KR20000043790A - Method for producing non-oriented electric strip with low iron loss - Google Patents
Method for producing non-oriented electric strip with low iron loss Download PDFInfo
- Publication number
- KR20000043790A KR20000043790A KR1019980060211A KR19980060211A KR20000043790A KR 20000043790 A KR20000043790 A KR 20000043790A KR 1019980060211 A KR1019980060211 A KR 1019980060211A KR 19980060211 A KR19980060211 A KR 19980060211A KR 20000043790 A KR20000043790 A KR 20000043790A
- Authority
- KR
- South Korea
- Prior art keywords
- less
- steel
- iron loss
- annealing
- temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
본 발명은 무방향성 전기강판 및 그 제조방법에 관한 것으로서, 특히 중소형의 모터 및 변압기와 같은 전기기기의 철심으로 사용되는 철손이 낮은 무방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same, and more particularly to a non-oriented electrical steel sheet having a low iron loss used as an iron core of an electrical equipment such as small and medium-sized motors and transformers.
각종 모터, 소형 변압기 및 자기 쉴드(Magnetic shield) 와 같은 전기제품에서 철심으로 사용되는 무방향성 전기강판은 철손이 낮은 것이 요구된다. 철손은 전기강판소재의 중량당 전기에너지가 손실되는 정도를 나타내는 것으로서 W/kg의 단위로 표시한다. Si을 증가시켜 철손을 낮추는 방법도 있으나, 제조원가가 증가하는 단점이 있다. 또한 가격이 낮은 소재는 철손이 높은 단점이 있다. 따라서 이들을 모두 만족하면서도 전기제품의 특성을 향상시킬 수 있는 방법이 요구된다.Non-oriented electrical steel sheets used as iron cores in electric appliances such as various motors, small transformers and magnetic shields are required to have low iron loss. Iron loss represents the degree of loss of electrical energy per weight of electrical steel sheet material and is expressed in W / kg. There is also a method of lowering iron loss by increasing Si, but there is a disadvantage that the manufacturing cost increases. In addition, low-cost materials have a high iron loss. Therefore, there is a need for a method that can satisfy all of these and improve the characteristics of electrical appliances.
무방향성 전기강판은 조직중에서 결정립을 크게 성장시킴으로서 철손을 낮출 수 있다. 결정립의 성장을 억제하는 원소중에서 대표적인 원소가 N이다. N의 영향을 억제하는 원소중에서 대표적인 원소가 N이다. N의 영향을 억제하기 위하여 Al을 0.2%이상 첨가하기도 하나, 제조비용이 높아진다.Non-oriented electrical steel can lower the iron loss by growing grains in the tissue. Among the elements that suppress the growth of grains, a representative element is N. Among the elements for suppressing the influence of N, the representative element is N. In order to suppress the influence of N, Al may be added 0.2% or more, but the manufacturing cost becomes high.
일본공개특허 소64-39348은 B을 첨가하여 N의 영향을 줄이려고 하였으나, B/N의 비가 0.5-1.5로 높아서 B이 필요이상으로 함유될 수 있다. 또한 일본공개특허 소62-180014로 B/N의 비가 0.5-1.5이어서 B석출물이 많아질 수 있다.Japanese Patent Laid-Open No. 64-39348 attempts to reduce the effect of N by adding B, but the B / N ratio is high at 0.5-1.5 so that B may be contained more than necessary. In addition, Japanese Patent Laid-Open No. 62-180014 may have a large B precipitate since the ratio of B / N is 0.5-1.5.
대한민국 특허 97-65507은 B/N의 비가 0.1-1.5로 낮으나, Sol.Al의 량이 낮아서 충분한 탈산이 어려워짐으로 산화물의 발생이 많아질 수 있다는 문제가 있다.Korean Patent 97-65507 has a low B / N ratio of 0.1-1.5, but there is a problem that the generation of oxides may increase due to the low amount of Sol.Al, which is difficult to deoxidize sufficiently.
본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로서, 결정립이 작고 철손이 낮은 무방향성 전기강판 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a non-oriented electrical steel sheet having a small crystal grain and low iron loss and a method of manufacturing the same.
본 발명의 상기 목적은 중량%로 C:0.01%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Al:0.005-0.2%, N:0.006%이하, O:0.005%이하, Sn:0.03-0.30%, B:0.0004-0.0030% 및 B/N의 비가 0.1-0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 철손이 낮은 무방향성 전기강판을 제공하므로서 달성된다.The object of the present invention is by weight% C: 0.01% or less, Si: 1.5% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.02% or less, Al: 0.005-0.2%, N: 0.006% Or less, O: 0.005% or less, Sn: 0.03-0.30%, B: 0.0004-0.0030%, and a ratio of B / N of 0.1-0.5 to provide a non-oriented electrical steel sheet having low iron loss composed of balance Fe and other unavoidable impurities. Is achieved by doing so.
또한, 본 발명은 중량%로 C:0.01%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Al:0.005-0.2%, N:0.006%이하, O:0.005%이하, Sn:0.03-0.30%, B:0.0004-0.0030% 및 B/N의 비가 0.1-0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 재가열한 후 열간압연하는 단계와; 550-850℃의 온도로 권취하는 단계와; 산세 및 냉간압연하는 단계와; 700-1050℃의 온도에서 냉연판을 소둔하는 단계와; 로 이루어진 철손이 낮은 무방향성 전기강판의 제조방법을 제공한다.In the present invention, C: 0.01% or less, Si: 1.5% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.02% or less, Al: 0.005-0.2%, N: 0.006% or less And hot rolling after slab of O: 0.005% or less, Sn: 0.03-0.30%, B: 0.0004-0.0030%, and B / N ratio of 0.1-0.5, which is composed of the balance Fe and other unavoidable impurities. ; Winding to a temperature of 550-850 ° C .; Pickling and cold rolling; Annealing the cold rolled sheet at a temperature of 700-1050 ° C .; It provides a method of manufacturing a non-oriented electrical steel sheet having a low iron loss.
또한, 본 발명은 중량%로 C:0.01%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Al:0.005-0.2%, N:0.006%이하, O:0.005%이하, Sn:0.03-0.30%, B:0.0004-0.0030% 및 B/N의 비가 0.1-0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 재가열한 후 열간압연하는 단계와; 550-850℃의 온도로 권취하는 단계와; 산세 및 냉간압연하는 단계와; 650-900℃의 온도에서 냉연판을 소둔하는 단계와; 1-10%의 압하율로 압연하는 단계와;로 이루어진 철손이 낮은 무방향성 전기강판의 제조방법을 제공한다.In the present invention, C: 0.01% or less, Si: 1.5% or less, Mn: 1.5% or less, P: 0.15% or less, S: 0.02% or less, Al: 0.005-0.2%, N: 0.006% or less And hot rolling after slab of O: 0.005% or less, Sn: 0.03-0.30%, B: 0.0004-0.0030%, and B / N ratio of 0.1-0.5, which is composed of the balance Fe and other unavoidable impurities. ; Winding to a temperature of 550-850 ° C .; Pickling and cold rolling; Annealing the cold rolled sheet at a temperature of 650-900 ° C .; Rolling at a rolling reduction rate of 1-10%; Provides a method of producing a low iron loss non-oriented electrical steel sheet consisting of.
이하, 본 발명을 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따른 무방향성 전기강판에서 N은 결정립성장에 큰 영향을 미친다. 이 때, N은 미세하여 주로 선상의 AlN으로 석출함으로서 결정립성장을 억제하고 있다. 따라서 N와 Al은 가능한 억제하여야 하지만 불가피하게 첨가됨으로 이들의 영향을 감소시킬 수 있는 방법을 사용할 수 있다.In the non-oriented electrical steel sheet according to the present invention, N greatly affects grain growth. At this time, N is fine and precipitates mainly in linear AlN to suppress grain growth. Therefore, N and Al should be suppressed as much as possible, but inevitably added, a method that can reduce their effects can be used.
N의 영향을 감소시킬 수 있는 원소로 B을 사용하였으며, B 은 N와 결합력이 커서 BN으로 석출하지만 B이 과다한 경우에는 B2O3 및 FeB 등으로 석출할 수 있다.따라서, B의 량은 적당하게 첨가되어야 하며, BN과 결합하는 만큼 첨가되야 하며, 그외의 B은 첨가하지 않는 것이 중요하다. 불가피하게 함유되는 N의 량보다는 임의로 조정가능한 B의 량을 보다 적게 첨가하는 방법을 조사하였다.B is used as an element that can reduce the influence of N, and B is precipitated as BN due to its high bonding strength with B. However, when B is excessive, it can be precipitated as B2O3 and FeB. It should be added as much as it binds to BN and it is important not to add any other B. The method of adding an arbitrarily adjustable amount of B rather than the amount of N contained inevitably was investigated.
또한, Al의 량도 상당히 중요한 것으로 조사되었다. 특히 Al은 산화억제제로서 제강단계에서 용강을 출강후 산화억제를 위하여 첨가하여야 한다. 따라서 용강중에서 O을 0.005%이하로 유지후 B을 첨가함으로서 AlN의 형성을 억제할 뿐만 아니라 산소와 결합하여 발생되는 산화물의 형성도 억제할 수 있다.In addition, the amount of Al was also found to be very important. In particular, Al should be added for oxidation inhibition after tapping molten steel in the steelmaking step as an oxidation inhibitor. Therefore, the addition of B after holding O in 0.005% or less in molten steel can suppress not only the formation of AlN but also the formation of oxides generated by bonding with oxygen.
본 발명의 제조방법은 다음과 같다. 제강-연주-슬라브 재가열-열연-냉연-소둔-절연피막-출하의 풀리프로세스 공정과 제강-연주-슬라브 재가열-열연-냉연-소둔-경압연-절연피막-출하의 세미프로세스 공정으로 나눌 수 있다. 세미프로세스는 풀리프로세스의 냉연판의 소둔후 경압연(1-10%의 skin pass)을 추가하는 것이며, 이강은 수요자가 타발가공후 열처리를 하여 잔류응력을 제거하여야 하는 특징이 있다.The production method of the present invention is as follows. Pulley process of steelmaking-casting-slab reheating-hot rolling-cold rolling-annealing-insulation film-shipping and semi-processing process of steelmaking-casting-slab reheating-hot rolling-annealing-hard rolling-insulation film-shipping . Semi-process is to add light rolling (1-10% skin pass) after annealing of cold rolled plate of pulley process, and this steel is characterized by the need to remove residual stress by heat treatment after punching.
본 발명의 강은 성분중에서 Al을 0.005-0.2% 투입하여 산소를 충분히 제거후 B을 첨가한다. 그리고 N과 반응이 강판 B은 최소한으로 첨가하여 불필요한 석출물을 만들지 않도록 하며, 이를 위해서 B은 0.0004-0.0030%로 첨가하며, B/N의 값을 0.1-0.5로 한다. 이와 같이 제조함으로서 결정립이 잘 성장되는 것을 관찰하였다.In the steel of the present invention, Al is added in an amount of 0.005-0.2% to completely remove oxygen, and then B is added. And the reaction with N, steel plate B is added to the minimum to avoid making unnecessary precipitate, for this purpose B is added to 0.0004-0.0030%, B / N value of 0.1-0.5. By producing in this way, it was observed that the crystal grains grow well.
이하, 본 발명의 조성범위에 따른 수치한정 이유에 대하여 설명한다.Hereinafter, the reason for numerical limitation according to the composition range of this invention is demonstrated.
C은 자기시효를 일으켜서 사용중의 자기적 특성을 저하시키므로 슬라브에서는 0.01%이하로 하고, 최종제품에서는 0.003%이하로 제어하는 것이 바람직하다.Since C causes magnetic aging and degrades the magnetic properties during use, it is preferable to control the slab to 0.01% or less in the slab and to control it to 0.003% or less in the final product.
Si은 비저항을 증가시켜서 철손을 낮추는 원소이지만, 본 발명의 강의 성분에서는 1.5%이하로 첨가하는 것이 가장 효과적이다. 즉, B첨가강은 Si이 1/5%이하에서 철손을 낮출 수 있는 적정의 영역이다.Si is an element that lowers iron loss by increasing specific resistance, but it is most effective to add 1.5% or less in the steel component of the present invention. In other words, the B-added steel is an appropriate region in which Si can lower the iron loss at 1/5% or less.
P는 자성에 유리한 집합조직을 형성하는 원소이며, 냉간압연성을 고려하여 최대 0.15%까지 첨가할 수 있다.P is an element that forms a texture that is advantageous for magnetic and can be added up to 0.15% in consideration of cold rolling property.
S는 미세한 석출물인 MnS를 형성하여 결정립성장을 억제함으로 가능한한 낮게 함유되는 것이 유리하며, 본 발명에서는 최대 0.02%이하로 한다.S is advantageously contained as low as possible by forming MnS, which is a fine precipitate, to suppress grain growth. In the present invention, S is at most 0.02% or less.
Al은 용강의 충분한 탈산용으로 0.005%이상 최대 0.2%까지 첨가한다. 0.005%이하로 첨가시 탈산이 불충분할 수 있어서 산화개재물이 많이 발생될 수 있으며, 0.2%이상 첨가시 본 발명의 강에서는 첨가량에 비해 그 효과가 적다. 일반적으로 Al은 질소의 영향을 줄여주는 역할을 하지만 본 발명의 강은 B이 그 역할을 하기 때문에 Al을 많이 넣지 않아도 효과가 있기 때문이다.Al is added at least 0.005% and up to 0.2% for sufficient deoxidation of molten steel. When added below 0.005%, deoxidation may be insufficient, resulting in a large number of oxidation inclusions, and when added in an amount of 0.2% or more, the effect of the steel is less than that of the added amount. In general, Al plays a role of reducing the effect of nitrogen, but the steel of the present invention is effective because B does not have much Al because it plays a role.
N은 미세하고 긴 AlN 석출물을 형성함으로 가능한한 억제하며, 본 발명에서는 0.006이하로 한다.N is suppressed as much as possible by forming fine and long AlN precipitates, and in the present invention, it is 0.006 or less.
O는 산화물을 형성하여 제품에서 자구의 이동을 억제하여 자성을 저하시킴으로 억제하며, 본 발명에서는 0.005%이하로 한다.O is suppressed by forming an oxide to suppress the movement of magnetic domains in the product to lower the magnetism, and in the present invention, it is 0.005% or less.
Sn은 결정립계에 편석하여 N의 확산을 억제하며, 자성에 불리한 (222)면의 집합조직을 억제시키는 역할을 한다. 0.03%이하로 하면 그 효과가 적고. 0.30%이상으로 하면 냉간압연성이 나빠지고, 열연판의 형상이 불량하여짐으로 0.03-0.30%로 한다.Sn segregates at grain boundaries and suppresses diffusion of N, and serves to suppress the texture of the (222) plane which is disadvantageous to magnetism. Less than 0.03%, the effect is less. If it is 0.30% or more, cold rolling property will worsen and the shape of a hot rolled plate will be bad, and it shall be 0.03-0.30%.
B은 소재내부에서 N과 결합하여 미세한 AlN 대신 조대한 보론석출물인 BN을 형성시킴으로서 결정립 성장에 보다 유리함으로 첨가시킨다. B은 최소 0.004%이상 첨가하며, 그 양이 많으면 오히려 철손이 높아짐으로 최대 0.0030%까지 첨가할 수 있다. 그리고 B/N가 0.1-0.5가 되도록 함으로서 질소와 보론의 석출물을 가능한 줄여서 BN으로 석출시켜 자성에 불리한 석출물을 억제할 수 있다.B is added to the grain more advantageously by forming a coarse boron precipitate BN instead of fine AlN in combination with the N inside the material. B is added at least 0.004%, and if the amount is large, iron loss may be increased, and thus up to 0.0030% may be added. In addition, by making B / N 0.1-0.5, precipitates of nitrogen and boron can be reduced as much as possible, thereby precipitating to BN to suppress precipitates that are adverse to magnetic properties.
이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated.
상기와 같이 조성되는 강슬라브는 제강에서 용강으로 제조된 후 연속주조공정에서 슬라브로 제조하고, 열간압연전 가열로에 장입되어 1300℃이하의 범위에서 재가열후 열간압연한다.The steel slab formed as described above is manufactured from molten steel in steelmaking and then into slabs in a continuous casting process, charged into a heating furnace before hot rolling, and hot rolled after reheating in a range of 1300 ° C. or less.
열간압연된 열연판은 권취하며, 권취시 550-850℃의 온도범위로 권취함으로써 열연판을 소둔하는 효과를 부가할 수 있으며, 따라서 미세한 석출물을 크게 성장시킬 수 있다. 이것은 자기소둔이라고도 한다. 550℃이하로 권취시에는 소둔의 효과가 적으며, 850℃이상으로 소둔시에는 과다한 표면산화로 인하여 산세가 어려워질 수 있다. 권취후 냉각된 열연판은 산용액에서 산세한 후 냉간압연한다.The hot rolled hot rolled sheet may be wound, and by winding in a temperature range of 550-850 ° C., the hot rolled sheet may be annealed, and thus, fine precipitates may be greatly grown. This is also known as self-annealing. When winding up below 550 ℃, the effect of annealing is less. When annealing above 850 ℃, pickling may be difficult due to excessive surface oxidation. After winding, the cooled hot rolled sheet is pickled in an acid solution and cold rolled.
풀리프로세스로 제조시에는 냉간압연판은 700-1050℃의 온도에서 30초이상 5분이하 동안 연속공정으로 냉연판소둔을 실시하며, 소둔판은 절연피막처리후 수요가로 출하한다. 냉연판소둔시 700℃이하로 소둔하면 재결정이 불충분하며, 1050℃이상으로 소둔하면 표면에 산화층이 발생될 수 있으므로 700-1050℃이상으로 thens하면 표면에 산화층이 발생될 수 있으므로 700-1050℃의 범위로 소둔한다. 또한 소둔시간은 30초 이상, 5분 이하로 소둔한다.When manufactured by the pulley process, the cold rolled sheet is subjected to cold roll annealing in a continuous process for more than 30 seconds at a temperature of 700-1050 ° C for 5 minutes or less, and the annealing plate is shipped at the demand price after insulation coating treatment. When annealing below 700 ℃ in cold rolled annealing, recrystallization is insufficient, and when annealing above 1050 ℃, an oxide layer may be generated on the surface. If thens above 700-1050 ℃, an oxide layer may be generated on the surface. Anneal to range. The annealing time is annealed at 30 seconds or more and 5 minutes or less.
세미프로세스로 제조시에는 냉간압연판은 650-900℃의 온도에서 30초 이상 5분이하 동안 연속공정으로 냉연판소둔을 실시하며, 소둔판은 2-10%의 경압연한후 수요가로 출하하며, 수요가가 필요시에는 절연피막을 할 수 있다. 냉연판소둔시 650℃이하로 소둔하면 재결정이 불충분하며, 900℃이상으로 소둔하면 결정립성장이 과도하여 경압한 후 수요가 가공후 응력제거소둔시에 결정립성장이 불균일하여질 수 있다. 스킨 패스는 1%이하로 실시시 수요가 응력제거소둔시 결정립 성장이 미흡하며, 10%이상시에는 재결정이 발생되어 결정립이 미세하여짐으로 1-10%로 한다.In the case of manufacturing with semi-process, cold rolled sheet is subjected to cold roll annealing in continuous process for more than 30 seconds at less than 30 seconds at the temperature of 650-900 ℃. If the demand is needed, insulating film can be applied. When annealing below 650 ℃ during cold rolling annealing, recrystallization is insufficient, and when annealing above 900 ℃, grain growth may be excessive, resulting in uneven grain growth during stress relief annealing after processing. When the skin pass is less than 1%, the grain growth is insufficient when the stress relief annealing is performed, and when it is 10% or more, recrystallization occurs and the grain size becomes 1-10%.
수요가로 출하된 무방향성 전기강판은 수요가가 원하는 형상으로 타발가공하며, 필요시 타발된 소재를 응력제거소둔할 수 있다. 응력제거소둔은 비산화성 분위기에서 실시하며, 700-850℃의 범위에서 10분 이상 실시할 수 있다.The non-oriented electrical steel sheet shipped at the demand price is punched into the shape desired by the demand, and the stressed material can be stress-annealed if necessary. Stress relief annealing is carried out in a non-oxidizing atmosphere, it can be carried out for 10 minutes or more in the range of 700-850 ℃.
이하 실시예를 통하여 더욱 상세히 설명하기로 한다.It will be described in more detail through the following examples.
(실시예 1)(Example 1)
세미프로세스로 제조된 발명의 강에 대한 예로서, 표 1과 같은 성분을 갖는 강슬라브가 제조되었으며, 강종별 B/N는 발명강가 0.26, 발명강 b는 0.31, 비교강 asms 0.83, 비교강 b는 1.90이었다. 강 슬라브는 1180℃로 가열하고, 통상의 방법으로 2.0mm의 두께로 열간압연하고 표 2와 같이 권취하고 냉각하였다. 냉각된 열연판은 산세하고 냉간압연하고, 소둔후 표 2와 같이 경압연(skin pass) 하였으며, 경압연후의 두께는 0.5mm이었다. 냉연판의 소둔은 수소 20%와 질소 80%의 혼합분위기에서 실시하였으며, 응력제거소둔은 100%의 질소분위기로 하였다. 응력제거소둔은 790℃에서 60분간 가열한 후 노냉하였다. 응력제거된 시료는 자성을 측정하고 결정립 크기도 측정하였다.As an example of the inventive steel produced by the semi-process, steel slabs having the components shown in Table 1 were prepared, steel type B / N is the invention steel 0.26, invention steel b is 0.31, comparative steel asms 0.83, comparative steel b Was 1.90. The steel slabs were heated to 1180 ° C., hot rolled to a thickness of 2.0 mm in a conventional manner, wound and cooled as shown in Table 2. The cooled hot rolled plate was pickled, cold rolled, and subjected to skin pass as shown in Table 2 after annealing, and the thickness after light rolling was 0.5 mm. The annealing of the cold rolled sheet was carried out in a mixed atmosphere of 20% hydrogen and 80% nitrogen, and the stress relief annealing was performed at 100% nitrogen atmosphere. The stress relief annealing was heated at 790 ° C. for 60 minutes and then furnace cooled. The destressed sample was measured for magnetism and grain size.
표 2에서 비교재 1은 소둔온도가 낮았으며, 비교재2는 경압연율이 0.5%로 낮은 것이 원인으로 나타났다. 비교재 3은 소둔온도가 높아서 결정립이 혼립으로 나타났다. 비교재 4와 5는 B/N의 값이 발명의 범위를 초과함으로서 결정립이 작고, 철손이 높은 것으로 판단되었다.In Table 2, the comparative material 1 had a low annealing temperature, and the comparative material 2 was caused by the low rolling ratio of 0.5%. Comparative material 3 was found to be grainy due to the high annealing temperature. Comparative materials 4 and 5 were found to have a small grain size and a high iron loss due to the value of B / N exceeding the range of the invention.
(실시예 2)(Example 2)
풀리프로세스가 제조된 발명의 강에 대한 예로서, 표 3과 같은 성분을 갖는 강슬라브가 제조되었으며, 강종별 B/N는 발명강 c가 0.40, 비교강 c는 1.66이었다. 강슬라브는 1200℃로 가열하고, 통상의 방법으로 2.3mm의 두께로 열간압연하고 표 4와 같이 권취하고 냉각하였다. 냉각된 열연판은 산세하고 냉간압연하여 두께가 0.5mm가 되게 하였다. 냉연판의 소둔은 수소 20%와 질소 80%의 혼합분위기에서 실시하였다. 소둔한 소재는 절연피막처리후 절단하여 자성을 측정하고 결정립 크기도 측정하였다.As an example of the steel of the invention in which the pulley process was manufactured, steel slabs having the components shown in Table 3 were prepared, and steel grades B / N were invention steel c of 0.40 and comparative steel c of 1.66. The steel slabs were heated to 1200 ° C., hot rolled to a thickness of 2.3 mm in a conventional manner, and wound and cooled as shown in Table 4. The cooled hot rolled plate was pickled and cold rolled to a thickness of 0.5 mm. Annealing of the cold rolled plate was carried out in a mixed atmosphere of 20% hydrogen and 80% nitrogen. The annealed material was cut after insulation coating treatment to measure magnetism and grain size.
표 4에서 비교재 6은 소둔온도가 낮았으며, 비교강 c는 B/N의 값이 발명의 범위를 초과함으로서 비교재 6∼8과 같이 조건을 바꾸어도 철손이 높은 것으로 판단되었다.In Table 4, Comparative Material 6 had a low annealing temperature, and Comparative Steel c was determined to have high iron loss even if the conditions were changed as in Comparative Materials 6 to 8 because the value of B / N exceeded the range of the invention.
(W15/50; 50Hz에서 1.5Tesla로 자화했을 때의 발생되는 철손)(W 15/50 ; iron loss when magnetized to 1.5 Tesla at 50 Hz)
(실시예 3)(Example 3)
중량%로 C:0.003%, Si:0.41%, Mn:0.25%, P:0.071%, S:0.001%, Al:0.011%, N:0.0025%, Sn:0.09%, B:0.0010% 및 B/N가 0.4이고, 잔부 Fe 및 기타 불순물로 조성되는 슬라브를 진공용해하고 1150℃로 가열한 후 850℃온도로 마무리 열간압연하고, 800℃의 온도에서 권취 및 냉각하고, 산세후 0.50mm의 두께로 냉간압연하였다. 냉연판은 850℃에서 수소 20%와 질소 80%의 분위기에서 소둔하고, 절단후 790℃에서 60분간 응력제거소둔하고 노냉하였다. 자기적 특성중 철손(W15/50)은 4.31W/kg이었다. 재료의 특성을 시험한 결과 결정립크기는 92μm이었다.By weight% C: 0.003%, Si: 0.41%, Mn: 0.25%, P: 0.071%, S: 0.001%, Al: 0.011%, N: 0.0025%, Sn: 0.09%, B: 0.0010% and B / N is 0.4, the slab composed of the balance Fe and other impurities is vacuum-dissolved, heated to 1150 ° C., then hot rolled to 850 ° C., wound and cooled at a temperature of 800 ° C., and then to a thickness of 0.50 mm after pickling. Cold rolled. The cold rolled sheet was annealed in an atmosphere of 20% hydrogen and 80% nitrogen at 850 ° C., and then de-strained and annealed at 790 ° C. for 60 minutes after cutting. Iron loss (W 15/50 ) among the magnetic properties was 4.31 W / kg. As a result of testing the material, the grain size was 92 m.
상술한 바와 같이, 본 발명에 의하면, 중소형의 모터 및 변압기와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판에 있어서 철손의 함량이 저감되는 효과를 가진다.As described above, according to the present invention, the content of iron loss is reduced in the non-oriented electrical steel sheet used as the iron core of electrical equipment such as small and medium-sized motors and transformers.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0060211A KR100359752B1 (en) | 1998-12-29 | 1998-12-29 | Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0060211A KR100359752B1 (en) | 1998-12-29 | 1998-12-29 | Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000043790A true KR20000043790A (en) | 2000-07-15 |
KR100359752B1 KR100359752B1 (en) | 2003-01-08 |
Family
ID=19567046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1998-0060211A KR100359752B1 (en) | 1998-12-29 | 1998-12-29 | Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100359752B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053769A (en) * | 2001-12-24 | 2003-07-02 | 주식회사 포스코 | A method for manufacturing non-oriented electrical steel sheet with excellent magnetic property |
KR20040026041A (en) * | 2002-09-17 | 2004-03-27 | 주식회사 포스코 | Method for manufacturing the non-oriented electrical steel sheet having low core loss |
KR100957931B1 (en) * | 2002-12-23 | 2010-05-13 | 주식회사 포스코 | Method for manufacturing non-oriented electrical sheets with low core loss |
KR100957939B1 (en) * | 2002-12-24 | 2010-05-13 | 주식회사 포스코 | Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100466176B1 (en) * | 2000-12-27 | 2005-01-13 | 주식회사 포스코 | Method for Manufacturing non-oriented electrical steel sheet having low core loss |
-
1998
- 1998-12-29 KR KR10-1998-0060211A patent/KR100359752B1/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053769A (en) * | 2001-12-24 | 2003-07-02 | 주식회사 포스코 | A method for manufacturing non-oriented electrical steel sheet with excellent magnetic property |
KR20040026041A (en) * | 2002-09-17 | 2004-03-27 | 주식회사 포스코 | Method for manufacturing the non-oriented electrical steel sheet having low core loss |
KR100957931B1 (en) * | 2002-12-23 | 2010-05-13 | 주식회사 포스코 | Method for manufacturing non-oriented electrical sheets with low core loss |
KR100957939B1 (en) * | 2002-12-24 | 2010-05-13 | 주식회사 포스코 | Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR100359752B1 (en) | 2003-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100345706B1 (en) | Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof | |
KR20010028570A (en) | A non-oriented steel sheet with excellent magnetic property and a method for producing it | |
KR100395100B1 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment | |
KR100359752B1 (en) | Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same | |
KR100516458B1 (en) | A non-oriented silicon steel with excellent magnetic property and a method for producing it | |
KR100479991B1 (en) | A method for producing non-oriented silicon steel with low core loss | |
KR100340503B1 (en) | A Method for Manufacturing Non-Oriented Electrical Steel Sheets | |
KR100345701B1 (en) | A Method for Manufacturing Non-Oriented Electrical Steel Sheets | |
JP3357602B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
KR100544584B1 (en) | Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss | |
KR100340548B1 (en) | A method for manufacturing non-oriented silicon steel sheet having superior magnetic property | |
KR100530069B1 (en) | Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing | |
KR100276341B1 (en) | The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating | |
KR100435480B1 (en) | A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property | |
KR100544612B1 (en) | Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property | |
KR100782762B1 (en) | A method for manufacturing non-oriented silicon steel with excellent magnetic property | |
KR100530047B1 (en) | A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it | |
KR100544610B1 (en) | Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss | |
KR100321035B1 (en) | Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment | |
KR100940719B1 (en) | Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing | |
KR100345697B1 (en) | A Method of Manufacturing Hight Permability Oriented Electrical Steel Sheet by Heating its Slab at Low Tempreatures | |
KR100368722B1 (en) | Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method | |
KR19980051154A (en) | Manufacturing method of non-oriented electrical steel sheet excellent in pickling and magnetic properties of hot rolled sheet | |
KR20040055906A (en) | Method for manufacturing non-oriented electrical sheets with low core loss | |
KR100256356B1 (en) | The manufacturing method for non-oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |