KR20000065995A - A process for preparing chiral 3-hydroxy-gamma-butyrolacton - Google Patents
A process for preparing chiral 3-hydroxy-gamma-butyrolacton Download PDFInfo
- Publication number
- KR20000065995A KR20000065995A KR1019990012806A KR19990012806A KR20000065995A KR 20000065995 A KR20000065995 A KR 20000065995A KR 1019990012806 A KR1019990012806 A KR 1019990012806A KR 19990012806 A KR19990012806 A KR 19990012806A KR 20000065995 A KR20000065995 A KR 20000065995A
- Authority
- KR
- South Korea
- Prior art keywords
- acid
- hydroxy
- butyrolactone
- chiral
- sodium
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/26—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D307/30—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/32—Oxygen atoms
- C07D307/33—Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/38—Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/26—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D307/30—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/32—Oxygen atoms
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Epoxy Compounds (AREA)
- Furan Compounds (AREA)
Abstract
Description
본 발명은 다음 화학식 1로 표시되는 키랄 3-히드록시-γ-부티로락톤의 제조방법에 관한 것으로서, 더욱 상세하게는 키랄 3,4-에폭시부티르산이나 이의 염을 원료물질로하여 할로겐 첨가반응과 고리화반응을 수행하여 키랄 3-히드록시-γ-부티로락톤을 경제적으로 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing chiral 3-hydroxy-γ-butyrolactone represented by the following Chemical Formula 1, and more specifically, to a chiral 3,4-epoxybutyric acid or a salt thereof as a raw material, The present invention relates to a method for economically preparing chiral 3-hydroxy-γ-butyrolactone by carrying out a cyclization reaction.
화학식 1Formula 1
키랄 3-히드록시-γ-부티로락톤은 다양한 용도의 키랄 화합물의 제조에 이용되는 유용한 키랄 중간체이다. 키랄 3-히드록시-γ-부티로락톤을 중간체로하여 합성되어지는 예로는 다음과 같다: 항암효과를 가진 천연물인 아플리시스타틴[Aplysistatin; Shieh, H., Prestwich, G. D., Tetrahedron Letters, (1982) 23, 4643], 곤충의 집합 페로몬인 멀티스트리아틴[Multistriatin; Larcheveque, M., Henrot, S., Tetrahedron, (1987) 43, 2303], β-락탐 항생제[일본특허공개 소64-13,069호(1989)], 고지혈증 치료제인 HMG-CoA 환원효소 저해제의 중간체로 이용되는 5,6-디히드록시-3-케토-헥실 산[일본특허공개 평4-173,767호(1992)].Chiral 3-hydroxy-γ-butyrolactone is a useful chiral intermediate used in the preparation of chiral compounds for various uses. Examples of the compound synthesized using chiral 3-hydroxy-γ-butyrolactone as an intermediate are as follows: Aplysistatin, a natural product having an anticancer effect; Shieh, H., Prestwich, G. D., Tetrahedron Letters, (1982) 23, 4643, Multistriatin, a group of insect pheromones; Larcheveque, M., Henrot, S., Tetrahedron, (1987) 43, 2303], β-lactam antibiotics (Japanese Patent Laid-Open No. 64-13,069 (1989)), as intermediates of HMG-CoA reductase inhibitors for the treatment of hyperlipidemia 5,6-dihydroxy-3-keto-hexyl acid used (Japanese Patent Laid-Open No. 4-173,767 (1992)).
한편, 키랄 3-히드록시-γ-부티로락톤을 제조하는 공지의 제조방법으로는 다음과 같은 방법이 있다.On the other hand, as a well-known manufacturing method of manufacturing a chiral 3-hydroxy- (gamma) -butyrolactone, there exist the following methods.
디메틸말산(dimethylmalic acid)으로부터 2 단계로 제조하는 방법[Chemistry Letters, (1984) 1389]이 보고되어 있으나, 보레인, 소듐 보로하이드라이드, 트리플루오로아세트 산 등의 고가이고 취급하기 어려운 시약 등을 사용하고 있고, 또한 무수 유기용매를 사용하여야 하는 단점을 가지고 있어 산업적으로 대량 생산하기 어려운 단점을 가지고 있다.Although a method of preparing in two steps from dimethylmalic acid has been reported [Chemistry Letters, (1984) 1389], expensive and difficult to handle reagents such as borolein, sodium borohydride, trifluoroacetic acid, etc. have been reported. In addition, it has a disadvantage in that an anhydrous organic solvent must be used, and thus has a disadvantage in that it is difficult to mass produce industrially.
L-아스코빈 산 또는 D-이소아스코빈 산으로부터 다단계를 거쳐 제조하는 방법[Synthesis, (1987) 570]이 보고되어 있으나, 총 수율이 낮고 다단계이며 유기용매를 사용하여야 하는 단점을 가지고 있다.Synthesis (1987) 570 has been reported to produce a multistage from L-ascorbic acid or D-isoascovinic acid, but has a disadvantage in that the total yield is low, multistage, and an organic solvent must be used.
다당류로부터 값싼 가성소다와 과산화수소수로 제조하는 방법[미국특허 제5,292,939호(1994)]이 보고되어 있으나, 사용하는 원료의 특성상 (S)-3-히드록시-γ-부티로락톤만이 제조되는 단점을 가지고 있다.Although a method for producing inexpensive caustic soda and hydrogen peroxide from polysaccharides (US Pat. No. 5,292,939 (1994)) has been reported, only (S) -3-hydroxy-γ-butyrolactone is produced due to the nature of the raw materials used. It has a disadvantage.
그 밖에도 D-카르니틴으로부터 극성 유기용매하에서 약 150℃의 고온에서 수시간 반응시켜 제조하는 방법[미국특허 제5,714,619 호(1998)]이 보고되어 있다.In addition, there has been reported a method of preparing by reacting D-carnitine under a polar organic solvent at a high temperature of about 150 ° C. for several hours (US Pat. No. 5,714,619 (1998)).
본 발명에서는 값싼 시약을 사용하여 경제적으로 키랄 3-히드록시-γ-부티로락톤을 제조하는 방법을 개발하고자 연구노력하였고, 그 결과 키랄 3,4-에폭시부티르산이나 이의 염을 수용매하에서 할로겐 첨가반응 및 고리화반응을 한 반응기에서 별도의 정제과정 없이 수행하여 보다 간편하고 경제적으로 키랄 3-히드록시-γ-부티로락톤을 제조함으로써 본 발명을 완성하였다.In the present invention, research efforts have been made to develop a method for producing chiral 3-hydroxy-γ-butyrolactone economically using a cheap reagent, and as a result, halogenated chiral 3,4-epoxybutyric acid or salts thereof in an aqueous solvent. The present invention was completed by preparing the chiral 3-hydroxy-γ-butyrolactone more easily and economically by performing the reaction and the cyclization reaction in one reactor without additional purification.
본 발명은 종래 제조방법에서 사용하고 있는 값비싼 유기용매를 대신하여 물을 용매로 사용하고 값싼 시약을 사용하며 한 반응기에서 별도의 정제과정 없이 연속적으로 여러 반응들을 수행하기 때문에 매우 경제적이다. 이러한 본 발명의 키랄 3-히드록시-γ-부티로락톤 유도체의 제조방법은 현재까지 문헌상에 시도된 예가 없다.The present invention is very economical because water is used as a solvent in place of the expensive organic solvent used in the conventional manufacturing method, inexpensive reagents are used, and various reactions are continuously performed in one reactor without a separate purification process. Such a method for preparing a chiral 3-hydroxy-γ-butyrolactone derivative of the present invention has not been attempted in the literature to date.
따라서, 본 발명은 고가이거나 취급이 어려운 화합물을 사용하지 않고 값싼 화합물을 사용하여 높은 수율로 키랄 3-히드록시-γ-부티로락톤을 제조하는 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for preparing chiral 3-hydroxy-γ-butyrolactone in high yield using cheap compounds without using expensive or difficult to handle compounds.
본 발명은 다음 화학식 2로 표시되는 키랄 3,4-에폭시부티르산이나 이의 염을 수용매하에서 할로겐 첨가반응 및 고리화반응시켜 다음 화학식 1로 표시되는 3-히드록시-γ-부티로락톤을 제조하는 방법을 그 특징으로 한다.The present invention provides a 3-hydroxy-γ-butyrolactone represented by the following Chemical Formula 1 by halogen addition and cyclization of chiral 3,4-epoxybutyric acid or a salt thereof in an aqueous solvent. The method is characterized by that.
화학식 1Formula 1
상기 화학식들에서 : 키랄센터(*)는 (R)-형태 혹은 (S)-형태를 나타내고; M은 수소이온, 금속이온, 유기아민 등이며; X는 할로겐원자를 나타낸다.In the above formulas: chiral center (*) represents (R) -form or (S) -form; M is hydrogen ion, metal ion, organic amine, or the like; X represents a halogen atom.
이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.
본 발명은 키랄 3,4-에폭시부티르산이나 이의 염을 원료물질로하여 할로겐화반응과 고리화반응을 한 반응기내에서 연속적으로 수행하여 키랄 3-히드록시-γ-부티로락톤을 제조하는 매우 경제적인 신규 제조방법에 관한 것이다.The present invention is very economical to produce chiral 3-hydroxy-γ-butyrolactone by continuously carrying out halogenation and cyclization reaction using chiral 3,4-epoxybutyric acid or a salt thereof as a raw material. It relates to a novel manufacturing method.
본 발명에서 출발물질로 사용되는 상기 화학식 2 로 표시되는 키랄 3,4-에폭시부티르산은 다양한 방법에 의해 제조될 수 있으며, 대표적 방법들을 살펴보면 다음과 같다.Chiral 3,4-epoxybutyric acid represented by the formula (2) used as a starting material in the present invention can be prepared by a variety of methods, looking at representative methods as follows.
비대칭 에폭시화 반응을 통해 입체선택적으로 에폭시기를 도입한 후 산화반응을 거쳐 제조하는 방법[J. Org. Chem., vol. 49, 3707∼3711(1984)]이 있으며, 또 다른 방법으로서 화학적 방법에 의해 라세믹 3,4-에폭시부티르산 에스테르를 제조한 후 이를 생물학적 방법으로 광학분할하여 원하는 키랄센터를 가진 (R)-3,4-에폭시부티르산 에스테르를 선택적으로 얻는 방법[Helvetica Chimica Acta, vol. 70, 142∼152(1987); 유럽특허 제237,983호(1987)]이 보고되어 있다. 또한, 최근에는 본 출원인에 의하여 키랄 3-활성화된히드록시-γ-부티로락톤으로부터 키랄센터가 역전화된 키랄 3,4-에폭시부티르산의 염을 제조하는 방법이 보고된 바도 있다[PCT/KR 98/00166].Method of preparing an epoxy group through an asymmetric epoxidation reaction followed by an oxidative reaction. Org. Chem., Vol. 49, 3707-3711 (1984)], and another method is to prepare a racemic 3,4-epoxybutyric acid ester by a chemical method and then optically divide it by (R) -3 having a desired chiral center. A method for selectively obtaining 4,4-epoxybutyric acid ester [Helvetica Chimica Acta, vol. 70, 142-152 (1987); European Patent No. 237,983 (1987). In addition, the applicant has recently reported a method for preparing a salt of chiral 3,4-epoxybutyric acid whose chiral center is reversed from chiral 3-activated hydroxy-γ-butyrolactone [PCT / KR 98/00166.
본 발명에서는 상기 종래방법들 중에서 주로 PCT/KR 98/00166에서 언급한 방법에 의해서 제조된 키랄 3,4-에폭시부티르산의 염을 출발물질로 사용하였으며, 양이온(M)의 종류 역시 기존특허 PCT/KR 98/00166에서 언급한 바와 같으며 대표적인 양이온은 나트륨이온이다.In the present invention, a salt of chiral 3,4-epoxybutyric acid prepared by the method mentioned in PCT / KR 98/00166 is mainly used as a starting material, and the type of cation (M) is also existing patent PCT / As mentioned in KR 98/00166, a representative cation is sodium ion.
다음 반응식 1은 본 발명에 따른 키랄 3-히드록시-γ-부티로락톤의 제조방법을 간략히 나타낸 것이다.Scheme 1 below briefly illustrates a method for preparing chiral 3-hydroxy-γ-butyrolactone according to the present invention.
상기 반응식 1에서: 키랄센터(*)는 (R)-형태 혹은 (S)-형태를 나타내고; M은 원료인 3,4-에폭시부티르산을 제조하는 반응단계에서 유래되는 것으로 수소이온, 금속이온, 유기아민 등을 나타내며; X는 할로겐화반응에 사용하는 할로겐화물에서 유래되는 할로겐원자를 나타낸다.In Scheme 1: chiral center (*) represents (R) -form or (S) -form; M is derived from the reaction step of preparing the raw material 3,4-epoxybutyric acid and represents hydrogen ions, metal ions, organic amines, and the like; X represents the halogen atom derived from the halide used for halogenation reaction.
상기 반응식 1에 따른 본 발명의 제조방법은 상기 화학식 2로 표시되는 3,4-에폭시부티르산이나 이의 염의 할로겐 첨가반응과, 중간체로 합성된 상기 화학식 3으로 표시되는 4-할로-3-히드록시부티르산의 고리화반응으로 구성된다.In the preparation method of the present invention according to Scheme 1, the halogen addition reaction of 3,4-epoxybutyric acid or a salt thereof represented by Chemical Formula 2 and 4-halo-3-hydroxybutyric acid represented by Chemical Formula 3 synthesized as an intermediate It consists of a cyclization reaction.
이러한 할로겐 첨가반응과 고리화반응은 하나의 반응기내에서 수행(one-pot reaction)된다. 본 발명의 할로겐 첨가반응을 수행하기 위해서는 할로겐화제를 단독으로 사용하거나, 또는 할로겐화제와 산을 병용한다. 할로겐화제를 구체적으로 예시하면 소듐 클로라이드, 소듐 브로마이드, 소듐 요오다이드, 칼륨 클로라이드, 칼륨 브로마이드 등의 다양한 할로겐화 알칼리금속염; 염산, 브롬산, 요오드산 등의 다양한 할로겐산이 포함된다. 본 연구진의 실험결과에 따르면 할로겐 첨가반응 수행시 할로겐화제로서 할로겐화 알칼리금속염을 사용하는 경우 산(acid)을 함께 사용하는 것이 보다 바람직한 결과를 나타내었다. 또한, 할로겐화제와 함께 사용할 수 있는 산(acid)을 구체적으로 예시하면 염산, 황산, 인산 등의 무기산; 아세트산, 프로피온산, 부티르산, 푸마르산, 개미산, 주석산, 젖산, 말산, 옥살산, 시트르산, 메탄술폰산, 톨루엔술폰산, 켐퍼술폰산 등의 유기산이 포함된다.This halogen addition reaction and cyclization reaction are carried out in one reactor (one-pot reaction). In order to perform the halogen addition reaction of this invention, a halogenating agent is used individually, or a halogenating agent and an acid are used together. Specific examples of the halogenating agent include various halogenated alkali metal salts such as sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide and the like; Various halogen acids such as hydrochloric acid, bromic acid, iodic acid and the like are included. According to the experimental results of the researchers, when using a halogenated alkali metal salt as a halogenating agent in the halogenation reaction, it is more preferable to use an acid together. In addition, concrete examples of the acid that can be used with the halogenating agent include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; Organic acids such as acetic acid, propionic acid, butyric acid, fumaric acid, formic acid, tartaric acid, lactic acid, malic acid, oxalic acid, citric acid, methanesulfonic acid, toluenesulfonic acid and camphorsulfonic acid.
본 발명에 따른 고리화 반응은 상기한 할로겐 첨가반응 후에 연속적으로 진행된다. 상기한 할로겐 첨가반응에서 할로겐화제와 산을 병용하고 사용된 산이 pK 4.5 이상의 약산인 경우 할로겐 첨가반응에 이어서 고리화반응이 연속적으로 진행되는데 반하여, 할로겐 첨가반응에 사용된 산이 pK 4.5 미만의 강산인 경우 보다 원활한 고리화반응을 수행하기 위하여 염기를 소량 첨가하는 것이 바람직하다. 고리화 반응시 사용될 수 있는 염기를 구체적으로 예시하면 수산화 나트륨, 수산화 칼륨, 탄산 나트륨, 중탄산 나트륨 등의 무기 염기; 소듐 아세테이트, 칼륨 아세테이트, 트리에틸아민 등의 다양한 유기 염기가 포함된다. 이러한 염기는 할로겐 첨가반응에서 사용한 산(acid) 양대비 1.0 당량 적게 사용하는 것이 바람직한 바, 과량의 염기를 사용하게 되면 생성된 최종 물질인 3-히드록시-γ-부티로락톤이 염기에 의해 가수분해되어 수율이 낮아지기 때문이다.The cyclization reaction according to the invention proceeds continuously after the halogen addition reaction described above. In the above halogenation reaction, when the halogenating agent is combined with an acid and the acid used is a weak acid of pK 4.5 or more, the cyclization reaction proceeds continuously after the halogenation reaction, whereas the acid used in the halogenation reaction is a strong acid of pK 4.5 or less. In this case, it is preferable to add a small amount of base in order to perform a more smooth cyclization reaction. Specific examples of the base that can be used in the cyclization reaction include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and sodium bicarbonate; Various organic bases such as sodium acetate, potassium acetate, triethylamine, and the like. The base is preferably used in an amount of 1.0 equivalent less than the amount of acid used in the halogenation reaction. When the excess base is used, 3-hydroxy-γ-butyrolactone, which is a final substance, is formed by the base. This is because the yield is lowered due to decomposition.
이상에서 설명한 바와 같은 본 발명에 따른 반응의 구체적인 예를 보면 다음과 같다.Looking at the specific example of the reaction according to the present invention as described above are as follows.
3,4-에폭시부티르산의 나트륨염의 수용액에 3.0 당량의 브롬산을 넣고 상온에서 1시간 교반후 핵자기 공명분석법으로 분석결과 90% 이상의 전환율로 4-브로모-3-히드록시부티르산이 생성되었음을 확인할 수 있었다. 계속해서 반응액에 2.0 당량의 중탄산 나트륨을 넣고 1시간 교반후 핵자기 공명분석법으로 분석결과 4-브로모-3-히드록시부티르산이 거의 정량적으로 3-히드록시-γ-부티로락톤으로 변환되었음을 확인할 수 있었다. 그리고, 감압증류하여 반응액으로부터 물을 제거한 후 에틸 아세테이트 용매로 2회 추출하고 추출액중 용매를 감압증류하여 제거한 후 칼럼 크로마토그래피로 분리 정제하여 81% 수율로 순수한 3-히드록시-γ-부티로락톤을 얻을 수 있었다.3.0 equivalents of bromic acid was added to an aqueous solution of sodium salt of 3,4-epoxybutyric acid and stirred at room temperature for 1 hour, followed by nuclear magnetic resonance analysis. As a result, 4-bromo-3-hydroxybutyric acid was confirmed to be formed with a conversion rate of 90% or more. Could. Subsequently, 2.0 equivalents of sodium bicarbonate were added to the reaction solution, and stirred for 1 hour. Nuclear magnetic resonance analysis showed that 4-bromo-3-hydroxybutyric acid was almost quantitatively converted to 3-hydroxy-γ-butyrolactone. I could confirm it. After distillation under reduced pressure to remove water from the reaction solution, the mixture was extracted twice with ethyl acetate solvent, the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography to obtain pure 3-hydroxy-γ-buty in 81% yield. Lactone could be obtained.
또한, 상기 반응에서 염기로서 2.0 당량의 소듐 아세테이트를 사용한 경우에도 비슷한 수율로 순수한 3-히드록시-γ-부티로락톤을 얻을 수 있었다.In addition, even when 2.0 equivalents of sodium acetate was used as the base in the reaction, pure 3-hydroxy-γ-butyrolactone was obtained in a similar yield.
한편, 상기 반응과 달리 브롬산 등 강산을 사용하지 않고 약산인 아세트산을 사용하고 할로겐화제로서 브롬산, 염산 등의 강산성 할로겐 산을 대신하여 중성의 소듐 요오다이드, 소듐 브로마이드, 소듐 클로라이드 등의 할로겐화 알칼리금속염을 사용하면 별도로 염기를 사용하지 않아도 할로겐 첨가반응과 고리화 반응이 연속적으로 진행됨을 관찰할 수 있었는데, 이는 아래와 같이 할로겐 첨가반응후 자체적으로 염기인 소듐 아세테이트를 생성시키기 때문인 것으로 판단된다.On the other hand, unlike the reaction described above, halogenated compounds such as neutral sodium iodide, sodium bromide, sodium chloride, etc. are used instead of strong acids such as bromic acid, using acetic acid which is a weak acid, and instead of strong acidic halogen acids such as bromic acid and hydrochloric acid as halogenating agents. When the alkali metal salt is used, it can be observed that the halogenation reaction and the cyclization reaction proceed continuously without using a base separately, which is considered to be due to the generation of sodium acetate as a base after the halogenation reaction as follows.
상기 반응은 요오다이드(I-), 브로마이드(Br-), 클로라이드(Cl-)의 순으로 반응속도가 빠름을 확인할 수 있었으며, 이는 할로겐 이온의 친핵성의 강도와 이탈성의 용이함에 기인한 것으로 판단된다.The reaction iodide (I -), bromide (Br -), chloride (Cl -) in order to was the reaction rate to determine the faster of which is determined to be due to the nucleophilic ease Castle strength and release resistance of halogen ions do.
그 예로서 3,4-에폭시부티르산의 나트륨염의 수용액에 1.0 당량의 소듐 요오다이드와 2.0 당량의 아세트산을 넣고 30℃에서 3시간 교반후 핵자기 공명분석법으로 분석결과 90% 이상의 전환율로 3-히드록시-γ-부티로락톤이 형성되었음을 확인할 수 있었다. 그리고, 감압증류하여 반응액으로부터 물을 제거한 후 에틸 아세테이트 용매로 2회 추출하고 추출액중 용매를 감압증류하여 제거후 칼럼 크로마토그래피로 분리 정제하여 85% 수율로 순수한 3-히드록시-γ-부티로락톤을 얻을 수 있었다. 또한, 소듐 요오다이드 대신에 소듐 브로마이드나 소듐 클로라이드를 사용하여도 반응속도는 상대적으로 느리나 높은 수율로 3-히드록시-γ-부티로락톤을 얻을 수 있었다.For example, 1.0 equivalent of sodium iodide and 2.0 equivalents of acetic acid were added to an aqueous solution of sodium salt of 3,4-epoxybutyric acid, and stirred at 30 ° C. for 3 hours, followed by nuclear magnetic resonance analysis. It was confirmed that oxy-γ-butyrolactone was formed. After distillation under reduced pressure to remove water from the reaction solution, the mixture was extracted twice with ethyl acetate solvent, and the solvent was distilled off under reduced pressure to remove the solvent, and then purified by column chromatography to obtain pure 3-hydroxy-γ-buty in 85% yield. Lactone could be obtained. In addition, even when sodium bromide or sodium chloride was used instead of sodium iodide, the reaction rate was relatively slow, but 3-hydroxy-γ-butyrolactone was obtained in high yield.
상술한 바와 같이 본 발명에 따른 키랄 3-히드록시-γ-부티로락톤의 제법은 상기 화학식 2로 표시되는 키랄 3,4-에폭시부티르산이나 이의 염을 원료물질로 하여 할로겐 첨가반응과 고리화반응을 차례로 수행하되 수용액 상태에서 별도의 정제과정이 필요없이 한 반응기내에서 연속적으로 반응을 시행하여 산업적으로 유용한 키랄 3-히드록시-γ-부티로락톤의 제조방법임을 알 수 있다.As described above, the preparation of chiral 3-hydroxy-γ-butyrolactone according to the present invention is carried out using a halogenation reaction and a cyclization reaction using chiral 3,4-epoxybutyric acid or a salt thereof represented by Chemical Formula 2 as a raw material. It can be seen that it is carried out in turn, but in the aqueous solution state without the need for a separate purification process continuously carried out in one reactor to produce industrially useful chiral 3-hydroxy-γ-butyrolactone.
이와 같은 본 발명을 다음의 실시예에 의거하여 더욱 상세히 설명하면 다음과 같은 바, 본 발명이 이에 한정되는 것은 아니다.When the present invention is described in more detail based on the following examples, the present invention is not limited thereto.
실시예 1 : (S)-3-메탄술포닐히드록시부티로락톤의 제조Example 1 Preparation of (S) -3-methanesulfonylhydroxybutyrolactone
250 ㎖ 반응기에 (S)-3-히드록시-γ-부티로락톤(10.2 g, 0.10 mol), 메탄술포닐 클로라이드(13.7 g, 0.12 mol) 및 디클로로메탄(150 ㎖)을 넣은 후, -30℃에서 50% 트리에틸아민-디클로로메탄 용액(22.2 g, 0.11 mol)을 1시간동안 적가 투입하였다. 추가로 30분동안 교반하였다. 반응액을 NaCl 포화용액(70 ㎖)으로 두번 추출하여 생성된 염을 제거하고, 디클로로메탄액을 마그네슘 설페이트로 건조하고 여과한 후, 감압증류기로 용매를 감압하에서 천천히 농축시켜 고체를 얻었다. 얻어진 고체를 디클로로메탄과 이소프로판올로 재결정하고 결정을 여과, 건조하여 순수한 (S)-3-메탄술포닐히드록시부티로락톤(17.1g, 수율 95%)을 얻었다.(S) -3-hydroxy-γ-butyrolactone (10.2 g, 0.10 mol), methanesulfonyl chloride (13.7 g, 0.12 mol) and dichloromethane (150 mL) were placed in a 250 mL reactor. 50% triethylamine-dichloromethane solution (22.2 g, 0.11 mol) was added dropwise at 1 ° C for 1 hour. Stir for an additional 30 minutes. The reaction solution was extracted twice with saturated NaCl solution (70 mL) to remove salts, the dichloromethane solution was dried over magnesium sulfate and filtered, and the solvent was concentrated slowly under reduced pressure using a reduced pressure distillation to give a solid. The obtained solid was recrystallized from dichloromethane and isopropanol, and the crystals were filtered and dried to obtain pure (S) -3-methanesulfonylhydroxybutyrolactone (17.1 g, 95% yield).
1H-NMR(아세톤-d6, ppm) δ2.7∼3.2(m, 2H, -CH2CO-), 3.2(s, 3H, CH3SO3-), 4.5∼4.8(m, 2H, O-CH2CH(OMs)-), 5.5∼5.6(m. 1H, O-CH2CH(OMs)-);13C-NMR(아세톤-d6, ppm) δ35.31(-CH2CO-), 37.97(CH3SO3-), 73.41(-CH2CH(OMs)-), 77.39(O-CH2CH(OMs)-), 174.45(-CH2CO-) 1 H-NMR (acetone-d 6 , ppm) δ2.7-3.2 (m, 2H, -CH 2 CO-), 3.2 (s, 3H, CH 3 SO 3- ), 4.5-4.8 (m, 2H, O-CH 2 CH (OMs)-), 5.5-5.6 (m. 1H, O-CH 2 CH (OMs)-); 13 C-NMR (acetone-d 6 , ppm) δ 35.31 (-CH 2 CO-), 37.97 (CH 3 SO 3- ), 73.41 (-CH 2 CH (OMs)-), 77.39 (O-CH 2 CH (OMs)-), 174.45 (-CH 2 CO-)
실시예 2 : (S)-4-히드록시-3-메탄술포닐히드록시부티르산의 제조Example 2 Preparation of (S) -4-hydroxy-3-methanesulfonylhydroxybutyric acid
25 ㎖ 반응기에 (S)-3-메탄술포닐히드록시부티로락톤(1.0 g, 5.6 mmol), D2O(10 ㎖) 및 메탄술폰산(0.538 g, 5.6 mmol)을 넣은 후, 45℃에서 2.5시간 동안 교반하였다. 반응액을 상온으로 냉각시킨 후 디클로로메탄(10 ㎖)으로 두번 추출하여 미반응된 (S)-3-메탄술포닐히드록시부티로락톤을 회수하였다. D2O층에는 원하는 (S)-4-히드록시-3-메탄술포닐히드록시부티르산이 매우 순수한 상태로 존재함을 핵자기공명분석법을 이용하여 확인하였다.(S) -3-methanesulfonylhydroxybutyrolactone (1.0 g, 5.6 mmol), D 2 O (10 mL) and methanesulfonic acid (0.538 g, 5.6 mmol) were placed in a 25 mL reactor, and then at 45 ° C. Stir for 2.5 hours. The reaction solution was cooled to room temperature and extracted twice with dichloromethane (10 mL) to recover unreacted (S) -3-methanesulfonylhydroxybutyrolactone. It was confirmed using nuclear magnetic resonance analysis that the desired (S) -4-hydroxy-3-methanesulfonylhydroxybutyric acid was present in a very pure state in the D 2 O layer.
1H-NMR(D2O, ppm) δ2.6∼2.8(m, 2H, -CH2CO2H), 3.1(s, CH3SO3-), 3.6∼3.9(m, 2H, HOCH2-), 4.9∼5.1(m, 1H, -CH(OMs)-);13C-NMR(D2O, ppm) δ36.27(-CH2CO2H), 38.15(CH3SO3-), 62.94(-CH(OMs)-), 80.81 (HOCH2-), 174.04(-CH2CO2H) 1 H-NMR (D 2 O, ppm) δ 2.6 to 2.8 (m, 2H, -CH 2 CO 2 H), 3.1 (s, CH 3 SO 3- ), 3.6 to 3.9 (m, 2H, HOCH 2 -9, 4.9 to 5.1 (m, 1H, -CH (OMs)-); 13 C-NMR (D 2 O, ppm) δ 36.27 (-CH 2 CO 2 H), 38.15 (CH 3 SO 3- ), 62.94 (-CH (OMs)-), 80.81 (HOCH 2- ), 174.04 (-CH 2 CO 2 H)
실시예 3 : (R)-3,4-에폭시부티르산 나트륨염의 제조Example 3: Preparation of (R) -3,4-epoxybutyrate sodium salt
상기 실시예 2에서 얻은 (S)-4-히드록시-3-메탄술포닐히드록시부티르산(3.9 mmol)이 함유된 반응액에 3N 수산화나트륨 수용액(4.43 ㎖, 13.3 mmol)을 넣은 후, 상온에서 10분동안 교반하였다. 반응액에 원하는 (R)-3,4-에폭시부티르산 나트륨염이 매우 순수한 상태로 존재함을 핵자기공명분석법을 이용해서 확인하였다.To a reaction solution containing (S) -4-hydroxy-3-methanesulfonylhydroxybutyric acid (3.9 mmol) obtained in Example 2 was added 3N aqueous sodium hydroxide solution (4.43 ml, 13.3 mmol), and then at room temperature. Stir for 10 minutes. It was confirmed by nuclear magnetic resonance analysis that the desired (R) -3,4-epoxybutyric acid sodium salt was present in a very pure state in the reaction solution.
1H-NMR(D2O,ppm) δ2.3∼2.5(m, 2H, CH2-CO2Na), 2.6∼2.9(m, 2H), 3.2∼3.3(m, 1H);13C-NMR(D2O,ppm) δ40.87(-CH2-CO2Na), 48.24(4-CH2), 51.08(3-CH), 179.41(-CO2Na) 1 H-NMR (D 2 O, ppm) δ 2.3 to 2.5 (m, 2H, CH 2 -CO 2 Na), 2.6 to 2.9 (m, 2H), 3.2 to 3.3 (m, 1H); 13 C-NMR (D 2 O, ppm) δ 40.87 (-CH 2 -CO 2 Na), 48.24 (4-CH 2 ), 51.08 (3-CH), 179.41 (-CO 2 Na)
실시예 4 : (R)-3,4-에폭시부티르산 칼슘염의 제조Example 4: Preparation of (R) -3,4-epoxybutyrate calcium salt
상기 실시예 2에서 제조한 (S)-4-히드록시-3-메탄술포닐히드록시부티르산이 함유된 D2O 반응액에 수산화칼슘(518mg, 7.0 mmol)을 넣은 후, 상온에서 30분동안 교반하였다. 반응액층에 원하는 (R)-3,4-에폭시부티르산 칼슘염이 존재함을 핵자기공명 분석법에 의해 확인하였다Calcium hydroxide (518 mg, 7.0 mmol) was added to the D 2 O reaction solution containing (S) -4-hydroxy-3-methanesulfonylhydroxybutyric acid prepared in Example 2, followed by stirring at room temperature for 30 minutes. It was. It was confirmed by nuclear magnetic resonance analysis that the desired calcium salt (R) -3,4-epoxybutyrate was present in the reaction solution layer.
1H-NMR(D2O, ppm) δ2.3∼2.4(m, 2H, CH2-CO2Ca), 2.5∼2.8(m, 2H), 3.2∼3.3(m, 1H, 3-H);13C-NMR(D2O, ppm) δ40.78(-CH2-CO2Ca), 48.23(4-CH2), 51.05(3-CH), 179.52 (-CO2Ca) 1 H-NMR (D 2 O, ppm) δ 2.3 to 2.4 (m, 2H, CH 2 -CO 2 Ca), 2.5 to 2.8 (m, 2H), 3.2 to 3.3 (m, 1H, 3-H) ; 13 C-NMR (D 2 O, ppm) δ 40.78 (-CH 2 -CO 2 Ca), 48.23 (4-CH 2 ), 51.05 (3-CH), 179.52 (-CO 2 Ca)
실시예 5 : (R)-3,4-에폭시부티르산 트리에틸아민염의 제조Example 5: Preparation of (R) -3,4-epoxybutyric acid triethylamine salt
상기 실시예 2에서 제조한 (S)-4-히드록시-3-메탄술포닐히드록시부티르산이 함유된 D2O 반응액에 트리에틸아민(1.35g, 13.5mmol)을 넣은 후, 상온에서 30분동안 교반하였다. 반응액층에 원하는 (R)-3,4-에폭시부티르산 트리에틸아민염이 존재함을 핵자기공명 분석법에 의해 확인하였다Triethylamine (1.35 g, 13.5 mmol) was added to the D 2 O reaction solution containing (S) -4-hydroxy-3-methanesulfonylhydroxybutyric acid prepared in Example 2, followed by 30 at room temperature. Stir for minutes. It was confirmed by nuclear magnetic resonance analysis that the desired (R) -3,4-epoxybutyric acid triethylamine salt was present in the reaction solution layer.
1H-NMR(D2O, ppm) δ2.2∼2.4(m, 2H, CH2-CO2HNEt3), 2.5∼2.8(m, 2H), 3.1∼3.2(m, 1H, 3-H);13C-NMR(D2O, ppm) δ40.94(-CH2-CO2HNEt3), 48.15(4-CH2), 51.04(3-CH), 178.97(-CO2HNEt3) 1 H-NMR (D 2 O, ppm) δ 2.2 to 2.4 (m, 2H, CH 2 -CO 2 HNEt 3 ), 2.5 to 2.8 (m, 2H), 3.1 to 3.2 (m, 1H, 3-H ); 13 C-NMR (D 2 O, ppm) δ 40.94 (-CH 2 -CO 2 HNEt 3 ), 48.15 (4-CH 2 ), 51.04 (3-CH), 178.97 (-CO 2 HNEt 3 )
실시예 6 : (R)-3-히드록시-γ-부티로락톤의 제조Example 6 Preparation of (R) -3-hydroxy-γ-butyrolactone
250 ㎖ 반응기에 (S)-3-메탄술포닐히드록시부티로락톤(10.0 g, 55.6 mmol), 물(100 ㎖) 및 메탄술폰산(5.38 g, 55.6 mmol)을 넣은 후, 45℃에서 2.5시간 동안 교반하였다. 반응액을 상온으로 냉각시킨 후 디클로로메탄(50 ㎖)으로 두번 추출하여 미반응된 (S)-3-메탄술포닐히드록시부티로락톤(2.99 g, 16.6mmol)을 회수하였다. (S)-4-히드록시-3-메탄술포닐히드록시부티르산(39.0 mmol)이 함유된 수용액에 3N 수산화나트륨 수용액(44.7 ㎖, 134 mmol)을 넣은 후, 상온에서 10분동안 교반하면 (S)-3,4-에폭시부티르산의 나트륨염이 함유된 수용액을 얻었다.(S) -3-methanesulfonylhydroxybutyrolactone (10.0 g, 55.6 mmol), water (100 mL) and methanesulfonic acid (5.38 g, 55.6 mmol) were added to a 250 mL reactor, and then 2.5 hours at 45 ° C. Was stirred. The reaction solution was cooled to room temperature and then extracted twice with dichloromethane (50 mL) to recover unreacted (S) -3-methanesulfonylhydroxybutyrolactone (2.99 g, 16.6 mmol). To a solution containing (S) -4-hydroxy-3-methanesulfonylhydroxybutyric acid (39.0 mmol) was added 3N aqueous sodium hydroxide solution (44.7 mL, 134 mmol), followed by stirring at room temperature for 10 minutes (S An aqueous solution containing the sodium salt of) -3,4-epoxybutyric acid was obtained.
상기 수용액에 48% 브롬산 수용액(19.7g, 117mmol)을 가하고 상온에서 1시간 교반후 중탄산 나트륨(6.5g, 77.4mmol)을 넣고 추가로 1시간 교반후 감압증류하여 물을 제거하고 에틸 아세테이트 (80ml)를 이용해 2회 추출하고 추출액을 마그네슘 설페이트로 건조하고 여과한후 감압하에서 농축하였다. 농축액을 칼럼 그로마토그래피로 정제하여 순수한 (R)-3-히드록시-γ-부티로락톤(3.22 g, 수율 81%)를 얻었다.48% aqueous bromic acid solution (19.7g, 117mmol) was added to the aqueous solution, followed by stirring at room temperature for 1 hour, sodium bicarbonate (6.5g, 77.4mmol) was added thereto, followed by further stirring for 1 hour to remove water by distillation under reduced pressure, and ethyl acetate (80ml Extracted twice), the extract was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The concentrate was purified by column chromatography to give pure (R) -3-hydroxy-γ-butyrolactone (3.22 g, 81% yield).
1H-NMR(CDCl3, ppm) δ2.4∼2.5(d, 1H, CH2-CO), 2.6∼2.8(m, 1H, CH2-CO), 4.2∼4.3(d, 1H, -OCH2-), 4.4∼4.5 (m, 1H, -OCH2-), 4.6∼4.7(m, 1H, -CH(OH)-);13C-NMR(CDCl3, ppm) δ37.74(CH2-CO), 67.37(-CH(OH)-), 76.25(-OCH2-), 176.9 (-CO-) 1 H-NMR (CDCl 3 , ppm) δ 2.4 to 2.5 (d, 1H, CH 2 -CO), 2.6 to 2.8 (m, 1H, CH 2 -CO), 4.2 to 4.3 (d, 1H, -OCH 2 -), 4.4~4.5 (m, 1H, -OCH 2 -), 4.6~4.7 (m, 1H, -CH (OH) -); 13 C-NMR (CDCl 3 , ppm) δ 37.74 (CH 2 -CO), 67.37 (-CH (OH)-), 76.25 (-OCH 2- ), 176.9 (-CO-)
실시예 7 : (R)-3-히드록시-γ-부티로락톤의 제조Example 7 Preparation of (R) -3-hydroxy-γ-butyrolactone
상기 실시예 6과 동일한 방법으로 실시하여 (S)-3,4-에폭시부티르산의 나트륨염이 함유된 수용액을 얻은 후 소듐 요오다이드(5.85 g, 39.0mmol)와 아세트산(4.68 g, 77.9mmol)을 가하고 30℃에서 3시간 교반후 실시예 6과 동일한 방법으로 후처리하고 정제하여 순수한 (R)-3-히드록시-γ-부티로락톤(3.38 g, 수율 85%)를 얻었다.In the same manner as in Example 6 to obtain an aqueous solution containing the sodium salt of (S) -3,4-epoxybutyric acid, sodium iodide (5.85 g, 39.0 mmol) and acetic acid (4.68 g, 77.9 mmol) After addition and stirring at 30 ° C. for 3 hours, the resultant was worked up and purified in the same manner as in Example 6 to obtain pure (R) -3-hydroxy-γ-butyrolactone (3.38 g, yield 85%).
실시예 8 : (R)-3-히드록시-γ-부티로락톤의 제조Example 8 Preparation of (R) -3-hydroxy-γ-butyrolactone
상기 실시예 6과 동일한 방법으로 실시하여 (S)-3,4-에폭시부티르산의 나트륨염이 함유된 수용액을 얻은 후 소듐 브로마이드(24.1 g, 234 mmol)와 아세트산(3.51 g, 58.5 mmol)을 가하고 35℃에서 6시간 교반후 실시예 6과 동일한 방법으로 후처리하고 정제하여 순수한 (R)-3-히드록시-γ-부티로락톤(3.18 g, 수율 80%)를 얻었다.In the same manner as in Example 6 to obtain an aqueous solution containing the sodium salt of (S) -3,4-epoxybutyric acid, sodium bromide (24.1 g, 234 mmol) and acetic acid (3.51 g, 58.5 mmol) were added thereto. After stirring at 35 ° C. for 6 hours, work up and purification were carried out in the same manner as in Example 6 to obtain pure (R) -3-hydroxy-γ-butyrolactone (3.18 g, yield 80%).
본 발명에 따른 키랄 3-히드록시-γ-부티로락톤의 제조방법은 수용액 상태에서 값싼 화합물을 사용하고 있으며, 제조방법이 간편하고 하나의 반응기내에서 연속적으로 수행이 가능하므로 산업적으로 매우 유용하다.The method for preparing chiral 3-hydroxy-γ-butyrolactone according to the present invention uses an inexpensive compound in an aqueous solution, and is very industrially useful because the preparation method is simple and can be continuously performed in one reactor. .
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990012806A KR20000065995A (en) | 1999-04-12 | 1999-04-12 | A process for preparing chiral 3-hydroxy-gamma-butyrolacton |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990012806A KR20000065995A (en) | 1999-04-12 | 1999-04-12 | A process for preparing chiral 3-hydroxy-gamma-butyrolacton |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000065995A true KR20000065995A (en) | 2000-11-15 |
Family
ID=19579496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990012806A KR20000065995A (en) | 1999-04-12 | 1999-04-12 | A process for preparing chiral 3-hydroxy-gamma-butyrolacton |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20000065995A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100710543B1 (en) * | 2001-07-07 | 2007-04-24 | 에스케이 주식회사 | Continuous production process of pure (S) -beta-hydroxy-gamma-butyrolactone with high optical purity |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06172256A (en) * | 1992-12-03 | 1994-06-21 | Kanegafuchi Chem Ind Co Ltd | Production of 3-hydroxybutyric acid derivative |
KR970015583A (en) * | 1995-09-29 | 1997-04-28 | 알도 파시 | (S) -? - hydroxy -? - butyrolactone |
KR19990013236A (en) * | 1997-07-16 | 1999-02-25 | 박영구 | Method for preparing chiral 3,4-epoxybutyric acid |
-
1999
- 1999-04-12 KR KR1019990012806A patent/KR20000065995A/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06172256A (en) * | 1992-12-03 | 1994-06-21 | Kanegafuchi Chem Ind Co Ltd | Production of 3-hydroxybutyric acid derivative |
KR970015583A (en) * | 1995-09-29 | 1997-04-28 | 알도 파시 | (S) -? - hydroxy -? - butyrolactone |
KR19990013236A (en) * | 1997-07-16 | 1999-02-25 | 박영구 | Method for preparing chiral 3,4-epoxybutyric acid |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100710543B1 (en) * | 2001-07-07 | 2007-04-24 | 에스케이 주식회사 | Continuous production process of pure (S) -beta-hydroxy-gamma-butyrolactone with high optical purity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6980648B2 (en) | Production of 3-hydroxy-3,6-dimethylhexahydrobenzofuran-2-one and its derivatives | |
KR100247563B1 (en) | Chiral 3,4-epoxybutir acid | |
KR100255039B1 (en) | Process for the preparation of l-carnitine | |
HU195764B (en) | Process for production of optically active carnitinenitril-chloride | |
KR20000065995A (en) | A process for preparing chiral 3-hydroxy-gamma-butyrolacton | |
KR20000055108A (en) | A process for preparing (R)-4-cyano-3-hydroxybutyric acid ester | |
JP2000026418A (en) | New production of derivative of 4-phenyl-1,2,3,6- tetrahydropyridine and intermediate used therefor | |
KR100461570B1 (en) | Method for preparing chiral 3,4-dihydroxybutyric acid | |
US6639095B1 (en) | Process for preparing optically active α-hydroxy acids and derivatives thereof | |
JP3333184B2 (en) | Process for producing (S) -3,4-epoxybutyrate having optical activity | |
JP4093608B2 (en) | Process for producing optically active 2-phenoxypropionic acid | |
JP2009062392A (en) | Cyclization process | |
JP3757592B2 (en) | Process for producing optically active alicyclic ketones | |
KR100267502B1 (en) | A process for preparing chiral 4-substituted-3-hydroxybutyric acid and salts thereof | |
KR20060024550A (en) | THE METHOD OF PREPARING beta-HYDROXYBUTYRIC ACID ALKYL ESTERS | |
JPH0352839A (en) | Production of p-or m-tert-butoxybenzaldehyde | |
KR100486320B1 (en) | Preparation method of 5,11-dihydro-6H-dibenz[b,e]azepin-6-one | |
KR100461571B1 (en) | A process for preparing (S)-1,2,4-butanetriol | |
KR100367201B1 (en) | Method for preparing 4-hydroxy cumarin intermediate useful as anticoagulant rodenticide | |
JPH06104654B2 (en) | Optically active glycerol derivative | |
RU2021265C1 (en) | Method of synthesis of acetylene ketoepoxides | |
JPS6254303B2 (en) | ||
JPS6045613B2 (en) | Method for producing cis-3-hexene-1,6-diol | |
BE876900A (en) | PROCESS FOR THE PRODUCTION OF PYRROLIDINE-2-ONES FROM 3-PYRROLINE-2-ONES AND FOR THE PRODUCTION OF 3-PYRROLINE-2-ONES | |
JPH0254814B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |