KR102772596B1 - Underfill Adhesive Composition - Google Patents
Underfill Adhesive Composition Download PDFInfo
- Publication number
- KR102772596B1 KR102772596B1 KR1020230016494A KR20230016494A KR102772596B1 KR 102772596 B1 KR102772596 B1 KR 102772596B1 KR 1020230016494 A KR1020230016494 A KR 1020230016494A KR 20230016494 A KR20230016494 A KR 20230016494A KR 102772596 B1 KR102772596 B1 KR 102772596B1
- Authority
- KR
- South Korea
- Prior art keywords
- adhesive composition
- underfill adhesive
- spherical silica
- paragraph
- epoxy resin
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 70
- 239000000853 adhesive Substances 0.000 title claims abstract description 64
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 64
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 121
- 239000000945 filler Substances 0.000 claims abstract description 63
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 56
- 239000003822 epoxy resin Substances 0.000 claims abstract description 46
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 46
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 17
- 239000002270 dispersing agent Substances 0.000 claims abstract description 17
- 238000009736 wetting Methods 0.000 claims abstract description 16
- 239000000080 wetting agent Substances 0.000 claims abstract description 15
- 239000003381 stabilizer Substances 0.000 claims abstract description 14
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 239000002518 antifoaming agent Substances 0.000 claims abstract description 11
- 230000004048 modification Effects 0.000 claims description 33
- 238000012986 modification Methods 0.000 claims description 33
- 229920005992 thermoplastic resin Polymers 0.000 claims description 30
- 239000004593 Epoxy Substances 0.000 claims description 24
- 229920001971 elastomer Polymers 0.000 claims description 22
- 239000005060 rubber Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 18
- 239000011258 core-shell material Substances 0.000 claims description 17
- -1 boric acid ester compound Chemical class 0.000 claims description 15
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 9
- 230000001588 bifunctional effect Effects 0.000 claims description 7
- 229920000768 polyamine Polymers 0.000 claims description 4
- UUODQIKUTGWMPT-UHFFFAOYSA-N 2-fluoro-5-(trifluoromethyl)pyridine Chemical compound FC1=CC=C(C(F)(F)F)C=N1 UUODQIKUTGWMPT-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000004327 boric acid Substances 0.000 claims description 3
- 239000013522 chelant Substances 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 2
- 125000003700 epoxy group Chemical group 0.000 claims description 2
- 239000004849 latent hardener Substances 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 30
- 238000012360 testing method Methods 0.000 description 30
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 16
- 229920000459 Nitrile rubber Polymers 0.000 description 16
- 230000009477 glass transition Effects 0.000 description 15
- 239000011342 resin composition Substances 0.000 description 14
- 230000035939 shock Effects 0.000 description 14
- 230000035882 stress Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000008646 thermal stress Effects 0.000 description 9
- 206010040844 Skin exfoliation Diseases 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 8
- 230000009974 thixotropic effect Effects 0.000 description 8
- 101150091203 Acot1 gene Proteins 0.000 description 7
- 102100025854 Acyl-coenzyme A thioesterase 1 Human genes 0.000 description 7
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229920003986 novolac Polymers 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 7
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000005062 Polybutadiene Substances 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920002857 polybutadiene Polymers 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229920009204 Methacrylate-butadiene-styrene Polymers 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- FBHPRUXJQNWTEW-UHFFFAOYSA-N 1-benzyl-2-methylimidazole Chemical compound CC1=NC=CN1CC1=CC=CC=C1 FBHPRUXJQNWTEW-UHFFFAOYSA-N 0.000 description 2
- XZKLXPPYISZJCV-UHFFFAOYSA-N 1-benzyl-2-phenylimidazole Chemical compound C1=CN=C(C=2C=CC=CC=2)N1CC1=CC=CC=C1 XZKLXPPYISZJCV-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000008393 encapsulating agent Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000004843 novolac epoxy resin Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical compound C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- LLEASVZEQBICSN-UHFFFAOYSA-N 2-undecyl-1h-imidazole Chemical compound CCCCCCCCCCCC1=NC=CN1 LLEASVZEQBICSN-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- 241001466538 Gymnogyps Species 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- LKAVYBZHOYOUSX-UHFFFAOYSA-N buta-1,3-diene;2-methylprop-2-enoic acid;styrene Chemical compound C=CC=C.CC(=C)C(O)=O.C=CC1=CC=CC=C1 LKAVYBZHOYOUSX-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/5006—Amines aliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/08—Macromolecular additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Abstract
본 발명은 제1 에폭시 수지 13~21중량%; 제2 에폭시 수지 5~15중량%; 잠재성 경화제 2~10중량%; 마이크로 구형 실리카 필러 24~48중량%; 나노 구형 실리카 필러 12~36중량%; 안정제 0.05~0.5중량%; 습윤 분산제 0.5~5.0중량%; 실란커플링제 0.1~1.0중량%; 및 소포제 0.1~1.0중량%가 포함된 언더필 접착제 조성물에 관한 것이다.The present invention relates to an underfill adhesive composition comprising: 13 to 21 wt% of a first epoxy resin; 5 to 15 wt% of a second epoxy resin; 2 to 10 wt% of a latent curing agent; 24 to 48 wt% of a micro-spherical silica filler; 12 to 36 wt% of a nano-spherical silica filler; 0.05 to 0.5 wt% of a stabilizer; 0.5 to 5.0 wt% of a wetting and dispersing agent; 0.1 to 1.0 wt% of a silane coupling agent; and 0.1 to 1.0 wt% of a defoaming agent.
Description
본 발명은 언더필 접착제에 관한 것으로, 보다 자세하게는 분말 구형 실리카 필러 및 추가로 코어 쉘 고무(CSR: Core Shell Rubber) 수지를 포함하는 언더필 접착제 조성물에 관한 것이다.The present invention relates to an underfill adhesive, and more particularly, to an underfill adhesive composition comprising a powder spherical silica filler and additionally a core shell rubber (CSR) resin.
언더필 접착제는 와이어 본딩(Wire Bonding), 플립 칩 본딩(Flip Chip Bonding)등으로 분류될 수있다. 와이어 본딩(Wire Bonding)은 여러 가지 비효율적인 문제점을 가지고 있어 이러한 문제점을 극복하기 위해 플립 칩 본딩(Flip Chip Bonding) 방식을 이용되고 있으며, 플립 칩 본딩(Flip Chip Bonding)방식으로는 솔더볼 또는 범프(Bump)가 형성된 칩을 뒤집어 플립(Flip) 표면이 기판방향을 향하도록 실장하는 방식(대한민국 공개특허 제10-2009-0106784)이 있다. 반도체 패키징 중에서 가장 작은 형태를 구현할 수 있는 방법이다.Underfill adhesives can be classified into wire bonding, flip chip bonding, etc. Wire bonding has various inefficient problems, so the flip chip bonding method is used to overcome these problems. The flip chip bonding method is a method in which a chip with solder balls or bumps formed is flipped over and mounted so that the flip surface faces the substrate (Korean Patent Publication No. 10-2009-0106784). This is a method that can implement the smallest form among semiconductor packaging.
상기 플립칩 과정에서 솔더 범프와 패드와의 접착 신뢰성 등이 약해지는 문제점이 발생한다. 이런 문제점을 해결하기 위해 기판과 칩 사이의 공간에 언더필 에폭시 수지를 사용하여 접착 신뢰성 문제를 보완한다.In the above flip chip process, there is a problem that the bonding reliability between the solder bump and the pad becomes weak. To solve this problem, an underfill epoxy resin is used in the space between the substrate and the chip to supplement the bonding reliability problem.
플립칩 언더필에는 필러(Filler)가 포함되어 있는데, 상기 필러는 재료의 열팽창계수(Coefficient of Thermal Expansion, CTE)을 낮추어 기판과 칩 사이의 CTE불일치(Misamatch)를 낮춤으로써 기계적 응력을 감소시키는 기능을 가지고 있어 필수적으로 사용을 해야한다.Flip chip underfill contains filler, which has the function of reducing mechanical stress by lowering the coefficient of thermal expansion (CTE) of the material and thus reducing the CTE mismatch between the substrate and the chip, and therefore must be used.
액상 봉지재에 의해 봉지한 부위의 내습성 및 내열 사이클성을 향상 시키기 위해서는 실리카 필러와 같은 무기 물질로 이루어지는 충전재(필러)를 액상 봉지재에 첨가함으로써 기판과 반도체 소자의 열팽창계수 차의 컨트롤을 행하는 방법과 범프 전극을 보강하는 것이 유효한 것으로 알려져 있다(일본 공개특허 평10-1731103호 공보).In order to improve the moisture resistance and heat cycle resistance of a portion sealed with a liquid encapsulating agent, it is known that a method of controlling the difference in thermal expansion coefficient between a substrate and a semiconductor element by adding a filler made of an inorganic material such as a silica filler to the liquid encapsulating agent and reinforcing a bump electrode is effective (Japanese Patent Laid-Open No. 10-1731103).
플립칩형 반도체 장치에 있어서는 Low-K층의 미세화, 땜납 범프의 납 프리화, 열 응력에 의한 Low-K층의 파괴, 땜납 범프 크랙 발생을 방지하기 위해 저열팽창화(CTE(Coefficient of Thermal Expansion))가 요구된다.In flip-chip semiconductor devices, low thermal expansion (CTE (Coefficient of Thermal Expansion)) is required to prevent miniaturization of the Low-K layer, lead-free solder bumps, destruction of the Low-K layer due to thermal stress, and cracking of solder bumps.
액상 봉지재의 CTE(Coefficient of Thermal Expansion)를 낮추는 방법으로 필러의 고충전화(필러의 충전율을 높이는 것)가 필수인데, 필러의 충전율 상승과 같이 점도도 증가하게 되어 반도체 소자와 기판 사이의 갭으로의 주입성이 저하된다.In order to lower the CTE (Coefficient of Thermal Expansion) of a liquid encapsulating material, it is essential to increase the filling rate of the filler (increase the filling rate of the filler). However, as the filling rate of the filler increases, the viscosity also increases, which reduces the injectability into the gap between the semiconductor element and the substrate.
한편, 필러의 충전율이 상승함에 따라 브리틀한 성질은 상승하게 되며, 브리틀한 성질이 상승함에 따라 파괴인성은 낮아진다. 또한 필러의 충전율 상승으로 열 응력은 완화시키지만, 접착제 조성물 자체의 응력은 완화시키지 못한다.Meanwhile, as the filling ratio of the filler increases, the brittle property increases, and as the brittle property increases, the fracture toughness decreases. In addition, although the thermal stress is alleviated as the filling ratio of the filler increases, the stress of the adhesive composition itself is not alleviated.
접착제 조성물 자체의 응력을 완화시키지 못하면 접착제 조성물 자체의 크랙이 발생 하게 되고, 접착제 조성물 자체의 브리틀한 성질, 응력을 보완 하기 위해 개질용 열가소성 수지를 사용 해야만 한다.If the stress of the adhesive composition itself is not relieved, cracks will occur in the adhesive composition itself, and a thermoplastic resin for modification must be used to supplement the brittle nature and stress of the adhesive composition itself.
본 발명은 종래기술의 문제점을 해결하고자 한 것으로, 반도체 소자와 기판 사이의 주입성이 저하되지 않도록 낮은 점도와 낮은 요변성(Thixotropic)을 유지하면서 필러의 충전율 상승으로 열팽창 계수 CTE(Coefficient of Thermal Expansion)를 낮춤으로 기판과 칩 사이의 열 응력 감소, 작업성 및 주입성을 함께 실현될 수 있으며, 열 응력에 의한 땜납 범프 크랙 발생을 방지 시키는데 목적이 있다. The present invention is intended to solve the problems of the prior art, and to reduce thermal stress between the substrate and the chip, and to realize workability and injectability at the same time by lowering the coefficient of thermal expansion (CTE) by increasing the filling rate of the filler while maintaining low viscosity and low thixotropy so that the injectability between the semiconductor element and the substrate is not reduced, and to prevent the occurrence of solder bump cracks due to thermal stress.
또한 본 발명은 필러의 충전율 상승으로 인한 접착제 자체의 브리틀(brittle)한 성질과, 접착제 조성물 자체의 응력을 완화시키는 효과로 접착제 조성물 자체의 크랙 발생을 방지 하는데 목적이 있다.In addition, the present invention aims to prevent cracks from occurring in the adhesive composition itself by using the brittle nature of the adhesive itself due to an increase in the filling ratio of the filler and the effect of relieving the stress of the adhesive composition itself.
상기와 같은 문제점을 해결하기 위해 본 발명은 제1 에폭시 수지 13~21중량%; 제2 에폭시 수지 5~15중량%; 잠재성 경화제 2~10중량%; 마이크로 구형 실리카 필러 24~48중량%; 나노 구형 실리카 필러 12~36중량%; 안정제 0.05~0.5중량%; 습윤 분산제 0.5~5.0중량%; 실란커플링제 0.1~1.0중량%; 및 소포제 0.1~1.0중량%가 포함된 언더필 접착제 조성물을 제공한다. In order to solve the above problems, the present invention provides an underfill adhesive composition comprising: 13 to 21 wt% of a first epoxy resin; 5 to 15 wt% of a second epoxy resin; 2 to 10 wt% of a latent curing agent; 24 to 48 wt% of a micro-spherical silica filler; 12 to 36 wt% of a nano-spherical silica filler; 0.05 to 0.5 wt% of a stabilizer; 0.5 to 5.0 wt% of a wetting and dispersing agent; 0.1 to 1.0 wt% of a silane coupling agent; and 0.1 to 1.0 wt% of an antifoaming agent.
또한 본 발명은 상기 언더필 접착제 조성물에 추가로 개질용 열가소성 수지 5~15중량%가 더 포함된 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition further comprising 5 to 15 wt% of a thermoplastic resin for modification in addition to the above underfill adhesive composition.
또한 본 발명인 상기 제1 에폭시 수지는 에폭시 당량이 155~160g/eq, 점도가 1,000~2,000 cps, 2관능 비스페놀 F형인 것을 특징으로 하는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition, wherein the first epoxy resin has an epoxy equivalent of 155 to 160 g/eq, a viscosity of 1,000 to 2,000 cps, and is a bifunctional bisphenol F type.
또한 본 발명인 상기 제2 에폭시 수지는 에폭시 당량이 120~140g/eq, 점도가 300~1,000 cps, 2관능 레조르시놀 디글리시딜 에테르인 것을 특징으로 하는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition, wherein the second epoxy resin has an epoxy equivalent of 120 to 140 g/eq, a viscosity of 300 to 1,000 cps, and is a bifunctional resorcinol diglycidyl ether.
또한 본 발명인 상기 잠재성 경화제는 20~25℃에서 고체이며, 변성된 지방족 폴리아민인 것을 특징으로 하는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition characterized in that the latent curing agent is solid at 20 to 25°C and is a modified aliphatic polyamine.
또한 본 발명인 상기 마이크로 구형 실리카 필러는 입자의 직경 1~30um, 비표면적 1.0~5.0m2/g인 것을 특징으로 하는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition characterized in that the micro spherical silica filler has a particle diameter of 1 to 30 um and a specific surface area of 1.0 to 5.0 m2/g.
또한 본 발명인 상기 나노 구형 실리카 필러는 입자의 직경 100~900nm, 비표면적 5~30 m2/g인 것을 특징으로 하는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition characterized in that the nano spherical silica filler has a particle diameter of 100 to 900 nm and a specific surface area of 5 to 30 m2/g.
또한 본 발명인 상기 안정제는 바리브투르산, 붕산에스테르 화합물, 알루미늄, 킬레이트 중 적어도 어느 하나인 것을 특징으로 하는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition characterized in that the stabilizer is at least one of barybuturic acid, a boric acid ester compound, aluminum, and a chelate.
또한 본 발명인 상기 습윤분산제는 고형분(NON-VOLATILE MATTER) 99%이상인 것을 특징으로 하는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition characterized in that the wetting and dispersing agent has a solid content (NON-VOLATILE MATTER) of 99% or more.
또한 본 발명인 상기 실란커플링제는 비닐기(Vinyl), 에폭시기(Epoxy), 아미노기(Amino), 아크릴기(Acryloxy) 중 적어도 1개 이상의 혼합인 것을 특징이 있는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition characterized in that the silane coupling agent is a mixture of at least one of a vinyl group, an epoxy group, an amino group, and an acryloxy group.
또한 본 발명인 상기 개질용 열가소성 수지는 점도가 5,000~8,000cps, 입자 크기가 50~150nm로 되어있는 코어 쉘 고무(CSR: Core Shell Rubber)인 것를 특징으로 하는 언더필 접착제 조성물을 제공한다.In addition, the present invention provides an underfill adhesive composition characterized in that the thermoplastic resin for modification is a core shell rubber (CSR) having a viscosity of 5,000 to 8,000 cps and a particle size of 50 to 150 nm.
본 발명의 접착제 조성물은 미세 분말 구형 실리카 필러를 이용하여 낮은 점도와 낮은 요변성(Thixotropic)을 유지하여 작업성과 주입성을 개선할수 있으며, 필러의 충전율 상승으로 열팽창계수CTE(Coefficient of Thermal Expansion)를 낮춤으로 기판과 칩 사이의 열 응력감소 향상으로 의한 땜납 범프 크랙발생을 방지할 수 있다.The adhesive composition of the present invention can improve workability and injection property by maintaining low viscosity and low thixotropy by using fine powder spherical silica filler, and can prevent solder bump cracking by reducing thermal stress between a substrate and a chip by lowering the coefficient of thermal expansion (CTE) by increasing the filling ratio of the filler.
또한 본 발명은 개질용 열가소성 수지로 코어 쉘 고무(CSR: Core Shell Rubber)를 이용하여 필러의 충전율 상승으로 인한 접착제 조성물 자체의 브리틀한 성질과 파괴인성을 완화시켜주며, 접착제 조성물 자체의 응력을 완화시키는 효과로 접착제 조성물 자체의 크랙 발생을 방지할 수 있다.In addition, the present invention uses core shell rubber (CSR) as a thermoplastic resin for modification to alleviate the brittle nature and fracture toughness of the adhesive composition itself due to an increase in the filling ratio of the filler, and can prevent the occurrence of cracks in the adhesive composition itself due to the effect of alleviating the stress of the adhesive composition itself.
이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 우선, 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, a preferred embodiment of the present invention will be described in detail. First, in describing the present invention, a specific description of related known functions or configurations is omitted in order to avoid obscuring the gist of the present invention.
본 명세서에서 사용되는 정도의 용어 '약', '실질적으로' 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.The terms “about,” “substantially,” and the like used in this specification are used in a meaning that is at or close to the numerical value when manufacturing and material tolerances inherent in the meanings mentioned are presented, and are used to prevent unscrupulous infringers from unfairly utilizing the disclosure in which exact or absolute numerical values are mentioned to aid understanding of the present invention.
본 발명의 언더필 접착제 조성물은, 제1 에폭시 수지 13~21중량%; 제2 에폭시 수지 5~15중량%; 잠재성 경화제 2~10중량%; 마이크로 구형 실리카 필러 24~48중량%; 나노 구형 실리카 필러 12~36중량%; 안정제 0.05~0.5중량%; 습윤 분산제 0.5~5.0중량%; 실란커플링제 0.1~1.0중량%; 및 소포제 0.1~1.0중량%;가 포함된 것을 특징으로 한다. The underfill adhesive composition of the present invention is characterized by containing: 13 to 21 wt% of a first epoxy resin; 5 to 15 wt% of a second epoxy resin; 2 to 10 wt% of a latent curing agent; 24 to 48 wt% of a micro-spherical silica filler; 12 to 36 wt% of a nano-spherical silica filler; 0.05 to 0.5 wt% of a stabilizer; 0.5 to 5.0 wt% of a wetting and dispersing agent; 0.1 to 1.0 wt% of a silane coupling agent; and 0.1 to 1.0 wt% of a defoaming agent.
여기에, 추가로 개질용 열가소성 수지 5~15중량%가 더 포함된 것도 해당된다. This also applies to those containing an additional 5 to 15 wt% of a thermoplastic resin for modification.
이하 상기 조성물에 대해 구체적으로 설명한다.The above composition is described in detail below.
1. 제1 에폭시 수지1. First epoxy resin
제1 에폭시 수지는 일반적으로 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 페놀 노볼락 에폭시 수지, 크레졸 노볼락 에폭시 수지, 아미노에폭시 수지, 지환족 에폭시 등의 수지를 단독으로 사용할 수도 있고, 2종 이상을 조합하여 사용할 수도 있다. The first epoxy resin may be a single type of resin, such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, amino epoxy resin, or alicyclic epoxy resin, or two or more types may be used in combination.
비스페놀 A형 에폭시 수지는 에폭시 당량이 150~400 g/eq인 것이 바람직하며, 상업적으로 시판되는 제품들의 예로는 국도(KUKDO)화학의 YD-128, YD-134, YD-136, KDS-8128, YD-113, YD-114, YD-127, YD-115, ADEKA 社의 EP-4300E, EP-4000S, EP-4010S, DIC 社의 EPICLON 840, EPICLON 850, Huntsman 社의 EPON825, EPON826, EPON828, EPON830, Trahem 社의 EPALLOY-7192 등이 있다. Bisphenol A type epoxy resin is preferably one having an epoxy equivalent of 150 to 400 g/eq, and examples of commercially available products include YD-128, YD-134, YD-136, KDS-8128, YD-113, YD-114, YD-127, YD-115 all from KUKDO Chemical, EP-4300E, EP-4000S, EP-4010S all from ADEKA, EPICLON 840, EPICLON 850 all from DIC, EPON825, EPON826, EPON828, EPON830 all from Huntsman, and EPALLOY-7192 all from Trahem.
비스페놀 F형 에폭시 수지는 에폭시 당량이 150~400g/eq인 것이 바람직하며, 상업적으로 시판되는 제품들의 예로는 국도(KUKDO)화학의 YDF-165, YDF-170, YDF-1020, KDS-8170, YDF-151, YDF-175, YDF-2001, YDF-2004, ADEKA 社의 EP-4901E, DIC 社의 EPICLON 830, EPICLON 830-S, EPICLON 835, EPICLON 835LV, Dow chemical 社의 DER354 등이 있다. 바람직하게는 2관능 비스페놀 F형으로 에폭시 당량이 155~160g/eq, 점도가 1,000~2,000cps인 특징이 있다. Bisphenol F type epoxy resins are preferably those having an epoxy equivalent of 150 to 400 g/eq, and examples of commercially available products include YDF-165, YDF-170, YDF-1020, KDS-8170, YDF-151, YDF-175, YDF-2001, YDF-2004 from Kukdo Chemical, EP-4901E from ADEKA, EPICLON 830, EPICLON 830-S, EPICLON 835, EPICLON 835LV from DIC, and DER354 from Dow Chemical. Preferably, they are difunctional bisphenol F type and have the characteristics of an epoxy equivalent of 155 to 160 g/eq and a viscosity of 1,000 to 2,000 cps.
노볼락 수지는 페놀 노볼락 수지와 크레졸 노볼락 수지가 있다. 페놀 유사체인 페놀 노볼락 에폭시는 당량이 160~200g/eq 인 것이 바람직하며, 상업적으로 시판되는 제품들의 예로는 국도(KUKDO)화학의 YDPN-628, YDPN-631, YDPN-638, DIC 社의 EPICLON N-740, EPICLON N-770, EPICLON N-775, EPICLON N-865 등이 있다. Novolac resins include phenol novolac resins and cresol novolac resins. Phenol novolac epoxy, a phenol analogue, is preferably used with an equivalent weight of 160 to 200 g/eq, and examples of commercially available products include YDPN-628, YDPN-631, YDPN-638 from Kukdo Chemical, and EPICLON N-740, EPICLON N-770, EPICLON N-775, EPICLON N-865 from DIC.
크레졸 유사체인 페놀 노볼락 에폭시는 당량이 190~220 g/eq 인 것이 바람직하며, 상업적으로 시판되는 제품들의 예로는 국도(KUKDO)화학의 YDCN-500-1P, YDCN-500-4P, YDCN-500-5P, YDCN-500-7P, YDCN-500-8P, YDCN-500-10P, DIC 社의 EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-695 등이 있다. The phenol novolac epoxy, which is a cresol analogue, preferably has an equivalent weight of 190 to 220 g/eq, and examples of commercially available products include YDCN-500-1P, YDCN-500-4P, YDCN-500-5P, YDCN-500-7P, YDCN-500-8P, YDCN-500-10P from Kukdo Chemical, and EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-695 from DIC.
그 외, 아미노 에폭시의 경우, 에폭시 당량이 95g/eq 이며, ADEKA 社의 EP-3950S, EP-3950L 등이 있다. In addition, for amino epoxy, the epoxy equivalent is 95g/eq, and there are ADEKA's EP-3950S and EP-3950L, etc.
지환족 에폭시 수지는 에폭시 당량이 120~220g/eq 이며, DAICEL 社의 CELLOXIDE 2021P, CELLOXIDE 2081, CELLOXIDE 2000, EHPE 3150, EPOLEAD GT401, TRAHEM 社의 EPALLOY-5000, EPALLOY-5200 등이 있다. Alicyclic epoxy resins have an epoxy equivalent of 120 to 220 g/eq, and include CELLOXIDE 2021P, CELLOXIDE 2081, CELLOXIDE 2000, EHPE 3150, EPOLEAD GT401 from DAICEL, and EPALLOY-5000 and EPALLOY-5200 from TRAHEM.
2. 제2 에폭시 수지2. Second epoxy resin
제2 에폭시 수지는 레조르시놀 에폭시 수지, 변성 페놀 노블락 레조르시놀 에폭시 수지 등의 수지를 단독으로 사용할 수도 있고, 2종 이상을 조합하여 사용 할 수도 있다.The second epoxy resin may be a single resin, such as a resorcinol epoxy resin or a modified phenol novolac resorcinol epoxy resin, or may be used in combination of two or more types.
바람직하게는 2관능 레조르시놀 디글리시딜 에테르이며 에폭시 당량이 120~140g/eq, 점도가 300~1,000cps인 것으로 상업적으로 시판되는 제품들의 예로는 신아티앤씨(SHIN-A)의 TRD-130, SEV-5765 등이 있다.Preferably, it is a bifunctional resorcinol diglycidyl ether, and examples of commercially available products having an epoxy equivalent of 120 to 140 g/eq and a viscosity of 300 to 1,000 cps include TRD-130 and SEV-5765 from SHIN-A.
변성 페놀 노블락 레조르시놀 에폭시 수지는 에폭시 당량이 120~170 g/eq인 것이 바람직하며, 상업적으로 시판되는 제품들의 예로는 TRAHEM 社의 ERISYS-RF50, ERISYS-RN25, ERISYS-RN3650 등이 있다.The modified phenol novolac resorcinol epoxy resin preferably has an epoxy equivalent of 120 to 170 g/eq, and examples of commercially available products include ERISYS-RF50, ERISYS-RN25, and ERISYS-RN3650 from TRAHEM.
3. 잠재성 경화제3. Potential hardener
잠재성 경화제는 상온에서는 고체이며, 가열하면 활성화되는 화합물이다. 대표적인 예로는 아민 화합물 또는 이미다졸 화합물과 에폭시 화합물의 반응 생성물 등이 있다. Latent curing agents are compounds that are solid at room temperature and become activated when heated. Representative examples include reaction products of amine compounds or imidazole compounds with epoxy compounds.
상온에서 고체인 이미다졸 화합물의 구체적인 예와 상업적으로 시판되는 제품들의 예로는 신코쿠(SHIKOKU) 社의 2-메틸 이미다졸(2ㅡMZ-H), 2-언데실 이미다졸(C11Z), 2-헵타데실 이미다졸(C17Z), 2-에틸-4메틸 이미다졸(2E4MZ), 2-페닐 이미다졸(2PZ, 2PZ-PW), 2-페닐-4-메틸 이미다졸(2P4MZ), 1-벤질-2메틸 이미다졸(1B2MZ), 1-벤질-2-페닐 이미다졸(1B2PZ), 1H 이미다졸(SIZ), P-0505, 후지(FUJI)社 FXR-1020, 아데카(ADEKA)社의 EH-5011S 등을 사용할 수 있다.Specific examples of imidazole compounds which are solid at room temperature and examples of commercially available products include 2-methyl imidazole (2-MZ-H), 2-undecyl imidazole (C11Z), 2-heptadecyl imidazole (C17Z), 2-ethyl-4-methyl imidazole (2E4MZ), 2-phenyl imidazole (2PZ, 2PZ-PW), 2-phenyl-4-methyl imidazole (2P4MZ), 1-benzyl-2-methyl imidazole (1B2MZ), 1-benzyl-2-phenyl imidazole (1B2PZ), 1H imidazole (SIZ), P-0505 from SHIKOKU, FXR-1020 from FUJI, and EH-5011S from ADEKA.
아민 화합물과 에폭시 화합물의 반응 생성물인 변성된 지방족 폴리아민으로 상업적으로 시판되는 제품들의 예로는 후지(FUJI) 社의 FXR-1081, FXR-1030, 아지노모토 인코포레이션(AJINOMOTO INC.) 社의 PN-23, PN-H, PN-31, PN-40, PN-23J, PN-31J, PN-40J, MY-23, MY-24, MY-H, MY-HK, 아데카(ADEKA) 社의 EH-3731S, EH-4360S, EH-4370S, EH-4357S 등을 사용할 수 있다.Examples of commercially available products which are modified aliphatic polyamines which are reaction products of amine compounds and epoxy compounds include FXR-1081, FXR-1030 from FUJI, PN-23, PN-H, PN-31, PN-40, PN-23J, PN-31J, PN-40J, MY-23, MY-24, MY-H, MY-HK from AJINOMOTO INC., and EH-3731S, EH-4360S, EH-4370S, EH-4357S from ADEKA.
4. 마이크로 구형 실리카 필러4. Micro spherical silica filler
마이크로 구형 실리카 필러는 상업적으로 시판되는 업체로는 덴카(DENKA) 社의 FB-7SDC, FB-5SDC, FB-3SDC, FB-7SDX, FB-5SDX, FB-3SDX, FB-302X, FB-100X, FB-105X, FB-940X, FB-945X, FB-950X, 아드마테크(ADMATECH) 社의 SO-C4, SO-C5, SO-C6, SO-E4, SO-E5, 토쿠야마(TOKUYAMA) 社의 SE-8, SE-15, SE-30, SE-40, SE-15K, SE-30K, SE-40C, UF-305, UF-310, UF-320, UF-345, UF-725 등이 있다. Commercially available micro-spherical silica fillers include FB-7SDC, FB-5SDC, FB-3SDC, FB-7SDX, FB-5SDX, FB-3SDX, FB-302X, FB-100X, FB-105X, FB-940X, FB-945X, FB-950X from DENKA, SO-C4, SO-C5, SO-C6, SO-E4, SO-E5 from ADMATECH, and SE-8, SE-15, SE-30, SE-40, SE-15K, SE-30K, SE-40C, UF-305, UF-310, UF-320, UF-345, UF-725 from TOKUYAMA.
마이크로 구형 실리카 필러는 실란 커플링제 표면 처리 구형 실리카 필러와 표면 미처리 구형 실리카 필러로 구분할 수 있으며, 2가지를 혼합하여 사용할 수도 있으나, 본 발명에서는 표면 미처리 구형 실리카 필러를 사용한다. Micro spherical silica fillers can be classified into surface-treated spherical silica fillers and surface-untreated spherical silica fillers using a silane coupling agent. The two can also be used in a mixture, but the present invention uses surface-untreated spherical silica fillers.
마이크로 구형 실리카 필러 입자의 평균입자크기는 1 내지 30um일 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 2um~10um이며, 최대 입자크기는 30um을 초과하면 안된다. The average particle size of the micro spherical silica filler particles may be, but is not limited to, 1 to 30 um. Preferably, it is 2 to 10 um, and the maximum particle size should not exceed 30 um.
마이크로 구형 실리카 필러의 비표면적은 1~5m2/g인 것이 바람직하고, 1~2m2/g 인 것이 보다 더 바람직하다. The specific surface area of the micro spherical silica filler is preferably 1 to 5 m 2 /g, and more preferably 1 to 2 m 2 /g.
5. 나노 구형 실리카 필러5. Nano spherical silica filler
나노 구형 실리카 필러는 상업적으로 시판되는 업체로 덴카(DENKA) 社의 UFP-30M, SFP-20M, SFP-30M, SFP-130MC, 아드마테크(ADMATECH) 社의 SO-C1, SO-E1, SO-C2, SO-E2 등이 있다.Nano spherical silica fillers are commercially available from companies such as DENKA's UFP-30M, SFP-20M, SFP-30M, SFP-130MC, and ADMATECH's SO-C1, SO-E1, SO-C2, SO-E2.
나노 구형 실리카 필러 입자의 평균입자크기는 100(0.1um) 내지 900 nm(0.9um)일 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 400nm(0.4um)~600nm(0.6um)이며, 최대 입자크기는 900nm(0.9um)을 초과하면 안된다.The average particle size of the nano spherical silica filler particles may be, but is not limited to, 100 (0.1 um) to 900 nm (0.9 um). Preferably, it is 400 nm (0.4 um) to 600 nm (0.6 um), and the maximum particle size should not exceed 900 nm (0.9 um).
나노 구형 실리카 필러의 비표면적은 5~30m2/g 인 것이 바람직하고, 5~15m2/g 인 것이 보다 더 바람직하다The specific surface area of the nano spherical silica filler is preferably 5 to 30 m 2 /g, and more preferably 5 to 15 m 2 /g.
나노 구형 실리카 필러의 함량은 12~36중량%가 바람직하며, 18~24중량%인 것이 더 바람직하다. 여기서 함량은 접착제 조성물 총 중량(100중량%)에 대한 것이다. 나노 구형 실리카 필러의 함량이 12중량% 미만이면 요변성 (Thixotropic)이 부족할 수 있고, 36중량% 초과하면 점도가 상승하여 작업성 및 주입성이 나빠질 수 있다.The content of the nano spherical silica filler is preferably 12 to 36 wt%, more preferably 18 to 24 wt%. Here, the content is based on the total weight of the adhesive composition (100 wt%). If the content of the nano spherical silica filler is less than 12 wt%, thixotropy may be insufficient, and if it exceeds 36 wt%, viscosity may increase, deteriorating workability and injectability.
6. 안정제6. Stabilizer
안정제는 상온(25℃)에서 저장 안정성을 향상시킬 수 있는 물질이다. 바르비투르산, 붕산에스테르 화합물, 알루미늄 킬레이트 등으로 사용가능하며, 적어도 1개이상, 또는 2가지를 혼합하여 사용해야 상온(25℃)에서의 저장 안정성을 향상시킬 수 있다. A stabilizer is a substance that can improve storage stability at room temperature (25℃). Barbituric acid, boric acid ester compound, aluminum chelate, etc. can be used, and at least one or a mixture of two can be used to improve storage stability at room temperature (25℃).
7. 습윤분산제7. Wetting Dispersant
습윤분산제는 고체의 습윤성을 향상시키고 무기 필러의 응집되는 입자를 방지하며, 분산효율성을 향상 시킬 수 있는 첨가제이다. A wetting and dispersing agent is an additive that can improve the wettability of a solid, prevent the agglomeration of inorganic filler particles, and improve dispersion efficiency.
상업적으로 시판되는 업체로는 BYK 社의 DISPERBYK-111, BYK-2152, BYK-9077, BYK-9076, DISPERBYK-102, DISPERBYK-103, DISPERBYK-107, DISPERBYK-108, DISPERBYK-109, DISPERBYK-110, DISPERBYK-170, DISPERBYK-171, DISPERBYK-2150, DISPERBYK-2155, DISPERBYK-2164, DISPERBYK-2200 등이 있다.Commercially available ones include BYK's DISPERBYK-111, BYK-2152, BYK-9077, BYK-9076, DISPERBYK-102, DISPERBYK-103, DISPERBYK-107, DISPERBYK-108, DISPERBYK-109, DISPERBYK-110, DISPERBYK-170, DISPERBYK-171, DISPERBYK-2150, DISPERBYK-2155, DISPERBYK-2164, and DISPERBYK-2200.
습윤분산제는 아민가(Amine Value), 산가(Acid Value), 고형분(Non-Volatile Matter)%로 구분되고 있으며, 고형분(Non-Volatile Matter) 99%이상인 높은 습윤분산제인 것이 보다 더 바람직하다.Wetting and dispersing agents are classified by amine value, acid value, and non-volatile matter %, and a high wetting and dispersing agent with a non-volatile matter content of 99% or higher is more preferable.
8. 실란커플링제8. Silane coupling agent
실란커플링제는 유기질 재료와 무기질 재료를 이어주는 중개 역할 로서의 기능을 가지고 있으며, 무기 필러의 분산 효율성, 복합재료의 기계적 강도와 접착성을 향상시킬 수 있는 첨가제이다.Silane coupling agents function as mediators connecting organic and inorganic materials, and are additives that can improve the dispersion efficiency of inorganic fillers and the mechanical strength and adhesiveness of composite materials.
상업적으로 시판되는 업체로는 신에츠(SHINETSU) 社의 KBM-1003, KBE-1003, KBM-303, KBM-402, KBM-403, KBE-402, KEB-403, KBM-5103, KBM-602, KBM-603, KBM-903, KBE-903, KBE-913P, KBM-573, KBM-575 등이 있다.Commercially available ones include KBM-1003, KBE-1003, KBM-303, KBM-402, KBM-403, KBE-402, KEB-403, KBM-5103, KBM-602, KBM-603, KBM-903, KBE-903, KBE-913P, KBM-573, and KBM-575 from Shin-Etsu.
실란커플링제는 비닐기(Vinyl), 에폭시기(Epoxy), 아미노기(Amino), 아크릴기(Acryloxy), 등으로 사용 가능하며, 적어도 1개이상, 또는 2가지를 혼합하여 사용 가능하나, 본 발명에서는 에폭시기(Epoxy) 실란커플링제를 사용한다.Silane coupling agents can be used with vinyl, epoxy, amino, acryloxy, etc., and at least one or a mixture of two can be used. However, in the present invention, an epoxy silane coupling agent is used.
9. 소포제9. Parcel delivery
소포제는 기포와 거품 발생을 사전에 방지하는 기능을 가지고 있으며, 여러 가지 물질이 혼합되고 점도가 높을 경우에는 기포가 도막이 건조되기 전에 소멸되지 않고 도막 표면에 남아있는 도막의 불량 현상을 사전에 방지 및, 해결 할 수 있다.The antifoaming agent has the function of preventing the generation of bubbles and foam in advance, and when various substances are mixed and the viscosity is high, it can prevent and resolve the phenomenon of poor coating quality in advance where bubbles do not disappear before the coating dries and remain on the surface of the coating.
상업적으로 시판되는 업체로는 BYK 社의 BYK-085, BYK-1790, BYK-1791, BYK-1794, BYK-054, BYK-055, BYK-057, BYK-A535, BYK-A501, BYK-A560, BYK-015, BYK-017, BYK-022, BYK-037 등이 있다.Commercially available brands include BYK's BYK-085, BYK-1790, BYK-1791, BYK-1794, BYK-054, BYK-055, BYK-057, BYK-A535, BYK-A501, BYK-A560, BYK-015, BYK-017, BYK-022, and BYK-037.
소포제는 실리콘계와 비실리콘계를 사용 가능하며, 적어도 1개이상, 또는 2가지를 혼합하여 사용 가능하나, 본 발명에서는 실리콘계를 사용 한다. The foaming agent can be either silicone-based or non-silicon-based, and at least one or a mixture of two types can be used. However, the present invention uses silicone-based foaming agent.
10. 개질용 열가소성 수지10. Thermoplastic resin for modification
개질용 열가소성 수지는 코어 쉘 고무(CSR: Core Shell Rubber) 이며, 폴리부타디엔(Polybutadiene,PBD), 아크릴릭에스터(Acrylic Ester), 스티렌 부타디엔 고무(Styrene Butadiene Rubber) 중에서 1종 또는 2종 이상으로 코어(Core)가 형성되고, The thermoplastic resin for modification is core shell rubber (CSR), and the core is formed of one or more types of polybutadiene (PBD), acrylic ester, and styrene butadiene rubber.
스타이렌(Styrene), 아크릴릭에스터(Acrylic Ester), 메틸 메타이크릴(MethyMethacrylate) 중에서 1종 또는 2종 이상으로 쉘(Shell)이 공중합체로 이뤄질 수 있으나, The shell may be composed of a copolymer of one or more of styrene, acrylic ester, and methyl methacrylate.
바람직하게는 에폭시 수지와의 높은 결합력을 감안하여, 스티렌 부타디엔 고무(Styrene Butadiene Rubber) 코어(Core)로 이루어지고, 메틸메타아크릴(MethyMethacrylate) 공중합체가 쉘(Shell)로 형성 되어 있는 일명MBS(MethyMethacrylate-Butadiene-Styrene Rubber)를 사용한다. Preferably, considering the high bonding strength with epoxy resin, MBS (MethyMethacrylate-Butadiene-Styrene Rubber) is used, which consists of a styrene butadiene rubber core and a methylmethacrylate copolymer as a shell.
상업적으로 시판되는 업체로는 카네카(KANEKA) 社의 MX-125, MX-150, MX-153, MX-154, MX-156, MX-257, MX-960, MX-135, MX-136, MX-267, MX-965, MX-217, MX-553 등이 있다.Commercially available brands include KANEKA's MX-125, MX-150, MX-153, MX-154, MX-156, MX-257, MX-960, MX-135, MX-136, MX-267, MX-965, MX-217, and MX-553.
또한 개질용 열가소성 수지로 코어 쉘 고무(CSR: Core Shell Rubber)의 함량은 수지 조성물 중량(100중량%)기준으로 5~15중량%가 바람직하며, 5~10중량%인 것이 더 바랍직하다. 열가소성 수지로 코어 쉘 고무(CSR: Core Shell Rubber)의 함량이 5중량% 미만이면 필러의 고충전화로 인한 브리틀한 성질과 파괴인성을 완화시키는 효과가 부족하여 접착제 조성물 자체의 크랙 발생을 방지하기 어려울 수 있고, 15중량% 초과하면 수지 조성물 내에 경화성 성분의 함량이 줄어들어 경화 후 접착제 조성물 자체의 계면 접착력이 부족하게 되어 미약한 충격에도 반도체 소자와 접착제 조성물 사이의 딜라미네이션(Delamination)이 발생하게 된다.In addition, the content of core shell rubber (CSR) as a thermoplastic resin for modification is preferably 5 to 15 wt% based on the weight of the resin composition (100 wt%), and 5 to 10 wt% is more preferable. If the content of core shell rubber (CSR) as a thermoplastic resin is less than 5 wt%, the effect of alleviating the brittle nature and fracture toughness caused by the high filling of the filler is insufficient, making it difficult to prevent cracking of the adhesive composition itself. In addition, if it exceeds 15 wt%, the content of the curable component in the resin composition decreases, so that the interfacial adhesive strength of the adhesive composition itself becomes insufficient after curing, causing delamination between the semiconductor element and the adhesive composition even under a slight impact.
하기 비교예에 사용되는 개질용 열가소성 수지로 하기 2가지 종류를 사용하였다.The following two types of thermoplastic resins were used for modification in the comparative examples below.
하나의 개질용 열가소성 수지는 아크릴로니트릴 부타디엔 고무(Acrylonitrile-Nitrile Butadiene Rubber(NBR))변성 에폭시 수지 이며, 에폭시 당량은 250~450g/eq 인것이 바람직 하며, 상업적으로 시판되는 업체로는 아데카(ADEKA) 社의 EPR-4030, EPR-2000, EPR-21, EPR-1309, 씨텍(SEETEC) 社의 B6120, B6150, B6240, B6850, B3280, B7150 등이 있다.One thermoplastic resin for modification is an epoxy resin modified with acrylonitrile-nitrile butadiene rubber (NBR). The epoxy equivalent weight is preferably 250 to 450 g/eq. Commercially available ones include EPR-4030, EPR-2000, EPR-21, EPR-1309 from ADEKA, and B6120, B6150, B6240, B6850, B3280, B7150 from SEETEC.
다른 하나의 개질용 열가소성 수지는 카복시 말단 부타디엔 아크릴로니트릴(carboxyl terminated butadiene acrylonitrile(CTBN))는 아크릴로니트릴(Acrylonitrile) 함량이 0~30%인 것이 바람직하며, 상업 적으로는 씨브이씨(CVC)社의 HYPRO 2000X162, HYPRO 1300X31, HYPRO 1300X8, HYPRO 1300X13, HYPRO 1300X13F, HYPRO 1300X9, HYPRO 1300X18 등이 있다.Another thermoplastic resin for modification is carboxyl terminated butadiene acrylonitrile (CTBN), preferably with an acrylonitrile content of 0 to 30%, and commercially available products include CVC's HYPRO 2000X162, HYPRO 1300X31, HYPRO 1300X8, HYPRO 1300X13, HYPRO 1300X13F, HYPRO 1300X9, and HYPRO 1300X18.
본 발명은 하기의 실시예에 의하여 보다 구체화될 것이며, 하기 실시예는 본 발명의 구체적인 예시에 불과하며 본 발명의 보호범위를 한정하거나 제한하고자 하는 것은 아니다.The present invention will be further concretized by the following examples. The following examples are merely specific examples of the present invention and are not intended to limit or restrict the protection scope of the present invention.
실시예 1~10Examples 1-10
본 발명에 관하여, 실시예를 들어 더욱 상세히 설명하지만, 본 발명은 이들에 한정되는 것은 아니다. The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
언더필 접착제 조성물의 제조Preparation of underfill adhesive composition
[조성물][Composition]
(A) 제1 에폭시 수지 : 국도화학 제조 [KDS-8170](A) 1st Epoxy Resin: Kukdo Chemical [KDS-8170]
비스페놀F 타입 에폭시, 에폭시 당량 155~160g/eq, 2관능Bisphenol F type epoxy, epoxy equivalent 155~160g/eq, bifunctional
(B) 제2 에폭시 수지 : 신아 제조 [TRD-130](B) Second Epoxy Resin: Shina Manufacturing [TRD-130]
레조르시놀 타입 에폭시, 에폭시 당량 120~140g/eq, 2관능Resorcinol type epoxy, epoxy equivalent 120~140g/eq, bifunctional
(C) 잠재성 경화제 : 후지 제조 [FXR-1121](C) Latent hardener: Fuji Manufacturing [FXR-1121]
지환족 폴리아민 경화제, 평균 입자 사이즈 4umCycloaliphatic polyamine curing agent, average particle size 4um
(D) 마이크로 구형 실리카 : 덴카 [FB-7SDC](D) Micro spherical silica: Denka [FB-7SDC]
구형 이산화 규소 필러, 비표면적 : 1.8m2/g, 평균입자크기(d50) : 5.4umSpherical silicon dioxide filler, specific surface area: 1.8 m 2 /g, average particle size (d50): 5.4 um
(E) 나노 구형 실리카 : 덴카 [SFP-30M](E) Nano Spherical Silica: Denka [SFP-30M]
나노 구형 이산화 규소 필러, 비표면적 : 6.2m2/g, 평균입자크기(d50) : 600nm(0.6um)Nano spherical silicon dioxide filler, specific surface area: 6.2 m 2 /g, average particle size (d 50 ): 600 nm (0.6 um)
(F) 안정제 : 시그마알드리치 제조 [바르비투르산], 분자량 128.1(F) Stabilizer: Sigma-Aldrich [barbituric acid], molecular weight 128.1
(G) 습윤분산제 : BYK 제조 [BYK-2152](G) Wetting and dispersing agent: manufactured by BYK [BYK-2152]
폴리아크릴계 고형분(Non-Volatile Matter)% : 99%이상,Polyacrylic solid content (Non-Volatile Matter) %: 99% or more,
아민가(Amine Value) mgKOH/g : 0g Amine Value mgKOH/g : 0g
산가(Amine Value) mgKOH/g : 0gAmine Value mgKOH/g : 0g
(H) 실란커플링제 : 신에츠 제조 [KBM-403](H) Silane coupling agent: Shin-Etsu [KBM-403]
3-글리시독시프로필트리메톡시실란(에폭시실란)3-Glycidoxypropyltrimethoxysilane (epoxysilane)
(I) 소포제 : BYK [BYK-085](I) Dispersant: BYK [BYK-085]
폴리메틸알킬실록산계(실리콘계) 소포제 고형분(Non-VolatilePolymethylalkylsiloxane (silicon) antifoaming agent solid content (Non-Volatile
Matter)% : 98%이상Matter)% : 98% or more
(J) 개질용 열가소성 수지 : 카네카 제조 [MX-267](J) Thermoplastic resin for modification: Kaneka [MX-267]
코어 쉘 고무(CSR: Core Shell Rubber), Core Shell Rubber (CSR),
코어(Core) : 스티렌 부타디엔 고무(Styrene Butadiene Rubber),Core: Styrene Butadiene Rubber,
쉘(Shell) : 메틸메타아크릴(MethyMethacrylate), 일명MBS(MethyShell: Methyl methacrylate, also known as MBS (Methy
Methacrylate-Butadiene-Styrene Rubber)Methacrylate-Butadiene-Styrene Rubber)
[제조방법] [Manufacturing method]
분산기와 온도계가 설치된 1,000g 용기에 (A) 제1 에폭시 수지, (B)제2 에폭시 수지, (F)안정제, (G)습윤 분산제, (H)실란커플링제, (I)소포제, (J) 개질용 열가소성 수지를 넣은 후, 상온에서 1,000 ~ 2,000RPM으로 30분동안 분산시켰다. 이후 (D)마이크로 구형 실리카 필러, (E)나노 구형 실리카 필러를 투입하여 500 ~ 1,000RPM으로 1시간 추가로 분산시켰다. 이 때, 조성물의 온도가 35 ℃이상으로 승온 되지 않도록 냉각수를 사용하여 온도를 조절하였으며, 마지막으로 (C)잠재성 경화제를 투입하여 20분간 추가로 분산시켜 수지 조성물을 제조하였다. In a 1,000 g container equipped with a disperser and a thermometer, (A) a first epoxy resin, (B) a second epoxy resin, (F) a stabilizer, (G) a wetting and dispersing agent, (H) a silane coupling agent, (I) an antifoaming agent, and (J) a thermoplastic resin for modification were placed, and the mixture was dispersed at room temperature for 30 minutes at 1,000 to 2,000 RPM. After that, (D) a micro-spherical silica filler and (E) a nano-spherical silica filler were added, and the mixture was further dispersed at 500 to 1,000 RPM for 1 hour. At this time, the temperature was controlled using cooling water so that the temperature of the composition did not rise above 35°C, and finally, (C) a latent curing agent was added, and the mixture was further dispersed for 20 minutes, to prepare a resin composition.
비교예 1~10Comparative examples 1-10
[조성물][Composition]
상기 실시예 조성물과 동일하되, (J) 개질용 열가소성 수지 대신에 하기 수지로 대신하였다. The composition is the same as the above example, but the thermoplastic resin for modification (J) was replaced with the following resin.
(K) 개질용 열가소성 수지 : 아데카 제조 [EPR-4030](K) Thermoplastic resin for modification: Adeka [EPR-4030]
아크릴로니트릴 부타디엔 고무(Acrylonitrile-Nitrile Butadiene RubAcrylonitrile-Nitrile Butadiene Rubber
ber(NBR))변성 에폭시 수지, 에폭시 당량 365g/eqber(NBR)) modified epoxy resin, epoxy equivalent 365g/eq
(L) 개질용 열가소성 수지 : 씨브이씨 제조 [HYPRO 1300X13](L) Thermoplastic resin for modification: CVC Manufacturing [HYPRO 1300X13]
카복시 말단 부타디엔 아크릴로니트릴(carboxyl terminated butadieneCarboxyl terminated butadiene acrylonitrile
acrylonitrile(CTBN)), 아크릴로니트릴(Acrylonitrile)% : 26%acrylonitrile(CTBN)), acrylonitrile(Acrylonitrile)%: 26%
[제조방법] [Manufacturing method]
실시예와 동일하되, (J) 개질용 열가소성 수지 대신에 상기 (K), (L) 수지로 대신하였다. Same as the example, but the thermoplastic resin for modification (J) was replaced with the resin (K) and (L).
[조성물의 화학식][Chemical formula of the composition]
(A)(A)
(B)(B)
(C)(C)
(F)(F)
(H)(H)
(K)(K)
(L)(L)
[물성평가][Physical property evaluation]
1. 유리전이(Glass Transition) 및1. Glass Transition and CTE(Coefficient of Thermal Expansion) 측정CTE (Coefficient of Thermal Expansion) measurement
측정 시료는 너비 6mm, 높이 20mm의 원형 테프론 지그 안에 수지 조성물을 채운 후 100℃오븐에서 1시간 동안 경화시켜 시험편을 얻었다.The measurement sample was prepared by filling a resin composition into a circular Teflon jig measuring 6 mm in width and 20 mm in height and curing it in an oven at 100°C for 1 hour to obtain a test piece.
얻어진 시험편은 높이 2~5mm정도의 크기로 컷팅 하여 TA 社 의 Q400 장비로 시험편을 분당 10℃씩 승온하여 200℃까지 2싸이클을 가동하고, 유리전이(Glass Transition) 지점을 기준으로 CTE(Coefficient of Thermal Expansion)값을 나타내었다.The obtained test specimens were cut into sizes of approximately 2 to 5 mm in height and heated at a rate of 10°C per minute using TA's Q400 equipment, running two cycles up to 200°C, and the CTE (Coefficient of Thermal Expansion) value was expressed based on the glass transition point.
유리전이(Glass Transition)란 시료가 유리와 같이 딱딱한 상태에서 고무와 같이 부드러운 상태로 전환되는 구간을 말한다.Glass transition refers to the period in which a sample changes from a hard state like glass to a soft state like rubber.
CTE(Coefficient of Thermal Expansion)란 초기 시료의 길이를 1m로 환산하여 그것을 1℃ 올릴 때 늘어나거나 줄어드는 정도를 표시하는 값을 이야기하고 있으며, 값이 크면 팽창이 많이 된다는 뜻이고 값이 작으면 팽창이 줄어든 것을 의미한다.CTE (Coefficient of Thermal Expansion) is a value that indicates the extent to which the initial sample length, converted to 1m, increases or decreases when the temperature rises by 1℃. A large value means a large amount of expansion, and a small value means a small amount of expansion.
CTE(Coefficient of Thermal Expansion)는 CTE1과 CTE2로 표시를 하고 있으며, 유리전이(Glass Transition) 온도(℃) 구간보다 낮은 온도(℃)구간이 CTE1, 높은 온도(℃) 구간을 CTE2로 표시 한다. CTE (Coefficient of Thermal Expansion) is expressed as CTE1 and CTE2, and the temperature (℃) range lower than the glass transition temperature (℃) is expressed as CTE1, and the temperature (℃) range higher than the glass transition temperature (℃) is expressed as CTE2.
2. 주입성 측정2. Injectability measurement
주입성은 슬라이드 글라스로 위, 아래 부분에 1장씩 총 2장의 슬라이드 글라스로 밀착되어 있으며, 슬라이드 글라스 중앙 부분에 길이 6cm, 너비 1cm, 두께 50um의 공간을 확보하여, 수지조성물을 대략 0.2g 토출 후 1cm(10mm)까지 수지조성물이 체워지는 시간을 체크하고, 온도는 상온(25℃)와 50℃ 온도 구간으로 값을 나타내었다. The injection molding machine is made of two slide glasses, one on the top and one on the bottom, and a space measuring 6 cm in length, 1 cm in width, and 50 um in thickness is secured in the center of the slide glass. After discharging approximately 0.2 g of the resin composition, the time required for the resin composition to be filled to 1 cm (10 mm) is checked, and the temperature is expressed as a value at room temperature (25°C) and 50°C.
3. 점도 및 칙소값 측정3. Measurement of viscosity and thixotropic values
점도는 25℃에서 Brookfield 社 의 Viscometer HBDV-Ⅱ를 사용하여 측정하였으며, 5RPM 의 전단속도를 적용하였다. Viscosity was measured using Brookfield's Viscometer HBDV-Ⅱ at 25℃, and a shear rate of 5 RPM was applied.
칙소값은 0.5RPM/5RPM으로 10배 차이나는 점도의 값으로 나눠주어 얻었다. 점도란 형태가 변화할 때 유체의 저항(마찰에 의한 전단응력, 인장응력)을 의미한다.The thixotropic value was obtained by dividing it by the viscosity value that is 10 times different from 0.5 RPM/5 RPM. Viscosity refers to the resistance of a fluid (shear stress and tensile stress due to friction) when its shape changes.
4. 열충격 시험(Temperature Cycle Test) 측정4. Measurement of thermal shock test (Temperature Cycle Test)
열충격 시험 방법은 JESD22-A104 G(-40℃~125℃)시험조건으로 진행하였으며, 평가한 후 C-SAM을 활용하여 박리발생 여부를 확인하였다.The thermal shock test method was conducted under the JESD22-A104 G (-40℃ to 125℃) test conditions, and after evaluation, C-SAM was used to confirm whether peeling occurred.
열충격 시험이란 갑작스런 온도변화에 대한 부품의 저항성을 평가하기 위한 방법으로, 접착제 조성물을 경화 후 상온에서 시작하여 특정한 횟수만큼 극저온 또는 극고온에 여러 차례 반복 노출되는 급격한 온도변화 평가과정이다. Thermal shock testing is a method for evaluating the resistance of components to sudden temperature changes. It is a rapid temperature change evaluation process in which the adhesive composition is repeatedly exposed to extremely low or high temperatures for a specific number of times starting at room temperature after curing.
5.접착력 시험(Adhesion Test)5. Adhesion Test
접착력 시험은 XYZTEC社의 Condor Sigma장비를 사용하여 측정하였으며, FR4 PCB위에 0.8cm정사각격 모양의 자재를 올려서 경화시험편을 얻는 방식으로, 0.8cm정사각격 모양 자재의 실제로 접착제 조성물의 본드라인의 두께는 0.4mm이다.The adhesion test was measured using a Condor Sigma device from XYZTEC, and a curing test piece was obtained by placing a 0.8 cm square material on a FR4 PCB. The actual bond line thickness of the adhesive composition for the 0.8 cm square material was 0.4 mm.
접착력이란 접착제와 피착물 간의 계면의 결합력을 말하며, 일반적으로는 두 물체가 서로 달라붙는 힘이라고 말할 수 있다. 접착력의 단위는 길이 당 달라붙는 힘으로 kgf/cm로 표기한다.Adhesion refers to the bonding strength of the interface between an adhesive and an adherend, and can generally be said to be the force that sticks two objects together. The unit of adhesive strength is the force per length, expressed as kgf/cm.
CTE1 / CTE2 (ppm/℃)Coefficient of Thermal Expansion (CTE)
CTE1 / CTE2 (ppm/℃)
25℃ / 50℃Injectable
25℃ / 50℃
(박리발생수 / 시료수)Thermal shock test
(Number of peelings / Number of samples)
CTE1 / CTE2 (ppm/℃)Coefficient of Thermal Expansion (CTE)
CTE1 / CTE2 (ppm/℃)
25℃ / 50℃Injectable
25℃ / 50℃
(박리발생수 / 시료수)Thermal shock test
(Number of peelings / Number of samples)
CTE1 / CTE2 (ppm/℃)Coefficient of Thermal Expansion (CTE)
CTE1 / CTE2 (ppm/℃)
25℃ / 50℃Injectable
25℃ / 50℃
(박리발생수 / 시료수)Thermal shock test
(Number of peelings / Number of samples)
CTE1 / CTE2 (ppm/℃)Coefficient of Thermal Expansion (CTE)
CTE1 / CTE2 (ppm/℃)
25℃ / 50℃Injectable
25℃ / 50℃
(박리발생수 / 시료수)Thermal shock test
(Number of peelings / Number of samples)
표 1 및 표 2, 표 5 및 표 6에 의하면, 마이크로 구형 실리카와 나노 구형 실리카 필러를 실시예 1~5의 함량범위내로 사용 하였을 경우, 주입성이 향상 되었으며, CTE(Coefficient of Thermal Expansion)값의 소폭 작아지는 변화와 점도, 칙소값의 큰 차이가 나타났다.According to Tables 1 and 2, Tables 5 and 6, when micro-spherical silica and nano-spherical silica fillers were used within the content ranges of Examples 1 to 5, the injectability was improved, and a slight decrease in the CTE (Coefficient of Thermal Expansion) value and a large difference in the viscosity and thixotropic value were observed.
또한 표 3 및 표 4, 표 7 및 표 8에 의하면, 실시예 6~10인 개질용 열가소성 코어 쉘 고무(CSR: Core Shell Rubber)수지를 사용하였을 경우, 열충격 시험(Temperature Cycle Test)후 시료 박리발생을 방지할 수 있고, 유리전이(Glass Transition)의 변화가 최소화되었고, 주입성이 유지되는 것을 확인할 수 있으며, In addition, according to Tables 3 and 4, Tables 7 and 8, when the thermoplastic core shell rubber (CSR: Core Shell Rubber) resin for modification of Examples 6 to 10 was used, it was confirmed that sample peeling was prevented after the thermal shock test (Temperature Cycle Test), the change in glass transition was minimized, and the injectability was maintained.
비교예 6~10인 다른 종류의 개질용 열가소성 수지 아크릴로니트릴 부타디엔 고무(Acrylonitrile-Nitrile Butadiene Rubber(NBR)), 카복시 말단 부타디엔 아크릴로니트릴(carboxyl terminated butadieneacrylonitrile(CTBN))수지들과 비교했을 때 유리전이(Glass Transition) 및 주입성에서 큰 차이가 나타났다.Comparative Examples 6 to 10 showed significant differences in glass transition and injectability compared to other types of modified thermoplastic resins such as acrylonitrile-nitadiene butadiene rubber (NBR) and carboxyl terminated butadieneacrylonitrile (CTBN) resins.
실시예 1~5는 나노 구형 실리카 필러 함량이 접착제 조성물 총중량(100%)기준의 12~36중량%을 함유하고 있으며, 점도와 칙소값이 낮아지는 효과가 있고, 점도와 칙소값이 낮아지는 변화로 주입성이 향상 되었으며, CTE1, CTE2 값이 소폭 작아지는 현상이 확인 되었다. CTE(Coefficient of Thermal Expansion)값이 작아지면 접착제 조성물의 수축, 팽창이 줄어든 것을 의미할 수 있다. 또한 열충격시험(Temperature Cycle Test)후 (D), (E) 필러를 포함하지 않은 비교예 5에 비해 50%의 시료 박리발생을 확인할 수 있었다. 필러의 충전율 상승으로 CTE(Coefficient of Thermal Expansion)를 낮춤으로 기판과 칩 사이의 기계적, 열 응력 감소로 인하여 접착 신뢰성이 향상 되었다는 것을 의미 할 수 있다.Examples 1 to 5 contained 12 to 36 wt% of the nano-spherical silica filler based on the total weight (100%) of the adhesive composition, and had the effect of lowering the viscosity and thixotropic value. Due to the change in lowering the viscosity and thixotropic value, the injectability was improved, and it was confirmed that the CTE1 and CTE2 values were slightly reduced. A lower CTE (Coefficient of Thermal Expansion) value may mean that shrinkage and expansion of the adhesive composition were reduced. In addition, it was confirmed that 50% of the sample peeling occurred compared to Comparative Example 5 that did not include (D) and (E) fillers after the thermal shock test (Temperature Cycle Test). This may mean that the adhesive reliability was improved due to the reduction in mechanical and thermal stress between the substrate and the chip by lowering the CTE (Coefficient of Thermal Expansion) by increasing the filling ratio of the filler.
실시예 6~10은 개질용 열가소성 코어 쉘 고무(CSR: Core Shell Rubber)수지 함량이 수지 조성물 중량(100중량%) 기준으로 5~15중량%를 함유하고 있으며, 유리전이(Glass Transition)의 변화가 최소화되고 주입성에 변화가 없었다. 또한 열충격 시험(Temperature Cycle Test)후 시료 박리발생을 방지할 수 있었다. 접착제 조성물 자체의 응력과 브리틀한 성질을 완화되어 파괴인성이 높아졌다는 것을 의미할 수 있다.Examples 6 to 10 contained 5 to 15 wt% of thermoplastic core shell rubber (CSR) resin for modification based on the weight of the resin composition (100 wt%), and the change in glass transition was minimized and there was no change in injectability. In addition, it was possible to prevent sample peeling after a thermal shock test (Temperature Cycle Test). This may mean that the stress and brittle nature of the adhesive composition itself were alleviated, thereby increasing the fracture toughness.
비교예 1은 마이크로 구형 실리카 필러만 사용한 수지조성물이며, 실시예 1~5에 비해 점도, 칙소값이 높아 주입성이 좋지 않았다. 또한, 실시예 1~5에 비해 CTE값이 소폭높으며, 실시예1~5에 비해 수지조성물의 팽창이 소폭 높다는 것을 의미 할 수 있다.Comparative Example 1 is a resin composition using only micro spherical silica filler, and compared to Examples 1 to 5, the viscosity and thixotropic value were high, resulting in poor injectability. In addition, the CTE value was slightly higher than that of Examples 1 to 5, which may mean that the expansion of the resin composition was slightly higher than that of Examples 1 to 5.
비교예 2~4는 나노 구형 실리카 필러를 사용하였으나, 바람직한 중량(12~36중량%) 사용을 넘어 점도가 높아지는 것을 확인할 수 있다. 또한, 칙소값은 낮아지는 결과를 확인 할 수 있으나, 실시예1~5에 비해 칙소값은 낮지만, 점도가 높은 비교예2~4는 주입성이 좋지 않았다.Comparative Examples 2 to 4 used nano-spherical silica fillers, but it can be confirmed that the viscosity increases beyond the desired weight (12 to 36 wt%). In addition, it can be confirmed that the thixotropic value decreases, but Comparative Examples 2 to 4, which have a low thixotropic value but a high viscosity compared to Examples 1 to 5, did not have good injectability.
비교예 5는 마이크로 구형 실리카, 나노 구형 실리카 필러를 포함하지 않은 수지조성물이며, 점도가 낮아 주입성은 실시예1~5, 비교예1~4와는 다르게 좋은 것을 확인 할수있으나, CTE(Coefficient of Thermal Expansion)값이 실시예1~5, 비교예1~4와 비교하여 2배이상의 높은 값을 확인 할 수 있고, 비교예 5는 CTE값이 실시예 1~5, 비교예 1~4와 비교하여 수지조성물의 팽창이 2배 이상 좋지 않다는 것을 의미한다. 또한 열충격시험(Temperature Cycle Test)후 100%의 시료 박리발생을 확인 할 수 있었며, CTE(Coefficient of Thermal Expansion)가 실시예 1~5, 비교예 1~4와 비교하여 2배이상의 높은 값으로 수축과 팽창값이 높아지고, 기판과 칩 사이의 기계적, 열 응력이 높아 지는 현상으로 인하여 접착 신뢰성이 낮아지는 것을 의미 할 수 있다.Comparative Example 5 is a resin composition that does not contain micro spherical silica or nano spherical silica fillers. It can be confirmed that the injection property is good unlike Examples 1 to 5 and Comparative Examples 1 to 4 due to low viscosity. However, it can be confirmed that the CTE (Coefficient of Thermal Expansion) value is more than twice as high compared to Examples 1 to 5 and Comparative Examples 1 to 4. This means that the expansion of the resin composition of Comparative Example 5 is not more than twice as good as that of Examples 1 to 5 and Comparative Examples 1 to 4. In addition, it was confirmed that 100% of the sample peeled off after the thermal shock test (Temperature Cycle Test). The CTE (Coefficient of Thermal Expansion) is more than twice as high compared to Examples 1 to 5 and Comparative Examples 1 to 4. This may mean that the shrinkage and expansion values are high, and the mechanical and thermal stresses between the substrate and the chip are increased, which may result in lowered bond reliability.
비교예 6 및 7은 개질용 열가소성 아크릴로니트릴부타디엔고무(Acrylonitrile-Nitrile Butadiene Rubber(NBR))변성 에폭시 수지 함량이 수지 조성물 중량(100중량%) 기준으로 5~10중량%을 함유 하고 있으며, 코어 쉘 고무(CSR: Core Shell Rubber)수지 대비 많은 중량%를 사용해야 접착제 조성물 자체의 응력과 브리틀한 성질이 완화되어 파괴인성의 효과를 볼 수있었고, 주입성이 좋지 않았다. 또한, 유리전이(Glass Transition)의 변화가 큰차이로 낮아지는 현상을 확인 할 수 있었다.Comparative Examples 6 and 7 contained 5 to 10 wt% of acrylonitrile-nitadiene rubber (NBR) modified epoxy resin for modification based on the weight of the resin composition (100 wt%), and a large wt% was used compared to the core shell rubber (CSR: Core Shell Rubber) resin so that the stress and brittle properties of the adhesive composition itself were alleviated and the fracture toughness was effective, but the injectability was poor. In addition, it was confirmed that the change in the glass transition was greatly reduced.
비교예 8 및 9은 개질용 열가소성 카복시 말단 부타디엔아크릴로니트릴(carboxyl terminated butadieneacrylonitrile(CTBN)수지 함량이 수지조성물중량(100중량%) 기준으로 10~12중량%을 함유 하고 있으며, 열충격시험(Temperature Cycle Test)후 비교예 8(10중량%)은 20%의 시료 박리발생, 비교예 9(12중량%)은 100%의 시료 박리발생을 확인할 수 있었고, 아크릴로니트릴부타디엔고무(Acrylonitrile-Nitrile Butadiene Rubber(NBR))변성 에폭시 수지 와 같은 현상으로 주입성이 좋지 않았다. 복시말단부타디엔아크릴로니트릴(carboxyl terminated butadieneacrylonitrile(CTBN)) 수지의 경우 수지 조성물 내에 경화성 성분의 함량이 극심하게 줄어들어 경화 후 접착제 조성물자체의 계면 접착력이부족하게 되어 미약한 열 충격에도 반도체 소자와 접착제 조성물 사이의 딜라미네이션(Delamination)이 극심하게 발생한 것을 의미 할 수 있다.Comparative Examples 8 and 9 contained 10 to 12 wt% of the carboxyl terminated butadieneacrylonitrile (CTBN) resin content for modification based on the weight of the resin composition (100 wt%). After a temperature cycle test, 20% of the sample was peeled off in Comparative Example 8 (10 wt%), and 100% of the sample was peeled off in Comparative Example 9 (12 wt%). The injection property was poor due to the same phenomenon as the acrylonitrile-nitadiene rubber (NBR) modified epoxy resin. In the case of carboxyl terminated butadieneacrylonitrile (CTBN) resin, the content of the curable component in the resin composition was drastically reduced, resulting in poor interfacial adhesion of the adhesive composition itself after curing. This may mean that due to insufficient adhesive strength, severe delamination occurs between the semiconductor element and the adhesive composition even under slight thermal shock.
비교예 10은 개질용 열가소성 수지로 아크릴로니트릴 부타디엔고무(Acrylonitrile-Nitrile Butadiene Rubber(NBR))변성 에폭시 수지 및 카복시 말단 부타디엔아크릴로니트릴(carboxyl terminated butadieneacrylonitrile(CTBN)수지 함량이 각각 2.5중량%를 포함하고 있어, 열충격시험(Temperature Cycle Test)후 30% 시료 박리발생을 확인 할 수 있었다. 코어 쉘 고무(CSR: Core Shell Rubber)수지를 사용 함으로 접착제 조성물 자체의 응력과 브리틀한 성질은 완화되어 파괴인성은 완화 되었지만, 필러를 사용 하지 않아 CTE (Coefficientof Thermal Expansion)값이 높아지면서 수축과 팽창값이 높아지고, 기판과 칩 사이의 기계적, 열 응력이 높아 지는 현상으로 인하여 기판과 칩 사이의 접착 신뢰성이 낮아지는 현상으로 열충격시험(Temperature Cycle Test)후의 시료 박리현상이 발생한 것을 의미 할 수 있다.Comparative Example 10 contained 2.5 wt% of acrylonitrile-nitadiene rubber (NBR) modified epoxy resin and carboxyl terminated butadieneacrylonitrile (CTBN) resin as the thermoplastic resin for modification, and it was confirmed that 30% of the sample peeled off after the thermal shock test (Temperature Cycle Test). By using core shell rubber (CSR) resin, the stress and brittle properties of the adhesive composition itself were alleviated, and the fracture toughness was alleviated. However, since no filler was used, the CTE (Coefficient of Thermal Expansion) value increased, which increased the shrinkage and expansion values, and the mechanical and thermal stress between the substrate and the chip increased, which lowered the reliability of the adhesion between the substrate and the chip, which may mean that the sample peeled off after the thermal shock test (Temperature Cycle Test).
마이크로 구상 실리카 필러는 비정질이기 때문에, 열팽창 및 열전도율이 낮다. 비정질 실리카 필러의 열팽창률은 대략 0.5ppm/K이고, 열전도율은 1.4W/mK이다. 또한, 마이크로 구상 실리카 필러 입자의 형상이 네모진 형상이면 유동성, 분산성, 충전성이 나빠지고, 제조 장치의 마모도 빠르게 진행 될 수 있다. 이러한 이유로 구상 형태의 실리카 필러를 사용 하는게 유리하다. 그러나, 마이크로 구형 실리카 필러도 충전율을 지나치게 높이면, 점도의 상승으로 작업성, 주입성(유동성)이 저하되는 문제 점을 가지고 있으며, 점도의 상승문제를 해결할 수 있는 방법으로 마이크로 단위 구형 실리카 필러 입자들 공간 사이에 나노 단위 구형 실리카 필러를 충전하는 방법으로 점도의 상승문제를 해결할 수 있고, 필러 함량 고충전으로 CTE(Coefficient of Thermal Expansion) 값도 작아지면서 팽창률을 낮출 수 있는 적합한 방법이라고 추측된다.Since the micro-spherical silica filler is amorphous, it has low thermal expansion and thermal conductivity. The thermal expansion coefficient of the amorphous silica filler is approximately 0.5 ppm/K, and the thermal conductivity is 1.4 W/mK. In addition, if the shape of the micro-spherical silica filler particles is square, the fluidity, dispersibility, and filling properties deteriorate, and the wear of the manufacturing device may also progress rapidly. For these reasons, it is advantageous to use a spherical silica filler. However, even the micro-spherical silica filler has a problem in that if the filling rate is excessively high, the viscosity increases, which reduces workability and injectability (fluidity). It is presumed that a suitable method for solving the problem of increased viscosity is to fill the spaces between the micro-unit spherical silica filler particles with nano-unit spherical silica filler, which can solve the problem of increased viscosity and lower the expansion rate while also reducing the CTE (Coefficient of Thermal Expansion) value by high-filling the filler content.
또한 필러의 충전율이 상승함에 따라 접착제 조성물 자체의 브리틀한 성질은 상승하게 되며, 브리틀한 성질이 상승함에 따라 파괴인성은 낮아진다. 또한 필러의 충전율 상승으로 열 응력은 완화시키지만, 접착제 조성물 자체의 응력은 완화시키지 못한다. 접착제 조성물 자체의 브리틀한 성질을 완화시켜 파괴인성을 높이고, 접착제 자체의 응력을 완화 시키는 방법으로는 개질용 열가소성 수지를 사용해야만 한다. In addition, as the filling ratio of the filler increases, the brittle property of the adhesive composition itself increases, and as the brittle property increases, the fracture toughness decreases. In addition, although the thermal stress is alleviated as the filling ratio of the filler increases, the stress of the adhesive composition itself is not alleviated. In order to alleviate the brittle property of the adhesive composition itself to increase the fracture toughness and alleviate the stress of the adhesive itself, a thermoplastic resin for modification must be used.
개질용 열가소성 수지의 대표적인 종류는 코어 쉘 고무(CSR: Core Shell Rubber), 카복시 말단 부타디엔아크릴로니트릴(carboxyl terminated butadieneacrylonitrile(CTBN), 아크릴로니트릴부타디엔고무(Acrylonitrile-Nitrile Butadiene Rubber(NBR)) 등의 종류가 있지만, nm단위의 구형화로 이루어진 코어 쉘 고무(CSR: Core Shell Rubber)수지가 접합한 수지라고 추측된다. 언더필의 경우 흐름성과 유리전이(GlassTransition)가 매우 중요한 항목이다. 코어 쉘 고무(CSR: Core Shell Rubber)수지의 경우 nm단위의 구형화로 이루러진 수지로서 적은 사용 함량으로 접착제를 보완할 수 있는 수지이며, 흐름성에서 매우 유리하고, 유리전이(GlassTransition)을 최대한 유지하면서 사용 할 수 있는 수지라고 추측된다.Representative types of thermoplastic resins for modification include core shell rubber (CSR), carboxyl terminated butadieneacrylonitrile (CTBN), and acrylonitrile-nitadiene butadiene rubber (NBR), but it is presumed that the resin is a composite resin that has a core shell rubber (CSR) resin that has been spheroidized in nm units. In the case of underfill, flowability and glass transition are very important factors. In the case of core shell rubber (CSR) resin, it is a resin that can supplement adhesives with a small usage amount as a resin that has been spheroidized in nm units, and it is presumed to be a resin that has very advantageous flowability and can be used while maintaining the glass transition as much as possible.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the attached drawings, and it will be apparent to a person skilled in the art to which the present invention pertains that various substitutions, modifications, and changes are possible within a scope that does not depart from the technical spirit of the present invention.
Claims (11)
상기 제2 에폭시 수지는 에폭시 당량이 120~140g/eq, 점도가 300~1,000 cps, 2관능 레조르시놀 디글리시딜 에테르인 것을 특징으로 하는 언더필 접착제 조성물.
A first epoxy resin composition comprising: 13 to 21 wt% of a first epoxy resin; 5 to 15 wt% of a second epoxy resin; 2 to 10 wt% of a latent hardener; 24 to 48 wt% of a micro-spherical silica filler; 12 to 36 wt% of a nano-spherical silica filler; 0.05 to 0.5 wt% of a stabilizer; 0.5 to 5.0 wt% of a wetting and dispersing agent; 0.1 to 1.0 wt% of a silane coupling agent; and 0.1 to 1.0 wt% of a defoaming agent.
An underfill adhesive composition, wherein the second epoxy resin has an epoxy equivalent of 120 to 140 g/eq, a viscosity of 300 to 1,000 cps, and is a bifunctional resorcinol diglycidyl ether.
상기 언더필 접착제 조성물에 추가로
개질용 열가소성 수지 5~15중량%가 더 포함된 언더필 접착제 조성물.
In the first paragraph,
In addition to the above underfill adhesive composition,
An underfill adhesive composition further comprising 5 to 15 wt% of a thermoplastic resin for modification.
상기 제1 에폭시 수지는 에폭시 당량이 155~160g/eq, 점도가 1,000~2,000 cps, 2관능 비스페놀 F형인 것을 특징으로 하는 언더필 접착제 조성물.
In the first paragraph,
An underfill adhesive composition, wherein the first epoxy resin has an epoxy equivalent of 155 to 160 g/eq, a viscosity of 1,000 to 2,000 cps, and is a bifunctional bisphenol F type.
상기 잠재성 경화제는 20~25℃에서 고체이며, 변성된 지방족 폴리아민인 것을 특징으로 하는 언더필 접착제 조성물.
In the first paragraph,
An underfill adhesive composition characterized in that the latent curing agent is a solid at 20 to 25°C and is a modified aliphatic polyamine.
상기 마이크로 구형 실리카 필러는 입자의 직경 1~30um, 비표면적 1.0~5.0m2/g인 것을 특징으로 하는 언더필 접착제 조성물.
In the first paragraph,
An underfill adhesive composition, characterized in that the above micro spherical silica filler has a particle diameter of 1 to 30 um and a specific surface area of 1.0 to 5.0 m 2 /g.
상기 나노 구형 실리카 필러는 입자의 직경 100~900nm, 비표면적 5~30 m2/g인 것을 특징으로 하는 언더필 접착제 조성물.
In the first paragraph,
An underfill adhesive composition, wherein the above nano spherical silica filler has a particle diameter of 100 to 900 nm and a specific surface area of 5 to 30 m 2 /g.
상기 안정제는 바리브투르산, 붕산에스테르 화합물, 알루미늄, 킬레이트 중 적어도 어느 하나인 것을 특징으로 하는 언더필 접착제 조성물.
In the first paragraph,
An underfill adhesive composition, characterized in that the stabilizer is at least one of barybutic acid, a boric acid ester compound, aluminum, and a chelate.
상기 습윤분산제는 고형분(NON-VOLATILE MATTER) 99%이상인 것을 특징으로 하는 언더필 접착제 조성물.
In the first paragraph,
An underfill adhesive composition, characterized in that the above wetting and dispersing agent has a solid content (NON-VOLATILE MATTER) of 99% or more.
상기 실란커플링제는 비닐기(Vinyl), 에폭시기(Epoxy), 아미노기(Amino), 아크릴기(Acryloxy) 중 적어도 1개 이상의 혼합인 것을 특징이 있는 언더필 접착제 조성물.
In the first paragraph,
An underfill adhesive composition characterized in that the above silane coupling agent is a mixture of at least one of a vinyl group, an epoxy group, an amino group, and an acryloxy group.
상기 개질용 열가소성 수지는 점도가 5,000~8,000cps, 입자 크기가 50~150nm로 되어있는 코어 쉘 고무(CSR: Core Shell Rubber)인 것를 특징으로 하는 언더필 접착제 조성물.In the second paragraph,
An underfill adhesive composition characterized in that the thermoplastic resin for modification is a core shell rubber (CSR) having a viscosity of 5,000 to 8,000 cps and a particle size of 50 to 150 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230016494A KR102772596B1 (en) | 2023-02-08 | Underfill Adhesive Composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230016494A KR102772596B1 (en) | 2023-02-08 | Underfill Adhesive Composition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20240123920A KR20240123920A (en) | 2024-08-16 |
KR102772596B1 true KR102772596B1 (en) | 2025-02-26 |
Family
ID=
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004323762A (en) | 2003-04-28 | 2004-11-18 | Nippon Kayaku Co Ltd | Liquid epoxy resin composition for sealing material, semiconductor device and laser marking process |
JP2016050301A (en) * | 2014-08-28 | 2016-04-11 | スリーボンドファインケミカル株式会社 | Thermally conductive resin composition |
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004323762A (en) | 2003-04-28 | 2004-11-18 | Nippon Kayaku Co Ltd | Liquid epoxy resin composition for sealing material, semiconductor device and laser marking process |
JP2016050301A (en) * | 2014-08-28 | 2016-04-11 | スリーボンドファインケミカル株式会社 | Thermally conductive resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4213767B2 (en) | Adhesive for electronic parts | |
EP1944346A1 (en) | Anisotropic conductive adhesive | |
JP3591758B2 (en) | Liquid injection sealing underfill material | |
JP2010070582A (en) | Heat conductive paste composition for filling substrate hole, and printed wiring board | |
JP3283451B2 (en) | Liquid injection sealing underfill material | |
JP3351974B2 (en) | Liquid injection underfill material | |
JP6125262B2 (en) | Liquid molding agent and method for producing liquid molding agent | |
JP6879690B2 (en) | Resin composition for heat dissipation, its cured product, and how to use them | |
JPH10231351A (en) | Liquid injection sealing underfilling material | |
JP4176619B2 (en) | Flip chip mounting side fill material and semiconductor device | |
KR102772596B1 (en) | Underfill Adhesive Composition | |
JP7167912B2 (en) | Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device | |
KR20120027191A (en) | Epoxy resin composite | |
KR20080057664A (en) | Reworkable epoxy resin composition | |
JP6512699B2 (en) | One-component epoxy resin composition for semiconductor encapsulation, cured product, method for producing semiconductor component and semiconductor component | |
KR20240123920A (en) | Underfill Adhesive Composition | |
JP5278386B2 (en) | Mounting sealing material and semiconductor device sealed using the same | |
JP2003212963A (en) | Thermosetting liquid sealing resin composition and semiconductor device | |
JP2008081686A (en) | Liquid epoxy resin composition and semiconductor device using the same | |
US20020111420A1 (en) | Underfill compositions | |
JP2000336244A (en) | Liquid sealing resin composition and semiconductor device using the composition | |
JPH0931161A (en) | Liquid epoxy resin composition | |
JP2005350618A (en) | Liquid epoxy resin composition and semiconductor device | |
JP2021167378A (en) | Resin composition for encapsulation, and method of producing electronic control unit for vehicle installation using the composition | |
JP2010209266A (en) | Liquid epoxy resin composition for sealing semiconductor, and flip-chip semiconductor device sealed with the same as underfill material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20230208 |
|
PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20230208 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240821 Patent event code: PE09021S01D |
|
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241212 |