KR102690258B1 - Manufacturing method for silicon negative electrode material having a structure of yolk-shell - Google Patents
Manufacturing method for silicon negative electrode material having a structure of yolk-shell Download PDFInfo
- Publication number
- KR102690258B1 KR102690258B1 KR1020190043909A KR20190043909A KR102690258B1 KR 102690258 B1 KR102690258 B1 KR 102690258B1 KR 1020190043909 A KR1020190043909 A KR 1020190043909A KR 20190043909 A KR20190043909 A KR 20190043909A KR 102690258 B1 KR102690258 B1 KR 102690258B1
- Authority
- KR
- South Korea
- Prior art keywords
- yolk
- coating layer
- polymer coating
- shell structure
- polymer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 229910052710 silicon Inorganic materials 0.000 title description 40
- 239000010703 silicon Substances 0.000 title description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title description 13
- 239000007773 negative electrode material Substances 0.000 title description 8
- 229920000642 polymer Polymers 0.000 claims abstract description 59
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 49
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 45
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000011247 coating layer Substances 0.000 claims abstract description 33
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 29
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000010410 layer Substances 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 239000011856 silicon-based particle Substances 0.000 claims abstract description 13
- 238000010000 carbonizing Methods 0.000 claims abstract description 5
- 239000010405 anode material Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 23
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 7
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims description 6
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 6
- 239000010406 cathode material Substances 0.000 claims description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 4
- 230000005587 bubbling Effects 0.000 claims description 4
- 239000007833 carbon precursor Substances 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims 1
- -1 acryl group Chemical group 0.000 description 28
- 238000005229 chemical vapour deposition Methods 0.000 description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 229910052744 lithium Inorganic materials 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- 238000002411 thermogravimetry Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000003763 carbonization Methods 0.000 description 10
- 239000004020 conductor Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229920000615 alginic acid Polymers 0.000 description 4
- 235000010443 alginic acid Nutrition 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 229910013372 LiC 4 Inorganic materials 0.000 description 2
- 229910015645 LiMn Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical class C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- 229940045110 chitosan Drugs 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000006233 lamp black Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000011356 non-aqueous organic solvent Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920003214 poly(methacrylonitrile) Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000004627 regenerated cellulose Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229920005608 sulfonated EPDM Polymers 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical class COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910008163 Li1+x Mn2-x O4 Inorganic materials 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910012573 LiSiO Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229910003307 Ni-Cd Inorganic materials 0.000 description 1
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- QDDVNKWVBSLTMB-UHFFFAOYSA-N [Cu]=O.[Li] Chemical compound [Cu]=O.[Li] QDDVNKWVBSLTMB-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical class Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 150000002461 imidazolidines Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010420 shell particle Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/205—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/36—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4417—Methods specially adapted for coating powder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 a) Si 입자 표면에 폴리메틸메타아크릴레이트 (polymethylmetacrylate)를 포함하는 제 1고분자 코팅층을 형성하는 단계; b) 제 1 고분자 코팅층에 멜라닌 폴리머(Melanin polymer)를 포함하는 제 2고분자 코팅층을 형성하는 단계; 및 c) 열처리를 통하여 제 1 고분자 코팅 층을 제거하여 공극(void)을 형성하고 제 2고분자 코팅층은 탄화하여 탄소층으로 전환하는 단계;를 포함하는 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법에 관한 것이다.The present invention includes the steps of a) forming a first polymer coating layer containing polymethylmethacrylate on the surface of Si particles; b) forming a second polymer coating layer containing melanin polymer on the first polymer coating layer; and c) removing the first polymer coating layer through heat treatment to form voids and carbonizing the second polymer coating layer to convert it into a carbon layer. A Si cathode with a yolk-shell structure comprising a. It is about a method of manufacturing ash.
Description
본 발명은 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a Si anode material with a yolk-shell structure.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다.Recently, interest in energy storage technology has been increasing. As application areas expand to include mobile phones, camcorders, laptop PCs, and even electric vehicles, efforts to research and develop electrochemical devices are becoming more concrete.
전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고 그 중에서도 충-방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 에너지 효율을 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구 개발로 진행되고 있다.Electrochemical devices are the field that is receiving the most attention in this regard, and among them, the development of secondary batteries capable of charging and discharging has become the focus of attention. Recently, in the development of such batteries, efforts have been made to improve capacity density and energy efficiency. Research and development is underway on the design of new electrodes and batteries.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. Among the secondary batteries currently in use, the lithium secondary battery developed in the early 1990s has the advantage of having a higher operating voltage and much higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and lead sulfate batteries that use aqueous electrolyte solutions. is in the spotlight.
이 중, 기존 리튬 이온 배터리 음극재료로 사용되는 흑연은 그 용량 (372 mAh/g at 25 ℃)이 한계에 다다르게 되었으며, 이에 따라 흑연보다 높은 이론 용량을 갖는 실리콘 (3580 mAh/g at 25 ℃)에 대한 개발이 필요한 시점이다.Among these, graphite, which is used as a negative electrode material for existing lithium-ion batteries, has reached its limit in capacity (372 mAh/g at 25 ℃), and accordingly, silicon (3580 mAh/g at 25 ℃), which has a higher theoretical capacity than graphite, is being used as an anode material. It is time for development.
이러한 실리콘은 흑연의 10배인 3600mAh/g의 용량을 갖는다. 그러나 이러한 실리콘(Si) 음극재는 고용량에도 불구하고 아직 상업화가 되지 않고 있는데, 그 이유로는 충방전시 300% 가까운 부피 팽창과 수축이 반복되고, Si 음극재 표면에 형성되는 SEI 층도 생성/파괴가 반복되면서 전지 수명이 급격히 저하되기 때문이다. This silicon has a capacity of 3600 mAh/g, 10 times that of graphite. However, these silicon (Si) anode materials have not yet been commercialized despite their high capacity. This is because volume expansion and contraction of close to 300% are repeated during charging and discharging, and the SEI layer formed on the surface of the Si cathode material is also created/destructed. This is because battery life deteriorates rapidly as it is repeated.
이러한 Si 부피 변화를 수용하면서 SEI 층의 반복적인 생성/파괴를 방지할 수 있는 Si 음극재로서 요크-쉘(Yolk-Shell) 구조의 Si 음극재가 제안되었다. A Si cathode material with a Yolk-Shell structure has been proposed as a Si cathode material that can accommodate this change in Si volume and prevent repeated creation/destruction of the SEI layer.
요크-쉘 구조의 Si 음극재를 제조하는 종래 기술로서, Si 입자 표면에 실리카를 코팅하고, 실리카 표면에 탄소층을 코팅한 다음 실리카를 불산으로 etching하여 Si@void@C 구조를 형성하는 방법이 알려져 있다. 이 방법은 불산을 사용하는 공정이므로 위험할 뿐만 아니라 제조 공정 비용이 상승하는 문제점이 있다.As a conventional technology for manufacturing Si anode materials with a yoke-shell structure, a method involves coating the surface of Si particles with silica, coating the surface of the silica with a carbon layer, and then etching the silica with hydrofluoric acid to form a Si@void@C structure. It is known. This method is not only dangerous because it uses hydrofluoric acid, but also has the problem of increasing the manufacturing process cost.
종래 기술의 경우, 실리카 표면에 탄소층을 코팅한 다음 실리카를 불산으로 etching하여 Si@void@C 구조를 형성하기 때문에, 위험할 뿐만 아니라 제조 공정 비용이 상승하는 문제가 있었다.In the case of the prior art, a carbon layer was coated on the surface of silica and then the silica was etched with hydrofluoric acid to form a Si@void@C structure, which was not only dangerous but also increased the manufacturing process cost.
이에 본 발명자들은 다각적인 연구를 수행한 끝에, 고분자를 Si 표면에 코팅 후에 열처리로 제거함으로써 공극(void)를 형성하게 되면, 간단한 방법으로 초기 효율 증가와 우수한 율속 특성을 가지는 요크-쉘(Yolk-shell) 구조의 실리콘 음극재를 개발할 수 있다는 사실을 확인하였다.Accordingly, after conducting various studies, the present inventors discovered that by forming voids by coating the polymer on the surface of Si and removing it through heat treatment, a yoke-shell (Yolk-shell) with increased initial efficiency and excellent rate characteristics can be obtained in a simple method. It was confirmed that a silicon anode material with a shell structure could be developed.
따라서, 본 발명의 목적은, 초기 효율이 증가하고, 뛰어난 율속 특성 및 사이클 안정성이 있는 요크-쉘 구조의 Si 음극재의 제조방법을 제공하는 것이다.Therefore, the purpose of the present invention is to provide a method for manufacturing a Si anode material with a yoke-shell structure that increases initial efficiency and has excellent rate characteristics and cycle stability.
상기 목적을 달성하기 위해, 본 발명은 a) Si 입자 표면에 폴리메틸메타아크릴레이트(polymethylmetacrylate)를 포함하는 제 1고분자 코팅층을 형성하는 단계; b) 제 1 고분자 코팅층에 멜라닌 폴리머(Melanin polymer)를 포함하는 제 2고분자 코팅층을 형성하는 단계; 및 c) 열처리를 통하여 제 1 고분자 코팅 층을 제거하여 공극(void)을 형성하고 제 2고분자 코팅층은 탄화하여 탄소층으로 전환하는 단계;를 포함하는 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법을 제공한다.In order to achieve the above object, the present invention includes the steps of a) forming a first polymer coating layer containing polymethylmethacrylate on the surface of Si particles; b) forming a second polymer coating layer containing melanin polymer on the first polymer coating layer; and c) removing the first polymer coating layer through heat treatment to form voids and carbonizing the second polymer coating layer to convert it into a carbon layer. A Si cathode with a yolk-shell structure comprising a. Provides a method for producing ash.
또한, 본 발명은 상기 방법에 의하여 제조된 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제공한다.Additionally, the present invention provides a Si anode material with a yolk-shell structure manufactured by the above method.
또한, 본 발명은 상기 음극재를 포함하는 리튬 이차전지용 음극을 제공한다.Additionally, the present invention provides a negative electrode for a lithium secondary battery including the negative electrode material.
또한, 본 발명은 상기 음극; 양극; 분리막; 및 전해질;을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention provides the cathode; anode; separation membrane; It provides a lithium secondary battery including; and an electrolyte.
본 발명에 따르면 요크-쉘(yolk-shell)구조의 Si 음극재를 합성하여, 부피팽창 완충구조를 가질 수 있다. 이에 따라서, 전지에 적용할 시에 전해질 침투를 감소시키는 효과가 있으므로 초기 효율이 증가하고, 뛰어난 율속 특성 및 사이클 안정성을 가진다는 장점이 있다.According to the present invention, a Si anode material with a yolk-shell structure can be synthesized to have a volume expansion buffer structure. Accordingly, when applied to a battery, it has the effect of reducing electrolyte penetration, thereby increasing initial efficiency, and has the advantage of excellent rate characteristics and cycle stability.
또한, 본 발명에 따르면, 또한, 종래에 비하여 안정하고 저렴한 열처리 방식으로 Si 음극재를 제조할 수 있다는 장점이 있다.In addition, according to the present invention, there is an advantage that a Si anode material can be manufactured using a heat treatment method that is more stable and inexpensive than the conventional method.
도 1은 본 발명의 실시예에 따른 요크-쉘(yolk-shell)구조의 Si 음극재의 제조과정을 나타낸 모식도이다.
도 2는 본 발명에서 사용된 Si 마이크로 입자를 촬영한 SEM 사진이다.
도 3은 본 발명의 실시예 1에서 그라프팅 전후의 IR 스펙트럼 그래프이다.
도 4는 본 발명의 실시예 1의 그라프팅 전 후의 소수성을 나타낸 사진이다.
도 5는 본 발명의 실시예의 온도 변화에 따른 PMMA 함량 변화를 나타낸 그래프이다.
도 6은 본 발명의 실시예의 도입하는 MMA 양 변화에 따른 PMMA 함량 변화를 나타낸 그래프이다.
도 7 내지 도 11은 본 발명의 실시예에서 제조된 Si@PMMA의 SEM 사진 이다.
도 12는 본 발명의 실시예에 따른 단계별 코팅 및 탄화, CVD 과정을 나타낸 모식도이다.
도 13 내지 도 15는 본 발명의 실시예에 따른 단계별 코팅 및 탄화, CVD 과정에 따른 열중량 분석 값의 차이를 나타낸 그래프이다.
도 16 내지 도 18는 본 발명의 실시예에 따른 단계별 코팅 및 탄화, CVD 과정에 따른 질소 흡착 실험결과 차이를 나타낸 그래프이다.
도 19 내지 도 21은 본 발명의 실시예에 따른 단계별 코팅 및 탄화, CVD 과정에 따른 메조 기공의 기공 분포도를 나타낸 그래프이다.
도 22 내지 도 23는 본 발명의 실시예에 따른 CVD 과정에서의 Si@V25@C, Si@V25@G의 XRD를 측정한 그래프이다.
도 24 내지 도 25는 본 발명의 실시예에 따른 CVD 과정에서의 Si@V25@C, Si@V25@G의 라만 분광을 측정한 그래프이다.
도 26 내지 도 27는 본 발명의 실시예에 따른 CVD 과정에서의 Si@V45@C, Si@V45@G의 XRD를 측정한 그래프이다.
도 28 내지 도 29는 본 발명의 실시예에 따른 CVD 과정에서의 Si@V45@C, Si@V45@G의 라만 분광을 측정한 그래프이다.
도 30 내지 도 32는 본 발명의 실시예에 따른 Si@V45@G를 측정한 SEM 사진이다.
도 33은 본 발명의 실시예에 따른 Si@V45@G를 측정한 TEM 사진이다.
도 34 내지 도 36은 본 발명의 실시예에 따른 용량 특성을 나타낸 그래프이다.
도 37은 본 발명의 실시예에 따른 율속 특성을 나타낸 그래프이다.
도 38 내지 도 39는 Voltage cut-off에 따른 용량을 확인하기 위한 실리콘 마이크로 입자의 용량 특성 결과를 나타낸 그래프이다.
도 40 내지 도 41은 본 발명의 실시예 중 큐어링을 진행한 경우의 Voltage cut-off 실험 결과를 나타낸 그래프이다.Figure 1 is a schematic diagram showing the manufacturing process of a Si anode material with a yolk-shell structure according to an embodiment of the present invention.
Figure 2 is an SEM photograph of Si micro particles used in the present invention.
Figure 3 is an IR spectrum graph before and after grafting in Example 1 of the present invention.
Figure 4 is a photograph showing hydrophobicity before and after grafting in Example 1 of the present invention.
Figure 5 is a graph showing the change in PMMA content according to temperature change in an example of the present invention.
Figure 6 is a graph showing the change in PMMA content according to the change in the amount of MMA introduced in the embodiment of the present invention.
Figures 7 to 11 are SEM photographs of Si@PMMA prepared in examples of the present invention.
Figure 12 is a schematic diagram showing step-by-step coating, carbonization, and CVD processes according to an embodiment of the present invention.
Figures 13 to 15 are graphs showing differences in thermogravimetric analysis values according to step-by-step coating, carbonization, and CVD processes according to embodiments of the present invention.
Figures 16 to 18 are graphs showing differences in nitrogen adsorption test results according to step-by-step coating, carbonization, and CVD processes according to embodiments of the present invention.
Figures 19 to 21 are graphs showing the pore distribution of mesopores according to step-by-step coating, carbonization, and CVD processes according to an embodiment of the present invention.
Figures 22 and 23 are graphs measuring XRD of Si@V25@C and Si@V25@G during the CVD process according to an embodiment of the present invention.
Figures 24 and 25 are graphs measuring Raman spectra of Si@V25@C and Si@V25@G during the CVD process according to an embodiment of the present invention.
Figures 26 and 27 are graphs measuring XRD of Si@V45@C and Si@V45@G during the CVD process according to an embodiment of the present invention.
Figures 28 and 29 are graphs measuring Raman spectra of Si@V45@C and Si@V45@G during the CVD process according to an embodiment of the present invention.
Figures 30 to 32 are SEM photographs measuring Si@V45@G according to an embodiment of the present invention.
Figure 33 is a TEM photograph measuring Si@V45@G according to an embodiment of the present invention.
Figures 34 to 36 are graphs showing capacity characteristics according to an embodiment of the present invention.
Figure 37 is a graph showing rate characteristics according to an embodiment of the present invention.
Figures 38 and 39 are graphs showing the results of the capacity characteristics of silicon micro particles to confirm the capacity according to the voltage cut-off.
Figures 40 and 41 are graphs showing the results of voltage cut-off experiments when curing was performed in an embodiment of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.Hereinafter, the present invention will be described in detail with reference to the attached drawings so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to this specification.
도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한, 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.In the drawings, parts unrelated to the description are omitted in order to clearly explain the present invention, and similar reference numerals are used for similar parts throughout the specification. Additionally, the sizes and relative sizes of components shown in the drawings are unrelated to actual scale and may be reduced or exaggerated for clarity of explanation.
Si 음극재를 제조하는 방법How to manufacture Si anode material
본 발명의 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법은, a) Si 입자 표면에 폴리메틸메타아크릴레이트(polymethylmetacrylate)를 포함하는 제 1고분자 코팅층을 형성하는 단계; b) 제 1 고분자 코팅층에 멜라닌 폴리머(Melanin polymer)를 포함하는 제 2고분자 코팅층을 형성하는 단계; 및 c) 열처리를 통하여 제 1 고분자 코팅 층을 제거하여 공극(void)을 형성하고 제 2고분자 코팅층은 탄화하여 탄소층으로 전환하는 단계;를 포함한다.The method of manufacturing a Si anode material with a yolk-shell structure of the present invention includes the steps of a) forming a first polymer coating layer containing polymethylmethacrylate on the surface of Si particles; b) forming a second polymer coating layer containing melanin polymer on the first polymer coating layer; and c) removing the first polymer coating layer through heat treatment to form voids and carbonizing the second polymer coating layer to convert it into a carbon layer.
본 발명에서 요크-쉘 입자의 구조는 달걀에서 파생된 용어로 달걀이 노른자와 흰자 그리고 껍질 순의 구조를 이루고 있는 것과 같이, Core와 Shell사이에 빈 공간을 가지는 구조를 의미한다. 이를 위하여, 본 발명의 요크-쉘 구조의 입자의 쉘의 적어도 일부는 상기 코어와 이격 배치된다. In the present invention, the structure of yoke-shell particles is a term derived from egg and refers to a structure with an empty space between the core and shell, just as an egg has a structure of yolk, white, and shell. To this end, at least a portion of the shell of the yoke-shell structured particle of the present invention is spaced apart from the core.
본 발명에서 요크-쉘(Yolk-shell) 구조의 Si 음극재는 도 1과 같은 과정을 거쳐 제조될 수 있다. 이하, 구체적으로 살펴 본다.In the present invention, a Si anode material with a yolk-shell structure can be manufactured through the process shown in FIG. 1. Below, we will look at it in detail.
먼저, 본 발명의 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법은, a) Si 입자 표면에 폴리메틸메타아크릴레이트(polymethylmetacrylate)를 포함하는 제 1고분자 코팅층을 형성하는 단계를 포함한다.First, the method of manufacturing a Si anode material with a yolk-shell structure of the present invention includes the steps of a) forming a first polymer coating layer containing polymethylmethacrylate on the surface of the Si particle. Includes.
상기 (a) 단계에서 사용하는 Si(실리콘)으로는 특별한 제한은 없으나, 바람직하게는 업계에서 통상적으로 사용하는 것을 사용할 수 있으며, 바람직하게는 500nm 내지 10um, 더욱 바람직하게는 1um 내지 5um의 평균 입경을 가지는 실리콘을 사용할 수 있다. 상기 실리콘 입자의 크기가 500nm 미만이면, 비표면적이 증가함에 따라서, 첫 번째 사이클 쿨롱 효율이 떨어지는 문제가 발생할 수 있다.There is no particular limitation on the Si (silicon) used in step (a), but preferably one commonly used in the industry can be used, preferably with an average particle diameter of 500 nm to 10 μm, more preferably 1 μm to 5 μm. Silicone having can be used. If the size of the silicon particles is less than 500 nm, as the specific surface area increases, the first cycle coulombic efficiency may decrease.
상기 (a) 단계에서는 실리콘 입자 표면을 고분자 전구체인 methylmetacrylate (MMA)롤 반응시키면, 실리콘 표면의 아크릴기와 화학반응을 통해 효과적으로 폴리메틸메타아크릴레이트(polymethylmetacrylate)를 포함하는 제 1고분자 코팅층을 형성하게 된다.In step (a), the surface of the silicon particle is reacted with methylmetacrylate (MMA), a polymer precursor, to effectively form a first polymer coating layer containing polymethylmethacrylate through a chemical reaction with the acrylic group on the silicon surface. .
여기서, 제1고분자 코팅층을 형성하기 전에, Si 입자 표면을 3-(Trimethoxysilyl)propyl methacrylate (MPS)로 개질(그라프팅: grafting)한 후, methylmetacrylate (MMA)와 반응시키게 되면, 실리콘 표면의 -O 또는 -OH기가 acryl기로 치환됨에 따라서, 폴리메틸메타아크릴레이트(polymethylmetacrylate)를 포함하는 제 1고분자 코팅층을 보다 용이하게 형성될 수 있다.Here, before forming the first polymer coating layer, the surface of the Si particle is modified (grafting) with 3-(Trimethoxysilyl)propyl methacrylate (MPS) and then reacted with methylmetacrylate (MMA), -O on the silicon surface. Alternatively, as the -OH group is replaced with an acryl group, the first polymer coating layer containing polymethylmethacrylate can be formed more easily.
상기 methylmetacrylate (MMA)와 실리콘 표면을 반응시키는 경우, 바람직하게는 62~70℃의 온도에서 반응시킬 수 있으며, 더욱 바람직하게는 63~68℃의 온도에서 반응시킬 수 있다. 상기 온도 범위에서 반응을 진행하는 경우, 실리콘 입자 상에 형성되는 PMMA의 함량이 더 빠르고 더 많이 형성될 수 있다.When reacting the methylmetacrylate (MMA) with the silicon surface, the reaction can be preferably performed at a temperature of 62 to 70°C, and more preferably at a temperature of 63 to 68°C. When the reaction proceeds in the above temperature range, the amount of PMMA formed on the silicon particles can be formed faster and in greater amounts.
이 후, 본 발명의 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법은, b) 제 1 고분자 코팅층에 멜라닌 폴리머(Melanin polymer)를 포함하는 제 2고분자 코팅층을 형성하는 단계를 포함한다.Afterwards, the method of manufacturing a Si anode material with a yolk-shell structure of the present invention includes the step of b) forming a second polymer coating layer containing melanin polymer on the first polymer coating layer. Includes.
상기 b) 단계는, 제 1고분자 코팅층 표면의 전하를 측정한 후, CTAB 용액을 통해 표면 전하를 조절해 표면 선택적인 고분자반응이 일어나도록 유도할 수 있다.In step b), after measuring the charge on the surface of the first polymer coating layer, the surface charge can be adjusted using a CTAB solution to induce a surface-selective polymer reaction to occur.
이 후, 본 발명의 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법은, c) 열처리를 통하여 제 1 고분자 코팅 층을 제거하여 공극(void)을 형성하고 제 2고분자 코팅층은 탄화하여 탄소층으로 전환하는 단계를 포함한다.Afterwards, the method of manufacturing a Si anode material with a yolk-shell structure of the present invention is c) removing the first polymer coating layer through heat treatment to form a void, and the second polymer coating layer is It includes the step of carbonizing and converting into a carbon layer.
상기 열처리를 통하여, 열분해 고분자인 PMMA를 포함하는 제 1 고분자 코팅 층은 열분해에 의하여 제거되어 요크-쉘 구조 내의 공극(void)을 형성하게 되고, 멜라닌 폴러머를 포함하는 제2고분자 코팅층은 탄화되어 탄소로 전환되어 요크-쉘 구조의 쉘을 형성하게 된다.Through the heat treatment, the first polymer coating layer containing PMMA, a thermal decomposition polymer, is removed by thermal decomposition to form voids in the yoke-shell structure, and the second polymer coating layer containing melanin polymer is carbonized. It is converted to carbon to form a shell with a yoke-shell structure.
상기 c) 단계에서의 열처리는, N2 분위기에서 500 내지 700℃의 온도로 2 내지 5시간 동안 열처리를 진행할 수 있다. 상기 열처리의 조건을 만족하는 경우, 이 후 진행하는 CVD 반응에서 공극의 감소 없이 요크-쉘 구조를 유지하는 장점이 있다. The heat treatment in step c) may be performed in an N 2 atmosphere at a temperature of 500 to 700°C for 2 to 5 hours. When the above heat treatment conditions are met, there is an advantage in maintaining the yoke-shell structure without reducing voids in the subsequent CVD reaction.
이 후, 본 발명의 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법은, d) 탄소 전구체를 CVD를 이용하여 탄화된 탄소층의 기공을 막은 후 이를 열처리를 통해 흑연화하는 단계;를 더 포함할 수 있다. 상기 d) 단계에서는 Si@Void@MC(Melanin polymer derived carbon)상에서 CH3CN를 CVD로 증착시킬 수 있으며, 이 후 열처리를 진행함으로써 mesoporous carbon의 마이크로 기공이 막히게 되고, graphitic carbon으로 합성되어 본 발명의 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조할 수 있게 된다. 이 때, 상기 CVD는 N2 분위기에서, 승온 속도 20~40℃/min, 900~1100℃에서 Acetonitrile bubbling하며 0.5~2시간 유지하여 CH3CN을 증착 시킬 수 있다. 상기 CVD의 조건을 만족하는 경우, Si@Void@MC의 구조가 유지되며 탄소층을 흑연층으로 전환할 수 있는 장점이 있다.Afterwards, the method of manufacturing a Si anode material with a yolk-shell structure of the present invention is d) using a carbon precursor to block the pores of the carbonized carbon layer using CVD, and then graphitizing it through heat treatment. Steps may be further included. In step d), CH 3 CN can be deposited on Si@Void@MC (Melanin polymer derived carbon) by CVD, and then heat treatment is performed to block the micropores of the mesoporous carbon, and graphitic carbon is synthesized according to the present invention. It is possible to manufacture Si anode materials with a yolk-shell structure. At this time, the CVD can deposit CH 3 CN by bubbling Acetonitrile at a temperature increase rate of 20 to 40°C/min and 900 to 1,100°C in an N 2 atmosphere and maintaining it for 0.5 to 2 hours. When the above CVD conditions are met, the structure of Si@Void@MC is maintained and there is an advantage in that the carbon layer can be converted to a graphite layer.
또한, 상기 CVD를 진행하기 전에, 150~250℃의 온도에서 2시간 내지 5시간 동안 큐어링(curing)을 진행할 수 있다. 상기와 같이 큐어링을 진행하게 되면, 고분자의 수축 과정을 줄여줘 구조의 파손 없이 안정한 요크-쉘 구조로 전환할 수 있는 장점이 있다.Additionally, before proceeding with the CVD, curing may be performed at a temperature of 150 to 250° C. for 2 to 5 hours. If curing is performed as above, there is an advantage in reducing the shrinkage process of the polymer and converting to a stable yoke-shell structure without damage to the structure.
상기와 같이 제조되는 경우, 본 발명의 요크-쉘 구조의 Si 음극재는, 비표면적이 50 m2/g 이하 일 수 있으며, 바람직하게는 5 내지 30 m2/g 일 수 있다. 상기 비표면적이 커지게 되면 전해질과의 접촉면적이 커지므로, 전해질과의 부반응을 일으킬 확률이 높아져서, 초기 효율을 떨어뜨리는 문제가 있다.When manufactured as described above, the Si anode material of the yoke-shell structure of the present invention may have a specific surface area of 50 m 2 /g or less, preferably 5 to 30 m 2 /g. As the specific surface area increases, the contact area with the electrolyte increases, so the possibility of a side reaction with the electrolyte increases, which reduces initial efficiency.
리튬 이차전지용 음극Anode for lithium secondary battery
본 발명에서 제시하는 요크-쉘 구조의 입자는 리튬 이차전지용 음극의 음극재로서 바람직하게 사용이 가능하다. The particles of the yoke-shell structure presented in the present invention can be preferably used as a negative electrode material for a negative electrode for lithium secondary batteries.
음극은 음극 집전체 상에 형성된 음극 활물질을 포함하며, 상기 음극 활물질로는 본 발명에 따라 제조된 요크-쉘 구조의 입자를 사용한다. The negative electrode includes a negative electrode active material formed on a negative electrode current collector, and the negative electrode active material uses particles with a yoke-shell structure manufactured according to the present invention.
상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.The negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof. The stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy. In addition, calcined carbon, non-conductive polymer surface-treated with a conductive material, or conductive polymer may be used.
상기 음극은 바인더 수지, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있다.The negative electrode may further include binder resin, conductive material, filler, and other additives.
상기 바인더 수지는 전극 활물질과 도전재의 결합과 집전체에 대한 결합을 위해 사용한다. 이러한 바인더 수지의 비제한적인 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올(PVA), 폴리아크릴산(PAA), 폴리메타크릴산(PMA), 폴리메틸메타크릴레이트(PMMA) 폴리아크릴아미드(PAM), 폴리메타크릴아미드, 폴리아크릴로니트릴(PAN), 폴리메타크릴로니트릴, 폴리이미드(PI), 알긴산(Alginic acid), 알지네이트(Alginate), 키토산(Chitosan), 카르복시메틸셀룰로오스(CMC), 전분, 하이드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다. The binder resin is used to bond the electrode active material and the conductive material and to the current collector. Non-limiting examples of these binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polymethacrylic acid (PMA), and polymethyl methacrylate (PMMA). Amide (PAM), polymethacrylamide, polyacrylonitrile (PAN), polymethacrylonitrile, polyimide (PI), alginic acid, alginate, chitosan, carboxymethyl cellulose ( CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR) ), fluorine rubber, and various copolymers thereof.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.The conductive material is used to further improve the conductivity of the electrode active material. These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black, such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives, etc. may be used.
리튬이차전지Lithium secondary battery
본 발명의 일 실시예로서, 리튬 이차전지는 상술한 음극; 양극; 및 전해질;을 포함할 수 있다.As an embodiment of the present invention, a lithium secondary battery includes the above-described negative electrode; anode; and electrolyte;
본 발명에 따른 리튬이차전지는 양극 및 음극과 이들 사이에 개재된 분리막 및 전해질을 포함하고, 음극 활물질로 본 발명에 따라 제조된 요크-쉘 구조의 입자를 사용한다.The lithium secondary battery according to the present invention includes a positive electrode and a negative electrode, a separator and an electrolyte interposed between them, and uses particles with a yoke-shell structure manufactured according to the present invention as a negative electrode active material.
본 발명에 따라 제조된 요크-쉘 구조의 입자는 실리콘의 부피 팽창에 의한 용량 퇴화를 완화시킬 수 있고, 우수한 전기전도도 및 용량유지율을 나타낸다.The yoke-shell structured particles manufactured according to the present invention can alleviate capacity degradation caused by volume expansion of silicon and exhibit excellent electrical conductivity and capacity retention rate.
상기 리튬이차전지의 양극, 음극, 분리막 및 전해질의 구성은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바를 따른다.The configuration of the positive electrode, negative electrode, separator, and electrolyte of the lithium secondary battery is not particularly limited in the present invention and follows what is known in the field.
양극은 양극 집전체 상에 형성된 양극 활물질을 포함하여 사용하는데, 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다. The positive electrode is used including a positive electrode active material formed on the positive electrode current collector. The positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, Titanium, fired carbon, or aluminum or stainless steel surface treated with carbon, nickel, titanium, silver, etc. can be used. At this time, the positive electrode current collector can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics with fine irregularities formed on the surface to increase adhesion with the positive electrode active material.
전극층을 구성하는 양극 활물질은 당해 기술분야에서 이용 가능한 모든 양극 활물질이 사용 가능하다. 이러한 양극 활물질의 구체적인 예로서, LiCoO2 등의 리튬 코발트계 산화물; Li1 + xMn2 - xO4(여기서, x는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간계 산화물; Li2CuO2등의 리튬 구리산화물; LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; LiNi1 - xMxO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x=0.01 내지 0.3임)으로 표현되는 리튬 니켈계 산화물; LiMn2 - xMxO2(여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x=0.01 내지 0.1임) 또는 Li2Mn3MO8(여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합산화물; Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)으로 표현되는 리튬-니켈-망간-코발트계 산화물; LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 황 또는 디설파이드 화합물; LiFePO4, LiMnPO4, LiCoPO4, LiNiPO4 등의 인산염; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. The cathode active material constituting the electrode layer can be any cathode active material available in the art. Specific examples of such positive electrode active materials include lithium cobalt-based oxides such as LiCoO 2 ; Lithium manganese-based oxides such as Li 1 + x Mn 2 - x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2 ; Lithium copper oxide such as Li 2 CuO 2 ; Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; LiNi 1 - lithium nickel-based oxide expressed as x M x O 2 (where M=Co, Mn, Al, Cu, Fe, Mg, B or Ga and x=0.01 to 0.3); LiMn 2 - x MxO 2 (where M=Co, Ni, Fe, Cr, Zn or Ta, and x=0.01 to 0.1) or Li 2 Mn 3 MO 8 (where M=Fe, Co, Ni, Cu) or Zn); lithium manganese composite oxide expressed as Li(Ni a Co b Mn c )O 2 (here, 0<a<1, 0<b<1, 0<c<1, a+b+c=1) Lithium-nickel-manganese- cobalt-based oxide; Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; Sulfur or disulfide compounds; Phosphates such as LiFePO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4 ; Fe 2 (MoO 4 ) 3 etc. may be mentioned, but it is not limited to these alone.
이때, 전극층은 양극 활물질 이외에 바인더 수지, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있다.At this time, the electrode layer may further include binder resin, conductive material, filler, and other additives in addition to the positive electrode active material.
상기 바인더 수지는 전극 활물질과 도전재의 결합과 집전체에 대한 결합을 위해 사용한다. 이러한 바인더 수지의 비제한적인 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올(PVA), 폴리아크릴산(PAA), 폴리메타크릴산(PMA), 폴리메틸메타크릴레이트(PMMA) 폴리아크릴아미드(PAM), 폴리메타크릴아미드, 폴리아크릴로니트릴(PAN), 폴리메타크릴로니트릴, 폴리이미드(PI), 알긴산(Alginic acid), 알지네이트(Alginate), 키토산(Chitosan), 카르복시메틸셀룰로오스(CMC), 전분, 하이드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다. The binder resin is used to bond the electrode active material and the conductive material and to the current collector. Non-limiting examples of these binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polymethacrylic acid (PMA), and polymethyl methacrylate (PMMA). Amide (PAM), polymethacrylamide, polyacrylonitrile (PAN), polymethacrylonitrile, polyimide (PI), alginic acid, alginate, chitosan, carboxymethyl cellulose ( CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR) ), fluorine rubber, and various copolymers thereof.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.The conductive material is used to further improve the conductivity of the electrode active material. These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black, such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives, etc. may be used.
음극으로는 앞서 기재한 본 발명의 음극을 사용할 수 있다.As the cathode, the cathode of the present invention described above can be used.
분리막은 다공성 기재로 이루어질 수 있는데, 상기 다공성 기재는, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.The separator may be made of a porous substrate. Any porous substrate commonly used in electrochemical devices can be used. For example, a polyolefin-based porous membrane or non-woven fabric can be used, but this is not particularly limited. no.
상기 분리막은, 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아마이드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌 옥사이드, 폴리페닐렌 설파이드, 및 폴리에틸렌 나프탈레이트로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 이루어진 다공성 기재일 수 있다.The separator is made of polyethylene, polypropylene, polybutylene, polypentene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, It may be a porous substrate made of any one selected from the group consisting of polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalate, or a mixture of two or more of these.
상기 리튬이차전지의 전해액은 리튬염을 함유하는 비수계 전해액으로서 리튬염과 용매로 구성되어 있으며, 용매로는 비수계 유기용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.The electrolyte solution of the lithium secondary battery is a non-aqueous electrolyte containing a lithium salt and is composed of a lithium salt and a solvent. The solvent used includes a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte.
상기 리튬염은 상기 비수계 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiAsF6, LiSbF6, LiAlCl4, LiSCN, LiC4BO8, LiCF3CO2, LiCH3SO3, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiC4F9SO3, LiC(CF3SO2)3, (CF3SO2)·2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬 이미드 등이 사용될 수 있다.The lithium salt is a material that is easily soluble in the non-aqueous electrolyte solution, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, LiC 4 BO 8 , LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC(CF 3 SO 2 ) 3 , (CF 3 SO 2 )·2NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate imide, etc. can be used.
비수계 유기용매는, 예를 들어, N-메틸-2-피롤리돈, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라하이드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아마이드, 디메틸포름아마이드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Non-aqueous organic solvents include, for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2 -Dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, Diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3- Aprotic organic solvents such as dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, methyl propionate, and ethyl propionate may be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이차성 해리기를 포함하는 중합체 등이 사용될 수 있다.The organic solid electrolyte includes, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, Polymers containing secondary dissociation groups, etc. may be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 may be used.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.Additionally, the non-aqueous electrolyte may further contain other additives for the purpose of improving charge/discharge characteristics, flame retardancy, etc. Examples of the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivatives, sulfur, quinone imine dye, N-substituted oxazolyl. Dinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC), etc.
본 발명에 따른 리튬이차전지는, 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다. 그리고, 상기 전지케이스는 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The lithium secondary battery according to the present invention is capable of lamination (stack) and folding processes of separators and electrodes in addition to the general winding process. Additionally, the battery case may be cylindrical, prismatic, pouch-shaped, or coin-shaped.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are presented to aid understanding of the present invention. However, the following examples are merely illustrative of the present invention, and it is clear to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the attached patent claims.
[실시예][Example]
실리콘-카본 음극재의 제조Manufacturing of silicon-carbon anode material
[실시예 1] [Example 1]
단계 1: Si@PMMA 제조 (Si 표면에 제 1 고분자층 코팅)Step 1: Si@PMMA fabrication (coating the first polymer layer on the Si surface)
도 2에서와 같이, 입자 평균 크기가 10um인 Si를 준비한 후, Si 입자의 표면을 알콕사이드를 이용한 가수분해 반응을 하여 acrylate기로 치환하였다. 상대적으로 친수성인 Si의 표면을 PMMA의 단위체인 acrylate 작용기로 치환해 효과적인 표면반응을 유도하기 위하여, EtOH 100 mL 당 Si 100 mg, 3-(trimethoxysilyl)propyl methacrylate (MPS) 0.1 mL를 플라스틱 병 에 넣고 뚜껑을 닫은 후 90 ℃로 24시간 교반하였다. 도 3에 반응 전후의 IR 스펙트럼을 나타내었으며, 이를 통하여 C=C, =C-H 작용기를 확인할 수 있었다.As shown in Figure 2, after preparing Si with an average particle size of 10 μm, the surface of the Si particles was subjected to a hydrolysis reaction using an alkoxide to replace it with an acrylate group. In order to induce an effective surface reaction by substituting the relatively hydrophilic surface of Si with an acrylate functional group, which is a unit of PMMA, 100 mg of Si and 0.1 mL of 3-(trimethoxysilyl)propyl methacrylate (MPS) per 100 mL of EtOH were placed in a plastic bottle. After closing the lid, the mixture was stirred at 90°C for 24 hours. Figure 3 shows the IR spectrum before and after the reaction, through which the C=C and =C-H functional groups could be confirmed.
또한, 반응 전후의 Si의 소수성을 확인하기 위하여, 물과 MMA에 Si를 침지시켜 도 4에 나타내었으며, 이를 통하여 그라프팅(grafting)에 따라서 소수성이 향상됨을 확인할 수 있었다.In addition, in order to confirm the hydrophobicity of Si before and after the reaction, Si was immersed in water and MMA, as shown in Figure 4, and through this, it was confirmed that the hydrophobicity was improved by grafting.
단계 2: Si@PMMA@MP (melanin polymer) 제조 (Step 2: Si@PMMA@MP (melanin polymer) preparation ( SiSi 표면에 on the surface 제 22nd 고분자층 코팅) polymer layer coating)
1) Seeded growth 반응을 이용한 Si@PMMA 합성1) Si@PMMA synthesis using seeded growth reaction
100 mL Round bottomed flask에 DI water와 EtOH이 1:1로 혼합된 용액 50 mL를 제조한 후, Initiator(2,2'-azobis(2-methylpropionamidine) dihydrochloride) 0.5 mg, PVP(Poly Vinyl Pyrrolydone) 100 mg을 순서대로 용해하였다. 이 후 60℃ 실리콘 오일 욕조(Silicon oil bath)에 flask를 넣고 N2 버블링을 1.5시간동안 수행하였다. 이 후, MMA 1mL에 Si 30 mg을 분산시킨 후 주사기로 MMA와 Si가 분산된 용액을 넣고 반응을 시작하였다. 이 후, 15분 단위로 1 mL씩 MMA를 추가하였으며, 3시간 후 DI water로 세척한 후 건조하였다. 이렇게 제조된 Si@PMMA를 SEM 장비인 HITACHI사의 S-4800로 촬영하여 도 7 내지 도 11에 나타내었다.After preparing 50 mL of a 1:1 mixed solution of DI water and EtOH in a 100 mL round bottomed flask, 0.5 mg of Initiator (2,2'-azobis(2-methylpropionamidine) dihydrochloride) and 100 mg of PVP (Poly Vinyl Pyrrolydone) were added. mg was dissolved in order. Afterwards, the flask was placed in a 60°C silicon oil bath and N 2 bubbling was performed for 1.5 hours. Afterwards, 30 mg of Si was dispersed in 1 mL of MMA, and the solution in which MMA and Si were dispersed was added using a syringe to start the reaction. Afterwards, 1 mL of MMA was added every 15 minutes, and after 3 hours, it was washed with DI water and dried. The Si@PMMA prepared in this way was photographed with SEM equipment, HITACHI's S-4800, and shown in Figures 7 to 11.
2) 표면 개질을 통한 Si@PMMA@MP (melanin polymer) / Si@void@MC 합성2) Si@PMMA@MP (melanin polymer) / Si@void@MC synthesis through surface modification
이 후, DI water 38 mL 기준으로 상기 제조된 Si@PMMA 50 mg을 분산하였다. 이 후, 2 mM CTAB(Cetyl Trimethyl Ammonium Bromide) 0.5 mL와 NH3 0.02 mL를 용액에 넣은 후 Melanin 94 mg을 추가하여 반응을 진행하였다. 이 후, DI water로 washing 후 건조한 후, N2 분위기에서 승온속도 5 ℃/min로 600℃에서 3시간 동안 탄화를 진행하였다.Afterwards, 50 mg of Si@PMMA prepared above was dispersed in 38 mL of DI water. Afterwards, 0.5 mL of 2 mM CTAB (Cetyl Trimethyl Ammonium Bromide) and 0.02 mL of NH 3 were added to the solution, and then 94 mg of Melanin was added to proceed with the reaction. Afterwards, after washing with DI water and drying, carbonization was carried out at 600°C for 3 hours at a temperature increase rate of 5°C/min in N 2 atmosphere.
3) Si@void@G_no curing 3) Si@void@G_no curing
이 후, 200 ℃에서 3시간 유지 후 승온속도 5 ℃/min로 600℃에서 3시간 탄화를 진행하였다.Afterwards, the temperature was maintained at 200°C for 3 hours and then carbonization was carried out at 600°C for 3 hours at a temperature increase rate of 5°C/min.
4) CVD (Chemical Vapor Deposition) 반응 진행4) CVD (Chemical Vapor Deposition) reaction progresses
물질의 표면에 추가적인 graphitic carbon을 도입하기 위해 CVD (Chemical Vapor Deposition) 반응을 진행하였다. 구체적으로 N2 분위기에서, 승온 속도 30 ℃/min, 1000 ℃에서 Acetonitrile bubbling (Flow rate: 500 cc/h)하며 1시간 유지하여, Si@PMMA / Si@void@G를 합성하여 음극재를 제조하였다.A CVD (Chemical Vapor Deposition) reaction was performed to introduce additional graphitic carbon to the surface of the material. Specifically, in an N 2 atmosphere, acetonitrile bubbling (Flow rate: 500 cc/h) was maintained for 1 hour at a temperature increase rate of 30 ℃/min and 1000 ℃, and Si@PMMA / Si@void@G was synthesized to produce anode material. did.
[실시예 2] [Example 2]
단계 2의 "1) Seeded growth 반응을 이용한 Si@PMMA 합성"과정에서, 15분 단위로 1 mL씩 MMA를 추가하는 것 대신, 0.5mL씩 MMA를 추가하는 것을 제외하고는 실시예 1과 동일한 방법으로 음극재를 제조하였다.In step 2, “1) Si@PMMA synthesis using seeded growth reaction,” the same method as Example 1 except that MMA was added in 0.5 mL increments instead of 1 mL in 15-minute increments. An anode material was manufactured.
[비교예 1] [Comparative Example 1]
단계 1: Si@PMMA 제조 (Si 표면에 제 1 고분자층 코팅)Step 1: Si@PMMA fabrication (coating the first polymer layer on the Si surface)
실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as Example 1.
단계 2: Si@PMMA@MP (melanin polymer) 제조 (Step 2: Si@PMMA@MP (melanin polymer) preparation ( SiSi 표면에 on the surface 제 22nd 고분자층 코팅) polymer layer coating)
1) Seeded growth 반응을 이용한 Si@PMMA 합성1) Si@PMMA synthesis using seeded growth reaction
실리콘 오일 욕조(Silicon oil bath)의 온도를 65℃로 하고, PVP의 함량을 100mg 사용하며, 추가 MMA의 도입을 30분 단위로 한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1, except that the temperature of the silicon oil bath was set to 65°C, the PVP content was 100 mg, and additional MMA was introduced every 30 minutes.
2) 표면 개질을 통한 Si@PMMA@MP (melanin polymer) / Si@void@MC 합성2) Si@PMMA@MP (melanin polymer) / Si@void@MC synthesis through surface modification
Melanin을 112 mg 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 Si@void@MC를 합성하여 음극재를 제조하였다.An anode material was prepared by synthesizing Si@void@MC in the same manner as in Example 1, except that 112 mg of melanin was used.
실험예 1: Si@void@C 음극재 물성 평가Experimental Example 1: Evaluation of Si@void@C anode material properties
1) 온도에 따른 PMMA 함량 변화 1) Change in PMMA content depending on temperature
실시예 1 및 비교예 1의 제조 과정 중 단계 2의 "1) Seeded growth 반응을 이용한 Si@PMMA 합성"과정에서, 실리콘 오일 욕조(Silicon oil bath)의 온도를 65℃로 하여 합성을 진행한 실시예 1와, 60℃로 하여 합성을 진행한 비교예 1의 실험 에서 제조된 Si@void@C와 비교예 1에서 제조된 Si@void@C의 PMMA 함량 변화를 열중량 분석법 (Thermo Gravimetry Analysis, TGA)을 이용하여 측정하여, 하기 표 1 및 도 5에 나타내었다.In step 2 of the manufacturing process of Example 1 and Comparative Example 1, “1) Si@PMMA synthesis using seeded growth reaction,” the synthesis was performed with the temperature of the silicon oil bath set to 65°C. The change in PMMA content of Si@void@C prepared in Example 1 and Comparative Example 1, which was synthesized at 60°C, and Si@void@C prepared in Comparative Example 1 was measured using thermogravimetry analysis (Thermo Gravimetry Analysis, It was measured using TGA) and is shown in Table 1 and Figure 5 below.
(mg)PVP
(mg)
(mg [wt%])Initiator
(mg [wt%])
(wt% of PMMA)TGA
(wt% of PMMA)
시
예
1line
city
yes
One
상기 표 1 및 도 5를 통하여, 65℃로 하여 합성을 진행한 실시예 1의 PMMA 함량이 더 급격하게 증가하는 것을 알 수 있었다.Through Table 1 and Figure 5, it was found that the PMMA content in Example 1, where synthesis was performed at 65°C, increased more rapidly.
2) MMA 양에 따른 PMMA 함량 변화2) Change in PMMA content depending on the amount of MMA
실시예 2 및 비교예 1의 제조 과정 중 단계 2의 "1) Seeded growth 반응을 이용한 Si@PMMA 합성"과정에서, MMA를 1mL씩 첨가한 실시예 1과, 0.5mL씩 첨가한 실시예 2에서 제조된 Si@void@C의 PMMA 함량 변화를 열중량 분석법 (Thermo Gravimetry Analysis, TGA)을 이용하여 측정하여, 하기 표 2 및 도 6에 나타내었다.In the process of "1) Si@PMMA synthesis using seeded growth reaction" in step 2 of the manufacturing process of Example 2 and Comparative Example 1, 1 mL of MMA was added in Example 1 and 0.5 mL of MMA was added in Example 2. The change in PMMA content of the prepared Si@void@C was measured using Thermo Gravimetry Analysis (TGA), and is shown in Table 2 and Figure 6 below.
(mg)PVP
(mg)
(mg [wt%])Initiator
(mg [wt%])
(wt% of PMMA)TGA
(wt% of PMMA)
시
예
1line
city
yes
One
시
예
2line
city
yes
2
상기 표 2 및 도 6을 통하여, 0.5mL 씩 투여하여 합성을 진행한 실시예 2의 PMMA 함량이 더 급격하게 증가하는 것을 알 수 있었다.Through Table 2 and Figure 6, it was found that the PMMA content in Example 2, where the synthesis was performed by administering 0.5 mL each, increased more rapidly.
3) Seeded growth 변화3) Seeded growth changes
표 1의 실시예 1 및 표 2의 실시예 1, 2에서 확인한 결과를 바탕으로 추가 MMA의 injection 시간을 30분으로 고정하였으며, MMA를 1mL씩 첨가한 실시예 1과 0.5 mL씩 첨가한 실시예 2에서 제조된 Si@PMMA의 PMMA 함량 변화를 열중량 분석법 (Thermo Gravimetry Analysis, TGA)를 이용하여 측정하여 표 3에 나타내었다.Based on the results confirmed in Example 1 in Table 1 and Examples 1 and 2 in Table 2, the injection time of additional MMA was fixed at 30 minutes, and Examples 1 and 0.5 mL each of MMA were added. The change in PMMA content of Si@PMMA prepared in 2 was measured using Thermo Gravimetry Analysis (TGA) and is shown in Table 3.
(mg)PVP
(mg)
(mg [wt%])Initiator
(mg [wt%])
(wt% of PMMA)TGA
(wt% of PMMA)
4) 합성 단계별 4) Synthesis step by step 열중량thermogravity 분석 값 측정 Analytical value measurement
도 12와 같이, 본원 실시예에 따른 단계별 코팅 및 탄화, CVD에 따른 열중량 분석 값의 차이를 도 13 내지 도 15에 나타내었다. As shown in Figure 12, the differences in thermogravimetric analysis values according to each stage of coating, carbonization, and CVD according to the examples of the present application are shown in Figures 13 to 15.
구체적으로, 도 13, 14, 15에는 CVD 반응 전 후의 Tg 측정을 통해 열반응을 통해 합성한 탄소와 CVD로 추가 합성된 탄소의 중량 퍼센트를 나타내었다.Specifically, Figures 13, 14, and 15 show the weight percentages of carbon synthesized through thermal reaction and carbon additionally synthesized through CVD through Tg measurements before and after CVD reaction.
5) 합성 단계별 질소 등온 흡착 실험5) Nitrogen isothermal adsorption experiment at each stage of synthesis
마찬가지로, 본원 실시예에 따른 단계별 코팅 및 탄화, CVD에 따른 질소 흡착 결과의 차이를 도 16 내지 도 18에 나타내었다. Likewise, the differences in nitrogen adsorption results according to step-by-step coating, carbonization, and CVD according to the examples of the present application are shown in Figures 16 to 18.
구체적으로, 도 16에는 Si@V0@C 및 Si@V0@G의 질소 등온 흡착 곡선을 비교한 값을 나타내었고, 도 17에는 Si@V25@C 및 Si@V25@G의 질소 등온 흡착 곡선을 비교한 값을 나타내었고, 도 18에는 Si@V45@C 및 Si@V45@G의 질소 등온 흡착 곡선을 비교한 값을 나타내었다.Specifically, Figure 16 shows the comparison of the nitrogen isothermal adsorption curves of Si@V0@C and Si@V0@G, and Figure 17 shows the nitrogen isothermal adsorption curves of Si@V25@C and Si@V25@G. The compared values are shown, and Figure 18 shows the compared nitrogen isothermal adsorption curves of Si@V45@C and Si@V45@G.
6) 합성 단계별 기공 분포도(6) Pore distribution at each stage of synthesis ( dVdV // dlogddlogd ) 확인) check
마찬가지로, 본원 실시예에 따른 단계별 코팅 및 탄화, CVD에 따른 메조 기공 분포의 차이를 도 19 내지 도 21에 나타내었다. Likewise, the differences in mesopore distribution according to each step of coating, carbonization, and CVD according to the examples of the present application are shown in Figures 19 to 21.
구체적으로, 도 19에는 Si@V0@C 및 Si@V0@G의 메조 기공 분포를 비교한 값을 나타내었고, 도 20에는 Si@V25@C 및 Si@V25@G의 메조 기공 분포를 비교한 값을 나타내었고, 도 21에는 Si@V45@C 및 Si@V45@G의 메조 기공 분포를 비교한 값을 나타내었다.Specifically, Figure 19 shows a comparison of the mesopore distributions of Si@V0@C and Si@V0@G, and Figure 20 shows a comparison of the mesopore distributions of Si@V25@C and Si@V25@G. The values are shown, and Figure 21 shows the values comparing the mesopore distribution of Si@V45@C and Si@V45@G.
또한, 상기 Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C 및 Si@V45@G의 비표면적(SBET), 총 부피(Vtot), 기공 부피(Vmicro) 및 TG 값을 BEL 사의 BEL mini 질소 흡착 장비를 이용하여 질소 흡착 실험을 진행하였으며, 그 결과를 측정하여 하기 표 4에 나타내었다.In addition, the specific surface area (S BET ) and total volume (V tot ), pore volume (V micro ), and TG values were tested for nitrogen adsorption using BEL mini nitrogen adsorption equipment from BEL, and the results were measured and shown in Table 4 below.
상기 표 4를 통하여 CVD 반응 전 후 복합체의 표면적과 마이크로 기공 부피가 줄어듦에 의해 이 방법을 통해 Pore block을 진행할 수 있음을 알 수 있었다.Through Table 4 above, it can be seen that pore block can be performed through this method as the surface area and micropore volume of the composite decrease before and after the CVD reaction.
7) 시료 탄소의 7) Sample carbon 흑연화graphitization 정도 확인 Check the degree
마찬가지로, 본원 실시예에 따른 단계별 코팅 및 탄화, CVD에 따른 Si@V25@C, Si@V25@G, Si@V45@C 및 Si@V45@G의 시료 탄소의 흑연화 정도를 도 22 내지 도 29에 나타내었다. Likewise, the degree of graphitization of carbon samples of Si@V25@C, Si@V25@G, Si@V45@C, and Si@V45@G according to step-by-step coating, carbonization, and CVD according to the embodiments of the present application is shown in Figures 22 to 22. Shown in 29.
도 22 내지 도 29를 통하여 CVD 반응 후 탄소에 의해 Graphitic한 특성이 향상되었음 알 수 있었다.Through Figures 22 to 29, it was seen that graphitic properties were improved by carbon after CVD reaction.
또한 Si@V45@G를 SEM 장비인 HITACHI사의 S-4800로 촬영하여 도 30 내지 도 32에 나타내었으며, TEM 장비인 JEOL사의 JEM-2100F로 촬영하여 도 33에 나타내었다.Additionally, Si@V45@G was photographed with S-4800 from HITACHI, a SEM equipment, and shown in Figures 30 to 32, and photographed with JEM-2100F from JEOL, a TEM equipment, and shown in Figure 33.
실험예Experiment example 2: 반쪽전지 제작 및 충 방전 조건 테스트 2: Half-cell production and charging/discharging conditions testing
실시예 1 및 비교예 1의 Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C 및 Si@V45@G로 제조된 음극재를 음극 활물질로 사용하여 전지를 제조하였다.The anode material made of Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C and Si@V45@G of Example 1 and Comparative Example 1 was used as a cathode. A battery was manufactured using the active material.
먼저, 상기 실시예 1과 비교예 1에서 제조된 음극 활물질: 바인더(Polyamide imide (PAI)): 도전재(Super-P) 를 6: 2: 2의 중량비율로 혼합하였으며, 용매로는 NMP를 이용하여 슬러리를 제조하였다.First, the negative electrode active material prepared in Example 1 and Comparative Example 1: binder (Polyamide imide (PAI)): conductive material (Super-P) were mixed in a weight ratio of 6: 2: 2, and NMP was used as a solvent. A slurry was prepared using.
제조된 슬러리를, 구리 호일(Cu foil)에 닥터 블레이드(Doctor blade)를 이용하여 40um 두께로 도포하였으며, PAI의 바인더 효과 증대를 위해 Ar 분위기 하에서 350℃로 1.5 시간 동안 열처리하여 음극을 제조하였다.The prepared slurry was applied to Cu foil to a thickness of 40 μm using a doctor blade, and a cathode was manufactured by heat treatment at 350°C for 1.5 hours in an Ar atmosphere to increase the binder effect of PAI.
이 후, 반쪽 전지는 coin 2032 type 셀을 사용하였으며, 전해액은 EC: DEC= 30:70 vol%로 혼합하였으며, 첨가물로 FEC 10 wt%를, 리튬염으로 1.3M LiPF6 조성으로 사용하여 반쪽 전지를 제조하였다.Afterwards, a coin 2032 type cell was used for the half cell, the electrolyte was mixed at EC: DEC = 30:70 vol%, 10 wt% of FEC was used as an additive, and 1.3M LiPF 6 was used as a lithium salt to form a half cell. was manufactured.
용량 특성 실험은 안정적인 SEI layer 생성을 위해 첫 번째 사이클에서 0.01-1.5V 0.1C, 두 번째 사이클에서 0.01-1.0V 0.1C 조건으로 실험을 진행하였으며, 이후 3번째 사이클부터 0.01-1.0V 0.5C 조건으로 진행하였다. 이 때 모든 사이클에서 0.02C cut off 전류를 사용하였다.To create a stable SEI layer, the capacitance characteristics experiment was conducted under the conditions of 0.01-1.5V 0.1C in the first cycle, 0.01-1.0V 0.1C in the second cycle, and 0.01-1.0V 0.5C from the third cycle. proceeded with. At this time, a 0.02C cut off current was used in all cycles.
율속 특성 실험은 사이클 특성과 모두 동일하며 3번째 사이클에서 각각 5 사이클씩 0.2C, 0.5C, 1C, 2C, 5C 조건으로 진행하였다.The rate characteristic experiments were all the same as the cycle characteristics, and were conducted under 0.2C, 0.5C, 1C, 2C, and 5C conditions for 5 cycles each in the 3rd cycle.
Voltage cut-off 실험의 경우 용량 특성 실험과 방법은 동일하나 모든 사이클에서 0.02C cut off 전류를 도입하지 않았으며, 조건에 따라 가장 낮은 전압을 0.01, 0.05, 0.1, 0.15 V로 설정하여 실험 진행하였다.In the case of the voltage cut-off experiment, the method was the same as the capacity characteristics experiment, but the 0.02C cut-off current was not introduced in all cycles, and the experiment was conducted by setting the lowest voltage to 0.01, 0.05, 0.1, and 0.15 V depending on the conditions. .
1) 용량 특성 1) Capacity characteristics
실시예 1 및 비교예 1의 Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C 및 Si@V45@G로 제조된 음극재를 음극 활물질로 사용하여 전지를 제조한 후, 각 전지의 용량 특성을 비교하여 도 34 내지 도 36에 나타내었으며, 각 사이클 진행에 따른 율속 특성을 도 37에 나타내었다.The anode material made of Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C and Si@V45@G of Example 1 and Comparative Example 1 was used as a cathode. After manufacturing the battery using the active material, the capacity characteristics of each battery were compared and shown in Figures 34 to 36, and the rate characteristics according to the progress of each cycle are shown in Figure 37.
상기 도 34 내지 도 37을 통하여 PMMA에 의한 여유 공간이 늘어날수록 용량 유지율이 개선되며, CVD 반응 진행 후 초기 효율과 함께 물질의 용량 및 용량 유지율이 개선되는 것을 알 수 있었다.Through Figures 34 to 37, it can be seen that the capacity retention rate improves as the free space due to PMMA increases, and the capacity and capacity retention rate of the material improve along with the initial efficiency after the CVD reaction progresses.
또한, 상기 실시예 1 및 비교예 1의 Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C 및 Si@V45@G로 제조된 음극재의 특성을 비교하여 표 5에 나타내었다.In addition, the cathode made of Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C, and Si@V45@G of Example 1 and Comparative Example 1 The properties of the ash were compared and shown in Table 5.
상기 표 5를 통하여 PMMA에 의한 여유 공간이 늘어날수록 용량 유지율이 개선되며, CVD 반응 진행 후 초기 효율과 함께 물질의 용량 및 용량 유지율이 개선되는 것을 알 수 있었다.Through Table 5 above, it can be seen that the capacity retention rate improves as the free space by PMMA increases, and the capacity and capacity retention rate of the material improve along with the initial efficiency after the CVD reaction progresses.
2) Voltage cut-off 실험 2) Voltage cut-off experiment
Voltage cut-off 실험을 진행하여, 하기 표 6 및 도 38 내지 도 39에 그 결과를 나타내었다.A voltage cut-off experiment was conducted, and the results are shown in Table 6 and Figures 38 to 39 below.
상기 표 6 및 도 38 내지 도 39를 통하여 실제 실리콘 나노 입자에 대한 충방전 결과 통해 특정 전압에서의 용량을 확인하고 이 때의 용량을 이론 용량 대비 비교하여 부피 팽창율을 계산하였다.Through Table 6 and Figures 38 and 39, the capacity at a specific voltage was confirmed through the charging and discharging results for the actual silicon nanoparticles, and the volume expansion rate was calculated by comparing the capacity at this time with the theoretical capacity.
3) 3) 큐어링에In curing 따른 용량 특성 Capacity characteristics according to
실시예 1 및 비교예 1에서, 큐어링 과정을 통하여 제조된 Si@V45@G15 및 Si@V45@G23 음극재를 음극 활물질로 사용하여 전지를 제조한 후, Si@V45@G15의 용량 특성을 도 40에 나타내었으며, Si@V45@G23의 용량 특성을 도 41에 나타내었다.In Example 1 and Comparative Example 1, a battery was manufactured using Si@V45@G15 and Si@V45@G23 anode materials prepared through a curing process as an anode active material, and then the capacity characteristics of Si@V45@G15 were measured. It is shown in Figure 40, and the capacity characteristics of Si@V45@G23 are shown in Figure 41.
상기 도 40 내지 도 41을 통하여 큐어링 후 물질의 용량 특성이 향상된 것을 알 수 있었다.Through Figures 40 and 41, it was seen that the capacity characteristics of the material were improved after curing.
4) 두께 변화율의 측정 4) Measurement of thickness change rate
실시예 1 및 비교예 1에서, 큐어링 과정 없이 제조된 Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C, Si@V45@G 및 Si@V45@G15에 대하여, 50사이클 후 방전 시 전극의 두께는 사이클 전 전극의 두께를 측정하여 표 7에 나타내었다.In Example 1 and Comparative Example 1, Si@V0@C, Si@V0@G, Si@V25@C, Si@V25@G, Si@V45@C, Si@V45@G prepared without curing process. and Si@V45@G15, the thickness of the electrode upon discharge after 50 cycles is shown in Table 7 by measuring the thickness of the electrode before the cycle.
(1: 단위는 um임. @50 (방전) vs 51(충전) cycle 기준(1: Unit is um. @50 (discharge) vs 51 (charge) cycle basis
2: 충 방전 시 설정한 최저 전압)2: Lowest voltage set when charging and discharging)
상기 표 7을 통하여, PMMA에 의한 여유 공간이 늘어남에 따라 나타나는 두께 변화율이 줄어드는 것을 알 수 있고, 여유 공간이 충분할 시 Voltage cut-off와는 관계 없이 유사한 두께 변화율을 확인할 수 있다.Through Table 7 above, it can be seen that the thickness change rate decreases as the free space due to PMMA increases, and when the free space is sufficient, a similar thickness change rate can be confirmed regardless of the voltage cut-off.
Claims (12)
b) 제 1 고분자 코팅층에 멜라닌 폴리머(Melanin polymer)를 포함하는 제 2고분자 코팅층을 형성하는 단계; 및
c) 열처리를 통하여 제 1 고분자 코팅 층을 제거하여 공극(void)을 형성하고 제 2고분자 코팅층은 탄화하여 탄소층으로 전환하는 단계;를 포함하는 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.a) forming a first polymer coating layer containing polymethylmethacrylate on the surface of the Si particle;
b) forming a second polymer coating layer containing melanin polymer on the first polymer coating layer; and
c) removing the first polymer coating layer through heat treatment to form voids and carbonizing the second polymer coating layer to convert it into a carbon layer; Si anode material with a yolk-shell structure comprising a How to manufacture.
d) 탄소 전구체를 CVD를 이용하여 탄화된 탄소층의 기공을 막은 후 이를 열처리를 통해 흑연화하는 단계;를 더 포함하는 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.According to paragraph 1,
d) blocking the pores of the carbon layer by using a carbon precursor using CVD and then graphitizing it through heat treatment.
제 1고분자 코팅층을 형성하기 전에, Si 입자 표면을 3-(Trimethoxysilyl)propyl methacrylate (MPS)로 개질(그라프팅: grafting)한 후, methylmetacrylate (MMA)와 반응시켜 제1고분자 층을 형성하는, 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.According to paragraph 1,
Before forming the first polymer coating layer, the surface of the Si particle is modified (grafting) with 3-(Trimethoxysilyl)propyl methacrylate (MPS) and then reacted with methylmetacrylate (MMA) to form the first polymer layer. -Method of manufacturing Si anode material with yolk-shell structure.
상기 a) 단계는, 62~70℃의 온도에서 MMA(methylmetacrylate)를 Si 입자에 반응시켜 표면에 폴리메틸메타아크릴레이트(polymethylmetacrylate)를 형성하는, 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.According to paragraph 1,
In step a), MMA (methylmetacrylate) is reacted with Si particles at a temperature of 62 to 70°C to form polymethylmetacrylate on the surface, a Si cathode material with a Yolk-shell structure. How to manufacture.
상기 b) 단계는, 제 1고분자 코팅층 표면의 전하를 측정한 후, CTAB 용액을 통해 표면 전하를 조절해 표면 선택적인 고분자반응이 일어나도록 유도하는 것인, 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.According to paragraph 1,
In step b), after measuring the charge on the surface of the first polymer coating layer, the surface charge is adjusted through a CTAB solution to induce a surface-selective polymer reaction to occur. Method for manufacturing Si anode material.
상기 c) 단계는, N2 분위기에서 500 내지 700℃의 온도로 2 내지 5시간 동안 열처리하는 것인, 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.According to paragraph 1,
Step c) is a method of manufacturing a Si anode material with a yolk-shell structure, which involves heat treatment in an N 2 atmosphere at a temperature of 500 to 700° C. for 2 to 5 hours.
상기 CVD는 CH3CN을 증착시키는 것인, 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.According to paragraph 2,
The CVD is a method of producing a Si cathode material with a yolk-shell structure, wherein CH 3 CN is deposited.
상기 CVD는 N2 분위기에서, 승온 속도 20~40℃/min, 900~1100℃에서 Acetonitrile bubbling하며 0.5~2시간 유지하여 CH3CN을 증착시키는 것인, 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.In clause 7,
The CVD is a yolk-shell structure in which CH 3 CN is deposited by acetonitrile bubbling at a temperature increase rate of 20 to 40° C./min and 900 to 1,100° C. and maintained for 0.5 to 2 hours in an N 2 atmosphere. Method for manufacturing Si anode material.
상기 CVD를 진행하기 전에, 150~250℃의 온도에서 2시간 내지 5시간 동안 큐어링(curing)을 진행하는, 요크-쉘(Yolk-shell) 구조의 Si 음극재를 제조하는 방법.According to paragraph 2,
A method of manufacturing a Si anode material with a yolk-shell structure, in which curing is performed for 2 to 5 hours at a temperature of 150 to 250 ° C. before proceeding with the CVD.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190043909A KR102690258B1 (en) | 2019-04-15 | 2019-04-15 | Manufacturing method for silicon negative electrode material having a structure of yolk-shell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190043909A KR102690258B1 (en) | 2019-04-15 | 2019-04-15 | Manufacturing method for silicon negative electrode material having a structure of yolk-shell |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200121434A KR20200121434A (en) | 2020-10-26 |
KR102690258B1 true KR102690258B1 (en) | 2024-07-31 |
Family
ID=73006231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190043909A KR102690258B1 (en) | 2019-04-15 | 2019-04-15 | Manufacturing method for silicon negative electrode material having a structure of yolk-shell |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102690258B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7249988B2 (en) * | 2020-12-01 | 2023-03-31 | プライムプラネットエナジー&ソリューションズ株式会社 | lithium ion secondary battery |
CN113644251B (en) * | 2021-07-29 | 2022-12-09 | 江苏正力新能电池技术有限公司 | Hollow-structure silicon-carbon anode material and preparation method thereof |
WO2024144312A1 (en) * | 2022-12-29 | 2024-07-04 | 한화솔루션(주) | Yolk-shell-structured silicon-carbon composite, preparation method therefor, and anode active material comprising same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170309362A1 (en) * | 2015-11-11 | 2017-10-26 | Sabic Global Technologies B.V. | Multi-layered graphene material having a plurality of yolk/shell structures |
KR102148510B1 (en) * | 2017-09-29 | 2020-08-26 | 주식회사 엘지화학 | Yolk-shell particle, manufacturing method thereof, lithium secondary battery comprising the same |
-
2019
- 2019-04-15 KR KR1020190043909A patent/KR102690258B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
J. Mater. Chem. A, 2018,6, 2593-2599 |
Also Published As
Publication number | Publication date |
---|---|
KR20200121434A (en) | 2020-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110800142B (en) | Negative active material for lithium secondary battery and method for preparing same | |
JP6464252B2 (en) | Graphite secondary particles and lithium secondary battery containing the same | |
US10714741B2 (en) | Negative electrode active material and lithium secondary battery including the same | |
JP7330252B2 (en) | Particles with yoke-shell structure, manufacturing method thereof, and lithium secondary battery including the same | |
KR101708360B1 (en) | Negative active material and lithium battery containing the material | |
US10581069B2 (en) | Negative electrode active material having double coating layer, method for preparing the same and lithium secondary battery including the same | |
US11901540B2 (en) | Composite anode active material, method of preparing the same, and lithium secondary battery including anode including composite anode active material | |
KR102308723B1 (en) | Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode | |
KR102139736B1 (en) | Composite anode active material, a method of preparing the composite anode material, and Lithium secondary battery comprising the composite anode active material | |
CN108352506B (en) | Positive electrode and secondary battery comprising same | |
KR20140070227A (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same | |
KR101613518B1 (en) | Carbon-silicon composite electrode material and preparing method of the same | |
KR102050835B1 (en) | Preaparation method of nitrogen doped carbon-silicon complex and nitrogen doped carbon silicon complex prepared by the same | |
KR20130015967A (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR102148510B1 (en) | Yolk-shell particle, manufacturing method thereof, lithium secondary battery comprising the same | |
KR102690258B1 (en) | Manufacturing method for silicon negative electrode material having a structure of yolk-shell | |
KR102716983B1 (en) | Negative electrode active material and preparation method thereof | |
KR102617872B1 (en) | Sulfur-carbon composite, method for preparing the same and lithium secondary battery comprising the same | |
KR102168350B1 (en) | Yolk-shell particle, manufacturing method thereof, lithium secondary battery comprising the same | |
KR20200085587A (en) | Anode and Lithium Secondary Battery Comprising the Same | |
KR101796248B1 (en) | Cathode active material for lithium secondary battery and method of preparing the same | |
EP3322010B1 (en) | Method for manufacturing electrode collector for secondary battery | |
KR100945036B1 (en) | Cathode active material and Preparation method, Lithium secondary battery and Preparation method | |
KR20090041470A (en) | Electrode material including high degree of polymerization of polyacrylonitrile binder, method of the electrode material and rechargeable lithium battery comprising electrode material | |
WO2024142644A1 (en) | Composite particles, method for producing same and use of same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |