KR20020002602A - Method for forming bitline in semiconductor device - Google Patents
Method for forming bitline in semiconductor device Download PDFInfo
- Publication number
- KR20020002602A KR20020002602A KR1020000036826A KR20000036826A KR20020002602A KR 20020002602 A KR20020002602 A KR 20020002602A KR 1020000036826 A KR1020000036826 A KR 1020000036826A KR 20000036826 A KR20000036826 A KR 20000036826A KR 20020002602 A KR20020002602 A KR 20020002602A
- Authority
- KR
- South Korea
- Prior art keywords
- bit line
- film
- forming
- insulating film
- wiring
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000004065 semiconductor Substances 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 230000015572 biosynthetic process Effects 0.000 claims abstract 2
- 150000004767 nitrides Chemical class 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 238000000151 deposition Methods 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 7
- 238000005498 polishing Methods 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910004166 TaN Inorganic materials 0.000 claims description 2
- 229910010037 TiAlN Inorganic materials 0.000 claims description 2
- 229910008484 TiSi Inorganic materials 0.000 claims description 2
- 229910008482 TiSiN Inorganic materials 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000002002 slurry Substances 0.000 claims description 2
- 239000013589 supplement Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 44
- 239000012535 impurity Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 2
- 229910021342 tungsten silicide Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/48—Data lines or contacts therefor
- H10B12/482—Bit lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32139—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/7685—Barrier, adhesion or liner layers the layer covering a conductive structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
본 발명은 반도체소자의 제조 방법에 관한 것으로, 특히 듀얼 다마신 공정을 이용한 비트라인의 형성 방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a bit line using a dual damascene process.
일반적으로, 비트라인 형성 방법은 폴리실리콘(Polysilicon), 텅스텐실리사이드(W-Silicide), 캡핑물질(Capping material)로 디자인룰(Design rule)에 따라 마스크산화막(Mask oxide) 또는 마스크질화막(Mask nitride)을 증착하고 이를 패터닝하므로써 형성하는데, 폴리실리콘과 텅스텐실리사이드의 비저항이 소자 집적도 가 증가함에 따른 요구를 충족시키지 못하는 문제점이 발생하여 이를 해결하기 위해 금속배선막을 도입하였다.In general, the bit line forming method is made of polysilicon, tungsten silicide, and capping material, according to a design rule of mask oxide or mask nitride. It is formed by depositing and patterning it, and the metal resistive film is introduced to solve the problem that the specific resistance of polysilicon and tungsten silicide does not meet the requirements of increased device integration.
도 1a 내지 도 1d는 종래기술에 따른 비트라인 형성 방법을 도시한 도면이다.1A to 1D are diagrams illustrating a bit line forming method according to the prior art.
먼저 워드라인(도시 생략), 불순물접합층(12) 등 소정공정이 완료된 반도체기판(11)상에 워드라인절연막(13)을 증착한후, 상기 워드라인절연막(13)을 선택적으로 패터닝하여 상기 불순물접합층(12)이 노출되는 플러그용 콘택홀을 형성하고, 상기 콘택홀을 매립하는 비트라인 플러그(14)를 형성한다.First, a word line insulating layer 13 is deposited on a semiconductor substrate 11 on which a predetermined process such as a word line (not shown) and an impurity bonding layer 12 is completed, and then the word line insulating layer 13 is selectively patterned to form the word line insulating layer 13. A plug contact hole for exposing the impurity bonding layer 12 is formed, and a bit line plug 14 for filling the contact hole is formed.
이어 후속 텅스텐막 증착시 WF6의 반도체기판(11)과의 반응을 억제하기 위한 확산방지금속막(15)으로서 Ti/TiN을 증착하고, 상기 확산방지금속막(15)상에 금속배선막(16)으로 텅스텐을 증착한다.Subsequently, Ti / TiN is deposited as a diffusion barrier metal layer 15 for suppressing the reaction of the WF 6 with the semiconductor substrate 11 during deposition of a tungsten layer, and a metal interconnection layer on the diffusion barrier metal layer 15 is formed. 16) deposit tungsten.
이어 상기 금속배선막(16)과 후속 마스크질화막의 응력감소를 위해 버퍼층 (17)으로서 USG(Undoped Silicon Glass)막을 증착하고, 상기 버퍼층(17)상에 플라즈마증착법(Plasma Enhanced deposition) 또는 저압증착법(Low Pressure deposition)을 이용하여 마스크질화막(18)을 증착한다.Subsequently, an undoped silicon glass (USG) film is deposited as the buffer layer 17 to reduce the stress of the metallization layer 16 and the subsequent mask nitride layer, and a plasma enhanced deposition method or a low pressure deposition method is performed on the buffer layer 17. The mask nitride film 18 is deposited using low pressure deposition.
도 1b에 도시된 바와 같이, 비트라인 마스크를 이용하여 상기 마스크질화막 (18), 버퍼층(17), 금속배선막(16) 및 확산방지금속막(15)을 식각하여 비트라인을 형성하는데, 이 때, 웨이퍼모서리지역에 잔류할 수 있는 금속배선막으로 인한 결함 발생을 억제하기 위해 먼저 WEE(Wafer Edge Exposure)마스크(19)를 이용하여 웨이퍼모서리지역의 상기 마스크질화막(18), 버퍼층(17), 금속배선막(15) 및 확산방지금속막(15)을 제거한다. 이 때, 상기 WEE마스크(19)는 웨이퍼모서리의 5mm지역만을 선택적으로 오픈시킨다. 즉, EBR(Edge Bead Rinsing)을 위해 5mm만큼 오픈시킨다.As shown in FIG. 1B, the mask nitride layer 18, the buffer layer 17, the metallization layer 16, and the diffusion barrier metal layer 15 are etched using a bit line mask to form a bit line. In order to suppress the occurrence of defects due to the metal wiring film that may remain in the wafer edge region, first, the mask nitride layer 18 and the buffer layer 17 of the wafer edge region are used by using a wafer edge exposure (WEE) mask 19. The metal wiring film 15 and the diffusion barrier metal film 15 are removed. At this time, the WEE mask 19 selectively opens only the 5 mm region of the wafer edge. That is, it opens by 5mm for Edge Bead Lining (EBR).
도 1c에 도시된 바와 같이, 상기 웨이퍼모서리지역의 비트라인 형성막들을 제거한 다음, 비트라인 마스크를 이용하여 비트라인(19)을 패터닝한 후, 상기 비트라인의 측벽에 접하는 비트라인 측벽스페이서(20)를 형성한다. 이어 상기 구조 전면에 비트라인절연막(21)으로 저온 USG막을 증착하면, WEE마스크와 비트라인 마스크 공정에서 중복되어 오픈되었던 지역(22)에서 비트라인절연막(21)이 얇게 증착된다. 즉, 비트라인절연막(21)으로 저온 USG막중에서 상대적으로 갭필(Gapfill)특성이 우수한 고밀도플라즈마산화막(High Density Plasma oxide)을 증착하면, 증착 및 식각하는 증착메카니즘상 웨이퍼모서리에 인접한 비트라인 모서리 부분의 증착두께가 얇게 된다.As shown in FIG. 1C, after removing the bit line forming films of the wafer edge region, patterning the bit line 19 using a bit line mask, the bit line sidewall spacer 20 in contact with the sidewall of the bit line. ). Subsequently, when the low-temperature USG film is deposited on the entire surface of the structure using the bit line insulating film 21, the bit line insulating film 21 is thinly deposited in the region 22 that is overlapped and opened in the WEE mask and the bit line mask process. That is, when the high density plasma oxide film having excellent gapfill characteristics is deposited in the low temperature USG film with the bit line insulating film 21, the bit line edge portion adjacent to the wafer edge is deposited and etched. The deposition thickness of the film becomes thin.
도 1d에 도시된 바와 같이, 상기 비트라인절연막(21)을 비트라인 마스크질화막(18) 상부에 2000Å만큼 잔류시키는 타겟으로 화학적기계적연마할 경우, 즉 비트라인 절연막(21)의 화학적기계적연마(Chemical Mechanical Polishing; CMP)공정에서 메인셀(Main cell)지역의 마스크질화막(18) 상부의 절연막 두께를 2000Å으로 조절하면 모서리 지역의 마스크질화막(18)까지 손실되게 되며(23), 이로 인해 후속 캐패시터 공정에서 열응집(Thermal budget)으로 인해 비트라인배선금속막인 텅스텐이 리프팅(Lifting)되는 문제점이 있다.As shown in FIG. 1D, when the bit line insulating layer 21 is chemically mechanically polished to a target for remaining 2000 μs on the bit line mask nitride layer 18, that is, the chemical mechanical polishing of the bit line insulating layer 21 is performed. In the mechanical polishing (CMP) process, if the thickness of the insulating film on the mask nitride film 18 in the main cell region is adjusted to 2000Å, the mask nitride film 18 in the corner region is lost (23). There is a problem in that tungsten, which is a bit line wiring metal film, is lifted due to thermal budget.
본 발명은 상기 종래기술의 문제점을 해결하기 위해 안출한 것으로서, 비트라인배선형성시 모서리 셀영역의 워드라인절연막이 과도식각되어 후속 캐패시터의 열응집에 의한 비트라인배선의 리프팅현상을 방지하는데 적합한 비트라인의 형성 방법을 제공함에 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and is a bit suitable for preventing the lifting phenomenon of the bit line wiring due to the thermal coagulation of the subsequent capacitor by the excessive etching of the word line insulating film of the corner cell region when forming the bit line wiring Its purpose is to provide a method of forming lines.
도 1a 내지 도 1d는 종래기술에 따른 비트라인의 형성 방법을 도시한 도면,1A to 1D illustrate a method of forming a bit line according to the prior art;
도 2a 내지 도 2c는 본 발명의 실시예에 따른 비트라인의 형성 방법을 도시한 도면.2A to 2C illustrate a method of forming a bit line according to an exemplary embodiment of the present invention.
*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings
31 : 반도체기판 32 : 불순물접합층31 semiconductor substrate 32 impurity bonding layer
33 : 워드라인절연막 34 : 비트라인콘택플러그33: word line insulating film 34: bit line contact plug
35 : 금속확산방지막 36 : 비트라인배선막35 metal diffusion prevention film 36 bit line wiring film
37 : 버퍼층 38 : 마스크질화막37: buffer layer 38: mask nitride film
39 : 비트라인배선 40 : 질화막스페이서39: bit line wiring 40: nitride film spacer
41 : 제 1 비트라인절연막 42 : 제 2 비트라인절연막41: first bit line insulating film 42: second bit line insulating film
상기의 목적을 달성하기 위한 본 발명의 비트라인의 형성 방법은 소정공정이 완료된 반도체기판상에 워드라인절연막을 형성한후, 상기 워드라인절연막상에 비트라인배선용 다층막을 형성하는 제 1 단계; WEE마스크를 이용하여 후속 모서리 셀영역이 형성될 영역의 상기 비트라인배선용 다층막을 선택적으로 식각하는 제 2 단계; 비트라인마스크를 이용하여 후속 중심 셀영역이 형성된 영역의 상기 비트라인배선용 다층막을 선택적으로 식각하여 비트라인배선을 형성하는 제 3 단계; 상기 제 3 단계 후 과도식각된 상기 모서리 셀영역이 형성될 영역의 워드라인절연막의과도식각 두께를 보충하기 위해 상기 비트라인배선상에 갭필특성이 우수한 제 1 비트라인절연막을 형성하는 제 4 단계; 상기 제 1 비트라인절연막상에 층덮힘특성이 우수한 제 2 비트라인절연막을 형성하는 제 5 단계; 및 상기 비트라인배선의 리프팅을 방지하기 위한 타겟으로 상기 제 2 비트라인절연막을 화학적기계적연마하는 제 6 단계를 포함하여 이루어짐을 특징으로 한다.A bit line forming method of the present invention for achieving the above object comprises a first step of forming a word line insulating film on the semiconductor substrate after a predetermined process, and then forming a multi-layer film for bit line wiring on the word line insulating film; A second step of selectively etching the multilayer film for bit line wiring in a region where a subsequent corner cell region is to be formed using a WEE mask; Using a bit line mask to selectively etch the multilayer film for bit line wiring in a region where a subsequent center cell region is formed to form bit line wiring; A fourth step of forming a first bit line insulating film having excellent gap fill characteristics on the bit line wiring to compensate for the transient etching thickness of the word line insulating film in the region where the corner cell region is over-etched after the third step; A fifth step of forming a second bit line insulating film having an excellent layer covering property on the first bit line insulating film; And a sixth step of chemically mechanically polishing the second bit line insulating layer as a target for preventing lifting of the bit line wiring.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. .
도 2a 내지 도 2c는 본 발명의 실시예에 따른 비트라인 형성 방법을 도시한 도면이다.2A to 2C are diagrams illustrating a bit line forming method according to an exemplary embodiment of the present invention.
도 2a에 도시된 바와 같이, 워드라인(도시 생략), 불순물접합층(32)을 포함한 소정공정이 완료된 반도체기판(31)상에 워드라인절연막(33)을 형성한 후, 상기 워드라인절연막(33)을 선택적으로 식각하여 상기 불순물접합층(32)이 노출되는 플러그용 콘택홀을 형성한다. 이어 상기 콘택홀에 매립되는 비트라인콘택플러그(34)를 형성한다.As shown in FIG. 2A, after the word line insulating film 33 is formed on the semiconductor substrate 31 on which the predetermined process including the word line (not shown) and the impurity bonding layer 32 is completed, the word line insulating film ( 33) is selectively etched to form a plug contact hole through which the impurity bonding layer 32 is exposed. Subsequently, a bit line contact plug 34 embedded in the contact hole is formed.
이어 상기 비트라인 콘택플러그(34) 및 워드라인절연막(33)상에 금속확산방지막(35)으로서 Ti, TiN, TiSi, WN, TaN, TiSiN 또는 TiAlN 중 어느 하나의 금속층을 화학적기상증착법(Chemical Vapor Deposition; CVD) 또는 스퍼터링(Sputtering)법을 이용하여 300℃∼600℃에서 100Å∼1000Å두께로 증착하거나, 또는 상기 도전층들을 조합하여 증착한다.Subsequently, any one of Ti, TiN, TiSi, WN, TaN, TiSiN, or TiAlN metal layers is formed on the bit line contact plug 34 and the word line insulating layer 33 by chemical vapor deposition. Deposition (CVD) or sputtering (Sputtering) method to deposit a thickness of 100 ~ 1000Å at 300 ℃ to 600 ℃, or a combination of the conductive layers are deposited.
이어 상기 금속확산방지막(35)상에 비트라인배선막(36)으로서 텅스텐(W) 또는 구리(Cu) 중 어느 하나의 금속을 화학적기상증착법(CVD) 또는 스퍼터링을 이용하여 300℃∼600℃에서 500Å∼2000Å두께로 증착한다.Subsequently, a metal of any one of tungsten (W) or copper (Cu) as a bit line wiring film 36 on the metal diffusion barrier 35 is formed at 300 ° C to 600 ° C by chemical vapor deposition (CVD) or sputtering. It is deposited at a thickness of 500 kV to 2000 kV.
이어 상기 비트라인배선막(36)과 후속 마스크질화막간 응력 발생을 억제하기 위한 버퍼층(37)으로서 PE-TEOS, PE-SiH4와 같은 USG막을 300℃∼800℃에서 300Å∼1000Å두께로 증착한다.Subsequently, USG films such as PE-TEOS and PE-SiH 4 are deposited at 300 占 폚 to 1000 占 퐉 at 300 占 폚 to 800 占 폚 as a buffer layer 37 for suppressing stress generation between the bit line interconnection film 36 and the subsequent mask nitride film. .
이어 상기 버퍼층(37)상에 비트라인배선막 보호용 마스크질화막(38) 및 반사방지막(Anti Reflective Coating layer)(도시 생략)으로서 SixNy(x:y=1:1∼5:1) SiON, 실리콘부화질화막(Si-rich nitride) 중 어느 하나의 질화막을 저압(PE) 또는 플라즈마(PE) 방법으로 400℃∼800℃에서 300Å∼3000Å두께로 증착한다.Next, Si x N y (x: y = 1: 1 to 5: 1) SiON as the mask nitride film 38 for protecting the bit line wiring film and the anti reflective coating layer (not shown) on the buffer layer 37. The nitride film of any one of Si-rich nitride is deposited at a low pressure (PE) or plasma (PE) method at a temperature of 300 to 3000 Å at 400 to 800 占 폚.
이어 WEE마스크(도시 생략)를 이용하여 모서리 셀영역의 비트라인배선용 반사방지막, 마스크질화막(38), 버퍼층(37), 비트라인용배선막(36), 확산방지막(36)을 식각한다. 이 때, 상기 반사방지막은 완전히 제거되며, 상기 모서리 셀영역의 워드라인절연막(33)은 소정 깊이만큼 과도 식각된다.Subsequently, an anti-reflection film for bit line wiring, a mask nitride film 38, a buffer layer 37, a bit line wiring film 36, and a diffusion barrier 36 are etched using a WEE mask (not shown). At this time, the anti-reflection film is completely removed, and the word line insulating film 33 in the corner cell region is excessively etched by a predetermined depth.
이어 비트라인마스크를 이용하여 중심 셀영역의 비트라인배선(39)을 패터닝하면, 웨이퍼모서리의 비트라인배선에 인접된 영역의 워드라인절연막(33)이 소정 깊이만큼 더 식각된다. 즉, WEE마스크와 비트라인 마스크가 중복되는 영역에서 워드라인절연막(33)이 과도식각된다(33a).Subsequently, when the bit line wiring 39 of the center cell region is patterned using the bit line mask, the word line insulating layer 33 in the region adjacent to the bit line wiring of the wafer edge is further etched by a predetermined depth. That is, the word line insulating layer 33 is excessively etched 33a in the region where the WEE mask and the bit line mask overlap.
이어 상기 비트라인배선(39)상에 저압증착법을 이용한 질화막을 300℃∼800℃에서 200Å∼700Å두께로 증착한 다음, 상기 질화막을 전면식각하여 상기 비트라인배선의 측벽에 접하는 질화막스페이서(40)를 형성한다.Subsequently, a nitride film using a low pressure deposition method is deposited on the bit line wiring 39 at a thickness of 200Å to 700 ℃ at 300 ° C. to 800 ° C., and then the nitride film is etched entirely to contact the sidewall of the bit line wiring 40. To form.
도 2b에 도시된 바와 같이, 상기 질화막스페이서(40) 및 비트라인배선(39)을 포함한 전면에 갭필특성이 우수한 고밀도플라즈마산화막(41)을 아르곤(Ar) 또는 헬륨(He) 가스를 베이스로 300℃∼600℃에서 1000Å∼4000Å두께로 증착한다.As shown in FIG. 2B, a high-density plasma oxide film 41 having excellent gap fill characteristics is formed on the entire surface including the nitride film spacer 40 and the bit line wiring 39 based on argon (Ar) or helium (He) gas. Vapor deposition is carried out at 1000 to 4000 mm thickness at a temperature of 600 to 600 ° C.
이어 상기 고밀도플라즈마산화막(41)상에 층덮힘(Step coverage)특성이 우수한 USG막(42)으로서 PE-TEOS, PE-SiH4, LP-TEOS 또는 APL 산화막 중 어느 하나의 막을 300℃∼600℃에서 3000Å∼8000Å두께로 증착한다.Subsequently, any one of PE-TEOS, PE-SiH 4 , LP-TEOS, or APL oxide film is 300 ° C. to 600 ° C. as the USG film 42 having excellent step coverage characteristics on the high density plasma oxide film 41. At a thickness of 3000Å to 8000Å.
상술한 바와 같이, 비트라인절연막으로서 고밀도플라즈마산화막(41)과 USG막 (42)를 순차적으로 적층하면, 모서리 셀영역에 인접된 비트라인배선의 모서리 부분에 증착되는 비트라인절연막의 증착 두께를 증가시킬 수 있다.As described above, when the high density plasma oxide film 41 and the USG film 42 are sequentially stacked as the bit line insulating film, the deposition thickness of the bit line insulating film deposited on the corner portion of the bit line wiring adjacent to the corner cell region is increased. You can.
도 2c에 도시된 바와 같이, 상기 USG막(42)을 50nm∼300nm크기의 실리카, 알루미나 또는 세리아 중 어느 하나의 연마제가 첨가된 pH 8∼11로 유지되는 슬러리를 이용하여 화학적기계적연마한다. 이 때, 상기 고밀도플라즈마산화막(41)을 먼저 증착하여 과도식각된 워드라인절연막의 손실을 보상하기 때문에, 상기 웨이퍼모서리 인접 지역의 마스크질화막의 손실을 방지할 수 있는 연마된 USG막(42a)의 두께를 1000Å두께(43)만큼 확보할 수 있다.As shown in FIG. 2C, the USG film 42 is chemically mechanically polished using a slurry maintained at a pH of 8 to 11 to which an abrasive of any one of 50 nm to 300 nm silica, alumina, or ceria is added. At this time, since the high density plasma oxide layer 41 is deposited first to compensate for the loss of the overetched word line insulating layer, the loss of the mask nitride layer in the adjacent region of the wafer edge is prevented. The thickness can be ensured by the thickness of 1000 mm 3.
상술한 바와 같이, 비트라인절연막으로서 고밀도플라즈마산화막(41)과 USG막 (42)을 이용하고, 상기 비트라인절연막의 화학적기계적연마시, 웨이퍼모서리에 인접한 비트라인배선의 마스크질화막상부에 비트라인배선의 리프팅을 방지할 수 있는두께의 비트라인절연막이 잔류한다.As described above, the high-density plasma oxide film 41 and the USG film 42 are used as the bit line insulating film, and when the chemical mechanical polishing of the bit line insulating film is performed, the bit line wiring is formed on the mask nitride film of the bit line wiring adjacent to the wafer edge. A bit line insulating film having a thickness that can prevent the lifting of the film remains.
본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.
상술한 바와 같이, 본 발명의 비트라인 형성 방법은 갭필특성이 우수한 고밀도플라즈마산화막과 층덮힘특성이 우수한 USG막을 비트라인절연막으로 이용하므로써, 후속 화학적기계적연마시 모서리 셀영역의 비트라인배선 상부에 잔류하는 비트라인절연막의 두께를 증가시켜 비트라인배선의 리프팅을 방지할 수 있는 효과가 있다.As described above, the bit line forming method of the present invention uses a high-density plasma oxide film having excellent gap fill characteristics and a USG film having excellent layer covering characteristics as a bit line insulating layer, thereby remaining on the upper part of the bit line wiring in the edge cell region during subsequent chemical mechanical polishing. The thickness of the bit line insulating layer can be increased to prevent the lifting of the bit line wiring.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000036826A KR20020002602A (en) | 2000-06-30 | 2000-06-30 | Method for forming bitline in semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000036826A KR20020002602A (en) | 2000-06-30 | 2000-06-30 | Method for forming bitline in semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020002602A true KR20020002602A (en) | 2002-01-10 |
Family
ID=19675129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000036826A KR20020002602A (en) | 2000-06-30 | 2000-06-30 | Method for forming bitline in semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020002602A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100811409B1 (en) * | 2001-12-31 | 2008-03-07 | 주식회사 하이닉스반도체 | Pattern formation Method of Semiconductor Device |
KR100811261B1 (en) * | 2005-12-22 | 2008-03-07 | 주식회사 하이닉스반도체 | Method for fabricating storage node contact in semiconductor device |
-
2000
- 2000-06-30 KR KR1020000036826A patent/KR20020002602A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100811409B1 (en) * | 2001-12-31 | 2008-03-07 | 주식회사 하이닉스반도체 | Pattern formation Method of Semiconductor Device |
KR100811261B1 (en) * | 2005-12-22 | 2008-03-07 | 주식회사 하이닉스반도체 | Method for fabricating storage node contact in semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030056149A (en) | Method for fabricating semiconductor device | |
KR100338941B1 (en) | Contact forming method for semiconductor device | |
JP5178025B2 (en) | Manufacturing method of semiconductor memory device | |
KR100701426B1 (en) | Multi layer metal in semiconductor device and method for manufacturing the same | |
US20020142582A1 (en) | Method for forming copper lines for semiconductor devices | |
KR20020002608A (en) | Method for forming bitline in semiconductor device | |
KR20020002602A (en) | Method for forming bitline in semiconductor device | |
KR20020002576A (en) | Method for forming bitline in semiconductor device | |
KR100307827B1 (en) | Metal wiring contact formation method of semiconductor device | |
KR100578230B1 (en) | Method for forming bitline using dual damascene process | |
KR100402242B1 (en) | Method for manufacturing semiconductor device | |
KR20020056637A (en) | method for forming metal line of semiconductor device | |
KR20040051189A (en) | Semiconductor device having ruthenium bitline and method for fabrication of the same | |
KR20070098320A (en) | Method for forming storagenode contact hole in semiconductor device | |
KR100197992B1 (en) | Forming method for metal wiring in semiconductor device | |
KR100275331B1 (en) | Method for manufacturing metal interconnection of semiconductor device | |
KR100410811B1 (en) | Method for forming multilayer metal line of semiconductor device | |
KR20030052811A (en) | Method For Manufacturing Semiconductor Devices | |
KR100269662B1 (en) | Method for manufacturing conductor plug of semiconductor device | |
KR100899566B1 (en) | Method for forming bitline in semiconductor device | |
KR100770533B1 (en) | Semiconductor device and method for manufacturing the semiconductor device | |
KR100928108B1 (en) | How to Form Metal Wiring | |
KR100252905B1 (en) | Method for forming plug of semiconductor device | |
KR20020002538A (en) | Method for forming contact plug in semiconductor device | |
KR100859380B1 (en) | Method of forming a metal-line in semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |