Nothing Special   »   [go: up one dir, main page]

KR102738265B1 - Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof - Google Patents

Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof Download PDF

Info

Publication number
KR102738265B1
KR102738265B1 KR1020210155100A KR20210155100A KR102738265B1 KR 102738265 B1 KR102738265 B1 KR 102738265B1 KR 1020210155100 A KR1020210155100 A KR 1020210155100A KR 20210155100 A KR20210155100 A KR 20210155100A KR 102738265 B1 KR102738265 B1 KR 102738265B1
Authority
KR
South Korea
Prior art keywords
polymer
bone
scaffold
nanocomposite
bone regeneration
Prior art date
Application number
KR1020210155100A
Other languages
Korean (ko)
Other versions
KR20230069309A (en
Inventor
한동근
김다슬
이준규
Original Assignee
차의과학대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차의과학대학교 산학협력단 filed Critical 차의과학대학교 산학협력단
Priority to KR1020210155100A priority Critical patent/KR102738265B1/en
Publication of KR20230069309A publication Critical patent/KR20230069309A/en
Application granted granted Critical
Publication of KR102738265B1 publication Critical patent/KR102738265B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3633Extracellular matrix [ECM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/258Genetic materials, DNA, RNA, genes, vectors, e.g. plasmids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Botany (AREA)
  • Materials Engineering (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Materials For Medical Uses (AREA)

Abstract

BMP/PDRN 나노복합체가 고정된 골 재생용 고분자 지지체 및 이의 제조방법에 관한 것으로, 상기 고분자 지지체는 생분해성 고분자를 포함함으로써, 소수성 생체이식물의 낮은 생체적합성을 개선할 수 있을 뿐만 아니라, BMP/PDRN 나노복합체에 의한 이식 부위의 혈관생성 및 내피화 촉진을 통해 골 재생을 증대시킬 수 있다.The present invention relates to a polymer scaffold for bone regeneration with a BMP/PDRN nanocomposite fixed thereon and a method for manufacturing the same. The polymer scaffold comprises a biodegradable polymer, thereby not only improving the low biocompatibility of a hydrophobic bioimplant, but also enhancing bone regeneration through the promotion of angiogenesis and endothelialization at the transplant site by the BMP/PDRN nanocomposite.

Description

BMP/PDRN 나노복합체가 고정된 골 재생용 고분자 지지체 및 이의 제조방법{Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof}Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof

BMP/PDRN 나노복합체가 고정된 골 재생용 고분자 지지체 및 이의 제조방법에 관한 것이다.The present invention relates to a polymer scaffold for bone regeneration with a BMP/PDRN nanocomposite fixed thereon and a method for manufacturing the same.

조직 공학의 목적 중 하나는 손상된 조직기능을 대체하고자 하는데 있으며, 그러기 위해서는 지지체로써 생체재료와 세포 및 성장인자의 상호작용을 조작하여 조직이나 기관이 재생할 수 있는 환경을 만들어주는 일이 중요하다. 또한, 이식 후 혈액 응고나 염증 반응 등이 일어나지 않도록 무독성의 생체적합성을 가져야 한다. One of the goals of tissue engineering is to replace damaged tissue functions, and to do so, it is important to manipulate the interaction between biomaterials as a support and cells and growth factors to create an environment in which tissues or organs can regenerate. In addition, it must be non-toxic and biocompatible so that blood clotting or inflammatory reactions do not occur after transplantation.

한편, 일반적으로 지지체 재료로 사용되는 생분해성 합성고분자들은 생체 내에서 가수분해 되어 일정 시간이 경과한 후, 완전히 분해되는데 이러한 합성고분자는 소수성을 띄고 있어 생체적합성이 낮다는 문제점이 있다. 또한, 다른 고분자에 비하여 상대적으로 물성이 나쁘고 생분해되면서 락트산, 글라이콜산 등 산성 물질이 생성되어 인체 내에서 염증 반응 및 세포 독성의 문제를 야기한다. 상기와 같은 문제점을 해결하기 위하여 염기성 세라믹 입자를 생분해성 고분자 내에 함유하여 산성 물질의 생성을 원천적으로 억제하는 방법이 있으며, 천연 고분자를 이용한 골 재생용 지지체가 연구되고 있으나 지지체 분해 기간의 조절이 어렵고, 빠른 분해 속도로 인한 분해 산물 침착 등의 문제점이 있다. Meanwhile, biodegradable synthetic polymers generally used as support materials are hydrolyzed in the body and completely decompose after a certain period of time. However, these synthetic polymers have a problem in that they are hydrophobic and thus have low biocompatibility. In addition, they have relatively poor physical properties compared to other polymers, and when they are biodegraded, acidic substances such as lactic acid and glycolic acid are generated, which causes inflammatory reactions and cytotoxicity in the human body. In order to solve the above problems, there is a method of suppressing the generation of acidic substances at the source by containing basic ceramic particles in biodegradable polymers, and bone regeneration support materials using natural polymers are being studied. However, it is difficult to control the support decomposition period, and there are problems such as deposition of decomposition products due to rapid decomposition rates.

따라서, 생체 친화적인 물질을 이용한 생체활성물질의 고정화를 통하여 생체 내에서 일정 시간 동안 생체활성물질을 보호하고, 생체활성물질의 방출 속도 제어가 가능한 고분자 지지체를 개발할 필요가 있다.
(특허문헌) 국내공개특허공보 제10-2018-0047423호
Therefore, it is necessary to develop a polymer support that can protect bioactive substances for a certain period of time in the body and control the release rate of bioactive substances through immobilization of bioactive substances using biocompatible substances.
(Patent Document) Domestic Publication No. 10-2018-0047423

일 양상은 BMP/PDRN 나노복합체가 고정된 골 재생용 고분자 지지체를 제공하는 것이다. One aspect is to provide a polymer scaffold for bone regeneration with BMP/PDRN nanocomposites immobilized thereon.

다른 양상은 BMP/PDRN 나노복합체가 고정된 골 재생용 고분자 지지체를 제조하는 방법을 제공하는 것이다. Another aspect provides a method for preparing a polymer scaffold for bone regeneration with BMP/PDRN nanocomposite immobilized thereon.

일 양상은 뼈 형성 단백질(Bone Morphogenetic Protein, BMP) 및 생리활성물질을 포함하는 나노복합체가 생분해성 고분자, 염기성 세라믹 입자 및 세포외기질을 포함하는 다공성 지지체에 고정된 골 재생용 고분자 지지체를 제공한다. One aspect provides a polymer scaffold for bone regeneration in which a nanocomposite including bone morphogenetic protein (BMP) and a bioactive substance is fixed to a porous scaffold including a biodegradable polymer, basic ceramic particles and an extracellular matrix.

본 명세서에서 용어, "고분자 지지체(scaffolds)"는 조직 공학의 중요한 요소로서, 손상된 조직을 재생하기 위하여 세포가 융합된 조직체를 이루는 일종의 틀 역할을 수행한다. 손상된 조직은 비정형의 손상 형태를 가지고 있기 때문에 단순히 세포를 주입하는 것만으로 손상 부위를 재생하는 데 한계가 있는 바, 효과적인 조직 재생을 위하여 세포들이 안착하여 생존하고 증식할 수 있는 역할을 한다. 일 구체예에 있어서, 상기 고분자 지지체는 생분해성 고분자, 염기성 세라믹 입자 및 세포외기질을 포함하는 다공성 지지체에 뼈 형성 단백질 및 생리활성물질을 포함하는 나노복합체가 고정된 것일 수 있다. 상기 고분자 지지체는 뼈 형성 단백질 및 생리활성물질을 포함하는 나노복합체가 다공성 지지체 상에 고정되어 있는 바, 생체 내에서 뼈 형성 단백질 및 생리활성물질의 방출 속도 제어가 가능하다. In this specification, the term "polymer scaffolds" is an important element of tissue engineering, and serves as a kind of framework for forming a tissue in which cells are fused to regenerate damaged tissue. Since damaged tissue has an atypical damage form, there is a limit to regenerating the damaged area by simply injecting cells, and thus, it serves a role in enabling cells to settle, survive, and proliferate for effective tissue regeneration. In one specific example, the polymer scaffold may be a porous scaffold including a biodegradable polymer, basic ceramic particles, and an extracellular matrix, to which a nanocomposite including a bone formation protein and a bioactive substance is fixed. Since the polymer scaffold has a nanocomposite including a bone formation protein and a bioactive substance fixed on the porous scaffold, the release rate of the bone formation protein and the bioactive substance in vivo can be controlled.

상기 뼈 형성 단백질(Bone Morphogenetic Protein, BMP)는 뼈 및 연골의 형성을 유도하는 성장인자로서 예를 들어, BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP10, BMP11, BMP15 등인 것일 수 있다. The above bone morphogenetic protein (BMP) is a growth factor that induces the formation of bone and cartilage, and may be, for example, BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP10, BMP11, BMP15, etc.

상기 생리활성물질을 생명을 유지하는데 생체의 생리활동을 증진시키거나 또는 억제하는 물질로 DNA 유래인 것일 수 있으며, 예를 들어, 폴리데옥시리보뉴클레오티드(Polydeoxyribonucleotide, PDRN), 폴리뉴클레오티드(Polynucleotide, PN), 하이드롤라이즈드 DNA(Hydrolyzed DNA) 등인 것일 수 있다. 일 구체예에 있어서, 상기 PDRN은 짧은 데옥시리보뉴클레오티드(short deoxyribonucleotide) 중합체 (50~2,000 염기의 DNA 절편)로 50~1,500 KDa의 분자량을 갖는 것일 수 있다. 일반적으로, 생리활성물질은 고분자 지지체를 생체 내에 이식할 때 지지체와는 별도로 생체 내 직접 주입한다. 이 경우, 생리활성물질의 짧은 반감기와 생체 내 존재하는 효소에 의하여 빠르게 제거되므로 생체 내에서 적정 농도를 유지하기 위하여 상처 부위에 여러 번 처리해야하는 문제점이 있다. 또한, 생리활성물질을 고농도로 처리할 경우, 세포 독성으로 인하여 고분자 지지체의 생체적합성이 감소하는 문제가 있다. 그러나, 일 양상에 따른 고분자 지지체는 생리활성물질이 다공성 지지체 상에 고정되어 있어 체내에서 방출되는 속도를 오랜 시간 동안 일정하게 유지할 수 있으므로 생리활성물질을 별도로 투여해야하는 번거로움을 감소할 수 있으며, 봉입된 약물이 초기에 모두 방출되는 등의 부작용을 방지할 수 있다. The above-mentioned physiologically active substance may be a substance derived from DNA that promotes or inhibits physiological activity of a living organism to maintain life, and may be, for example, polydeoxyribonucleotide (PDRN), polynucleotide (PN), hydrolyzed DNA, etc. In one specific example, the PDRN may be a short deoxyribonucleotide polymer (DNA fragment of 50 to 2,000 bases) having a molecular weight of 50 to 1,500 KDa. In general, the physiologically active substance is directly injected into the living organism separately from the support when the polymer support is transplanted into the living organism. In this case, there is a problem that the physiologically active substance must be treated multiple times to maintain an appropriate concentration in the living organism due to the short half-life of the physiologically active substance and its rapid removal by enzymes existing in the living organism. In addition, when a bioactive substance is treated at a high concentration, there is a problem that the biocompatibility of the polymer support decreases due to cytotoxicity. However, the polymer support according to one aspect can maintain the release rate in the body constant for a long time because the bioactive substance is fixed on the porous support, so the inconvenience of having to separately administer the bioactive substance can be reduced, and side effects such as the initial release of all the encapsulated drugs can be prevented.

본 명세서에서 용어, "나노복합체(nanoparticle)"은 뼈 형성 단백질 및 생리활성물질이 이온 결합을 통하여 형성된 나노입자로서 10 내지 1,000 ㎚의 크기를 갖는 것일 수 있다. 상기 나노복합체는 생분해성 고분자, 염기성 세라믹 입자 및 세포외기질을 포함하는 다공성 지지체의 표면에 고정된 것일 수 있다. 일 구체예에 있어서, 상기 나노복합체는 뼈 형성 단백질 및 생리활성물질을 1:0.5 내지 5의 중량비로 포함할 수 있다. 상기 뼈 형성 단백질 및 생리활성물질은 예를 들어, 1:0.5 내지 5, 1:0.5 내지 4.5, 1:0.5 내지 4, 1:0.5 내지 2, 1:1 내지 4, 1:1 내지 3 또는 1:1.5 내지 2.5의 중량비로 혼합될 수 있다. 이때, 뼈 형성 단백질 및 생리활성물질의 혼합 비율이 상기 범위 미만이거나 또는 상기 범위를 초과하는 경우, 나노복합체의 형성이 어렵다는 문제점이 있다.The term "nanoparticle" as used herein refers to a nanoparticle formed by ionic bonding of a bone formation protein and a bioactive substance, which may have a size of 10 to 1,000 nm. The nanocomposite may be fixed to the surface of a porous support including a biodegradable polymer, basic ceramic particles, and an extracellular matrix. In one specific example, the nanocomposite may include the bone formation protein and the bioactive substance in a weight ratio of 1:0.5 to 5. The bone formation protein and the bioactive substance may be mixed in a weight ratio of, for example, 1:0.5 to 5, 1:0.5 to 4.5, 1:0.5 to 4, 1:0.5 to 2, 1:1 to 4, 1:1 to 3, or 1:1.5 to 2.5. At this time, if the mixing ratio of the bone formation protein and the physiologically active substance is below or exceeds the above range, there is a problem that it is difficult to form a nanocomposite.

다른 구체예에 있어서, 상기 나노복합체는 0.1 내지 10 ppm의 농도로 포함(고정화)되는 것일 수 있다. 상기 나노복합체는 0.1 내지 10 ppm, 0.1 내지 8 ppm, 0.5 내지 5 ppm, 1 내지 4 ppm 또는 2 내지 3 ppm의 농도로 포함될 수 있다. 이때, 나노복합체의 함량이 상기 범위 미만인 경우, 생리활성물질에 의한 생리활성 증진 또는 억제 효능을 충분히 발휘할 수 없다는 문제점이 있으며, 상기 범위를 초과하는 경우, 세포 독성이 발생할 수 있다는 문제점이 있다. In another specific example, the nanocomposite may be included (immobilized) at a concentration of 0.1 to 10 ppm. The nanocomposite may be included at a concentration of 0.1 to 10 ppm, 0.1 to 8 ppm, 0.5 to 5 ppm, 1 to 4 ppm or 2 to 3 ppm. In this case, if the content of the nanocomposite is less than the above range, there is a problem that the physiological activity promoting or inhibiting effect by the physiologically active substance cannot be sufficiently exerted, and if it exceeds the above range, there is a problem that cytotoxicity may occur.

상기 생분해성 고분자는 예를 들어, 폴리락타이드, 폴리글라이콜라이드, 폴리카프로락톤, 폴리락타이드-co-글라이콜라이드, 폴리락타이드-co-카프로락톤, 폴리글라이콜라이드-co-카프로락톤, 폴리다이옥산온, 폴리다이옥판온, 폴리트리메틸렌카보네이트, 폴리글라이콜라이드-co-다이옥산온, 폴리아미드에스터, 폴리펩티드, 폴리올쏘에스터, 폴리말레산, 폴리안하이드라이드, 폴리세바식안하이드라이드, 폴리수산화알카노에이트, 폴리수산화부틸레이트, 폴리시아노아크릴레이트 등인 것일 것일 수 있다. 일 구체예에 있어서, 상기 생분해성 고분자는 조성물 총 중량에 대하여 5 내지 100 중량%로 포함될 수 있다. 상기 생분해성 고분자는 조성물 총 중량에 대하여 예를 들어, 5 내지 100 중량%, 5 내지 80 중량%, 5 내지 50 중량%, 10 내지 90 중량%, 15 내지 70 중량%, 30 내지 80 중량% 또는 40 내지 50 중량%로 포함될 수 있다. 이때, 생분해성 고분자의 함량이 상기 범위 미만인 경우, 고분자 지지체의 열적 안정성 및 기계적 물성이 감소하는 문제점이 있다. 다른 구체예에 있어서, 상기 생분해성 고분자의 수평균분자량(Mn)은 5,000~3,000,000 g/mol 일 수 있다. 상기 생분해성 고분자의 수평균분자량은 예를 들어, 7,000 내지 2,800,000 g/mol, 8,000 내지 2,500,000 g/mol, 또는 10,000 내지 2,000,000 g/mol 일 수 있다.The biodegradable polymer may be, for example, polylactide, polyglycolide, polycaprolactone, polylactide-co-glycolide, polylactide-co-caprolactone, polyglycolide-co-caprolactone, polydioxanone, polydioxanone, polytrimethylene carbonate, polyglycolide-co-dioxanone, polyamide ester, polypeptide, polyolthoester, polymaleic acid, polyanhydride, polysebacinhydride, polyhydroxyalkanoate, polyhydroxybutyrate, polycyanoacrylate, or the like. In one specific example, the biodegradable polymer may be included in an amount of 5 to 100 wt% based on the total weight of the composition. The biodegradable polymer may be included in an amount of, for example, 5 to 100 wt%, 5 to 80 wt%, 5 to 50 wt%, 10 to 90 wt%, 15 to 70 wt%, 30 to 80 wt%, or 40 to 50 wt% based on the total weight of the composition. In this case, if the content of the biodegradable polymer is less than the above range, there is a problem in that the thermal stability and mechanical properties of the polymer support decrease. In another specific example, the number average molecular weight (Mn) of the biodegradable polymer may be 5,000 to 3,000,000 g/mol. The number average molecular weight of the biodegradable polymer may be, for example, 7,000 to 2,800,000 g/mol, 8,000 to 2,500,000 g/mol, or 10,000 to 2,000,000 g/mol.

상기 염기성 세라믹 입자는 예를 들어, 수산화마그네슘, 수산화리튬, 수산화베릴륨, 수산화나트륨, 수산화칼륨, 수산화칼슘, 산화마그네슘, 산화리튬, 산화베릴륨, 산화나트륨, 산화칼륨, 산화칼슘 탄산칼슘, 칼슘카보네이트, 수산화인회석(Hydroxyapatite; HAp), 인산삼석회(Tricalcium phosphate; β-TCP), 마그네슘 세라믹 등인 것일 수 있다. 일 구체예에 있어서, 상기 염기성 세라믹 입자는 표면 개질된 것일 수 있다. 상기 염기성 세라믹 입자는 지방산, 또는 고분자로 표면 개질된 것일 수 있다. 상기 지방산은 예를 들어, 카프릴릭산, 카프릭산, 라우릭산, 미리스트올레산, 팔미톨레익산, 사피에닉산, 올레익산, 엘라이딘산, 박센산, 리놀레익산, 리신올레익산, 린올레아딕산, a-린올레익산, 아라키돈산, 에이코사펜타에노산, 에루식산, 스테아린산, DHA, 옥타테카노익산, 코코넛오일, 팜오일, 목화오일, 말씨눈오일, 콩오일, 올리브오일, 옥수수오일, 해바라기오일, 홍화오일, 대마오일, 카놀라오일 등인 것일 수 있다. 또한, 상기 고분자는 예를 들어, L-락타이드, D-락타이드, D,L-락타이드, 글라이콜라이드, 카프로락톤, 다이옥산온, 트리메틸렌카보네이트, 수산화알카노에이트, 펩티드, 시아노아크릴레이트, 락트산, 글라이콜산, 수산화카프로산, 말레산, 포스파젠, 아미노산, 수산화부틸릭산, 세바식산, 수산화에톡시아세트산 및 트리메틸렌글라이콜로 구성된 군에서 선택되는 1종 이상의 단량체로 폴리-L-락타이드, 폴리-D-락타이드, 폴리-D,L-락타이드, 폴리글라이콜라이드, 폴리카프로락톤, 폴리-L-락타이드-co-글라이콜라이드, 폴리-D-락타이드-co-글라이콜라이드, 폴리-D,L-락타이드-co-글라이콜라이드, 폴리-L-락타이드-co-카프로락톤, 폴리-D-락타이드-co-카프로락톤, 폴리-D,L-락타이드-co-카프로락톤, 폴리글라이콜라이드-co-카프로락톤, 폴리다이옥산온, 폴리트리메틸렌카보네이트, 폴리글라이콜라이드-co-다이옥산온, 폴리아미드에스터, 폴리펩티드, 폴리오르쏘에스터, 폴리말레산, 폴리포스파젠, 폴리안하이드라이드, 폴리세바식안하이드라이드, 폴리수산화알카노에이트, 폴리수산화부틸레이트, 폴리시아노아크릴레이트 등인 것일 수 있다. 다른 구체예에 있어서, 상기 염기성 세라믹 입자 또는 표면이 개질된 염기성 세라믹 입자의 직경은 1 ㎚ 내지 1 ㎜인 것일 수 있다. 이때, 염기성 세라믹 입자의 직경이 상기 범위를 초과하는 경우, 염기성 세라믹 입자의 무게에 의해 침전이 발생되어 유기 용매 내에서 상 분리가 일어나는 문제가 있다.The basic ceramic particles may be, for example, magnesium hydroxide, lithium hydroxide, beryllium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium oxide, lithium oxide, beryllium oxide, sodium oxide, potassium oxide, calcium oxide, calcium carbonate, calcium carbonate, hydroxyapatite (HAp), tricalcium phosphate (β-TCP), magnesium ceramic, etc. In one specific example, the basic ceramic particles may be surface-modified. The basic ceramic particles may be surface-modified with a fatty acid or a polymer. The above fatty acids may be, for example, caprylic acid, capric acid, lauric acid, myristoleic acid, palmitoleic acid, sapienic acid, oleic acid, elaidinic acid, vaccenic acid, linoleic acid, ricinoleic acid, linoleic acid, α-linoleic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, stearic acid, DHA, octatecanoic acid, coconut oil, palm oil, cottonseed oil, safflower oil, soybean oil, olive oil, corn oil, sunflower oil, safflower oil, hemp oil, canola oil, and the like. In addition, the polymer is at least one monomer selected from the group consisting of, for example, L-lactide, D-lactide, D,L-lactide, glycolide, caprolactone, dioxanone, trimethylene carbonate, hydroxyalkanoate, peptide, cyanoacrylate, lactic acid, glycolic acid, hydroxycaproic acid, maleic acid, phosphazene, amino acid, hydroxybutyric acid, sebacic acid, hydroxyethoxyacetic acid and trimethylene glycol, such as poly-L-lactide, poly-D-lactide, poly-D,L-lactide, polyglycolide, polycaprolactone, poly-L-lactide-co-glycolide, poly-D-lactide-co-glycolide, poly-D,L-lactide-co-glycolide, poly-L-lactide-co-caprolactone, It may be poly-D-lactide-co-caprolactone, poly-D,L-lactide-co-caprolactone, polyglycolide-co-caprolactone, polydioxanone, polytrimethylene carbonate, polyglycolide-co-dioxanone, polyamide ester, polypeptide, polyorthoester, polymaleic acid, polyphosphazene, polyanhydride, polysebacinhydride, polyhydroxyalkanoate, polyhydroxybutylate, polycyanoacrylate, etc. In another specific example, the diameter of the basic ceramic particles or the surface-modified basic ceramic particles may be 1 nm to 1 mm. At this time, when the diameter of the basic ceramic particles exceeds the above range, there is a problem that precipitation occurs due to the weight of the basic ceramic particles, causing phase separation in the organic solvent.

다른 구체예에 있어서, 상기 염기성 세라믹 입자는 조성물 총 중량에 대하여 5 내지 50 중량%로 포함될 수 있다. 상기 염기성 세라믹 입자는 예를 들어, 5 내지 50 중량%, 5 내지 45 중량%, 5 내지 30 중량%, 10 내지 40 중량%, 10 내지 30 중량%, 20 내지 40 중량% 또는 10 내지 25 중량%로 포함될 수 있다. 이때, 염기성 세라믹 입자의 함량이 상기 범위 미만인 경우, 고분자 지지체의 분해 산물인 산성 물질을 중화시킬 수 없어, 생체 내에서 염증 반응 및 세포 독성의 문제를 야기한다는 문제점이 있고, 상기 범위를 초과하는 경우, 고분자 지지체 주변 환경의 알칼리화가 유도된다는 문제점이 있다. In another specific example, the basic ceramic particles may be included in an amount of 5 to 50 wt% based on the total weight of the composition. The basic ceramic particles may be included in an amount of, for example, 5 to 50 wt%, 5 to 45 wt%, 5 to 30 wt%, 10 to 40 wt%, 10 to 30 wt%, 20 to 40 wt%, or 10 to 25 wt%. At this time, if the content of the basic ceramic particles is less than the above range, the acidic substance, which is a decomposition product of the polymer support, cannot be neutralized, which causes a problem of an inflammatory response and cytotoxicity in a living body, and if it exceeds the above range, there is a problem of inducing alkalinization of the environment around the polymer support.

상기 세포외기질은 인체 또는 동물의 조직이나 세포로부터 유래된 기질 단백질로서, 복합적으로 혼합된 상태 또는 인위적으로 분리된 단일 분자 상태인 것일 수 있으며, 단백질이 변성된 구조를 갖는 것일 수 있다. 상기 세포외기질은 예를 들어, 사람, 돼지, 소, 쥐, 양, 말, 개 또는 고양이 등의 척수동물에서 유래할 수 있으며, 목적에 따라 뼈, 신장, 양막, 피부, 뇌, 소장점막하조직, 근막 또는 척수막으로부터 분리된 것일 수 있다. 상기 세포외기질은 구조 또는 기능에 따라 적절하게 선택될 수 있다. 일 구체예에 있어서, 상기 세포외기질은 섬유 구조를 갖는 그룹, 골 분화 및 골형성과 관련된 그룹, 글루코스아미노글리칸 그룹 또는 프로테오글리칸 그룹 등인 것일 수 있다. 상기 섬유 구조를 갖는 그룹은 예를 들어, 콜라겐 섬유, 엘라스틴 섬유, 라미닌, 피브리노겐, 피브로넥틴, 젤라틴 등인 것일 수 있다. 이때, 상기 콜라겐은 타입별로 I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIV, XV, XVI, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV, XXV, XXVI, XXVII, XXVIII 콜라겐 등인 것일 수 있다. 또한, 상기 골분화 및 골형성과 관련된 그룹은 예를 들어, 오스테오넥틴, 오스테오폰틴, 비트로넥틴, 비멘틴 등인 것일 수 있다. 또한, 상기 글루코스아미노글리칸 그룹은 예를 들어, 헤파란 황산, 케라탄 황산, 콘드로이틴 황산, 더마탄 황산, 헤파린, 저분자 헤파린, 히알루론산 등인 것일 수 있다. 또한, 상기 프로테오글리칸 그룹은 예를 들어, 데코린, 바이클라이칸, 베르시칸, 테르티칸, 퍼레칸, 비큐닌, 뉴로칸, 어그리칸, 피브로모듈린, 루미칸 등인 것일 수 있다. 다른 구체예에 있어서, 상기 세포외기질은 고분자 지지체 총 중량에 대하여 0.1 내지 20 %로 포함될 수 있다. 상기 세포외기질은 고분자 지지체 총 중량에 대하여 예를 들어, 0.1 내지 20 중량%, 0.1 내지 15 중량%, 1 내지 20 중량%, 1 내지 15 중량%¸5 내지 20 중량%, 5 내지 15 중량%, 5 내지 10 중량%, 또는 10 내지 20 중량%로 포함될 수 있다. 이때, 세포외기질의 함량이 상기 범위 미만인 경우, 세포 적합성 개선 효과를 충분히 발휘할 수 없다는 문제점이 있으며, 상기 범위를 초과하는 경우, 고분자 지지체의 기계적 물성이 감소하는 문제점이 있다. 또 다른 구체예에 있어서, 상기 세포외기질은 탈세포화 된 것일 수 있으며, 조직 또는 세포를 배양한 후, 물리적, 또는 화학적 방법에 의해 탈세포화된 것 일 수 있다. 물리적 탈세포화 방법은 예를 들어, 동결-해동법, 초음파 처리, 물리적 교반 등이 있으며, 화학적 탈세포화 방법은 예를 들어, 동물 유래 조직의 분말을 물을 포함한 저장액, 음이온성 계면활성제, 비이온성 계면활성제 또는 양이온성 계면활성제, DNase, RNase 또는 트립신 등으로 처리하는 것일 수 있다. 상기 화학적 탈세포 방법에 있어서, 상기 저장액으로는 트리스-HCl(Tris-HCl)(pH 8.0) 용액이 사용될 수 있고, 상기 음이온성 계면활성제로는 소디움도데실설페이트(SDS), 소디움데옥시초레이트(sodium deoxycholate), 트리톤 X-200(Triton X-200) 등이 사용 될 수 있다. 또한, 상기 비이온성 계면활성제로서는 트리톤 X-100(Triton X-100), 트윈 20(Tween 20) 또는 트윈 80(Tween 80)이 사용될 수 있고, 상기 양이온성 계면활성제로는 CHAPS, 술포베타인-10(Sulfobetaine-10, SB-10), 술포베타인-16(SB-16), 또는 트리-n-부틸포스페이트(Tri-n-butyl phosphate), N-라우로일-사르코시네이트(N-lauroyl-sarcosinate), IGEPAL CA-630 등이 사용될 수 있다. 또한, 상기 탈세포화는 동물의 조직, 예를 들어 뼈 조직을 채취한 후 분말화 과정을 수행하기 이전 또는 분말화 과정을 수행한 이후에, 또는 분말화와 동시에 수행될 수 있다. 또 다른 구체예에 있어서, 상기 세포외기질은 뼈 세포가 제거된 뼈(무기물)의 분쇄물일 수 있으며, 상기 골 분말은 자가골, 동종골, 이종골 및 합성골(예, hydroxyapatite)로 이루어진 그룹으로부터 1종 이상 선택된 뼈로부터 유래된 것일 수 있다.The above extracellular matrix is a matrix protein derived from the tissue or cell of a human or animal, and may be in a complexly mixed state or an artificially separated single molecule state, and may have a protein with a denatured structure. The above extracellular matrix may be derived from, for example, vertebrates such as humans, pigs, cows, mice, sheep, horses, dogs or cats, and may be separated from bone, kidney, amniotic membrane, skin, brain, small intestinal submucosa, fascia or spinal cord meninges depending on the purpose. The above extracellular matrix may be appropriately selected depending on the structure or function. In one specific example, the above extracellular matrix may be a group having a fibrous structure, a group related to bone differentiation and osteogenesis, a glucosaminoglycan group or a proteoglycan group, etc. The group having a fibrous structure may be, for example, collagen fibers, elastin fibers, laminin, fibrinogen, fibronectin, gelatin, etc. At this time, the collagen may be, by type, I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIV, XV, XVI, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV, XXV, XXVI, XXVII, XXVIII collagen, etc. In addition, the group related to the bone differentiation and osteogenesis may be, for example, osteonectin, osteopontin, vitronectin, vimentin, etc. In addition, the glucosaminoglycan group may be, for example, heparan sulfate, keratan sulfate, chondroitin sulfate, dermatan sulfate, heparin, low molecular weight heparin, hyaluronic acid, etc. In addition, the proteoglycan group may be, for example, decorin, biclycan, versican, tertican, perlecan, vicunin, neurocan, aggrecan, fibromodulin, lumican, etc. In another specific example, the extracellular matrix may be included in an amount of 0.1 to 20% with respect to the total weight of the polymer scaffold. The extracellular matrix may be included in an amount of, for example, 0.1 to 20 wt%, 0.1 to 15 wt%, 1 to 20 wt%, 1 to 15 wt%, 5 to 20 wt%, 5 to 15 wt%, 5 to 10 wt%, or 10 to 20 wt% with respect to the total weight of the polymer scaffold. At this time, when the content of the extracellular matrix is less than the above range, there is a problem that the effect of improving cell compatibility cannot be sufficiently exhibited, and when it exceeds the above range, there is a problem that the mechanical properties of the polymer scaffold decrease. In another specific example, the extracellular matrix may be decellularized, and may be decellularized by a physical or chemical method after culturing tissues or cells. Examples of physical decellularization methods include freeze-thaw, sonication, physical stirring, and the like, and examples of chemical decellularization methods include treating powder of animal-derived tissue with a storage solution containing water, anionic surfactant, nonionic surfactant, cationic surfactant, DNase, RNase, or trypsin. In the chemical decellularization method, a Tris-HCl (pH 8.0) solution may be used as the storage solution, and the anionic surfactant may be sodium dodecyl sulfate (SDS), sodium deoxycholate, Triton X-200, or the like. In addition, as the nonionic surfactant, Triton X-100, Tween 20 or Tween 80 can be used, and as the cationic surfactant, CHAPS, Sulfobetaine-10 (SB-10), Sulfobetaine-16 (SB-16), Tri-n-butyl phosphate, N-lauroyl-sarcosinate, IGEPAL CA-630, etc. can be used. In addition, the decellularization can be performed before or after performing the powdering process after collecting animal tissue, for example, bone tissue, or simultaneously with the powdering process. In another specific embodiment, the extracellular matrix may be a pulverized bone (mineral) from which bone cells have been removed, and the bone powder may be derived from one or more types of bone selected from the group consisting of autologous bone, allogeneic bone, xenogeneic bone, and synthetic bone (e.g., hydroxyapatite).

일 실시예에서는 뼈 형성 단백질 및 폴리데옥시리보뉴클레오티드를 포함하는 나노복합체가 생분해성 고분자, 염기성 세라믹 입자 및 세포외기질을 포함하는 다공성 지지체에 고정된 골 재생용 고분자 지지체를 두개골 결손 랫트(Rat) 모델에 이식한 후, 결손 부위에 혈관이 새롭게 형성되고 골이 재생되는 것을 확인함으로써 골 조직 재생 기능을 구현할 수 있음을 확인하였다. 따라서, 일 양상에 따른 고분자 지지체는 뼈 형성 단백질 및 폴리데옥시리보뉴클레오티드를 포함함으로써, 손상된 부위의 주변 세포들과 유기적인 신호전달을 통하여 성장, 분화 및 융합 과정을 거쳐 손상된 골을 치료 및 재생할 수 있는 바 골 조직 재생용으로 이용될 수 있다. In one embodiment, a polymer scaffold for bone regeneration, in which a nanocomposite including a bone morphogenetic protein and a polydeoxyribonucleotide is fixed to a porous support including a biodegradable polymer, basic ceramic particles, and an extracellular matrix, was transplanted into a rat model with a calvarial defect, and it was confirmed that new blood vessels were formed and bone was regenerated at the defect site, thereby confirming that a bone tissue regeneration function can be implemented. Therefore, the polymer scaffold according to one aspect can be used for bone tissue regeneration by containing a bone morphogenetic protein and a polydeoxyribonucleotide, and can treat and regenerate damaged bone through growth, differentiation, and fusion processes via organic signal transmission with surrounding cells at the damaged site.

다른 양상은 생분해성 고분자, 염기성 세라믹 입자 및 세포외기질과 용매를 혼합하여 고분자 용액을 제조하는 단계; 상기 고분자 용액에 기공 유도체를 혼합하여 다공성 지지체를 제조하는 단계; 및 상기 다공성 지지체에 뼈 형성 단백질 및 생리활성물질을 포함하는 나노복합체를 고정화하는 단계를 포함하는 골 재생용 고분자 지지체의 제조방법을 제공한다. 상기 고분자 지지체의 구체적인 내용은 전술한 바와 같다. Another aspect provides a method for producing a polymer scaffold for bone regeneration, comprising the steps of: preparing a polymer solution by mixing a biodegradable polymer, basic ceramic particles, an extracellular matrix, and a solvent; preparing a porous scaffold by mixing a porous inducer into the polymer solution; and immobilizing a nanocomposite containing a bone-forming protein and a bioactive substance onto the porous scaffold. The specific contents of the polymer scaffold are as described above.

상기 고분자 용액을 제조하는 단계에 있어서, 상기 용매는 예를 들어, 메탄올, 에탄올, 프로판올 및 부탄올 등의 알콜류; 암모니아, 디메틸서폭사이드, 디메틸포름아마이드, 아세트로나이트릴, 테트라하이드로퓨란, 포름알데하이드, 글루타알데하이드 및 아세트알데히드 등의 알데하이드류; 다이옥산, 클로로포름, 헵탄, 헥산, 펜탄, 옥탄, 노난 및 데칸 등의 알칸류; 벤젠, 톨루엔 및 자이렌 등의 벤젠고리형 용매류; 에테르, 다이-프로필 에테르, 페트로늄에테르 및 메틸-t-부틸 에테르 등의 에테르류; 프로판온, 부탄온, 펜탄온, 헥산온 및 헵탄온 등의 케톤류; 메틸렌 클로라이드, 사플루오로이소프로판, 사염화탄소 등의 통상의 유기 용매 등인 것일 수 있다.In the step of preparing the above polymer solution, the solvent may be, for example, alcohols such as methanol, ethanol, propanol, and butanol; aldehydes such as ammonia, dimethyl sulfoxide, dimethylformamide, acetronitrile, tetrahydrofuran, formaldehyde, glutaraldehyde, and acetaldehyde; alkanes such as dioxane, chloroform, heptane, hexane, pentane, octane, nonane, and decane; benzene ring-type solvents such as benzene, toluene, and xylene; ethers such as ether, dipropyl ether, petroleum ether, and methyl-t-butyl ether; ketones such as propanone, butanone, pentanone, hexanone, and heptanone; and common organic solvents such as methylene chloride, tetrafluoroisopropane, and carbon tetrachloride.

상기 다공성 지지체를 제조하는 단계에 있어서, 상기 기공 유도체는 얼음 입자인 것일 수 있다. 상기 얼음 입자의 크기 및 함량을 조절함으로써 다공성 고분자 지지체의 기공 크기 및 기공도를 조절 할 수 있다. 상기 얼음 입자의 크기는 10 내지 500 ㎛인 것일 수 있다. 상기 얼음 입자의 크기는 예를 들어, 10 내지 500 ㎛, 10 내지 450 ㎛, 10 내지 400 ㎛, 10 내지 300 ㎛, 30 내지 500 ㎛, 30 내지 300 ㎛, 30 내지 250 ㎛, 50 내지 500 ㎛, 50 내지 400 ㎛, 50 내지 300 ㎛, 50 내지 200 ㎛, 100 내지 500 ㎛, 100 내지 300 ㎛ 또는 150 내지 200 ㎛인 것일 수 있다. 이때, 얼음 입자의 크기가 상기 범위 미만인 경우, 세포의 침윤도가 낮아지며 신생 혈관 생성 효과를 충분히 발휘할 수 없다는 문제점이 있으며, 상기 범위를 초과하는 경우, 고분자 지지체의 기계적 물성이 감소하는 문제점이 있다. 또한, 상기 얼음 입자는 고분자 용액 총 중량에 대하여 100 내지 2000 중량%로 포함될 수 있다. 상기 얼음 입자는 고분자 용액 총 중량에 대하여 100 내지 2000 중량%, 100 내지 1500 중량%, 100 내지 1300 중량%, 100 내지 1000 중량%, 100 내지 500 중량%, 500 내지 2000 중량%, 500 내지 1500 중량%, 500 내지 1000 중량%, 1000 내지 2000 중량% 또는 1500 내지 2000 중량%로 포함된 것일 수 있다. 이때, 얼음 입자의 함량이 상기 범위 미만인 경우, 고분자 지지체 내부에 기공이 충분히 형성되지 않는다는 문제가 있으며, 상기 범위를 초과하는 경우, 고분자 지지체의 기계적 물성이 감소하는 문제가 있다. 또한, 상기 얼음 입자를 이용하여 동결건조법으로 고분자지지체를 제조함으로써 통상의 염 발포법(salt forming)에서 발생할 수 있는 염기성 세라믹 입자 및 세포외기질의 이탈을 방지할 수 있다.In the step of manufacturing the above porous support, the pore inducer may be ice particles. The pore size and porosity of the porous polymer support can be controlled by controlling the size and content of the ice particles. The size of the ice particles may be 10 to 500 ㎛. The size of the ice particles may be, for example, 10 to 500 ㎛, 10 to 450 ㎛, 10 to 400 ㎛, 10 to 300 ㎛, 30 to 500 ㎛, 30 to 300 ㎛, 30 to 250 ㎛, 50 to 500 ㎛, 50 to 400 ㎛, 50 to 300 ㎛, 50 to 200 ㎛, 100 to 500 ㎛, 100 to 300 ㎛, or 150 to 200 ㎛. At this time, if the size of the ice particles is less than the above range, there is a problem that the cell infiltration rate is low and the angiogenesis effect cannot be sufficiently exhibited, and if it exceeds the above range, there is a problem that the mechanical properties of the polymer support are reduced. In addition, the ice particles may be included in an amount of 100 to 2000 wt% with respect to the total weight of the polymer solution. The ice particles may be included in an amount of 100 to 2000 wt%, 100 to 1500 wt%, 100 to 1300 wt%, 100 to 1000 wt%, 100 to 500 wt%, 500 to 2000 wt%, 500 to 1500 wt%, 500 to 1000 wt%, 1000 to 2000 wt%, or 1500 to 2000 wt% with respect to the total weight of the polymer solution. At this time, if the content of ice particles is below the above range, there is a problem that pores are not sufficiently formed inside the polymer support, and if it exceeds the above range, there is a problem that the mechanical properties of the polymer support decrease. In addition, by manufacturing the polymer support by the freeze-drying method using the ice particles, it is possible to prevent the detachment of basic ceramic particles and extracellular matrix that may occur in the conventional salt forming method.

상기 다공성 지지체에 뼈 형성 단백질 및 생리활성물질을 포함하는 나노복합체를 고정화하는 단계는 초 고농도의 칼슘-인 용액 상에서 수행되는 것일 수 있다. 일 구체예에 있어서, 상기 칼슘-인 용액의 농도는 1 내지 100 mM인 것일 수 있다. 상기 다공성 지지체에 뼈 형성 단백질 및 생리활성물질을 포함하는 나노복합체를 고정화하는 단계는 칼슘-인산이온 용액 상에 존재하는 양이온과 음전하는 띠는 나노복합체가 정전기적 인력에 의하여 다공성 지지체에 고정되는 것일 수 있다. 구체적으로, 칼슘-인산이온 용액 상에 존재하는 칼슘 등의 무기 성분과 나노복합체가 다공성 지지체에 침착되어 고정되는 것일 수 있다. 즉, 일 양상에 따른 나노복합체는 다공성 지지체 상에 고정되어 있어, 생리활성물질의 초기 및 단시간 방출을 억제할 수 있는바, 생체 내에 존재하는 다양한 효소에 의한 생리활성물질의 제거를 방지할 수 있다. 또한, 생리활성물질의 방출속도를 제어할 수 있으므로, 생리활성물질의 안정성 및 지속성을 유지할 수 있으며, 이식 부위에 적합성을 가질 수 있다. The step of immobilizing the nanocomposite including the bone formation protein and the bioactive substance on the porous support may be performed in an ultra-high concentration calcium-phosphorus solution. In one specific example, the concentration of the calcium-phosphorus solution may be 1 to 100 mM. The step of immobilizing the nanocomposite including the bone formation protein and the bioactive substance on the porous support may be such that the nanocomposite having a negative charge and a cation present in the calcium-phosphate ion solution is fixed to the porous support by electrostatic attraction. Specifically, the nanocomposite and an inorganic component such as calcium present in the calcium-phosphate ion solution may be deposited and fixed on the porous support. That is, the nanocomposite according to one aspect is fixed on the porous support, so that the initial and short-term release of the bioactive substance can be suppressed, and thus the removal of the bioactive substance by various enzymes present in the body can be prevented. In addition, since the release rate of the bioactive substance can be controlled, the stability and sustainability of the bioactive substance can be maintained, and suitability for the transplantation site can be ensured.

일 양상에 따른 고분자 지지체는 생분해성 고분자를 포함함으로써, 소수성 생체이식물의 낮은 생체적합성을 개선할 수 있을 뿐만 아니라, BMP/PDRN 나노복합체에 의한 이식 부위의 혈관생성 및 내피화를 촉진시킬 수 있다. 또한, 상기 BMP/PDRN 나노복합체가 다공성 지지체에 고정되어 있어 생체활성물질의 방출량 및 속도를 제어할 수 있다. According to one aspect, the polymer scaffold can improve the low biocompatibility of hydrophobic bioimplant by including a biodegradable polymer, and can also promote angiogenesis and endothelialization of the transplant site by the BMP/PDRN nanocomposite. In addition, since the BMP/PDRN nanocomposite is fixed to the porous scaffold, the release amount and speed of the bioactive substance can be controlled.

도 1은 일 양상에 따른 고분자 지지체를 도식화한 것이다.
도 2는 일 양상에 따른 고분자 지지체의 생체적합성을 측정한 결과를 나타내는 것이다.
도 3a 및 도 3b는 일 양상에 따른 고분자 지지체의 혈관 신생에 미치는 영향을 나타내는 것이다.
도 4는 일 양상에 따른 고분자 지지체의 골 재생에 미치는 영향을 나타내는 것이다.
Figure 1 is a schematic diagram of a polymer support according to one aspect.
Figure 2 shows the results of measuring the biocompatibility of a polymer support according to various aspects.
Figures 3a and 3b show the effect of polymer scaffolds on angiogenesis according to one aspect.
Figure 4 shows the effect of polymer scaffolds on bone regeneration according to the daily aspect.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help understand the present invention. However, the following examples are provided only to help understand the present invention more easily, and the content of the present invention is not limited by the following examples.

[제조예][Manufacturing example]

제조예 1. 뼈 형성 단백질 및 생체활성물질을 포함하는 나노복합체의 제조Manufacturing Example 1. Manufacturing of a nanocomposite containing bone-forming protein and bioactive substance

뼈 형성 단백질 2(Born Morphogenetic Protein 2, BMP2) 10 ㎍ 및 DNA 유래 생체활성물질인 폴리데옥시리보뉴클레오티드(Polydeoxyribonucleotide, PDRN) 10 ㎍을 10 mM NaCl에 녹여 4℃에서 1시간 동안 반응하여 이온결합을 유도하였다. 이후, 미반응된 물질을 원심분리로 제거하여 BMP/PDRN 나노복합체를 제조하였다. 10 μg of Born Morphogenetic Protein 2 (BMP2) and 10 μg of polydeoxyribonucleotide (PDRN), a bioactive substance derived from DNA, were dissolved in 10 mM NaCl and reacted at 4°C for 1 hour to induce ionic bonding. Afterwards, unreacted materials were removed by centrifugation to produce a BMP/PDRN nanocomposite.

제조예 2. 염기성 세라믹 입자의 제조Manufacturing Example 2. Manufacturing of basic ceramic particles

2-1. 수산화마그네슘 입자의 제조2-1. Manufacturing of magnesium hydroxide particles

수산화나트륨 10.8 g을 3차 증류수 300 ㎖에 용해하여 수산화나트륨 용액을 제조하였다. 질산마그네슘 20 g을 3차 증류수 150 ㎖에 용해하여 질산마그네슘 용액을 제조하였다. 이후, 적하 깔데기를 이용하여 상기 수산화나트륨 용액에 상기 질산마그네슘 용액을 30 드롭(drop)/분의 속도로 적하하여 반응 용액을 제조하였다. 이후, 제조된 반응 용액에 증류수를 흘려주면서 침전된 나노 수산화마그네슘 입자를 정제한 뒤 여과하여 나노 수산화마그네슘 입자를 수득하였다. 수득한 나노 수산화마그네슘 입자를 진공 건조하여 보관하였다. A sodium hydroxide solution was prepared by dissolving 10.8 g of sodium hydroxide in 300 ml of distilled water. A magnesium nitrate solution was prepared by dissolving 20 g of magnesium nitrate in 150 ml of distilled water. Thereafter, a reaction solution was prepared by dropping the magnesium nitrate solution into the sodium hydroxide solution at a rate of 30 drops/min using a dropping funnel. Thereafter, while flowing distilled water into the prepared reaction solution, the precipitated nano magnesium hydroxide particles were purified and then filtered to obtain nano magnesium hydroxide particles. The obtained nano magnesium hydroxide particles were vacuum-dried and stored.

2-2. 지방산으로 표면 개질된 수산화마그네슘 입자의 제조2-2. Preparation of magnesium hydroxide particles surface-modified with fatty acids

리신올레산(Ricinoleic acid)으로 표면 개질된 수산화마그네슘 입자를 제조하였다. 구체적으로, 혼합물 총 중량에 대하여 상기 제조예 2-1에서 제조한 수산화마그네슘 입자 10 중량% 및 리시놀레산 90 중량%를 혼합한 후, 질소 대기 하에서 유리 반응기 온도 70℃로 설정하여 12시간 동안 교반하였다. 이후, 상기 교반 용액에 에탄올을 흘려주면서 미반응된 물질을 제거한 뒤, 정제 및 여과하여 리시놀레산으로 표면 개질된 수산화마그네슘 입자를 수득하였다. 수득한 지방산 표면 개질 수산화마그네슘 입자를 진공 건조하여 보관하였다. Magnesium hydroxide particles surface-modified with ricinoleic acid were prepared. Specifically, 10 wt% of the magnesium hydroxide particles prepared in Manufacturing Example 2-1 and 90 wt% of ricinoleic acid were mixed based on the total weight of the mixture, and stirred for 12 hours at a glass reactor temperature of 70°C under a nitrogen atmosphere. Thereafter, ethanol was flowed into the stirred solution to remove unreacted substances, followed by purification and filtration to obtain magnesium hydroxide particles surface-modified with ricinoleic acid. The obtained fatty acid surface-modified magnesium hydroxide particles were vacuum-dried and stored.

2-3. 고분자로 표면 개질된 수산화마그네슘 입자의 제조2-3. Preparation of magnesium hydroxide particles surface-modified with polymer

L-락티드(L-lactide)로 표면 개질된 수산화마그네슘 입자를 제조하였다. 구체적으로, 혼합물 총 중량에 대하여 상기 제조예 2-1에서 제조한 수산화마그네슘 입자 80 중량% 및 L-락티드 20 중량%를 혼합하여 반응 용액을 제조하였다. 이후, 반응 용액(수산화마그네슘 및 L-락티드)의 총 중량에 대하여 0.05 중량%의 옥토산주석(촉매)을 톨루엔에 희석하여 투입한 뒤, 반응 용액이 담긴 유리 반응기를 교반하면서 70℃, 진공 상태에서 6시간 동안 유지시켜 톨루엔과 수분을 완전히 제거하였다. 이후, 봉인된 유리 반응기를 150℃로 조절된 기름 중탕에서 교반하면서 48시간 동안 개환 중합 반응을 수행하여 중합체를 제조하였다. 중합체를 회수한 후, 충분한 양의 클로로포름(Chloroform) 용액에 넣어 1시간 이상 호모폴리머 및 미반응된 잔여물을 제거하여 L-락티드로 표면 개질된 수산화마그네슘을 제조하였다. Magnesium hydroxide particles surface-modified with L-lactide were prepared. Specifically, 80 wt% of the magnesium hydroxide particles prepared in Manufacturing Example 2-1 and 20 wt% of L-lactide based on the total weight of the mixture were mixed to prepare a reaction solution. Thereafter, 0.05 wt% of tin octoate (catalyst) based on the total weight of the reaction solution (magnesium hydroxide and L-lactide) was diluted in toluene and added, and the glass reactor containing the reaction solution was maintained at 70°C in a vacuum for 6 hours while stirring to completely remove toluene and moisture. Thereafter, the sealed glass reactor was stirred in an oil bath controlled to 150°C while performing a ring-opening polymerization reaction for 48 hours to prepare a polymer. After recovering the polymer, it was placed in a sufficient amount of chloroform solution for more than 1 hour to remove the homopolymer and unreacted residues, thereby producing magnesium hydroxide surface-modified with L-lactide.

2-4. 지방산 및 고분자로 표면 개질된 수산화마그네슘 입자의 제조2-4. Preparation of magnesium hydroxide particles surface-modified with fatty acids and polymers

상기 제조예 2-2에서 제조한 리신올레산으로 표면 개질된 수산화마그네슘 입자를 사용하였다는 점을 제외하고는 상기 제조예 2-3과 동일한 방법으로 리신올레산 및 L-락티드로 표면 개질된 수산화마그네슘 입자를 제조하였다. Magnesium hydroxide particles surface-modified with ricinoleic acid and L-lactide were manufactured in the same manner as in Manufacturing Example 2-3, except that the magnesium hydroxide particles surface-modified with ricinoleic acid manufactured in Manufacturing Example 2-2 were used.

제조예 3. 탈세포화 및 분말화된 세포외기질의 제조Manufacturing Example 3. Manufacturing of decellularized and powdered extracellular matrix

3-1. 소 골(bone) 유래 세포외기질의 제조3-1. Production of extracellular matrix derived from bovine bone

소의 피질골(cortical bone)에 83% 에탄올 및 6% 과산화수소 용액을 처리하여 골수 및 지질을 제거하였다. 이후, 상기 골수 및 지질이 제거된 골(bone)을 블록 형태로 절단한 뒤, 동결분쇄기를 사용하여 더욱 작게 분쇄하여 분말화하였다. 골 분말 1 g당 15 ㎖의 정제수를 첨가하여 10분 동안 세척하고, 정제수를 교환하는 과정을 3회 반복하여 골 분말에서 파편을 제거하였다. 이후, 파편이 제거된 골 분말을 교반기에 넣고 골 분말 1 g 당 15 ㎖의 0.6N HCl 용액을 첨가하여 24℃에서 200 rpm의 속도로 6시간 동안 교반한 뒤, 상기 교반 용액의 pH가 6.0 이상이 될 때까지 세척을 반복하였다. 이후, 상기 교반 용액에 83% 에탄올 및 6% 과산화수소를 처리하여 소독하여, 상층액을 제거한 뒤 -70 ℃에서 12시간 동안 냉동 보관하여 세포외기질의 탈세포화를 유도하였다. 탈세포화된 세포외기질을 동결분쇄기를 사용하여 약 50 ㎛의 크기로 동결분쇄한 뒤, 분말화하여 소 골 유래 세포외기질을 제조하였다. Cortical bone of a cow was treated with 83% ethanol and 6% hydrogen peroxide solution to remove bone marrow and lipids. Thereafter, the bone from which the bone marrow and lipids were removed was cut into a block shape, and then further crushed and powdered using a freeze grinder. 15 ml of purified water was added per 1 g of bone powder, the bone powder was washed for 10 minutes, and the process of exchanging the purified water was repeated 3 times to remove debris from the bone powder. Thereafter, the bone powder from which the debris had been removed was placed in a stirrer, 15 ml of 0.6 N HCl solution was added per 1 g of bone powder, and the mixture was stirred at 24°C and 200 rpm for 6 hours, and washing was repeated until the pH of the stirred solution became 6.0 or higher. Thereafter, the stirred solution was disinfected by treating 83% ethanol and 6% hydrogen peroxide, the supernatant was removed, and the mixture was frozen and stored at -70°C for 12 hours to induce decellularization of the extracellular matrix. The decellularized extracellular matrix was freeze-pulverized to a size of approximately 50 μm using a freeze-pulverizer and then powdered to produce bone-derived extracellular matrix.

3-2. 소 피부 유래 세포외기질의 제조3-2. Preparation of extracellular matrix derived from bovine skin

소의 피부 조직을 채취한 후, 생리식염수를 이용하여 10 분간 3회 반복 세척하였다. 세척된 조직을 에탄올로 탈수시킨 후, 조직 10 g 당 0.1% SDS 용액 1 L에 넣고 100 rpm의 속도로 24시간 동안 교반하였다. 이후, 3차 증류수를 이용하여 100 rpm의 속도로 30분 동안 5회 세척한 뒤, 200 U/㎖ 농도의 DNAse 200 ㎖을 추가하여 37℃에서 100 rpm의 속도로 24시간 동안 교반하여 조직에 존재하는 지방 세포 및 유전자 성분을 제거하였다. 이후, 3차 증류수를 이용하여 100 rpm의 속도로 30 분 동안 5회 세척한 뒤, 상기 지방 세포 및 유전자 성분이 제거되어 탈세포화된 순수한 세포외기질을 동결 건조하였다. 이후, 상기 세포외기질을 동결분쇄기를 사용하여 약 50 ㎛의 크기로 동결분쇄한 뒤 분말화하여 소 피부 유래 세포외기질을 제조하였다. After collecting bovine skin tissue, it was washed three times for 10 minutes using saline solution. After dehydrating the washed tissue with ethanol, it was placed in 1 L of 0.1% SDS solution per 10 g of tissue and stirred at 100 rpm for 24 hours. Thereafter, it was washed five times for 30 minutes at 100 rpm using distilled water, and 200 mL of DNAse at a concentration of 200 U/㎖ was added and stirred at 100 rpm for 24 hours at 37°C to remove adipocytes and genetic components present in the tissue. Thereafter, it was washed five times for 30 minutes at 100 rpm using distilled water, and the decellularized pure extracellular matrix from which the adipocytes and genetic components were removed was freeze-dried. Thereafter, the extracellular matrix was freeze-pulverized into particles of about 50 ㎛ in size using a freeze-pulverizer and then powdered to prepare extracellular matrix derived from bovine skin.

조직에 존재하는 지방 세포 및 유전자 성분을 제거하여 탈세포화 함으로써 순수한 세포외기질을 수득하였다. Pure extracellular matrix was obtained by decellularization by removing fat cells and genetic components present in the tissue.

3-3. 인간 피부 유래 세포외기질의 제조3-3. Production of extracellular matrix derived from human skin

사람의 피부 조직을 사용하였다는 점을 제외하고는 상기 제조예 3-2와 동일한 방법으로 인간 피부 오래 세포외기질을 제조하였다. Human skin extracellular matrix was prepared in the same manner as in Manufacturing Example 3-2, except that human skin tissue was used.

3-4. 인간 지방 유래 세포외기질의 제조3-4. Preparation of human adipose derived extracellular matrix

사람의 지방 조직을 사용하였다는 점을 제외하고는 상기 제조예 3-2와 동일한 방법으로 인간 지방 유래 세포외기질을 제조하였다. Human adipose-derived extracellular matrix was prepared in the same manner as in Manufacturing Example 3-2, except that human adipose tissue was used.

3-5. 돼지 신장 유래 세포외기질의 제조3-5. Preparation of extracellular matrix derived from pig kidney

돼지의 신장 조직을 사용하였다는 점을 제외하고는 상기 제조예 3-2와 동일한 방법으로 돼지 신장 유래 세포외기질을 제조하였다. A porcine kidney-derived extracellular matrix was prepared in the same manner as in Manufacturing Example 3-2, except that porcine kidney tissue was used.

3-6. 쥐 뇌 유래 세포외기질의 제조3-6. Preparation of extracellular matrix derived from rat brain

쥐의 뇌 조직을 사용하였다는 제외하고는 상기 제조예 3-2와 동일한 방법으로 쥐 뇌 유래 세포외기질을 제조하였다. A rat brain-derived extracellular matrix was prepared in the same manner as in Manufacturing Example 3-2, except that rat brain tissue was used.

[실시예][Example]

실시예 1. BMP/PDRN 나노복합체가 고정된 고분자 지지체의 제조(1) Example 1. Preparation of polymer scaffold with BMP/PDRN nanocomposite fixed thereon (1)

BMP/PDRN 나노복합체가 고정된 고분자 지지체를 제조하였다. 구체적으로, 폴리락티드-co-글리콜리드(Polylactide-co-glycolide, PLGA) (50:50) (분자량: 110,000 Da) 총 중량에 대하여 상기 제조예 2-2의 지방산으로 표면 개질된 수산화마그네슘 입자 20 중량%, 제조예 3-1의 소 골(bone) 유래 세포외기질 50 중량%를 유기용매에 혼합하여 고분자 용액을 제조하였다. 이후, 상기 고분자 용액에 100 내지 200 ㎛의 얼음입자를 균일하게 혼합한 후, 테프론 몰드를 사용하여 48시간 동안 동결건조하여 다공성 지지체를 제조하였다. 상기 다공성 지지체를 70% 에탄올에 침지하여 멸균한 뒤, 멸균 증류수로 세척하여 에탄올을 제거하고, 생리식염수에 침지하여 수화하였다. 이후, 칼슘-인 포화 용액 상에서 극성에 의한 침전 방식을 통하여 상기 제조예 1-1의 BMP/PDRN 나노복합체를 상기 다공성 고분자 지지체에 고정하여 골 재생용 고분자 지지체를 제조하였다. A polymer scaffold having BMP/PDRN nanocomposites fixed thereon was prepared. Specifically, 20 wt% of the magnesium hydroxide particles surface-modified with fatty acids of Preparation Example 2-2 and 50 wt% of the bone-derived extracellular matrix of Preparation Example 3-1 were mixed with an organic solvent based on the total weight of polylactide-co-glycolide (PLGA) (50:50) (molecular weight: 110,000 Da), to prepare a polymer solution. Thereafter, ice particles having a size of 100 to 200 ㎛ were uniformly mixed into the polymer solution, and then freeze-dried for 48 hours using a Teflon mold to prepare a porous scaffold. The porous scaffold was sterilized by immersion in 70% ethanol, washed with sterile distilled water to remove ethanol, and hydrated by immersion in physiological saline. Thereafter, the BMP/PDRN nanocomposite of Manufacturing Example 1-1 was fixed to the porous polymer scaffold through a polarity-based precipitation method in a calcium-phosphorus saturated solution to manufacture a polymer scaffold for bone regeneration.

실시예 2. BMP/PDRN 나노복합체가 고정된 고분자 지지체의 제조(2)Example 2. Preparation of polymer scaffold with BMP/PDRN nanocomposite fixed (2)

폴리락티드-co-글리콜리드(Polylactide-co-glycolide, PLGA) (50:50) (분자량: 40,000 Da)을 사용하였다는 점을 제외하고는 상기 실시예 1과 동일한 방법으로 골 재생용 고분자 지지체를 제조하였다. A polymer scaffold for bone regeneration was prepared in the same manner as in Example 1, except that polylactide-co-glycolide (PLGA) (50:50) (molecular weight: 40,000 Da) was used.

실시예 3. BMP/PDRN 나노복합체가 고정된 고분자 지지체의 제조(3)Example 3. Preparation of polymer scaffold with BMP/PDRN nanocomposite fixed (3)

폴리락티드-co-글리콜리드(Polylactide-co-glycolide, PLGA) (75:25) (분자량: 110,000 Da)을 사용하였다는 점을 제외하고는 상기 실시예 1과 동일한 방법으로 골 재생용 고분자 지지체를 제조하였다. A polymer scaffold for bone regeneration was prepared in the same manner as in Example 1, except that polylactide-co-glycolide (PLGA) (75:25) (molecular weight: 110,000 Da) was used.

[비교예][Comparative example]

비교예 1. 염기성 세라믹 입자가 포함되지 않은 고분자 지지체의 제조(1)Comparative Example 1. Preparation of polymer support without basic ceramic particles (1)

염기성 세라믹 입자가 포함되지 않은 고분자 지지체를 제조하였다. 구체적으로, 폴리락티드(Polylactide, PLA) (분자량: 150,000 Da) 총 중량에 대하여 제조예 3-1의 소 골(bone) 유래 세포외기질 50 중량%를 유기용매에 혼합하여 고분자 용액을 제조하였다. 이후, 상기 실시예 1과 동일한 방법으로 염기성 세라믹 입자가 포함되지 않았으며, BMP/PDRN 나노복합체가 고정된 골 재생용 고분자 지지체를 제조하였다. A polymer scaffold that does not contain basic ceramic particles was prepared. Specifically, 50 wt% of the bone-derived extracellular matrix of Manufacturing Example 3-1 was mixed with an organic solvent based on the total weight of polylactide (PLA) (molecular weight: 150,000 Da) to prepare a polymer solution. Thereafter, a polymer scaffold for bone regeneration that does not contain basic ceramic particles and has BMP/PDRN nanocomposites fixed thereto was prepared in the same manner as in Example 1.

비교예 2. 세포외기질이 포함되지 않은 고분자 지지체의 제조(2)Comparative Example 2. Preparation of polymer support without extracellular matrix (2)

세포외기질이 포함되지 않은 고분자 지지체를 제조하였다. 구체적으로, 폴리카프로락톤(Polycaprolactone, PCL) (분자량: 100,000 Da) 총 중량에 대하여 상기 제조예 2-2의 지방산으로 표면 개질된 수산화마그네슘 입자 20 중량%를 유기용매에 혼합하여 고분자 용액을 제조하였다. 이후, 상기 실시예 1과 동일한 방법으로 세포외기질이 포함되지 않았으며, BMP/PDRN 나노복합체가 고정된 골 재생용 고분자 지지체를 제조하였다.A polymer scaffold that does not include an extracellular matrix was prepared. Specifically, 20 wt% of the magnesium hydroxide particles surface-modified with the fatty acid of Manufacturing Example 2-2 was mixed with an organic solvent based on the total weight of polycaprolactone (PCL) (molecular weight: 100,000 Da), to prepare a polymer solution. Thereafter, a polymer scaffold for bone regeneration that does not include an extracellular matrix and has a BMP/PDRN nanocomposite fixed thereto was prepared in the same manner as in Example 1.

비교예 3. BMP/PDRN 나노복합체가 고정되지 않은 고분자 지지체의 제조Comparative Example 3. Preparation of polymer scaffold without BMP/PDRN nanocomposite immobilization

BMP/PDRN 나노복합체가 고정되지 않은 고분자 지지체를 제조하였다. 구체적으로, 폴리락티드-co-카프로락톤(Polylactide-co-caprolactone, PLC) (70:30) (분자량: 100,000 Da) 총 중량에 대하여 상기 제조예 2-2의 지방산으로 표면 개질된 수산화마그네슘 입자 20 중량%, 제조예 3-1의 소 골(bone) 유래 세포외기질 50 중량%를 유기용매에 혼합하여 고분자 용액을 제조하였다. 이후, 상기 고분자 용액에 100 내지 200 ㎛의 얼음입자를 균일하게 혼합한 후, 테프론 몰드를 사용하여 48시간 동안 동결건조하여 다공성 지지체를 제조하였다. 상기 다공성 지지체를 70% 에탄올에 침지하여 멸균한 뒤, 멸균 증류수로 세척하여 에탄올을 제거하고, 생리식염수에 침지하여 수화하였다.A polymer scaffold without BMP/PDRN nanocomposites was prepared. Specifically, 20 wt% of the magnesium hydroxide particles surface-modified with fatty acids of Preparation Example 2-2 and 50 wt% of the bone-derived extracellular matrix of Preparation Example 3-1 were mixed with an organic solvent based on the total weight of polylactide-co-caprolactone (PLC) (70:30) (molecular weight: 100,000 Da), to prepare a polymer solution. Thereafter, ice particles having a size of 100 to 200 ㎛ were uniformly mixed into the polymer solution, and then freeze-dried for 48 hours using a Teflon mold to prepare a porous scaffold. The porous scaffold was sterilized by immersion in 70% ethanol, washed with sterile distilled water to remove ethanol, and hydrated by immersion in physiological saline.

비교예 4. 생분해성 고분자 지지체의 제조(1)Comparative Example 4. Preparation of biodegradable polymer support (1)

폴리락티드-co-글리콜리드(Polylactide-co-glycolide, PLGA) (50:50) (분자량: 110,000 Da)를 유기 용매에 혼합하여 고분자 용액을 제조하였다. 이후, 상기 고분자 용액에 100 내지 200 ㎛의 얼음입자를 균일하게 혼합한 후, 테프론 몰드를 사용하여 48시간 동안 동결건조하여 다공성 지지체를 제조하였다. 상기 다공성 지지체를 70% 에탄올에 침지하여 멸균한 뒤, 멸균 증류수로 세척하여 에탄올을 제거하고, 생리식염수에 침지하여 수화하였다.Polylactide-co-glycolide (PLGA) (50:50) (molecular weight: 110,000 Da) was mixed with an organic solvent to prepare a polymer solution. Thereafter, ice particles of 100 to 200 μm in size were uniformly mixed into the polymer solution, and then freeze-dried for 48 hours using a Teflon mold to prepare a porous support. The porous support was sterilized by immersion in 70% ethanol, washed with sterilized distilled water to remove ethanol, and hydrated by immersion in saline solution.

비교예 5. 생분해성 고분자 지지체의 제조(2)Comparative Example 5. Preparation of biodegradable polymer support (2)

폴리락티드-co-글리콜리드(Polylactide-co-glycolide, PLGA) (50:50) (분자량: 40,000 Da)을 사용하였다는 점을 제외하고는 상기 비교예 4와 동일한 방법으로 생분해성 고분자 지지체를 제조하였다. A biodegradable polymer support was prepared in the same manner as in Comparative Example 4, except that polylactide-co-glycolide (PLGA) (50:50) (molecular weight: 40,000 Da) was used.

[실험예][Experimental example]

생체적합성 측정Biocompatibility measurement

일 양상에 따른 BMP/PDRN 나노복합체가 고정된 고분자 지지체의 생체적합성을 평가하기 위하여, 상기 실시예 1~3 및 비교예 3~5의 고분자 지지체에서 인간유래 중간엽줄기세포를 배양하였다. 이후, 세포성장율과 세포 독성을 각각 CCK-8 및 Calcein AM/EthD-1으로 염색하여 분석하였다. In order to evaluate the biocompatibility of polymer supports immobilized with BMP/PDRN nanocomposites according to the aspect of the invention, human-derived mesenchymal stem cells were cultured on the polymer supports of Examples 1 to 3 and Comparative Examples 3 to 5. Thereafter, cell growth rate and cytotoxicity were analyzed by staining with CCK-8 and Calcein AM/EthD-1, respectively.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 생체적합성Biocompatibility XX XX

○: 세포사멸 10% 미만, △: 세포사멸 10~30%, X: 세포사멸 30% 이상○: Cell death less than 10%, △: Cell death 10-30%, X: Cell death 30% or more

표 1에 나타낸 바와 같이, 실시예 1~3은 세포사멸이 10%미만으로 나타난 반면, 비교예 4~5는 30% 이상의 세포사멸을 나타내는 것을 확인할 수 있었다. 즉, 일 양상에 따른 고분자 지지체는 우수한 생체적합성을 가지는 것을 확인할 수 있었다. As shown in Table 1, it was confirmed that Examples 1 to 3 showed cell death of less than 10%, whereas Comparative Examples 4 to 5 showed cell death of 30% or more. In other words, it was confirmed that the polymer support according to one aspect had excellent biocompatibility.

도 2는 일 양상에 따른 고분자 지지체의 생체적합성을 측정한 결과를 나타내는 것이다.Figure 2 shows the results of measuring the biocompatibility of a polymer support according to various aspects.

그 결과, 도 2에 나타낸 바와 같이, 비교예 1~4 및 실시예 1은 시간이 지남에 따라 세포 증식율을 증가하였으며, 특히 실시예 1에서 세포 증식율이 현저한 것을 확인할 수 있었다. As a result, as shown in Fig. 2, Comparative Examples 1 to 4 and Example 1 showed an increase in cell proliferation rate over time, and it was confirmed that the cell proliferation rate was particularly remarkable in Example 1.

즉, 일 양상에 따른 고분자 지지체는 BMP/PDRN 나노복합체가 고분자 지지체에 고정되어 있는바, 세포 부착율이 우수한 것을 알 수 있다. That is, it can be seen that the polymer support according to the aspect of the work has an excellent cell attachment rate because the BMP/PDRN nanocomposite is fixed to the polymer support.

신생혈관 형성능 확인Confirmation of angiogenic capacity

일 양상에 따른 BMP/PDRN 나노복합체가 고정된 고분자 지지체의 신생혈관 형성능을 확인하기 위하여, 상기 실시예 1~3 및 비교예 3~5의 고분자 지지체를 두개골 결손 랫트(Rat) 모델에 이식하였다. 8주 후, 혈관조영제를 투입하여 결손 부위 주변에 새롭게 형성된 혈관의 부피 및 수를 측정하였다. In order to confirm the angiogenic ability of polymer scaffolds immobilized with BMP/PDRN nanocomposites according to the aspect of the invention, the polymer scaffolds of Examples 1 to 3 and Comparative Examples 3 to 5 were transplanted into a rat model with a calvarial defect. After 8 weeks, an angiographic contrast agent was injected, and the volume and number of newly formed blood vessels around the defect site were measured.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 신생혈관생성능Angiogenic capacity XX XX

○: 우수, △: 보통, X: 나쁨○: Excellent, △: Average, X: Bad

표 2에 나타낸 바와 같이, 비교예 3~5와 비교하여 실시예 1~3은 신생혈관생성능이 우수한 것을 확인할 수 있었다. As shown in Table 2, it was confirmed that Examples 1 to 3 had superior angiogenesis performance compared to Comparative Examples 3 to 5.

도 3a 및 도 3b는 일 양상에 따른 고분자 지지체의 혈관 신생에 미치는 영향을 나타내는 것이다.Figures 3a and 3b show the effect of polymer scaffolds on angiogenesis according to one aspect.

그 결과, 도 3a에 나타낸 바와 같이, 실시예 1은 비교예 3~4와 비교하여 결손 부위 주변에 생성된 신생 혈관이 유의하게 많은 것을 확인할 수 있었다. 구체적으로, 정상 대조군과 유사한 수준으로 신생 혈관이 생성된 것을 확인할 수 있었다. 또한, 생성된 신생 혈관의 수를 측정한 결과, 도 3b에 나타낸 바와 같이, 비교예 3~4와 비교하여 실시예 1에서 통계적으로 유의하게 신생 혈관의 수가 증가하였으며, 결손 부위가 정상 대조군과 유사한 수준으로 회복되었음을 확인할 수 있었다. As a result, as shown in Fig. 3a, it was confirmed that significantly more new blood vessels were generated around the defect site in Example 1 compared to Comparative Examples 3 to 4. Specifically, it was confirmed that new blood vessels were generated at a level similar to that of the normal control group. In addition, as a result of measuring the number of generated new blood vessels, as shown in Fig. 3b, it was confirmed that the number of new blood vessels statistically significantly increased in Example 1 compared to Comparative Examples 3 to 4, and that the defect site was recovered to a level similar to that of the normal control group.

즉, 일 양상에 따른 고분자 지지체는 BMP/PDRN 나노복합체에 의해 이식 부위의 혈관생성 및 내피화를 촉진시킬 수 있다.That is, the polymer scaffold according to the aspect can promote angiogenesis and endothelialization of the transplant site by BMP/PDRN nanocomposite.

골 조직 재생능 확인Confirmation of bone tissue regeneration ability

일 양상에 따른 BMP/PDRN 나노복합체가 고정된 고분자 지지체의 골 조직 재생능을 확인하기 위하여, 상기 실시예 1의 고분자 지지체를 두개골 결손 랫트(Rat) 모델에 이식하였다. 8주 후, 골 결손 부위를 Micro-CT로 촬영하여 골 재생 효과를 확인하였다. In order to confirm the bone tissue regeneration ability of the polymer scaffold immobilized with BMP/PDRN nanocomposite according to the aspect, the polymer scaffold of Example 1 was transplanted into a rat model with a skull defect. After 8 weeks, the bone defect area was photographed using Micro-CT to confirm the bone regeneration effect.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 골 조직 재생능Bone tissue regeneration ability XX XX

○: 우수, △: 보통, X: 나쁨○: Excellent, △: Average, X: Bad

표 2에 나타낸 바와 같이, 비교예 3~5와 비교하여 실시예 1~3은 골 조직 재생능이 우수한 것을 확인할 수 있었다. As shown in Table 2, it was confirmed that Examples 1 to 3 had superior bone tissue regeneration ability compared to Comparative Examples 3 to 5.

도 4는 일 양상에 따른 고분자 지지체의 골 재생에 미치는 영향을 나타내는 것이다.Figure 4 shows the effect of polymer scaffolds on bone regeneration according to the daily aspect.

그 결과, 도 4에 나타낸 바와 같이, 비교예 3의 경우, 결손 부위의 골 재생 효과가 전혀 나타나지 않았으며, 비교예 3의 경우, 부분적으로 골 재생 효과를 나타내었다. 반면, 실시예 1은 결손 부위에 새로운 골 조직이 생성되어 결손 부위의 크기가 현저하게 작아진 것을 확인할 수 있었다. As a result, as shown in Fig. 4, in the case of Comparative Example 3, no bone regeneration effect was observed at all in the defective area, and in the case of Comparative Example 3, a bone regeneration effect was observed partially. On the other hand, in Example 1, it was confirmed that new bone tissue was generated in the defective area, and the size of the defective area was significantly reduced.

따라서, 일 양상에 따른 고분자 지지체는 BMP/PDRN 나노복합체가 다공성 지지체에 고정되어 있어 BMP/PDRN의 방출 속도를 제어할 수 있으므로, 골 조직 재생에 탁월한 효과가 있다. Therefore, the polymer scaffold according to the aspect of the invention is excellent in bone tissue regeneration because the BMP/PDRN nanocomposite is fixed to the porous scaffold and the release rate of BMP/PDRN can be controlled.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The above description of the present invention is for illustrative purposes only, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential characteristics of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (10)

뼈 형성 단백질(Bone Morphogenetic Protein, BMP) 및 폴리데옥시리보뉴클레오티드(Polydeoxyribonucleotide, PDRN)를 포함하는 나노복합체가 생분해성 고분자, 염기성 세라믹 입자 및 세포외기질을 포함하는 다공성 지지체에 정전기적 인력으로 고정된 골 재생용 고분자 지지체로서,
상기 나노복합체는 뼈 형성 단백질 및 폴리데옥시리보뉴클레오티드의 이온 결합에 의하여 형성된 것이고,
상기 뼈 형성 단백질 및 폴리데옥시리보뉴클레오티드는 1:0.5 내지 5의 중량비로 혼합된 것인, 골 재생용 고분자 지지체.
A polymer scaffold for bone regeneration in which a nanocomposite containing bone morphogenetic protein (BMP) and polydeoxyribonucleotide (PDRN) is fixed to a porous scaffold containing a biodegradable polymer, basic ceramic particles, and an extracellular matrix by electrostatic attraction,
The above nanocomposite is formed by ionic bonding of bone forming protein and polydeoxyribonucleotide,
A polymer scaffold for bone regeneration, wherein the bone formation protein and polydeoxyribonucleotide are mixed in a weight ratio of 1:0.5 to 5.
청구항 1에 있어서, 상기 뼈 형성 단백질은 BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP10, BMP11 및 BMP15로 구성된 군에서 선택되는 것인 골 재생용 고분자 지지체. A polymer scaffold for bone regeneration according to claim 1, wherein the bone formation protein is selected from the group consisting of BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP10, BMP11 and BMP15. 삭제delete 청구항 1에 있어서, 상기 생분해성 고분자는 폴리락타이드, 폴리글라이콜라이드, 폴리카프로락톤, 폴리락타이드-co-글라이콜라이드, 폴리락타이드-co-카프로락톤, 폴리글라이콜라이드-co-카프로락톤, 폴리다이옥산온, 폴리다이옥판온, 폴리트리메틸렌카보네이트, 폴리글라이콜라이드-co-다이옥산온, 폴리아미드에스터, 폴리펩티드, 폴리올쏘에스터, 폴리말레산, 폴리안하이드라이드, 폴리세바식안하이드라이드, 폴리수산화알카노에이트, 폴리수산화부틸레이트 및 폴리시아노아크릴레이트로 구성된 군에서 선택되는 것인 골 재생용 고분자 지지체.A polymer scaffold for bone regeneration according to claim 1, wherein the biodegradable polymer is selected from the group consisting of polylactide, polyglycolide, polycaprolactone, polylactide-co-glycolide, polylactide-co-caprolactone, polyglycolide-co-caprolactone, polydioxanone, polydioxanone, polytrimethylene carbonate, polyglycolide-co-dioxanone, polyamide ester, polypeptide, polyolthoester, polymaleic acid, polyanhydride, polysebacinhydride, polyhydroxyalkanoate, polyhydroxybutyrate, and polycyanoacrylate. 청구항 1에 있어서, 상기 염기성 세라믹 입자는 수산화마그네슘, 수산화리튬, 수산화베릴륨, 수산화나트륨, 수산화칼륨, 수산화칼슘, 산화마그네슘, 산화리튬, 산화베릴륨, 산화나트륨, 산화칼륨, 산화칼슘 탄산칼슘, 칼슘카보네이트, 수산화인회석(Hydroxyapatite; HAp), 인산삼석회(Tricalcium phosphate; β-TCP) 및 마그네슘 세라믹으로 구성된 군에서 선택되는 것인 골 재생용 고분자 지지체. A polymer scaffold for bone regeneration according to claim 1, wherein the basic ceramic particles are selected from the group consisting of magnesium hydroxide, lithium hydroxide, beryllium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium oxide, lithium oxide, beryllium oxide, sodium oxide, potassium oxide, calcium oxide, calcium carbonate, hydroxyapatite (HAp), tricalcium phosphate (β-TCP), and magnesium ceramics. 삭제delete 청구항 1에 있어서, 상기 나노복합체는 0.1 내지 10 ppm의 농도로 포함된 것인 골 재생용 고분자 지지체.A polymer scaffold for bone regeneration according to claim 1, wherein the nanocomposite is included at a concentration of 0.1 to 10 ppm. 생분해성 고분자, 염기성 세라믹 입자 및 세포외기질과 용매를 혼합하여 고분자 용액을 제조하는 단계;
상기 고분자 용액에 기공 유도체를 혼합하여 다공성 지지체를 제조하는 단계; 및
상기 다공성 지지체에 뼈 형성 단백질 및 폴리데옥시리보뉴클레오티드가 1:0.5 내지 5의 중량비로 포함하는 나노복합체를 정전기적 인력으로 고정하는 단계를 포함하는 골 재생용 고분자 지지체의 제조방법으로서,
상기 나노복합체는 뼈 형성 단백질 및 폴리데옥시리보뉴클레오티드의 이온 결합에 의하여 형성된 것인, 골 재생용 고분자 지지체의 제조방법.
A step of preparing a polymer solution by mixing a biodegradable polymer, basic ceramic particles, an extracellular matrix, and a solvent;
A step of preparing a porous support by mixing a porous inducer into the above polymer solution; and
A method for producing a polymer scaffold for bone regeneration, comprising a step of fixing a nanocomposite containing a bone formation protein and a polydeoxyribonucleotide in a weight ratio of 1:0.5 to 5 to the porous scaffold by electrostatic attraction,
A method for producing a polymer scaffold for bone regeneration, wherein the nanocomposite is formed by ionic bonding of a bone formation protein and polydeoxyribonucleotide.
삭제delete 청구항 8에 있어서, 상기 다공성 지지체에 상기 나노복합체를 고정하는 단계는 칼슘-인 용액 상에서 수행되는 것인 골 재생용 고분자 지지체의 제조방법.
A method for producing a polymer scaffold for bone regeneration according to claim 8, wherein the step of fixing the nanocomposite to the porous scaffold is performed in a calcium-phosphorus solution.
KR1020210155100A 2021-11-11 2021-11-11 Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof KR102738265B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210155100A KR102738265B1 (en) 2021-11-11 2021-11-11 Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210155100A KR102738265B1 (en) 2021-11-11 2021-11-11 Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20230069309A KR20230069309A (en) 2023-05-19
KR102738265B1 true KR102738265B1 (en) 2024-12-06

Family

ID=86546760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210155100A KR102738265B1 (en) 2021-11-11 2021-11-11 Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102738265B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130236513A1 (en) 2008-10-30 2013-09-12 Vanderbilt University Synthetic Polyurethane Composite
US20170014548A1 (en) * 2014-03-17 2017-01-19 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Magnesium/polymer composite-containing scaffolds to enhance tissue regeneration
US20170035940A1 (en) 2008-07-23 2017-02-09 Warsaw Orthopedic, Inc. Foam carrier for bone grafting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101917737B1 (en) * 2016-10-31 2018-11-12 한국과학기술연구원 Organic·inorganic hybrid-biodegradable porous polymer scaffolds and preparation method thereof
KR102248030B1 (en) * 2019-09-06 2021-05-06 차의과학대학교 산학협력단 Biomedical implants comprising surface-modified inorganic nanoparticles and biodegradable polymers, and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170035940A1 (en) 2008-07-23 2017-02-09 Warsaw Orthopedic, Inc. Foam carrier for bone grafting
US20130236513A1 (en) 2008-10-30 2013-09-12 Vanderbilt University Synthetic Polyurethane Composite
US20170014548A1 (en) * 2014-03-17 2017-01-19 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Magnesium/polymer composite-containing scaffolds to enhance tissue regeneration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
William J. King et al., "Growth factor delivery: How surface interactions modulate release in vitro and in vivo." Advanced Drug Delivery Reviews (2012), Vol. 64, pp. 1239-1256*

Also Published As

Publication number Publication date
KR20230069309A (en) 2023-05-19

Similar Documents

Publication Publication Date Title
Tahmasebi et al. Current biocompatible materials in oral regeneration: a comprehensive overview of composite materials
Amiryaghoubi et al. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine
Guo et al. Polyhydroxyalkanoates in tissue repair and regeneration
EP1799277B1 (en) Porous biomaterial-filler composite and a method for making the same
Goonoo et al. Third generation poly (hydroxyacid) composite scaffolds for tissue engineering
KR101917737B1 (en) Organic·inorganic hybrid-biodegradable porous polymer scaffolds and preparation method thereof
Khang Handbook of intelligent scaffolds for tissue engineering and regenerative medicine
Wang et al. Stem cell-based tissue engineering with silk biomaterials
US9925301B2 (en) Methods of producing and using silk microfibers
Augustine et al. Electrospun poly (ε‐caprolactone)‐based skin substitutes: I n vivo evaluation of wound healing and the mechanism of cell proliferation
Rossi et al. Polymeric scaffolds as stem cell carriers in bone repair
US20160000974A1 (en) Composite Matrix for Bone Repair Applications
Ghasemi-Mobarakeh et al. Advances in electrospun nanofibers for bone and cartilage regeneration
Caramella et al. Controlled delivery systems for tissue repair and regeneration
KR20170025560A (en) Biodegradable porous polymer scaffolds containing nano-ceramic particles and extracellular matrix materials for tissue regeneration and preparation method thereof
Yang et al. The properties of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and its applications in tissue engineering
Soleymani Eil Bakhtiari et al. Keratin-containing scaffolds for tissue engineering applications: a review
Jurczak et al. Hydrogels as Scaffolds in Bone‐Related Tissue Engineering and Regeneration
Leiendecker et al. Template-mediated biomineralization for bone tissue engineering
WO2016107109A1 (en) Collagen-hydroxyapatite nerve scaffold and manufacturing method therefor
KR102738265B1 (en) Polymer scaffold containing incorporated BMP/PDRN nanoparticle for bone regeneration and preparation method thereof
Grelewski et al. Properties of scaffolds as carriers of mesenchymal stem cells for use in bone engineering
Laurenti et al. Biodegradable polymer nanocomposites for tissue engineering: Synthetic strategies and related applications
Puppi et al. Biodegradable polymers for biomedical applications
KR102694006B1 (en) Biodegradable Polymer Implants containing Bioactive Compounds and Preparation Method Thereof

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211111

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240322

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20241128

PG1601 Publication of registration