KR20020050901A - Conductive lines and interconnections in semiconductor devices and forming method thereof - Google Patents
Conductive lines and interconnections in semiconductor devices and forming method thereof Download PDFInfo
- Publication number
- KR20020050901A KR20020050901A KR1020000080168A KR20000080168A KR20020050901A KR 20020050901 A KR20020050901 A KR 20020050901A KR 1020000080168 A KR1020000080168 A KR 1020000080168A KR 20000080168 A KR20000080168 A KR 20000080168A KR 20020050901 A KR20020050901 A KR 20020050901A
- Authority
- KR
- South Korea
- Prior art keywords
- conductive layer
- layer
- insulating layer
- wiring
- trench
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76879—Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/7684—Smoothing; Planarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
본 발명은 반도체장치의 배선 및 배선연결부와 그 제조방법에 관한 것으로서, 특히, 하부 도전층과 연결될 상부 배선의 연결부인 비어홀과 상부배선이 형성될 트렌치를 절연층에 형성한 다음 배리어층과 구리등의 제 1 도전층을 비어홀 및 트렌치의 내부표면에 형성한 후 절연층의 표면을 배리어층을 연마정지층으로 이용하는 CMP를 도전층에 실시한 후 CVD로 제 2 도전층을 제 1 도전층의 노출된 상부 표면에만 선택적으로 증착하여 상부 표면이 볼록하고 절연층 상부로 일부 돌출된 형태의 도전층이 보강된 배선을 형성하여 배선저항의 변화와 전자이동현상을 방지하며 기생캐패시턴스 변화를 감소시키며 균일한 절연층의 두께를 확보하고 결함을 감소시키도록한 반도체장치의 다마신구조 배선 및 배선연결부와 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to wiring and wiring connection portions of semiconductor devices and a method of manufacturing the same. In particular, a via hole, which is a connection portion of an upper wiring to be connected to a lower conductive layer, and a trench in which an upper wiring is to be formed are formed in an insulating layer, and then a barrier layer and copper, etc. After forming the first conductive layer of the via hole and the inner surface of the trench, the surface of the insulating layer is subjected to CMP using the barrier layer as the polishing stop layer to the conductive layer, and then the second conductive layer is exposed to the first conductive layer by CVD. By selectively depositing only on the upper surface, the wiring is reinforced with convex top surface and reinforced conductive layer partially protruded over the insulating layer to prevent the change of wiring resistance and electron transfer phenomenon, reduce the parasitic capacitance change, and uniform insulation A damascene structure wiring and wiring connection part of a semiconductor device for securing the thickness of a layer and reducing defects, and a manufacturing method thereof.
반도체장치의 소자간 전기적 연결을 위한 배선연결부 및 배선과 그 형성기술은 층간절연층의 콘택홀 또는 비아홀(via hole) 내에 플러그를 형성한 다음 플러그 상에 배선을 패터닝하여 형성하므로 주변부위와 단차가 심화되고, 낮은 단차피복도(step coverage)를 가지며, 배선간의 단락이 유발되고, 따라서 제품의 수율이 좋지 않다.The wiring connection part and wiring for the electrical connection between the elements of the semiconductor device and the formation technology thereof are formed by forming a plug in a contact hole or a via hole of an interlayer insulating layer, and then patterning the wiring on the plug. Deeper, low step coverage, short circuit between wirings, and thus yield of product is poor.
이를 개선하기 위하여, 콘택플러그와 배선을 동시에 패터닝하여 형성하는 방법으로 듀알 다마신(dual damascene)구조가 제안되었으나, 이러한 구조 및 그 제조방법은 주변과의 단차(step difference)를 완화하는데는 우수하지만 단차피복도의 개선과 배선연결부에서의 저항감소가 더 필요하다.In order to improve this, a dual damascene structure has been proposed as a method of forming a contact plug and a wiring at the same time. However, such a structure and its manufacturing method are excellent in mitigating a step difference from the surroundings. Further improvements in step coverage and reduced resistance at the wiring connections are needed.
또한, 구리금속배선 및 배선연결부를 형성하는 종래 기술에서는 도전층으로 구리층을 홀 및 트렌치에 도금(electroplating)등의 방법으로 형성한 후 구리층에 CMP를 실시하여 절연층 표면을 노출시키는 방법으로 배선 연결부와 배선을 동시에 형성하고 있다.In addition, in the conventional art of forming copper metal wiring and wiring connection portions, a copper layer is formed as a conductive layer in a hole or a trench by electroplating, and then a CMP is applied to the copper layer to expose the surface of the insulating layer. The wiring connecting portion and the wiring are formed at the same time.
그러나, 구리층에 대한 CMP(chemical mechanical polishing)는 구리/배리어층 및 절연층간의 연마비 차이가 크므로 각각의 배선을 이루는 트렌치에 잔류하는 구리층의 상부 표면이 디슁(dishing)에 의하여 중앙부위의 연마가 심화되어 오목한 프로파일을 갖게 되는(도 1c 참조) 한편, 전체적으로 부분적인 패턴 밀도의 차이에 의하여 패턴 밀도가 큰 부위의 침식(erosion)이 심화되어 전체적인 단면 프로파일이역시 오목하게 된다(도 1d 참조).However, the chemical mechanical polishing (CMP) for the copper layer has a large difference in the polishing ratio between the copper / barrier layer and the insulating layer, so that the upper surface of the copper layer remaining in the trenches forming the respective wirings is centered by dishing. Intensity of the polishing resulted in a concave profile (see FIG. 1C), while erosion of a region having a large pattern density was intensified due to a partial difference in the pattern density, resulting in concave overall cross-sectional profile (FIG. 1D). Reference).
따라서, 종래 기술에서는 금속배선의 손실에 따른 저항변화 및 절연층의 두께가 낮아지므로 배선간의 기생캐패시턴스가 증가하게 된다.Therefore, in the related art, the resistance change due to the loss of the metal wiring and the thickness of the insulating layer are lowered, thereby increasing the parasitic capacitance between the wirings.
도 1a 내지 도 1d는 종래 기술에 따른 반도체장치의 배선 및 그 연결부 형성방법을 도시하는 공정단면도이다.1A to 1D are process cross-sectional views showing a wiring of a semiconductor device and a method of forming a connection portion thereof according to the prior art.
도 1a를 참조하면, 실리콘 등으로 이루어진 반도체기판(10) 위에 산화막 등으로 제 1 절연층(11)을 화학기상증착법(chemical vapor deposition, 이하 CVD라 칭함)으로 증착한다.Referring to FIG. 1A, a first insulating layer 11 is deposited on a semiconductor substrate 10 made of silicon or the like by an oxide film or the like by chemical vapor deposition (hereinafter, referred to as CVD).
그 다음, 제 1 절연층(11) 위에 식각정지층으로 이용하기 위하여 제 1 절연층과 식각선택비가 큰 절연물질로 제 2 절연층(12)을 얇게 형성한다. 이때, 제 2 절연층(12)은 질화막을 CVD로 증착하여 형성할 수 있다.Next, in order to use the etch stop layer on the first insulating layer 11, the second insulating layer 12 is thinly formed of an insulating material having a large etching selectivity with the first insulating layer. In this case, the second insulating layer 12 may be formed by depositing a nitride film by CVD.
그리고, 제 2 층간절연층상에 산화막 등으로 금속배선 층간절연층(inter-metal dielectric,13)으로 제 3 절연층(13)을 증착한다. 이때, 제 3 절연층(13)은 TEOS(tetra ethyl ortho silicate) 및 SOG(spin on glass)를 조합하여 형성할 수 있으며, 그 주성분은 SiO2이다.Then, the third insulating layer 13 is deposited on the second interlayer insulating layer by using an interlayer dielectric layer 13 with an oxide film or the like. In this case, the third insulating layer 13 may be formed by combining tetra ethyl ortho silicate (TEOS) and spin on glass (SOG), and a main component thereof is SiO 2 .
상기에서, 기판(10)은 불순물 확산영역(도시되지 않음)이 형성된 반도체기판이거나, 또는, 하부의 배선일 수도 있다.In the above description, the substrate 10 may be a semiconductor substrate having an impurity diffusion region (not shown) or a lower wiring.
그리고, 제 3, 제 2 , 제 1 절연층(13, 12, 11)의 소정 부분을 포토리쏘그래피 방법으로 패터닝하여 기판의 도전영역을 노출시키는 접촉홀(H1) 내지는 비아홀(H1) 및 상부배선 패턴이 음각된 트렌치(T1)를 형성한다. 즉, 후속공정에서 비아홀(H1)에는 상부배선과 하부배선 등의 도전영역을 연결하는 플러그가 형성되고, 트렌치에는 상부배선이 동시에 형성된다.In addition, contact portions H1 to via holes H1 and upper wirings which expose conductive regions of the substrate by patterning predetermined portions of the third, second and first insulating layers 13, 12, and 11 by photolithography. The pattern forms a recessed trench T1. That is, in a subsequent process, a plug for connecting conductive regions such as upper and lower wirings is formed in the via hole H1, and upper wirings are simultaneously formed in the trench.
이때, 접촉홀과 트렌치는 동시에 패터닝되는데 그 방법은 다음과 같이 실시할 수 있다.At this time, the contact hole and the trench are patterned at the same time, the method can be carried out as follows.
먼저, 비아홀 형성부위를 정의하는 제 1 홀을 소정의 깊이로 제 3, 제 2 절연층(13,12)을 제거하여 형성한다.First, the first hole defining the via hole forming portion is formed by removing the third and second insulating layers 13 and 12 to a predetermined depth.
그리고, 상부배선용 트렌치 패턴이 정의된 식각마스크를 제 1 홀을 포함하는 부위 상부의 제 3 절연층(13) 위에 형성한 다음, 식각마스크를 이용하여 제 3 절연층(13)을 건식식각으로 제거하여 트렌치를 형성한다. 따라서, 트렌치 형성용 식각시 제 1 홀 하부의 제 1 절연층(11)이 동시에 식각되어 상부가 확장된 비아홀(H1)이 트렌치(T1)와 동시에 형성된다.In addition, an etching mask in which the upper wiring trench pattern is defined is formed on the third insulating layer 13 on the portion including the first hole, and then the third insulating layer 13 is removed by dry etching using the etching mask. To form a trench. Therefore, during the trench formation etching, the first insulating layer 11 under the first hole is simultaneously etched to simultaneously form the via hole H1 having the upper portion extended with the trench T1.
도 1b를 참조하면, 잔류한 제 3 절연층(13) 상에 트렌치 및 비아홀을 통해 노출된 기판(10)과 접촉되도록 배리어층(14)을 PVD(physical vapor deposition) 또는 IMP(ionized metal plasma)법 등으로 형성한다. 이때, 배리어층(14)은 Ti, TiN, Ta, TaN 등을 증착하여 형성한다.Referring to FIG. 1B, the barrier layer 14 is contacted with a physical vapor deposition (PVD) or ionized metal plasma (IMP) to contact the substrate 10 exposed through trenches and via holes on the remaining third insulating layer 13. Form by law. At this time, the barrier layer 14 is formed by depositing Ti, TiN, Ta, TaN and the like.
그리고, 배리어층(14) 상에 상부배선을 형성하기 위하여 도전층(15)을 형성한다. 이때, 도전층은 Cu를 사용하여 형성하는 경우, 배리어층(14) 표면에 구리 벌크층(Cu bulk layer)을 형성하기 위한 구리 씨드층(Cu seed layer, 도시안함)을 역시 PVD법으로 증착하여 형성한 다음, 구리 씨드층을 이용하는 전기도금법(elecroplating)으로 콘택홀과 트렌치를 충분히 매립하는 두께로 구리벌크층(15)을 형성한다. 따라서, 비어홀을 구리층으로 매립하여 배선간의 연결부와 상부배선 형성층이 동시에 형성되었다.Then, the conductive layer 15 is formed on the barrier layer 14 to form the upper wiring. In this case, when the conductive layer is formed using Cu, a copper seed layer (not shown) for forming a copper bulk layer on the surface of the barrier layer 14 is also deposited by PVD method. After the formation, the copper bulk layer 15 is formed to a thickness that sufficiently fills the contact hole and the trench by electroplating using the copper seed layer. Thus, via holes were filled with a copper layer to simultaneously form interconnects and upper wiring forming layers.
도 1c를 참조하면, 형성된 구리 벌크층에 평탄화공정을 실시하여 잔류한 제 3 절연층(13) 표면을 노출시켜 별도의 패터닝공정 없이 기판의 노출된 도전영역과과 전기적으로 연결된 상부배선을 형성한다. 이때, 평탄화공정은 화학기계적 연마법(CVD)으로 한다. 이때, 구리와 산화막의 연마비 차이에 기인하여 잔류한 도전층(150)의 상부가 오목해지는 디슁현상(dishing)이 발생하며 그 중심부의 디슁된 최대 두께는 'D1'에 이른다.Referring to FIG. 1C, a planarization process is performed on the formed copper bulk layer to expose the surface of the remaining third insulating layer 13 to form an upper interconnection electrically connected to the exposed conductive region of the substrate without a separate patterning process. At this time, the planarization process is performed by chemical mechanical polishing (CVD). At this time, a dishing phenomenon occurs in which the upper portion of the remaining conductive layer 150 is concave due to a difference in the polishing ratio between the copper and the oxide film, and the maximum thickness of the center of the center portion reaches 'D1'.
한편, 도 1d를 참조하면, 상기와 같은 상부배선(150)의 패턴 밀도가 높은 영역에서는 제 3 절연층(13) 및 도전층(150)에 대한 침식(erosion)이 동시에 이루어져 전체적인 단면 프로파일이 오목한 형태를 갖게 되고, 중심부에서는 최대 'E'만큼 침식된다.Meanwhile, referring to FIG. 1D, in the region where the pattern density of the upper wiring 150 is high, erosion of the third insulating layer 13 and the conductive layer 150 is simultaneously performed to concave the overall cross-sectional profile. Form, eroded up to 'E' in the center.
따라서, 종래 기술에 따른 반도체장치의 배선연결부 및 배선 형성방법은 금속배선인 구리층의 디슁에 따른 저항 증가와 금속배선절연층(inter metal dielectric layer)인 제 3 절연층의 두께 감소로 배선간의 기생캐패시턴스가 증가하는 문제점이 있다.Therefore, the wiring connecting portion and the wiring forming method of the semiconductor device according to the prior art are parasitic between wirings due to the increase in resistance according to the dipping of the copper layer, which is the metal wiring, and the thickness of the third insulating layer, which is the inter metal dielectric layer. There is a problem that capacitance increases.
따라서, 본 발명의 목적은 하부 도전층과 연결될 상부 배선의 연결부인 비어홀과 상부배선이 형성될 트렌치를 절연층에 형성한 다음 배리어층과 구리등의 제 1 도전층을 비어홀 및 트렌치의 내부표면에 형성한 후 절연층의 표면을 배리어층을 연마정지층으로 이용하는 CMP를 도전층에 실시한 후 CVD로 제 2 도전층을 제 1 도전층의 노출된 상부 표면에만 선택적으로 증착하여 상부 표면이 볼록하고 절연층 상부로 일부 돌출된 형태의 도전층이 보강된 배선을 형성하여 배선저항의 변화와 전자이동현상을 방지하며 기생캐패시턴스 변화를 감소시키며 균일한 절연층의 두께를 확보하고 결함을 감소시키도록한 반도체장치의 다마신구조 배선 및 배선연결부와 그 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to form a via hole, which is a connection portion of an upper wiring to be connected to a lower conductive layer, and a trench, in which an upper wiring is to be formed, in an insulating layer, and then to form a barrier layer and a first conductive layer such as copper on the inner surface of the via hole and the trench. After forming, the surface of the insulating layer is subjected to CMP using the barrier layer as the polishing stop layer to the conductive layer, and then the second conductive layer is selectively deposited only on the exposed upper surface of the first conductive layer by CVD, so that the top surface is convex and insulated. The semiconductor is formed by reinforcing the conductive layer, which partially protrudes from the upper part of the layer, to prevent the change of the wiring resistance and the electron transfer phenomenon, to reduce the parasitic capacitance change, to secure the uniform thickness of the insulating layer, and to reduce the defects. A damascene structure wiring and wiring connection of a device and a method of manufacturing the same.
상기 목적을 달성하기 위한 본 발명에 따른 반도체장치의 배선 및 배선연결부는 반도체기판상에 형성된 절연층과, 상기 절연층의 하부가 일부 제거되어 상기 기판의 소정부위를 노출시키는 홀과 상기 홀에서 연장되어 상기 절연층의 상부가 일부 제거되어 소정의 배선패턴을 갖는 트렌치와, 노출된 상기 기판과 접촉하며 상기 홀 및 트렌치의 내부 표면에 형성된 배리어층과, 상기 배리어층과 접촉하며 상기 홀과 트렌치를 완전히 매립하며 상부 표면이 오목한 제 1 도전층과, 상기 절연층의 표면에서 일부 돌출되고 상기 제 1 도전층 상부 표면을 평탄화시키도록 상기 제 1 도전층 상부표면에만 형성된 제 2 도전층을 포함하여 이루어진다.The wiring and wiring connection part of the semiconductor device according to the present invention for achieving the above object extends from an insulating layer formed on a semiconductor substrate, a hole to remove a portion of the insulating layer to expose a predetermined portion of the substrate A portion of the insulating layer is removed to form a trench having a predetermined wiring pattern, a barrier layer formed on an inner surface of the hole and the trench in contact with the exposed substrate, and a contact with the barrier layer in contact with the barrier layer. A first conductive layer that is completely buried and has a concave upper surface, and a second conductive layer partially protruded from the surface of the insulating layer and formed only on the upper surface of the first conductive layer so as to planarize the upper surface of the first conductive layer. .
바람직하게는, 상기 제 1 도전층은 도금법으로 형성된 구리층이고 상기 제 2 도전층은 화학기상증착(CVD)로 형성된 구리층으로 이루어지고, 상기 제 2 도전층의 상부 프로파일이 편평하거나 위로 볼록한 형태를 갖는다.Preferably, the first conductive layer is a copper layer formed by a plating method and the second conductive layer is formed of a copper layer formed by chemical vapor deposition (CVD), and the upper profile of the second conductive layer is flat or convex. Has
상기 목적을 달성하기 위한 본 발명에 따른 반도체장치의 배선 및 배선연결부 제조방법은 반도체 기판상에 배선절연층을 형성하는 단계와, 상기 절연층의 하부가 일부 제거되어 상기 기판의 소정부위를 노출시키는 홀과 상기 홀에서 연장되어 상기절연층의 상부가 일부 제거되어 소정의 배선패턴을 갖는 트렌치를 형성하는 단계와, 노출된 상기 기판과 접촉하며 상기 홀 및 트렌치의 내부 표면에 배리어층을 형성하는 단계와, 상기 배리어층과 접촉하며 상기 홀과 트렌치를 완전히 매립하는 제 1 도전층을 상기 절연층상에 형성하는 단계와, 상기 절연층을 연마정지층으로 이용하는 화학기계적연마를 상기 제 1 도전층에 실시하여 상기 제 1 도전층을 상기 홀과 트렌치 내부에만 잔류시키는 단계와, 잔류한 상기 제 1 도전층 상부 표면에만 제 2 도전층을 화학기상증착으로 형성하는 단계를 포함하여 이루어진다.According to an aspect of the present invention, there is provided a method of manufacturing a wiring and wiring connection part of a semiconductor device, the method including forming a wiring insulating layer on a semiconductor substrate, and partially removing a lower portion of the insulating layer to expose a predetermined portion of the substrate. Forming a trench having a predetermined wiring pattern by partially removing a hole and an upper portion of the insulating layer, forming a trench in contact with the exposed substrate and forming a barrier layer on an inner surface of the hole and the trench; And forming a first conductive layer on the insulating layer in contact with the barrier layer and completely filling the holes and trenches, and performing chemical mechanical polishing on the first conductive layer using the insulating layer as an abrasive stop layer. Leaving only the first conductive layer inside the hole and the trench, and forming a second conductive layer only on the remaining upper surface of the first conductive layer. It comprises the step of forming a quarter-phase deposition.
바람직하게는, 상기 제 1 도전층은 도금법으로 형성된 구리로 형성하고 상기 제 2 도전층은 상기 화학기상증착으로 형성된 구리로 형성하고, 상기 제 2 도전층은 상기 화학기계적연마에 의하여 상기 트렌치 상부 표면보다 아래로 제거된 상기 제 1 도전층을 보충할 수 있는 두께로 형성한다.Preferably, the first conductive layer is formed of copper formed by the plating method, the second conductive layer is formed of copper formed by the chemical vapor deposition, and the second conductive layer is formed on the trench upper surface by the chemical mechanical polishing. It is formed to a thickness that can supplement the first conductive layer removed further down.
도 1a 내지 도 1d는 종래 기술에 따른 반도체장치의 배선 및 배선연결부 제조방법을 도시하는 공정단면도1A to 1D are cross-sectional views illustrating a method of manufacturing wirings and wiring connectors of a semiconductor device according to the related art.
도 2a 내지 도 2f는 본 발명에 따른 반도체장치의 배선 및 배선연결부 제조방법을 도시하는 공정단면도2A through 2F are cross-sectional views illustrating a method of manufacturing wirings and wiring connectors of a semiconductor device according to the present invention.
도 3은 본 발명에 따라 제조된 반도체장치의 배선 및 배선연결부의 단면도Figure 3 is a cross-sectional view of the wiring and wiring connection of the semiconductor device manufactured according to the present invention
본 발명은 다마신구조를 갖는 배선 및 배선연결부를 제조하기 위한 비어홀 내지는 콘택홀과 배선패턴이 음각된 트렌치를 절연층에 형성한 다음, 구리 등의 금속으로 홀 및 트렌치를 충분히 매립하도록 배리어층을 하부에 개재한 제 1 도전층을 절연층상에 형성하고, 절연층을 연마정지층으로 이용하는 CMP를 제 1 도전층에 실시하여 홀 및 트렌치에만 잔류시킨 후, 다시 제 2 도전층을 잔류한 제 1 도전층 표면에만 CVD(chemical vapor deposition)로 형성하여 상부 표면이 볼록한 형태의 배선을 완성한다.The present invention forms a trench in which an via hole or a contact hole and a wiring pattern are engraved in an insulating layer for manufacturing a wiring and a wiring connection part having a damascene structure, and then forms a barrier layer so as to sufficiently fill the holes and trenches with a metal such as copper. The first conductive layer interposed on the lower portion is formed on the insulating layer, and the CMP using the insulating layer as the polishing stop layer is applied to the first conductive layer so as to remain only in the holes and trenches, and then the second conductive layer remains. Chemical vapor deposition (CVD) is formed only on the surface of the conductive layer to complete the wiring having a convex shape on the upper surface.
따라서, 종래 기술과 달리, 본 발명에서는 다마신 구조의 배선의 상부 표면을 볼록한 형태로 제조하므로 배선의 저항을 감소시키고 동시에 전자이동현상(electromigration)을 방지하며, 구리를 보강하므로 금속배선 및 절연층간의 캐패시턴스 변화를 감소시킬 수 있다.Therefore, unlike the prior art, in the present invention, since the upper surface of the wiring of the damascene structure is manufactured in a convex form, the resistance of the wiring is reduced, and at the same time, electromigration is prevented, and copper is reinforced, so that the metal wiring and the insulating layer are interposed. It is possible to reduce the capacitance change of.
이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 2a 내지 도 2d는 본 발명에 따른 반도체장치의 배선 및 배선연결부 제조방법을 도시하는 공정단면도이다.2A to 2D are cross-sectional views illustrating a method of manufacturing wirings and wiring connectors of a semiconductor device according to the present invention.
도 2a를 참조하면, 실리콘 등으로 이루어진 반도체기판(20) 위에 산화막 등으로 제 1 절연층(21)을 화학기상증착법(chemical vapor deposition, 이하 CVD라 칭함)으로 증착한다.Referring to FIG. 2A, the first insulating layer 21 is deposited on the semiconductor substrate 20 made of silicon by an oxide film or the like by chemical vapor deposition (hereinafter, referred to as CVD).
그 다음, 제 1 절연층(21) 위에 식각정지층으로 이용하기 위하여 제 1 절연층과 식각선택비가 큰 절연물질로 제 2 절연층(22)을 얇게 형성한다. 이때, 제 2 절연층(22)은 질화막을 CVD로 증착하여 형성할 수 있다.Next, in order to use the etch stop layer on the first insulating layer 21, the second insulating layer 22 is formed thin with an insulating material having a large etching selectivity with the first insulating layer. In this case, the second insulating layer 22 may be formed by depositing a nitride film by CVD.
그리고, 제 2 절연층(22)상에 산화막 등으로 금속배선 층간절연층(inter-metal dielectric,23)으로 제 3 절연층(23)을 증착한다. 이때, 제 3 절연층(23)은 TEOS(tetra ethyl ortho silicate) 및 SOG(spin on glass)를 조합하여 형성할 수 있으며, 그 주성분은 SiO2이고, 형성 두께는 버핑 CMP에 의하여 제거되는 양을 고려하여 안정적인 제 3 절연층(23)을 확보하도록 형성한다.The third insulating layer 23 is deposited on the second insulating layer 22 by an inter-metal dielectric 23 using an oxide film or the like. In this case, the third insulating layer 23 may be formed by combining tetra ethyl ortho silicate (TEOS) and spin on glass (SOG), and the main component thereof is SiO 2 , and the formation thickness is an amount removed by buffing CMP. In consideration of this, it is formed to ensure a stable third insulating layer (23).
상기에서, 기판(20)은 불순물 확산영역(도시되지 않음)이 형성된 반도체기판이거나, 또는, 하부의 배선일 수도 있다.In the above description, the substrate 20 may be a semiconductor substrate having an impurity diffusion region (not shown) or a lower wiring.
그리고, 제 3, 제 2 , 제 1 절연층(23, 22, 21)의 소정 부분을 포토리쏘그래피 방법으로 패터닝하여 기판의 도전영역을 노출시키는 접촉홀(H2) 내지는 비아홀(H2) 및 상부배선 패턴이 음각된 트렌치(T2)를 형성한다. 즉, 후속공정에서 비아홀(H2)에는 상부배선과 하부배선 등의 도전영역을 연결하는 플러그가 형성되고, 트렌치(T2)에는 상부배선이 동시에 형성된다.In addition, contact portions H2 to via holes H2 and upper wirings which expose the conductive region of the substrate by patterning predetermined portions of the third, second and first insulating layers 23, 22, and 21 by a photolithography method. The pattern forms a recessed trench T2. That is, in a subsequent process, a plug for connecting conductive regions such as upper wiring and lower wiring is formed in the via hole H2, and upper wiring is simultaneously formed in the trench T2.
이때, 접촉홀과 트렌치는 동시에 패터닝하는 경우, 그 방법은 다음과 같이 실시할 수 있다.In this case, when the contact hole and the trench are patterned at the same time, the method may be performed as follows.
먼저, 비아홀 형성부위를 정의하는 제 1 홀을 소정의 깊이로 제 3, 제 2 절연층(23,22)을 제거하여 형성한다.First, the first hole defining the via hole forming portion is formed by removing the third and second insulating layers 23 and 22 to a predetermined depth.
그리고, 상부배선용 트렌치 패턴이 정의된 식각마스크를 제 1 홀을 포함하는 부위 상부의 제 3 절연층(23) 위에 형성한 다음, 식각마스크를 이용하여 제 3 절연층(23)을 건식식각으로 제거하여 트렌치를 형성한다. 따라서, 트렌치 형성용 식각시 제 1 홀 하부의 제 1 절연층(21)이 동시에 식각되어 상부가 확장된 비아홀(H2)이 트렌치(T2)와 동시에 형성된다. 이때에는, 제 3 절연층과 제 1 절연층의 두께를 적절히 결정하여 형성하면 식각정지층인 제 2 절연층의 형성을 생략할 수도 있다.In addition, an etching mask in which the upper wiring trench pattern is defined is formed on the third insulating layer 23 on the portion including the first hole, and then the third insulating layer 23 is removed by dry etching using the etching mask. To form a trench. Therefore, when the trench is formed for etching, the first insulating layer 21 under the first hole is simultaneously etched to simultaneously form the via hole H2 having an extended upper portion with the trench T2. At this time, if the thicknesses of the third insulating layer and the first insulating layer are properly determined and formed, the formation of the second insulating layer, which is an etch stop layer, may be omitted.
도 2b를 참조하면, 잔류한 제 3 절연층(23) 상에 트렌치 및 비아홀을 통해 노출된 기판(20)과 접촉되도록 배리어층(24)을 PVD(physical vapor deposition) 또는 IMP(ionized metal plasma)법 등으로 형성한다. 이때, 배리어층(24)은 Ti, TiN, Ta, TaN 등을 증착하여 형성하고 이들의 적층구조로 형성할 수도 있다.Referring to FIG. 2B, the barrier layer 24 is contacted with a physical vapor deposition (PVD) or ionized metal plasma (IMP) to contact the substrate 20 exposed through trenches and via holes on the remaining third insulating layer 23. Form by law. In this case, the barrier layer 24 may be formed by depositing Ti, TiN, Ta, TaN, or the like, and may have a stacked structure thereof.
그리고, 배리어층(24) 상에 상부배선을 형성하기 위하여 도전층(25)을 형성한다.이때, 도전층은 Cu를 사용하여 형성하는 경우, 배리어층(24) 표면에 구리 벌크층(Cu bulk layer)을 형성하기 위한 구리 씨드층(Cu seed layer, 도시안함)을 역시 PVD법으로 증착하여 형성한 다음, 구리 씨드층을 이용하는 전기도금법(elecroplating)으로 콘택홀과 트렌치를 충분히 매립하는 두께로 구리 벌크층(25)을 형성한다. 따라서, 비어홀을 구리층으로 매립하여 배선간의 연결부와 상부배선 형성층이 동시에 형성되었다.Then, the conductive layer 25 is formed to form the upper wiring on the barrier layer 24. At this time, when the conductive layer is formed using Cu, a copper bulk layer (Cu bulk) on the surface of the barrier layer 24 is formed. A copper seed layer (not shown) for forming a layer is formed by depositing a PVD method as well, and then copper to a thickness that sufficiently fills contact holes and trenches by electroplating using a copper seed layer. The bulk layer 25 is formed. Thus, via holes were filled with a copper layer to simultaneously form interconnects and upper wiring forming layers.
도 2c를 참조하면, 형성된 구리 벌크층에 평탄화공정을 CMP로 실시하여 제 3 절연층(23) 표면을 노출시켜 별도의 패터닝공정 없이 기판의 노출된 도전영역과 전기적으로 연결된 상부배선용 잔류 도전층(250)을 형성한다. 이때, 구리와 산화막의 연마비 차이에 기인하여 잔류한 도전층(250)의 상부 표면은 오목하게 디슁현상이 발생하며 그 중심부의 디슁된 최대 두께는 'D2'에 이른다.Referring to FIG. 2C, the planarization process is performed on the formed copper bulk layer by CMP to expose the surface of the third insulating layer 23 so that the remaining conductive layer for upper wiring is electrically connected to the exposed conductive region of the substrate without a separate patterning process. 250). At this time, the upper surface of the conductive layer 250 remaining due to the difference in the polishing ratio between the copper and the oxide film is concave recessed phenomenon, the maximum thickness of the center of the center is a 'D2'.
그리고, 배리어층(240)은 도전층(250)과 비어홀 및 트렌치 내면의 사이에만 개재되도록 잔류한다.The barrier layer 240 remains so as to be interposed only between the conductive layer 250 and the via hole and the inner surface of the trench.
도 2d를 참조하면, 잔류한 도전층(250)의 상부 표면에만 추가 도전층(26)을 형성한다. 이때, 추가 도전층(26)은 구리를 CVD(chemicall vapor deposition)으로 형성한다. 따라서, 디슁현상이 보상되어 상부 표면이 평탄화된 상부배선을 구현할 수 있다.Referring to FIG. 2D, the additional conductive layer 26 is formed only on the upper surface of the remaining conductive layer 250. At this time, the additional conductive layer 26 forms copper by chemical vapor deposition (CVD). As a result, the leveling phenomenon can be compensated and the upper wiring can be realized with the flattened upper surface.
도 3은 본 발명에 따라 제조된 반도체장치의 배선 및 배선연결부의 단면도이다.3 is a cross-sectional view of a wiring and a wiring connection part of a semiconductor device manufactured according to the present invention.
도 3을 참조하면, 트랜지스터와 캐패시터 등의 소자가 형성된 실리콘 등으로 이루어진 반도체기판(20)상에 제 1 절연층(21), 식각정지층인 제 2 절연층(22)과 제 3절연층(23)이 차례로 형성되어 있고, 상기 제 1 절연층 및 제 2 절연층의 소정부분이 제거되어 상기 기판(20)의 소정부위 표면을 노출시키는 비어홀 내지는 콘택홀이 형성되어 있고, 상기 비어홀에 연장되어 상기 제 3 절연층의 소정 부분이 제거되어 형성된 배선패턴용 트렌치가 형성되어 있다. 이때, 제 2 절연층은 생략될 수 있다.Referring to FIG. 3, a first insulating layer 21, a second insulating layer 22, which is an etch stop layer, and a third insulating layer are formed on a semiconductor substrate 20 made of silicon or the like on which elements such as transistors and capacitors are formed. 23) are formed in turn, and a via hole or a contact hole is formed to remove predetermined portions of the first insulating layer and the second insulating layer to expose the surface of the predetermined portion of the substrate 20, and extends to the via hole. A trench for a wiring pattern formed by removing a predetermined portion of the third insulating layer is formed. In this case, the second insulating layer may be omitted.
그리고, 비어홀과 트렌치를 구리 등으로 이루어진 도전층(250)이 충전하고 있으며, 도전층(250)과 홀 및 트렌치의 내부면 사이에는 확산방지용 배리어층(240)이 위치한다.The via hole and the trench are filled with a conductive layer 250 made of copper, and a diffusion barrier layer 240 is disposed between the conductive layer 250 and the inner surface of the hole and the trench.
도전층(250)의 상부 표면에는 추가도전층(26)이 얇게 형성되어 있으며, 이러한 추가도전층(26)은 제 3 절연층(23)의 표면 보다 약간 돌출되어 있다.The additional conductive layer 26 is thinly formed on the upper surface of the conductive layer 250, and the additional conductive layer 26 protrudes slightly from the surface of the third insulating layer 23.
따라서, 본 발명은 다마신 구조의 배선의 상부 표면을 볼록한 형태로 제조하므로 배선의 저항을 감소시키고 동시에 전자이동현상(electromigration)을 방지하며, 구리를 보강하므로 금속배선 및 절연층간의 캐패시턴스 변화를 감소시키는 장점이 있다.Therefore, the present invention manufactures the upper surface of the damascene structure in a convex form, thereby reducing the resistance of the wiring and at the same time preventing electromigration and reinforcing copper, thereby reducing the capacitance change between the metal wiring and the insulating layer. It has the advantage of letting.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000080168A KR20020050901A (en) | 2000-12-22 | 2000-12-22 | Conductive lines and interconnections in semiconductor devices and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000080168A KR20020050901A (en) | 2000-12-22 | 2000-12-22 | Conductive lines and interconnections in semiconductor devices and forming method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020050901A true KR20020050901A (en) | 2002-06-28 |
Family
ID=27684546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000080168A KR20020050901A (en) | 2000-12-22 | 2000-12-22 | Conductive lines and interconnections in semiconductor devices and forming method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020050901A (en) |
-
2000
- 2000-12-22 KR KR1020000080168A patent/KR20020050901A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6744090B2 (en) | Damascene capacitor formed in metal interconnection layer | |
US7550822B2 (en) | Dual-damascene metal wiring patterns for integrated circuit devices | |
KR100389174B1 (en) | Buried metal dual damascene plate capacitor | |
KR101476544B1 (en) | Novel patterning approach for improved via landing profile | |
US6011311A (en) | Multilevel interconnect structure for integrated circuits | |
US20030139034A1 (en) | Dual damascene structure and method of making same | |
KR20030086613A (en) | Semiconductor structure implementing sacrificial material and methods for making and implementing the same | |
KR20030027817A (en) | Mask layer and interconnect structure for dual damascene semiconductor manufacturing | |
US6080663A (en) | Dual damascene | |
US6214745B1 (en) | Method of improving surface planarity of chemical-mechanical polishing operation by forming shallow dummy pattern | |
KR100482179B1 (en) | Fabricating method of semiconductor device | |
KR100380280B1 (en) | Conductive lines and interconnections in semiconductor devices and forming method thereof | |
US7452804B2 (en) | Single damascene with disposable stencil and method therefore | |
US20020173079A1 (en) | Dual damascene integration scheme using a bilayer interlevel dielectric | |
KR20010009036A (en) | A method of forming conductive lines and interconnection thereof | |
KR100735518B1 (en) | Methods of forming a metal interconnect structure | |
KR20020050901A (en) | Conductive lines and interconnections in semiconductor devices and forming method thereof | |
KR100621228B1 (en) | Method of fabricating conductive lines and interconnections in semiconductor devices | |
KR0165379B1 (en) | Layer wiring method of semiconductor device | |
KR20020053609A (en) | Method of fabricating conductive lines and interconnections in semiconductor devices | |
KR100703975B1 (en) | Methods of forming integrated circuit devices having metal interconnect structures therein | |
US7282451B2 (en) | Methods of forming integrated circuit devices having metal interconnect layers therein | |
KR20010056822A (en) | Conductive line and interconnection thereof in semiconductor device and fabricating method thereof | |
KR100755112B1 (en) | Method for manufacturing inductor of semiconductor device | |
KR20010064543A (en) | Method for forming multi-level wire of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
WITN | Withdrawal due to no request for examination |