KR20020051089A - Thermal Spray Method of Oxide Coatings for Rolls used in Molten Zinc Pot - Google Patents
Thermal Spray Method of Oxide Coatings for Rolls used in Molten Zinc Pot Download PDFInfo
- Publication number
- KR20020051089A KR20020051089A KR1020000080569A KR20000080569A KR20020051089A KR 20020051089 A KR20020051089 A KR 20020051089A KR 1020000080569 A KR1020000080569 A KR 1020000080569A KR 20000080569 A KR20000080569 A KR 20000080569A KR 20020051089 A KR20020051089 A KR 20020051089A
- Authority
- KR
- South Korea
- Prior art keywords
- coating layer
- oxide
- roll
- coating
- thermal spray
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 29
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 239000011701 zinc Substances 0.000 title claims abstract description 27
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 27
- 239000007921 spray Substances 0.000 title description 9
- 239000011247 coating layer Substances 0.000 claims abstract description 83
- 239000011248 coating agent Substances 0.000 claims abstract description 27
- 238000005507 spraying Methods 0.000 claims abstract description 22
- 229910009043 WC-Co Inorganic materials 0.000 claims abstract description 20
- 238000005246 galvanizing Methods 0.000 claims abstract description 16
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 239000011651 chromium Substances 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 239000010936 titanium Substances 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- OFEAOSSMQHGXMM-UHFFFAOYSA-N 12007-10-2 Chemical compound [W].[W]=[B] OFEAOSSMQHGXMM-UHFFFAOYSA-N 0.000 claims abstract description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011230 binding agent Substances 0.000 claims abstract description 4
- 150000001639 boron compounds Chemical class 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 abstract description 11
- 238000005260 corrosion Methods 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 abstract 2
- 239000000470 constituent Substances 0.000 abstract 1
- 230000035613 defoliation Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 18
- 230000035939 shock Effects 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- -1 (M = Cr Chemical class 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2206/00—Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
- F16C2206/80—Cermets, i.e. composites of ceramics and metal
- F16C2206/82—Cermets, i.e. composites of ceramics and metal based on tungsten carbide [WC]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
본 발명은 용융아연도금욕조에서 사용되는 롤의 산화물 코팅방법, 보다 상세하게는 용융아연도금공장의 용융아연욕조 내에서 사용되는 각종 롤에 산화물 코팅을 적용하는 방법에 관한 것으로, 특히 롤 모재에 용융아연에 대한 내식성이 강한 산화물의 용사코팅을 적용함에 있어서 적절한 언터코팅층을 형성시킴으로써, 코팅층의 박리를 방지하여 코팅의 수명을 늘릴 수 있도록 하는 롤의 산화물 코팅방법에 관한 것이다.The present invention relates to an oxide coating method of a roll used in a hot dip galvanizing bath, and more particularly, to a method of applying an oxide coating to various rolls used in a hot dip galvanizing bath in a hot dip galvanizing plant. The present invention relates to a method for coating an oxide of a roll to prevent the peeling of the coating layer to increase the service life of the coating by forming an appropriate undercoat layer in applying a spray coating of an oxide having strong corrosion resistance to zinc.
용융아연도금공장에는 강판의 표면에 아연을 도금하기 위하여 용융아연욕조가 설치되어 있어 강판이 그 속을 통과하게 되어 있다. 용융아연욕조 내에는 대개 세 개의 롤이 설치되어 있어 아연욕조 내부를 지나는 강판을 가이드 하는 역할을 하고 있다. 이러한 롤들의 재질은 대개 스테인레스강으로 되어 있는데 스테인레스강은 용융아연에 의하여 반응이 일어나면서 침식이 되어 도금제품의 표면에 결함을 만드는 원인이 된다. 따라서 롤의 표면을 깨끗하게 유지하고 롤의 수명을 연장시키기 위하여 일반적으로 롤의 표면에는 용사코팅이 실시되고 있다.In the hot dip galvanizing plant, a hot dip zinc bath is installed to plate zinc on the surface of the steel sheet so that the steel sheet passes therethrough. In the molten zinc bath, three rolls are usually installed to guide the steel sheet passing through the zinc bath. These rolls are usually made of stainless steel, which is eroded by the reaction of molten zinc, causing defects on the surface of the plated product. Accordingly, in order to keep the surface of the roll clean and to extend the life of the roll, the surface of the roll is generally spray coated.
현재 가장 많이 사용되는 용사코팅은 WC-Co계를 코팅재로 사용하는 경우인데, 코팅성분 중에 함유된 코발트(Co)가 아연(Zn)에 침식을 당하기 때문에, 코팅층의 내식성을 보다 향상시키고 또한 코팅의 특성을 향상시키기 위하여 다음과 같은 기술들이 선행기술로서 제안되게 되었다.The most commonly used thermal spray coating is WC-Co-based coating material, because cobalt (Co) contained in the coating component is eroded by zinc (Zn), thereby improving the corrosion resistance of the coating layer and also In order to improve the characteristics, the following techniques have been proposed as prior art.
즉, WC에 WB를 혼합하여 코팅하는 방법(JP948114)과, WB, MoB 등의 재질을 물리증착법(PVD), 화학증착법(CVD) 혹은 용사 등의 방법을 사용하여 코팅하는방법(JP94299310), MSi2(M=Cr, Mo, Ta, Nb, W, Zr, Ti, V)등의 화합물을 사용하는 방법(JP94228723) 등이 현재 선행하는 공지기술로서 알려져 있다.That is, a method of mixing WB with a coating of WC (JP948114), and coating a material such as WB or MoB using physical vapor deposition (PVD), chemical vapor deposition (CVD) or thermal spraying (JP94299310), MSi 2 (JP94228723) and the like using a compound such as (M = Cr, Mo, Ta, Nb, W, Zr, Ti, V) are known as prior arts.
그러나 상기의 방법 중 물리증착법이나 화학증착법은 용융아연도금욕조의 롤에 적용하는 경우 롤의 크기가 너무 크기 때문에 현실적인 적용이 어렵다는 문제점이 있었고, 이러한 이유로 용사코팅법이 가장 적합한 코팅방법이라고 할 수 있다.However, the physical vapor deposition method or the chemical vapor deposition method of the above method has a problem that it is difficult to apply realistically because the size of the roll is too large when applied to the roll of the hot dip galvanizing bath, for this reason it can be said that the spray coating method is the most suitable coating method. .
코팅재료로는 용융아연에 의하여 침식을 당하거나 반응하지 않는 소재가 이상적이다. 일반적으로 알루미나, 지르코니아 등을 기본으로 하는 산화물은 아연과 반응을 하지 않으므로 좋은 소재이며 여러 종의 산화물을 조합하여 적용하는 기술도 공지되어 있다.(JP94-330278)The coating material is ideally a material that is not eroded or reacted by molten zinc. In general, oxides based on alumina, zirconia, etc. do not react with zinc, so they are good materials, and a technique of combining various kinds of oxides is also known. (JP94-330278)
그러나 산화물은 일반적으로 롤의 소재 금속과의 열팽창계수가 차이가 나기 때문에 열팽창의 차이로 인한 코팅층의 박리를 완화시키기 위하여 니켈기 합금(예를 들면, Ni-Cr 합금) 혹은 코발트기 합금(예를 들면, Co-Cr 합금)을 언더코팅으로 사용하게 된다. 또한 열충격에 대한 저항성을 보다 향상시키기 위하여 도 1에 나타낸 바와 같이 금속으로 이루어진 언더코팅(2)과 산화물코팅층(4)의 사이에 금속과 산화물을 혼합한 코팅층(3)을 형성시켜 주기도 한다. 이러한 방법으로 코팅층을 구성하면 산화물코팅층(4)에 가해지는 열충격을 완화할 수 있어 코팅층의 내열충격성을 향상시킬 수 있기 때문이다.However, since oxides generally have different coefficients of thermal expansion from the roll metals, nickel-based alloys (eg Ni-Cr alloys) or cobalt-based alloys (eg For example, Co-Cr alloy) may be used as the undercoat. In addition, in order to further improve resistance to thermal shock, a coating layer 3 containing a mixture of metal and oxide may be formed between the metal undercoat 2 and the oxide coating layer 4 as shown in FIG. 1. This is because when the coating layer is formed in this manner, the thermal shock applied to the oxide coating layer 4 can be alleviated, thereby improving the thermal shock resistance of the coating layer.
그런데, 상기와 같은 코팅층을 적용하는 경우 다음과 같은 문제점이 발생되었다.By the way, the following problems occurred when applying the coating layer as described above.
도 1과 같은 구조를 갖는 코팅층을 아연에 침지되는 롤 중의 하나인 싱크롤(sink roll)에 적용하여 사용하였는데, 10일간 사용한 후에 코팅층에 박리가 발생하여 더 이상 사용하지 못하게 되었다. 도 2는 도 1의 코팅층을 싱크롤에 적용한 후에 박리된 코팅층 표면을 촬영한 사진이다. 사진과 같이 롤 표면의 여러 곳에서 코팅층이 박리된 것을 관찰할 수 있었다.The coating layer having the structure as shown in FIG. 1 was applied to a sink roll, which is one of the rolls immersed in zinc, and after 10 days of use, peeling occurred in the coating layer, thereby preventing its use. Figure 2 is a photograph of the surface of the coating layer peeled off after applying the coating layer of Figure 1 to the sink roll. As shown in the photograph, it was observed that the coating layer was peeled off at various places on the roll surface.
싱크롤의 경우에는 강판과 롤 사이에서 용융아연이 잘 빠져 나갈 수 있도록 얕은 홈을 파주는데 이를 그루브(groove) 라고 한다. 코팅층의 박리 원인을 조사한 결과 열충격 때문이 아니고 코팅층의 밀착력이 떨어지기 때문인 것으로 밝혀졌다. 특히 도 1을 참조하여 설명하면, 박리가 일어난 부위는 산화물 코팅층(4)과 산화물과 금속의 혼합코팅층(3) 사이의 계면인 것으로 판단되었다. 이와 같은 박리가 발생한 것은 강판과 롤 사이에 가해지는 마찰력으로 인하여 특히 그루브의 곡선이 형성되는 부분에서 마찰력을 견디지 못하여 박리가 시작된 것이다.In the case of sink rolls, shallow grooves are provided between the steel sheets and the rolls so that the molten zinc can escape well. This is called a groove. Investigation of the cause of the peeling of the coating layer revealed that the adhesion of the coating layer was not due to the thermal shock. In particular, referring to FIG. 1, the site where peeling occurred was determined to be an interface between the oxide coating layer 4 and the mixed coating layer 3 of the oxide and the metal. Such peeling occurred due to the frictional force applied between the steel sheet and the roll, and particularly, peeling started because the frictional force of the groove could not be tolerated.
특히 상기와 같은 코팅층을 형성하는 경우에는, 일단 박리가 일어나면 산화물 층에 비하여 아연에 대한 내식성이 떨어지는 산화물과 금속의 혼합코팅층(3)이 아연에 노출되어 산화물코팅층(4)과 산화물과 금속의 혼합코팅층(3)의 계면을 따라 계속 아연이 침식하게 되어 박리부위가 더욱 넓어지게 되는 문제점이 발생하게 된다.In particular, in the case of forming the coating layer as described above, once the peeling occurs, the mixed coating layer 3 of oxide and metal, which is less corrosion resistant to zinc than the oxide layer, is exposed to zinc, so that the oxide coating layer 4 and the oxide and metal are mixed. As the zinc continues to erode along the interface of the coating layer 3, a problem arises in that the exfoliation site becomes wider.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 그 목적은 용융아연도금공장의 용융아연욕조 내에서 사용되는 각종 롤에 산화물 코팅을 적용함에 있어서, 롤 모재에 용융아연에 대한 내식성이 강한 산화물의 용사코팅을 적용할 때에 그 중간에 적절한 언터코팅층을 형성시킴으로써, 산화물 코팅층의 박리를 방지하여 코팅의 수명을 늘릴 수 있도록 하는 롤의 산화물 코팅방법을 제공함에 있다.The present invention has been made to solve the above problems, the object of which is to apply an oxide coating to various rolls used in the molten zinc bath of the hot dip galvanizing plant, the corrosion resistance to the molten zinc in the roll base material When applying the thermal spray coating of the oxide to form an appropriate undercoat layer in the middle, to provide an oxide coating method of the roll to prevent the peeling of the oxide coating layer to increase the life of the coating.
도 1은 일반적인 산화물 코팅층의 구조를 보여주는 단면 모식도,1 is a schematic cross-sectional view showing the structure of a typical oxide coating layer,
도 2는 도 1의 코팅층을 싱크롤에 적용한 후에 박리된 코팅층 표면을 촬영한 사진,Figure 2 is a photograph of the surface of the coating layer peeled off after applying the coating layer of Figure 1 to the sink roll,
도 3은 본 발명의 산화물 코팅방법에 의한 코팅층의 구조를 보여주는 단면 모식도,Figure 3 is a schematic cross-sectional view showing the structure of the coating layer by the oxide coating method of the present invention,
도 4a는 도 1의 일반적인 산화물 코팅층의 구조를 가진 코팅층 시편의 열충격시험 후의 형상을 보여주는 사진,Figure 4a is a photograph showing the shape after the thermal shock test of the coating layer specimen having the structure of the general oxide coating layer of Figure 1,
도 4b는 도 3의 본 발명의 산화물 코팅방법이 적용된 코팅층 시편의 열충격시험 후의 형상을 보여주는 사진이다.Figure 4b is a photograph showing the shape after the thermal shock test of the coating layer specimen to which the oxide coating method of the present invention of Figure 3 is applied.
< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>
1: 모재2: 금속계 언더코팅층1: Base material 2: Metallic undercoat
3: 산화물-금속 혼합코팅층4: 산화물 코팅층3: oxide-metal mixed coating layer 4: oxide coating layer
11: 코팅층의 박리부21: WC-Co 언더코팅층11: peeling part of coating layer 21: WC-Co undercoat layer
상기와 같은 목적을 달성하기 위한 본 발명은, 용융아연도금공장의 용융아연욕조 중에 침지 사용되는 롤에 산화물을 코팅하는 방법에 있어서, 롤의 모재(1)와 산화물 코팅층(4)의 중간에 언더코팅으로 WC-Co 용사코팅층(21)을 형성시키는 것을 특징으로 한다.The present invention for achieving the above object, in the method of coating the oxide on the roll immersed in the molten zinc bath of the hot-dip galvanizing plant, in the middle between the base material (1) and the oxide coating layer (4) of the roll It characterized in that the coating to form a WC-Co thermal spray coating layer (21).
또한 본 발명은, 언더코팅인 상기 WC-Co 용사코팅층(21)을 형성시키는 코팅성분중에 WB(텅스텐 보라이드), CrB(크롬 보라이드), TiB(티타늄 보라이드)을 포함하는 보론 화합물 중에서 1종 혹은 2종 이상의 화합물을 첨가하는 것을 특징으로 한다.In addition, the present invention, in the coating component for forming the WC-Co thermal spray coating layer 21 which is an undercoat, among the boron compounds containing WB (tungsten boride), CrB (chromium boride), TiB (titanium boride) 1 It is characterized by adding a species or two or more compounds.
또한 본 발명은, 언더코팅인 상기 WC-Co 용사코팅층(21)에서 바인더로 작용하는 Co에 W 혹은 Cr 중의 1종 혹은 2종을 첨가하는 것을 특징으로 한다.In addition, the present invention is characterized by adding one or two of W or Cr to Co acting as a binder in the WC-Co spray coating layer 21 which is undercoating.
이하 본 발명의 구성에 대해서 도면을 참조하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is described in detail with reference to drawings.
일반적으로 산화물 용사코팅층의 언더코팅층에 요구되는 사항은 크게 두 가지가 있다. 우선 사용되는 환경에 대하여 내식성이 우수해야 하고, 그 다음 모재와 산화물코팅층의 중간 정도되는 열팽창계수를 가져서 열충격을 완화시킬 수 있어야 한다. 현재 롤의 코팅소재로 가장 많이 사용되는 WC-Co계 코팅은 이러한 두 가지 요구조건을 모두 충족시킬 수 있다.In general, there are two major requirements for the undercoat of the oxide thermal spray coating layer. First, it should be excellent in corrosion resistance for the environment used, and then it should be able to mitigate thermal shock by having a coefficient of thermal expansion intermediate between the base material and the oxide coating layer. WC-Co-based coatings, which are currently used as coatings for rolls, can meet both of these requirements.
그런데 앞서 언급한 바와 같이 산화물 코팅층을 실재로 적용하였을 때의 문제점은 산화물 용사코팅층의 낮은 밀착력이었다. 그러므로 본 발명에서는 산화물 용사코팅층의 밀착력을 향상시킬 수 있도록, 도 1에 나타낸 바와 같은 종래의 방법으로 코팅층을 구성하는 대신에 도 3에 나타낸 바와 같이 언더코팅으로 WC-Co 용사코팅층을 형성시키고 그 위에 바로 산화물층을 형성하는 방법을 사용하였다.However, as mentioned above, a problem when the oxide coating layer is actually applied was a low adhesion of the oxide thermal spray coating layer. Therefore, in the present invention, in order to improve the adhesion of the oxide thermal spray coating layer, instead of forming a coating layer by a conventional method as shown in Figure 1 to form a WC-Co thermal spray coating layer by undercoat as shown in Figure 3 and thereon The method of forming an oxide layer was used immediately.
언더코팅에 필요한 특성은 내식성, 모재와 산화물층의 중간정도되는 열팽창계수, 산화물의 밀착력증대 등의 세 가지인데 WC-12%Co는 이러한 조건을 모두 충족시킬 수 있다. 한편, 사용하는 모재와 산화물의 종류에 따라서 WC-Co 중의 Co 함량은 다양하게 변경 적용될 수 있다.There are three characteristics required for undercoating: corrosion resistance, intermediate coefficient of thermal expansion between the base material and the oxide layer, and increased adhesion of the oxide. WC-12% Co can satisfy all of these conditions. Meanwhile, the Co content in the WC-Co may be variously changed according to the type of the base material and the oxide to be used.
본 발명에서는 또한 WC-Co의 내식성을 향상시키기 위하여 WB(텅스텐 보라이드), CrB(크롬 보라이드), TiB(티타늄 보라이드) 등의 보론 화합물을 1종 혹은 2종 이상을 첨가한 코팅을 사용할 수도 있다. 또한 바인더 상인 Co중에 Cr, W을 첨가한 코팅도 사용이 가능하다.In the present invention, in order to improve the corrosion resistance of WC-Co, a coating in which one or two or more kinds of boron compounds such as WB (tungsten boride), CrB (chromium boride) and TiB (titanium boride) is added is used. It may be. It is also possible to use a coating in which Cr and W are added in the binder phase Co.
용융아연욕조의 롤에 코팅재로서 사용될 수 있는 산화물로는 알루미나, 지르코니아, 티타니아, 마그네시아. 칼슘 산화물 등이 있는데, 이러한 성분들은 한 가지 혹은 두 가지 이상이 혼합되어 사용될 수 있다. 또한 용사 후에 형성되는 상의 안정화를 위하여 이트리아, 하프늄 산화물, 세륨 산화물 등이 첨가되어 사용될 수도 있다.Oxides that can be used as coatings in rolls of molten zinc baths include alumina, zirconia, titania, magnesia. Calcium oxide, etc. One or more of these components may be used in combination. In addition, yttria, hafnium oxide, cerium oxide, or the like may be added and used to stabilize the phase formed after the thermal spraying.
통상적으로 산화물을 코팅하는 방법은 프라즈마 용사 방법을 사용하는데 이 방법을 사용하면 기공이 많이 형성된다. 따라서 이 기공을 따라서 아연이 모재에까지 도달하면 코팅층의 박리가 일어나기 때문에 일반적으로 산화물 코팅층의 두께를 0.2~1.0 mm로 두껍게 코팅하게 된다. 그러나, 이와 같이 두껍게 코팅하게 되면 코팅층 중의 잔류응력이 증가하기 때문에 코팅층에 균열이 생기거나 박리가 일어나기 쉬우므로 코팅층의 수명이 단축되게 된다.In general, the method of coating the oxide uses a plasma spray method, which forms a lot of pores. Therefore, when the zinc reaches the base metal along the pores, the coating layer is peeled off, so that the thickness of the oxide coating layer is generally 0.2 to 1.0 mm. However, when the coating is so thick, the residual stress in the coating layer increases, so that the coating layer is easily cracked or peeled off, thereby shortening the life of the coating layer.
그러나 본 발명과 같이 WC-Co 코팅층을 언더코팅층으로 사용하면 산화물 코팅층의 두께를 0.2 mm 이하로 얇게 할 수 있으므로, 아연(Zn)이 산화물의 기공을 통하여 침투하더라도 WC-Co 층에 도달하여서는 침식이 진행되는 속도가 아주 느려지기 때문에 종래의 방법에 의한 코팅층보다 훨씬 수명이 길어지게 된다.However, when the WC-Co coating layer is used as the undercoat layer as in the present invention, the thickness of the oxide coating layer can be reduced to 0.2 mm or less. Thus, even though zinc (Zn) penetrates through the pores of the oxide, the erosion is not reached upon reaching the WC-Co layer. Due to the very slow progression, the service life is much longer than that of the conventional coating layer.
특히 종래에 많이 사용되는 프라즈마 용사방법 대신에 폭발용사법으로 산화물을 코팅하는 경우에는 코팅층이 훨씬 치밀해지기 때문에 0.02~0.1 mm 정도로 얇게 산화물 코팅층을 형성하더라도 충분한 내식성을 발휘할 수 있게 된다.In particular, in the case of coating the oxide by an explosion spray method instead of the conventionally used plasma spray method, the coating layer is much more dense, so that even if the oxide coating layer is formed as thin as 0.02 to 0.1 mm, sufficient corrosion resistance can be exhibited.
상기와 같은 방법으로 WC-Co 언더코팅층을 형성함으로써 산화물 코팅층의 밀착력을 향상시킬 수 있게 되고 내식성이 향상된 언더코팅층을 사용하므로 용융아연욕조 내에서 강판과 마찰이 되더라도 롤의 산화물 코팅층이 박리되는 것을 방지할 수 있게 된다.By forming the WC-Co undercoating layer in the above manner, the adhesion of the oxide coating layer can be improved and the undercoating layer having improved corrosion resistance is used to prevent the oxide coating layer of the roll from being peeled off even if the steel sheet is rubbed with the steel sheet in the molten zinc bath. You can do it.
이하 본 발명의 실시예에 대하여 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail.
[실시예]EXAMPLE
본 실시예에서 언더코팅층으로는 아연욕 침지롤의 코팅재료로 가장 많이 사용되는 WC-12%Co를 사용하였다. WC-12%Co 코팅층을 형성시킬 때에는 프라즈마 용사보다 밀착력이 우수하고 코팅층이 치밀한 고속용사방법(HVOF : High VelocityOxygen Fuel)을 사용하였다.In the present embodiment, WC-12% Co was used as the coating material of the zinc bath immersion roll as the undercoat layer. When forming the WC-12% Co coating layer was used a high-speed spraying method (HVOF: High Velocity Oxygen Fuel (HVOF) having a better adhesion than the plasma spray and a dense coating layer).
종래의 방법과 본 발명에 의한 방법을 적용한 용사코팅층의 열충격시험을 실시하였다. 종래의 방법에서 금속계 언더코팅 소재로는 코발트기 합금을 사용하였으며 산화물은 알루미나-지르코니아 합금을 사용하였다. 본 발명에 의한 코팅층은 두께 0.1 mm의 WC-12%Co의 언더코팅층을 고속용사방법을 사용하여 코팅하였고 그 위에 동일한 성분의 산화물층을 프라즈마 용사법을 사용하여 0.1 mm의 두께로 형성하였다. 열충격을 위한 시험편은 지름 50 mm의 원통형의 스테인레스 관에 싱크롤과 같은 모양의 그루브를 형성한 것을 사용하였다.The thermal shock test of the spray coating layer to which the conventional method and the method by this invention were applied was performed. In the conventional method, a cobalt-based alloy was used as the metal-based undercoat material, and the oxide was an alumina-zirconia alloy. The coating layer according to the present invention was coated with an undercoat layer of WC-12% Co having a thickness of 0.1 mm using a high speed spraying method, and an oxide layer of the same component was formed thereon with a thickness of 0.1 mm using a plasma spraying method. As a test specimen for thermal shock, a sink roll-like groove was formed in a cylindrical stainless steel tube having a diameter of 50 mm.
열충격시험방법으로는 실제로 사용되는 아연욕의 온도보다 더 높은 온도인 500℃의 로에서 20분간 유지한 후에 바로 물속에 넣어 급냉하는 과정을 20회 반복함으로써 행하였다. 이 방법은 산화물 코팅층의 내열충격성을 시험하는 방법으로 가장 많이 사용되는 방법이다.The thermal shock test method was carried out by repeating the process of rapidly quenching 20 times after holding in a furnace at 500 ° C. which is higher than the temperature of the zinc bath actually used for 20 minutes. This method is the most used method to test the thermal shock resistance of the oxide coating layer.
도 4a 및 도 4b는 열충격시험이 끝난 후에 종래의 방법과 본 발명에 의한 방법으로 제조된 코팅시편의 외형을 촬영한 사진이다. 두 경우 모두 열충격에 의한 균열이나 코팅층의 박리는 발생하지 않았다.4a and 4b is a photograph of the appearance of the coated specimen prepared by the conventional method and the method after the thermal shock test is finished. In both cases, no cracking due to thermal shock or peeling of the coating layer occurred.
코팅층의 밀착력을 비교하기 위하여 ASTM C633의 방법을 사용하였다. 종래의 방법으로 코팅층의 밀착력을 측정한 결과 80~150 Kg/cm2의 수치가 얻어졌으나, 본 발명의 방법에 의해 WC-12%Co 코팅층을 언더코팅으로 하고 산화물층을 프라즈마 용사법으로 형성한 경우에는 250~380 Kg/cm2의 밀착력이 얻어져 종래의 방법보다 산화물층의 밀착력이 3~4배 정도 향상되었다. 프라즈마 용사대신에 폭발용사법으로 산화물층을 형성한 경우에는 500~650 Kg/cm2으로 밀착력이 더 크게 증가되었다.In order to compare the adhesion of the coating layer was used the method of ASTM C633. When the adhesion of the coating layer was measured by a conventional method, a numerical value of 80 to 150 Kg / cm 2 was obtained. However, when the WC-12% Co coating layer was undercoated by the method of the present invention and the oxide layer was formed by the plasma spray method. The adhesion of 250 to 380 Kg / cm 2 was obtained, and the adhesion of the oxide layer was improved by 3 to 4 times compared with the conventional method. If the oxide layer was formed by the explosion spray instead of the plasma spray, the adhesion increased more than 500 ~ 650 Kg / cm 2 .
이와 같이 WC-Co 를 언더코팅으로 사용하는 경우 내열충격성에 문제가 없으며 밀착력은 크게 향상되는 것이 확인되었다.As such, when the WC-Co is used as an undercoating, it is confirmed that there is no problem in the thermal shock resistance and the adhesion is greatly improved.
이와 같은 결과를 바탕으로 용융아연도금공장의 싱크롤에 본 발명을 적용하여 실제로 현장 시험을 실시하였다. WC-12%Co 코팅층을 고속용사법을 사용하여 0.1 mm의 두께로 하여 언더코팅층을 형성하고 프라즈마 용사법을 사용하여 알루미나-지르코니아 산화물 코팅층을 그 위에 0.15 mm의 두께로 형성하였다. 이와 같은 방법으로 코팅된 롤을 용융아연욕조 중에서 35일간 사용한 후에 외형을 살펴본 결과 표면에 코팅층의 균열이나 박리가 일어나지 않는 양호한 결과를 얻었다.Based on these results, the present invention was actually applied to the sink roll of the hot dip galvanizing plant. The undercoating layer was formed using the WC-12% Co coating layer to a thickness of 0.1 mm using a high speed spraying method, and an alumina-zirconia oxide coating layer was formed thereon to a thickness of 0.15 mm using a plasma spraying method. After using the roll coated in this manner in a molten zinc bath for 35 days, the appearance was examined, and a good result was obtained without cracking or peeling of the coating layer on the surface.
이와 같은 본 발명 용융아연도금욕조에서 사용되는 롤의 산화물 코팅방법은, 산화물코팅의 언더코팅으로 WC-Co를 사용하여 열충격에 의한 균열이나 박리가 일어나지 않으면서 밀착력이 크게 향상된 산화물 코팅층을 얻도록 해주며, 또한 언더코팅층의 용융아연에 대한 내식성이 우수하므로 산화물 코팅층을 통하여 아연이 침투하더라도 종래의 방법에 의한 코팅보다 훨씬 장시간동안 롤을 사용할 수 있도록 해주는 효과를 제공한다.The oxide coating method of the roll used in the hot-dip galvanizing bath of the present invention is to use the WC-Co as the undercoat of the oxide coating to obtain an oxide coating layer having significantly improved adhesion without cracking or peeling due to thermal shock. In addition, since the undercoating layer is excellent in corrosion resistance to molten zinc, even if zinc penetrates through the oxide coating layer, it provides an effect that the roll can be used for a much longer time than the coating by the conventional method.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000080569A KR20020051089A (en) | 2000-12-22 | 2000-12-22 | Thermal Spray Method of Oxide Coatings for Rolls used in Molten Zinc Pot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000080569A KR20020051089A (en) | 2000-12-22 | 2000-12-22 | Thermal Spray Method of Oxide Coatings for Rolls used in Molten Zinc Pot |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020051089A true KR20020051089A (en) | 2002-06-28 |
Family
ID=27684850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000080569A KR20020051089A (en) | 2000-12-22 | 2000-12-22 | Thermal Spray Method of Oxide Coatings for Rolls used in Molten Zinc Pot |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020051089A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100553605B1 (en) * | 2003-12-26 | 2006-02-22 | 재단법인 포항산업과학연구원 | Roll coating for the roll of high voltage current in electroplating process |
KR20200001650A (en) * | 2018-06-26 | 2020-01-07 | 대신메탈라이징 주식회사 | Pot roll in high corrosion resistance aluminum alloy steel plate manufacturing equipment and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04350154A (en) * | 1991-05-27 | 1992-12-04 | Tocalo Co Ltd | Member for hot-dip metal bath |
JPH0920975A (en) * | 1995-05-02 | 1997-01-21 | Nippon Steel Corp | High adhesion terminal spraying roll |
JPH10245664A (en) * | 1997-03-04 | 1998-09-14 | Sumitomo Metal Ind Ltd | Member to be immersed into hot dip galvanizing bath and its production |
JP2000144358A (en) * | 1998-11-05 | 2000-05-26 | Tocalo Co Ltd | Roll member for hot-dip metal coating bath, and its manufacture |
-
2000
- 2000-12-22 KR KR1020000080569A patent/KR20020051089A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04350154A (en) * | 1991-05-27 | 1992-12-04 | Tocalo Co Ltd | Member for hot-dip metal bath |
JPH0920975A (en) * | 1995-05-02 | 1997-01-21 | Nippon Steel Corp | High adhesion terminal spraying roll |
JPH10245664A (en) * | 1997-03-04 | 1998-09-14 | Sumitomo Metal Ind Ltd | Member to be immersed into hot dip galvanizing bath and its production |
JP2000144358A (en) * | 1998-11-05 | 2000-05-26 | Tocalo Co Ltd | Roll member for hot-dip metal coating bath, and its manufacture |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100553605B1 (en) * | 2003-12-26 | 2006-02-22 | 재단법인 포항산업과학연구원 | Roll coating for the roll of high voltage current in electroplating process |
KR20200001650A (en) * | 2018-06-26 | 2020-01-07 | 대신메탈라이징 주식회사 | Pot roll in high corrosion resistance aluminum alloy steel plate manufacturing equipment and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2205052C (en) | Method of producing reactive element modified-aluminide diffusion coatings | |
JPS6117912B2 (en) | ||
Rao et al. | Corrosion behavior of plasma sprayed Cr2O3-Al2O3-ZrO2 multilayer coatings on mild steel | |
JP2758707B2 (en) | Thermal spray coating for hot dip galvanizing bath | |
US5262202A (en) | Heat treated chemically vapor deposited products and treatment method | |
US4873152A (en) | Heat treated chemically vapor deposited products | |
HU222318B1 (en) | Zinc alloys yielding anticorrosive coatings on ferrous materials | |
KR20020051089A (en) | Thermal Spray Method of Oxide Coatings for Rolls used in Molten Zinc Pot | |
JPH1180917A (en) | Immersion member for molten metal bath, excellent in resistance to corrosion and wear | |
JP4053673B2 (en) | Method for producing aluminum / galvanizing bath member | |
Arrando et al. | Comparative study of high corrosion resistant TiCxN1− x and TiN hard coatings | |
Mizuno et al. | MoB/CoCr spray coating with higher durability in molten Al and Al-Zn alloys | |
JPH0776763A (en) | Member for galvanization bath excellent in resistance to blocking to alloy layer, its preparation and hot dip galvanization therewith | |
JPH04350154A (en) | Member for hot-dip metal bath | |
JPS5837386B2 (en) | Molten metal bath immersion parts | |
TWI490344B (en) | Method for manufacturing roll member for molten metal bath | |
JP3136502B2 (en) | Method of using molten metal reactive powder composition and use product | |
Alves et al. | Electrochemical corrosion of magnetron sputtered WTiN-coated mild steels in a chloride medium | |
JP3502332B2 (en) | Molten metal plating bath member and manufacturing method thereof | |
JP2612127B2 (en) | Hot-dip galvanizing bath immersion member with excellent durability | |
JP3045463B2 (en) | Steel member having composite sprayed coating and method of manufacturing the same | |
TWI426138B (en) | Roller body parts for molten metal baths | |
JP3338734B2 (en) | Melting-resistant metal member and method of manufacturing the same | |
JPH06228723A (en) | Melting resistant metal eroding material and production thereof | |
JPS5925966A (en) | Material for equipment in galvanizing bath |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |