monomer and lithium secondary battery comprising the same |
KR20020019214A (en) * | 2000-09-05 | 2002-03-12 | 김순택 | Manufacturing method for lithium secondary battery |
KR20020084614A (en) * | 2001-05-03 | 2002-11-09 | 삼성에스디아이 주식회사 | Polymer electrolyte and lithium battery employing the same |
-
2002
- 2002-03-22 KR KR1020020015600A patent/KR20030075985A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1032019A (en) * | 1996-07-17 | 1998-02-03 | Matsushita Electric Ind Co Ltd | Polymer electrolyte and lithium polymer battery using polymer electrolyte |
JP2001006740A (en) * | 1999-06-25 | 2001-01-12 | Sanyo Electric Co Ltd | Lithium secondary battery provided with polymer electrolyte, and manufacture thereof |
KR20020008581A (en) * | 2000-07-24 | 2002-01-31 | 김순택 | Polymer electrolyte compositions polymerized acrylate monomer and lithium secondary battery comprising the same |
KR20020019214A (en) * | 2000-09-05 | 2002-03-12 | 김순택 | Manufacturing method for lithium secondary battery |
KR20020084614A (en) * | 2001-05-03 | 2002-11-09 | 삼성에스디아이 주식회사 | Polymer electrolyte and lithium battery employing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100440830B1 (en) * | 2002-10-11 | 2004-07-19 | 새한에너테크 주식회사 | Structure of gel-type polymer electrolyte for lithium ion polymer batteries |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102182683B1 (en) | A method for manufacturing an electrode comprising polymer electrolyte and an electrode manufactured thereby | |
US7883554B2 (en) | Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof | |
KR101322694B1 (en) | Electrolyte for electrochemical device, the preparation method thereof and electrochemical device comprising the same | |
BR112014030392B1 (en) | secondary battery including electrolyte additive, device, module and battery case | |
CN111653825B (en) | Preparation method of gel polymer electrolyte | |
KR101954601B1 (en) | Organic-inorganic composite solid electrolyte, lithium secondary cell comprising the same, and manufacturing method for the lithium secondary cell | |
US7387852B2 (en) | Polymer electrolyte and lithium battery using the same | |
CN114292484B (en) | Interpenetrating network structure layer, in-situ preparation method and application thereof | |
CN110611120A (en) | Single-ion conductor polymer all-solid-state electrolyte and lithium secondary battery comprising same | |
CN102324467A (en) | In-situ polymerization preparation method of metal-shell colloid lithium ion battery | |
JP2001357883A (en) | Gel-like electrolytic solution and lithium battery using the same | |
KR100558843B1 (en) | Lithium battery and process for preparing the same | |
US20030148183A1 (en) | Non-aqueous electrolyte battery | |
KR100525278B1 (en) | Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte | |
JP2001210377A (en) | Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it | |
JP2001229730A (en) | Electrolyte material and its use | |
CN113437362B (en) | Dual-functional lithium ion polymer electrolyte and preparation method and application thereof | |
KR20030075985A (en) | Method for the preparation of Lithium ion polymer batteries | |
JP2023512820A (en) | Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby | |
CN113964380A (en) | Self-repairing polymer electrolyte capable of being thermally polymerized in situ and preparation method thereof | |
KR100440830B1 (en) | Structure of gel-type polymer electrolyte for lithium ion polymer batteries | |
JPH11214038A (en) | Gel high polymer solid electrolyte battery and manufacture thereof | |
JP2002158037A5 (en) | ||
KR100461876B1 (en) | Method Of Fabricating Lithium Ion Battery | |
KR100533647B1 (en) | A uv-cured multi-component polymer blend electrolyte, lithium secondary battery and their fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |