Nothing Special   »   [go: up one dir, main page]

KR102695896B1 - 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩 - Google Patents

쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩 Download PDF

Info

Publication number
KR102695896B1
KR102695896B1 KR1020217029421A KR20217029421A KR102695896B1 KR 102695896 B1 KR102695896 B1 KR 102695896B1 KR 1020217029421 A KR1020217029421 A KR 1020217029421A KR 20217029421 A KR20217029421 A KR 20217029421A KR 102695896 B1 KR102695896 B1 KR 102695896B1
Authority
KR
South Korea
Prior art keywords
block
information
prediction
candidates
weight index
Prior art date
Application number
KR1020217029421A
Other languages
English (en)
Other versions
KR20210118952A (ko
Inventor
박내리
남정학
장형문
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020247026834A priority Critical patent/KR20240128116A/ko
Publication of KR20210118952A publication Critical patent/KR20210118952A/ko
Application granted granted Critical
Publication of KR102695896B1 publication Critical patent/KR102695896B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/54Motion estimation other than block-based using feature points or meshes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/573Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

본 문서의 개시에 따르면, 현재 블록의 인터 예측 타입이 쌍 예측(bi-prediction)을 나타내는 경우, 머지 후보 리스트 또는 서브블록 머지 후보 리스트 내의 후보를 위한 가중치 인덱스 정보를 유도 또는 도출할 수 있고, 코딩 효율을 높일 수 있다.

Description

쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩
본 기술은 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩에 관한 것이다.
최근 4K 또는 8K 이상의 UHD(Ultra High Definition) 영상/비디오와 같은 고해상도, 고품질의 영상/비디오에 대한 수요가 다양한 분야에서 증가하고 있다. 영상/비디오 데이터가 고해상도, 고품질이 될수록 기존의 영상/비디오 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상/비디오 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
또한, 최근 VR(Virtual Reality), AR(Artificial Realtiy) 컨텐츠나 홀로그램 등의 실감 미디어(Immersive Media)에 대한 관심 및 수요가 증가하고 있으며, 게임 영상과 같이 현실 영상과 다른 영상 특성을 갖는 영상/비디오에 대한 방송이 증가하고 있다.
이에 따라, 상기와 같은 다양한 특성을 갖는 고해상도 고품질의 영상/비디오의 정보를 효과적으로 압축하여 전송하거나 저장하고, 재생하기 위해 고효율의 영상/비디오 압축 기술이 요구된다.
본 문서의 일 실시예에 따르면, 영상/비디오 코딩 효율을 높이는 방법 및 장치를 제공한다.
본 문서의 일 실시예에 따르면, 영상 코딩 시 가중치 기반의 쌍 예측을 이용하는 방법 및 장치를 제공한다.
본 문서의 일 실시예에 따르면, 인터 예측에서 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 방법 및 장치를 제공한다.
본 문서의 일 실시예에 따르면, 쌍 예측 시 머지 후보 리스트 또는 어파인 머지 후보 리스트 내의 후보를 위한 가중치 인덱스 정보를 유도하는 방법 및 장치를 제공한다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 비디오/영상 디코딩 방법을 제공한다.
본 문서의 일 실시예에 따르면, 비디오/영상 디코딩을 수행하는 디코딩 장치를 제공한다.
본 문서의 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 비디오/영상 인코딩 방법을 제공한다.
본 문서의 일 실시예에 따르면, 비디오/영상 인코딩을 수행하는 인코딩 장치를 제공한다.
본 문서의 일 실시예에 따르면, 본 문서의 실시예들 중 적어도 하나에 개시된 비디오/영상 인코딩 방법에 따라 생성된 인코딩된 비디오/영상 정보가 저장된 컴퓨터 판독 가능한 디지털 저장 매체를 제공한다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 본 문서의 실시예들 중 적어도 하나에 개시된 비디오/영상 디코딩 방법을 수행하도록 야기하는 인코딩된 정보 또는 인코딩된 비디오/영상 정보가 저장된 컴퓨터 판독 가능한 디지털 저장 매체를 제공한다.
본 문서의 일 실시예에 따르면 전반적인 영상/비디오 압축 효율을 높일 수 있다.
본 문서의 일 실시예에 따르면 인터 예측 시 움직임 벡터 후보를 효율적으로 구성할 수 있다.
본 문서의 일 실시예에 따르면 효율적으로 가중치 기반 쌍 예측을 수행할 수 있다.
도 1은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 인터 예측에서 머지 모드를 설명하기 위한 도면이다.
도 5a 및 도 5b는 어파인 움직임 예측을 위한 CPMV를 예시적으로 나타낸다.
도 6은 어파인 MVF가 서브블록 단위에서 결정되는 경우를 예시적으로 나타낸다.
도 7은 인터 예측에서 어파인 머지 모드를 설명하기 위한 도면이다.
도 8은 어파인 머지 모드에서 후보들의 위치를 설명하기 위한 도면이다.
도 9는 인터 예측에서 SbTMVP를 설명하기 위한 도면이다.
도 10 및 11은 본 문서의 실시예(들)에 따른 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 12 및 13은 본 문서의 실시예(들)에 따른 영상/비디오 디코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 14는 본 문서에서 개시된 실시예들이 적용될 수 있는 컨텐츠 스트리밍 시스템의 예를 나타낸다.
본 문서의 개시는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 개시를 특정 실시예에 한정하려고 하는 것이 아니다. 본 문서에서 사용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서의 실시예들의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 문서에서 "포함하다" 또는 "가지다" 등의 용어는 문서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서의 개시 범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 실시예들을 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용할 수 있고 동일한 구성 요소에 대해서 중복된 설명은 생략될 수 있다.
도 1은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 제1 장치(소스 디바이스) 및 제2 장치(수신 디바이스)를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 영상/비디오 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 영상/비디오 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
본 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 본 문서에서 개시된 방법/실시예는 VVC (versatile video coding) 표준에 개시되는 방법에 적용될 수 있다. 또한, 본 문서에서 개시된 방법/실시예는 EVC (essential video coding) 표준, AV1 (AOMedia Video 1) 표준, AVS2 (2nd generation of audio video coding standard) 또는 차세대 비디오/영상 코딩 표준(ex. H.267 or H.268 등)에 개시되는 방법에 적용될 수 있다.
본 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
본 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)은 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 타일은 픽너 내 특정 타일 열 및 특정 타일 열 이내의 CTU들의 사각 영역이다(A tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture). 상기 타일 열은 CTU들의 사각 영역이고, 상기 사각 영역은 상기 픽처의 높이와 동일한 높이를 갖고, 너비는 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시될 수 있다(The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set). 상기 타일 행은 CTU들의 사각 영역이고, 상기 사각 영역은 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시되는 너비를 갖고, 높이는 상기 픽처의 높이와 동일할 수 있다(The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture). 타일 스캔은 픽처를 파티셔닝하는 CTU들의 특정 순차적 오더링을 나타낼 수 있고, 상기 CTU들은 타일 내 CTU 래스터 스캔으로 연속적으로 정렬될 수 있고, 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 슬라이스는 단일 NAL 유닛에 배타적으로 담겨질 수 있는, 정수개의 완전한 타일들 또는 픽처의 타일 내의 정수개의 연속적인 완전한 CTU 행들을 포함할 수 있다(A slice includes an integer number of complete tiles or an integer number of consecutive complete CTU rows within a tile of a picture that may be exclusively contained in a single NAL unit)
한편, 하나의 픽처는 둘 이상의 서브픽처로 구분될 수 있다. 서브픽처는 픽처 내 하나 이상의 슬라이스들의 사각 리전일 수 있다(an rectangular region of one or more slices within a picture).
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
본 문서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 문서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 문서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 문서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 문서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 문서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 문서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 문서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "예측(인트라 예측)"로 표시된 경우, "예측"의 일례로 "인트라 예측"이 제안된 것일 수 있다. 달리 표현하면 본 문서의 "예측"은 "인트라 예측"으로 제한(limit)되지 않고, "인트라 예측"이 "예측"의 일례로 제안될 것일 수 있다. 또한, "예측(즉, 인트라 예측)"으로 표시된 경우에도, "예측"의 일례로 "인트라 예측"이 제안된 것일 수 있다.
본 문서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 인코딩 장치라 함은 영상 인코딩 장치 및/또는 비디오 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)은 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽쳐, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(200)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 이 경우 도시된 바와 같이 인코더(200) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(231)라고 불릴 수 있다. 예측부는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보를 기반으로 픽처 내 샘플 값을 시그널링할 수 있다.
상기 예측부 (인터 예측부(221) 및/또는 상기 인트라 예측부(222) 포함)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송되고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 영상/비디오 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 영상/비디오 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 영상/비디오 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 인코딩 장치에서 디코딩 장치로 전달/시그널링되는 정보 및/또는 신택스 요소들은 영상/비디오 정보에 포함될 수 있다. 상기 영상/비디오 정보는 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(250)는 복원된 레지듀얼 신호를 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(250)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(221)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(200)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270) DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 디코딩 장치라 함은 영상 디코딩 장치 및/또는 비디오 디코딩 장치를 포함할 수 있다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memoery, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 321)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상/비디오 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 2의 인코딩 장치에서 영상/비디오 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 2의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 영상/비디오 정보)를 도출할 수 있다. 상기 영상/비디오 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 영상/비디오 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(332) 및 인트라 예측부(331))로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 레지듀얼 처리부(320)로 입력될 수 있다. 레지듀얼 처리부(320)는 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들, 레지듀얼 샘플 어레이)를 도출할 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 가산부(340), 필터링부(350), 메모리(360), 인터 예측부(332) 및 인트라 예측부(331) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부(320)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보가 상기 영상/비디오 정보에 포함되어 시그널링될 수 있다.
인트라 예측부(331)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(331)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(332)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(332)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(인터 예측부(332) 및/또는 인트라 예측부(331) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(360), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(332)에서 참조 픽쳐로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(260)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(331)에 전달할 수 있다.
본 문서에서, 인코딩 장치(200)의 필터링부(260), 인터 예측부(221) 및 인트라 예측부(222)에서 설명된 실시예들은 각각 디코딩 장치(300)의 필터링부(350), 인터 예측부(332) 및 인트라 예측부(331)에도 동일 또는 대응되도록 적용될 수 있다
인터 예측이 적용되는 경우, 인코딩 장치/디코딩 장치의 예측부는 블록 단위로 인터 예측을 수행하여 예측 샘플을 도출할 수 있다. 인터 예측은 현재 픽처 이외의 픽처(들)의 데이터 요소들(ex. 샘플값들, 또는 움직임 정보)에 의존적인 방법으로 도출되는 예측을 나타낼 수 있다(Inter prediction can be a prediction derived in a manner that is dependent on data elements (ex. sample values or motion information) of picture(s) other than the current picture). 현재 블록에 인터 예측이 적용되는 경우, 참조 픽처 인덱스가 가리키는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록(예측 샘플 어레이)을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 현재 블록의 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측이 적용되는 경우, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트가 구성될 수 있고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 선택(사용)되는지를 지시하는 플래그 또는 인덱스 정보가 시그널링될 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 현재 블록의 움직임 정보는 선택된 주변 블록의 움직임 정보와 같을 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 선택된 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)은 시그널링될 수 있다. 이 경우 상기 움직임 벡터 예측자 및 움직임 벡터 차분의 합을 이용하여 상기 현재 블록의 움직임 벡터를 도출할 수 있다.
상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등)에 따라 L0 움직임 정보 및/또는 L1 움직임 정보를 포함할 수 있다. L0 방향의 움직임 벡터는 L0 움직임 벡터 또는 MVL0라고 불릴 수 있고, L1 방향의 움직임 벡터는 L1 움직임 벡터 또는 MVL1이라고 불릴 수 있다. L0 움직임 벡터에 기반한 예측은 L0 예측이라고 불릴 수 있고, L1 움직임 벡터에 기반한 예측을 L1 예측이라고 불릴 수 있고, 상기 L0 움직임 벡터 및 상기 L1 움직임 벡터 둘 다에 기반한 예측을 쌍(Bi) 예측이라고 불릴 수 있다. 여기서 L0 움직임 벡터는 참조 픽처 리스트 L0 (L0)에 연관된 움직임 벡터를 나타낼 수 있고, L1 움직임 벡터는 참조 픽처 리스트 L1 (L1)에 연관된 움직임 벡터를 나타낼 수 있다. 참조 픽처 리스트 L0는 상기 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 포함할 수 있고, 참조 픽처 리스트 L1은 상기 현재 픽처보다 출력 순서상 이후 픽처들을 포함할 수 있다. 상기 이전 픽처들은 순방향 (참조) 픽처라고 불릴 수 있고, 상기 이후 픽처들은 역방향 (참조) 픽처라고 불릴 수 있다. 상기 참조 픽처 리스트 L0은 상기 현재 픽처보다 출력 순서상 이후 픽처들을 참조 픽처들로 더 포함할 수 있다. 이 경우 상기 참조 픽처 리스트 L0 내에서 상기 이전 픽처들이 먼저 인덱싱되고 상기 이후 픽처들은 그 다음에 인덱싱될 수 있다. 상기 참조 픽처 리스트 L1은 상기 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 더 포함할 수 있다. 이 경우 상기 참조 픽처 리스트1 내에서 상기 이후 픽처들이 먼저 인덱싱되고 상기 이전 픽처들은 그 다음에 인덱싱 될 수 있다. 여기서 출력 순서는 POC(picture order count) 순서(order)에 대응될 수 있다.
픽처 내 현재 블록의 예측을 위하여 다양한 인터 예측 모드가 사용될 수 있다. 예를 들어, 머지 모드, 스킵 모드, MVP(motion vector prediction) 모드, 어파인(affine) 모드, 서브 블록 머지 모드, MMVD(merge with MVD) 모드 등 다양한 모드가 사용될 수 있다. DMVR(Decoder side motion vector refinement) 모드, AMVR(adaptive motion vector resolution) 모드, Bi-prediction with CU-level weight (BCW), Bi-directional optical flow (BDOF) 등이 부수적인 모드로 더 혹은 대신 사용될 수 있다. 어파인 모드는 어파인 움직임 예측(affine motion prediction) 모드라고 불릴 수도 있다. MVP 모드는 AMVP(advanced motion vector prediction) 모드라고 불릴 수도 있다. 본 문서에서 일부 모드 및/또는 일부 모드에 의하여 도출된 움직임 정보 후보는 다른 모드의 움직임 정보 관련 후보들 중 하나로 포함될 수도 있다. 예를 들어, HMVP 후보는 상기 머지/스킵 모드의 머지 후보로 추가될 수 있고, 또는 상기 MVP 모드의 mvp 후보로 추가될 수도 있다. 상기 HMVP 후보가 상기 머지 모드 또는 스킵 모드의 움직임 정보 후보로 사용되는 경우, 상기 HMVP 후보는 HMVP 머지 후보라고 불릴 수 있다.
현재 블록의 인터 예측 모드를 가리키는 예측 모드 정보가 인코딩 장치로부터 디코딩 장치로 시그널링될 수 있다. 상기 예측 모드 정보는 비트스트림에 포함되어 디코딩 장치에 수신될 수 있다. 상기 예측 모드 정보는 다수의 후보 모드들 중 하나를 지시하는 인덱스 정보를 포함할 수 있다. 또는, 플래그 정보의 계층적 시그널링을 통하여 인터 예측 모드를 지시할 수도 있다. 이 경우 상기 예측 모드 정보는 하나 이상의 플래그들을 포함할 수 있다. 예를 들어, 스킵 플래그를 시그널링하여 스킵 모드 적용 여부를 지시하고, 스킵 모드가 적용 안되는 경우에 머지 플래그를 시그널링하여 머지 모드 적용 여부를 지시하고, 머지 모드가 적용 안되는 경우에 MVP 모드가 적용되는 것으로 지시하거나 추가적인 구분을 위한 플래그를 더 시그널링할 수도 있다. 어파인 모드는 독립적인 모드로 시그널링될 수도 있고, 또는 머지 모드 또는 MVP 모드 등에 종속적인 모드로 시그널링될 수도 있다. 예를 들어, 어파인 모드는 어파인 머지 모드 및 어파인 MVP 모드를 포함할 수 있다.
한편, 현재 블록에 상술한 list0(L0) 예측, list1(L1) 예측, 또는 쌍(BI) 예측이 현재 블록(현재 코딩 유닛)에 사용되는지 여부를 나타내는 정보가 시그널링될 수 있다. 상기 정보는 움직임 예측 방향 정보, 인터 예측 방향 정보 또는 인터 예측 지시 정보라 불릴 수 있고, 예를 들어 inter_pred_idc 신택스 요소의 형태로 구성/인코딩/시그널링될 수 있다. 즉, inter_pred_idc 신택스 요소는 상술한 L0 예측, L1 예측, 또는 쌍 예측이 현재 블록(현재 코딩 유닛)에 사용되는지 여부를 나타낼 수 있다. 본 문서에서는 설명의 편의를 위하여 inter_pred_idc 신택스 요소가 가리키는 인터 예측 타입(L0 예측, L1 예측, 또는 BI 예측)은 움직임 예측 방향이라고 표시될 수 있다. 예를 들어, L0 예측은 pred_L0, L1 예측은 pred_L1, 쌍예측은 pred_BI로 나타내어질 수도 있다.
상술한 바와 같이 하나의 픽처는 하나 이상의 슬라이스(slice)를 포함할 수 있다. 슬라이스는 I 슬라이스(intra slice), P 슬라이스(predictive slice) 및 B 슬라이스(bi-predictive slice)를 포함하는 슬라이스 타입들 중 하나의 타입을 가질 수 있다. 상기 슬라이스 타입은 슬라이스 타입 정보를 기반으로 지시될 수 있다. I 슬라이스 내의 블록들에 대하여는 예측을 위하여 인터 예측은 사용되지 않으며 인트라 예측만 사용될 수 있다. 물론 이 경우에도 예측 없이 원본 샘플 값을 코딩하여 시그널링할 수도 있다. P 슬라이스 내의 블록들에 대하여는 인트라 예측 또는 인터 예측이 사용될 수 있으며, 인터 예측이 사용되는 경우에는 단(uni) 예측만 사용될 수 있다. 한편, B 슬라이스 내의 블록들에 대하여는 인트라 예측 또는 인터 예측이 사용될 수 있으며, 인터 예측이 사용되는 경우에는 최대 쌍(bi) 예측까지 사용될 수 있다. 즉, B 슬라이스 내의 블록들에 대하여는 인터 예측이 사용되는 경우 단 예측 또는 쌍 예측이 사용될 수 있다.
L0 및 L1은 현재 픽처보다 이전에 인코딩/디코딩된 참조 픽처들을 포함할 수 있다. 여기서, L0는 참조 픽처 리스트 0을 나타낼 수 있고, L1은 참조 픽처 리스트 1을 나타낼 수 있다. 예를 들어, L0는 POC(picture order count) 순서상 현재 픽처보다 이전 및/또는 이후 참조 픽처들을 포함할 수 있고, L1은 POC 순서상 현재 픽처보다 이후 및/또는 이전 참조 픽처들을 포함할 수 있다. 이 경우 L0에는 POC 순서상 현재 픽처보다 이전 참조 픽처들에 상대적으로 더 낮은 참조 픽처 인덱스가 할당될 수 있고, L1에는 POC 순서상 현재 픽처보다 이후 참조 픽처들에 상대적으로 더 낮은 참조 픽처 인덱스가 할당될 수 있다. B 슬라이스의 경우 쌍 예측이 적용될 수 있으며, 이 경우에도 단방향 쌍 예측이 적용될 수 있고, 또는 양방향 쌍 예측이 적용될 수 있다. 양방향 쌍 예측은 트루(true) 쌍 예측이라고 불릴 수 있다.
한편, 현재 블록의 움직임 정보를 이용하여 인터 예측이 수행될 수 있다. 인코딩 장치는 움직임 추정(motion estimation) 절차를 통하여 현재 블록에 대한 최적의 움직임 정보를 도출할 수 있다. 예를 들어, 인코딩 장치는 현재 블록에 대한 원본 픽처 내 원본 블록을 이용하여 상관성이 높은 유사한 참조 블록을 참조 픽처 내의 정해진 탐색 범위 내에서 분수 픽셀 단위로 탐색할 수 있고, 이를 통하여 움직임 정보를 도출할 수 있다. 블록의 유사성은 위상(phase) 기반 샘플 값들의 차를 기반으로 도출할 수 있다. 예를 들어, 블록의 유사성은 현재 블록(or 현재 블록의 템플릿)과 참조 블록(or 참조 블록의 템플릿) 간 SAD(sum of absolute differences)를 기반으로 계산될 수 있다. 이 경우 탐색 영역 내 SAD가 가장 작은 참조 블록을 기반으로 움직임 정보를 도출할 수 있다. 도출된 움직임 정보는 인터 예측 모드 기반으로 여러 방법에 따라 디코딩 장치로 시그널링될 수 있다.
도 4는 인터 예측에서 머지 모드를 설명하기 위한 도면이다.
머지 모드(merge mode)가 적용되는 경우, 현재 예측 블록의 움직임 정보가 직접적으로 전송되지 않고, 주변 예측 블록의 움직임 정보를 이용하여 상기 현재 예측 블록의 움직임 정보를 유도하게 된다. 따라서, 머지 모드를 이용하였음을 알려주는 플래그 정보 및 주변의 어떤 예측 블록을 이용하였는지를 알려주는 머지 인덱스를 전송함으로써 현재 예측 블록의 움직임 정보를 지시할 수 있다. 상기 머지 모드는 레귤러 머지 모드(regular merge mode)라고 불릴 수 있다. 예를 들어, 상기 머지 모드는 regular_merge_flag 신택스 요소의 값이 1인 경우에 적용될 수 있다.
인코딩 장치는 머지 모드를 수행하기 위해서 현재 예측 블록의 움직임 정보를 유도하기 위해 이용되는 머지 후보 블록(merge candidate block)을 써치(search)하여야 한다. 예를 들어, 상기 머지 후보 블록은 최대 5개까지 이용될 수 있으나, 본 문서의 실시예(들)은 이에 한정되지 않는다. 그리고, 상기 머지 후보 블록의 최대 개수는 슬라이스 헤더 또는 타일 그룹 헤더에서 전송될 수 있으며, 본 문서의 실시예(들)은 이에 한정되지 않는다. 상기 머지 후보 블록들을 찾은 후, 인코딩 장치는 머지 후보 리스트를 생성할 수 있고, 이들 중 가장 작은 비용을 갖는 머지 후보 블록을 최종 머지 후보 블록으로 선택할 수 있다.
본 문서는 상기 머지 후보 리스트를 구성하는 머지 후보 블록에 대한 다양한 실시예를 제공할 수 있다.
예를 들어, 상기 머지 후보 리스트는 5개의 머지 후보 블록을 이용할 수 있다. 예를 들어, 4개의 공간적 머지 후보(spatial merge candidate)와 1개의 시간적 머지 후보(temporal merge candidate)를 이용할 수 있다. 구체적 예로, 공간적 머지 후보의 경우, 도 4에 도시된 블록들을 공간적 머지 후보로 이용할 수 있다. 이하, 상기 공간적 머지 후보 또는 후술하는 공간적 MVP 후보는 SMVP로 불릴 수 있고, 상기 시간적 머지 후보 또는 후술하는 시간적 MVP 후보는 TMVP로 불릴 수 있다.
상기 현재 블록에 대한 머지 후보 리스트는 예를 들어 다음과 같은 절차를 기반으로 구성될 수 있다.
코딩 장치(인코딩 장치/디코딩 장치)는 현재 블록의 공간적 주변 블록들을 탐색하여 도출된 공간적 머지 후보들을 머지 후보 리스트에 삽입할 수 있다. 예를 들어, 상기 공간적 주변 블록들은 상기 현재 블록의 좌하측 코너 주변 블록, 좌측 주변 블록, 우상측 코너 주변 블록, 상측 주변 블록, 좌상측 코너 주변 블록들을 포함할 수 있다. 다만, 이는 예시로서 상술한 공간적 주변 블록들 이외에도 우측 주변 블록, 하측 주변 블록, 우하측 주변 블록 등 추가적인 주변 블록들이 더 상기 공간적 주변 블록들로 사용될 수 있다. 코딩 장치는 상기 공간적 주변 블록들을 우선 순위를 기반으로 탐색하여 가용한 블록들을 검출하고, 검출된 블록들의 움직임 정보를 상기 공간적 머지 후보들로 도출할 수 있다. 예를 들어, 인코딩 장치 또는 디코딩 장치는 도 4에 도시된 5개의 블록들을 A1 -> B1 -> B0 -> A0 -> B2와 같이 순서대로 탐색하여, 가용한 후보들을 순차적으로 인덱싱하여 머지 후보 리스트로 구성할 수 있다.
코딩 장치는 상기 현재 블록의 시간적 주변 블록을 탐색하여 도출된 시간적 머지 후보를 상기 머지 후보 리스트에 삽입할 수 있다. 상기 시간적 주변 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 픽처인 참조 픽처 상에 위치할 수 있다. 상기 시간적 주변 블록이 위치하는 참조 픽처는 콜로케이티드(collocated) 픽처 또는 콜(col) 픽처라고 불릴 수 있다. 상기 시간적 주변 블록은 상기 콜(col) 픽처 상에서의 상기 현재 블록에 대한 동일 위치 블록(co-located block)의 우하측 코너 주변 블록 및 우하측 센터 블록의 순서로 탐색될 수 있다. 한편, 움직임 정보 압축(motion data compression)이 적용되는 경우, 상기 콜(col) 픽처에 일정 저장 단위마다 특정 움직임 정보를 대표 움직임 정보로 저장할 수 있다. 이 경우, 상기 일정 저장 단위 내의 모든 블록에 대한 움직임 정보를 저장할 필요가 없으며 이를 통하여 움직임 정보 압축(motion data compression) 효과를 얻을 수 있다. 이 경우, 일정 저장 단위는 예를 들어, 16x16 샘플 단위, 또는 8x8 샘플 단위 등으로 미리 정해질 수도 있고, 또는 인코딩 장치에서 디코딩 장치로 상기 일정 저장 단위에 대한 사이즈 정보가 시그널링될 수도 있다. 상기 움직임 정보 압축(motion data compression)이 적용되는 경우 상기 시간적 주변 블록의 움직임 정보는 상기 시간적 주변 블록이 위치하는 상기 일정 저장 단위의 대표 움직임 정보로 대체될 수 있다. 즉, 이 경우 구현 측면에서 보면, 상기 시간적 주변 블록의 좌표에 위치하는 예측 블록이 아닌, 상기 시간적 주변 블록의 좌표(좌상단 샘플 포지션)를 기반으로 일정 값만큼 산술적 오른쪽 쉬프트 후 산술적 왼쪽 쉬프트 한 위치를 커버하는 예측 블록의 움직임 정보를 기반으로 상기 시간적 머지 후보가 도출될 수 있다. 예를 들어, 상기 일정 저장 단위가 2nx2n 샘플 단위인 경우, 상기 시간적 주변 블록의 좌표가 (xTnb, yTnb)라 하면, 수정된 위치인 ((xTnb>>n)<<n), (yTnb>>n)<<n))에 위치하는 예측 블록의 움직임 정보가 상기 시간적 머지 후보를 위하여 사용될 수 있다. 구체적으로 예를 들어, 상기 일정 저장 단위가 16x16 샘플 단위인 경우, 상기 시간적 주변 블록의 좌표가 (xTnb, yTnb)라 하면, 수정된 위치인 ((xTnb>>4)<<4), (yTnb>>4)<<4))에 위치하는 예측 블록의 움직임 정보가 상기 시간적 머지 후보를 위하여 사용될 수 있다. 또는 예를 들어, 상기 일정 저장 단위가 8x8 샘플 단위인 경우, 상기 시간적 주변 블록의 좌표가 (xTnb, yTnb)라 하면, 수정된 위치인 ((xTnb>>3)<<3), (yTnb>>3)<<3))에 위치하는 예측 블록의 움직임 정보가 상기 시간적 머지 후보를 위하여 사용될 수 있다.
코딩 장치는 현재 머지 후보들의 개수가 최대 머지 후보들의 개수보다 작은지 여부를 확인할 수 있다. 상기 최대 머지 후보들의 개수는 미리 정의되거나 인코딩 장치에서 디코딩 장치로 시그널링될 수 있다. 예를 들어, 인코딩 장치는 상기 최대 머지 후보들의 개수에 관한 정보를 생성하고, 인코딩하여 비트스트림 형태로 상기 디코더로 전달할 수 있다. 상기 최대 머지 후보들의 개수가 다 채워지면 이후의 후보 추가 과정은 진행하지 않을 수 있다.
상기 확인 결과 상기 현재 머지 후보들의 개수가 상기 최대 머지 후보들의 개수보다 작은 경우, 코딩 장치는 추가 머지 후보를 상기 머지 후보 리스트에 삽입할 수 있다. 예를 들어, 상기 추가 머지 후보는 후술하는 히스토리 기반 머지 후보(들)(history based merge candidate(s)), 페어와이즈 평균 머지 후보(들)(pair-wise average merge candidate(s)), ATMVP, 조합된 쌍 예측(combined bi-predictive) 머지 후보 (현재 슬라이스/타일 그룹의 슬라이스/타일 그룹 타입이 B 타입인 경우) 및/또는 영 벡터 머지 후보 중 적어도 하나를 포함할 수 있다.
상기 확인 결과 상기 현재 머지 후보들의 개수가 상기 최대 머지 후보들의 개수보다 작지 않은 경우, 코딩 장치는 상기 머지 후보 리스트의 구성을 종료할 수 있다. 이 경우 인코딩 장치는 RD(rate-distortion) 코스트(cost) 기반으로 상기 머지 후보 리스트를 구성하는 머지 후보들 중 최적의 머지 후보를 선택할 수 있으며, 상기 선택된 머지 후보를 가리키는 선택 정보(ex. merge index)를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 상기 머지 후보 리스트 및 상기 선택 정보를 기반으로 상기 최적의 머지 후보를 선택할 수 있다.
상기 선택된 머지 후보의 움직임 정보가 상기 현재 블록의 움직임 정보로 사용될 수 있으며, 상기 현재 블록의 움직임 정보를 기반으로 상기 현재 블록의 예측 샘플들을 도출할 수 있음을 상술한 바와 같다. 인코딩 장치는 상기 예측 샘플들을 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출할 수 있으며, 상기 레지듀얼 샘플들에 관한 레지듀얼 정보를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 도출된 레지듀얼 샘플들 및 상기 예측 샘플들을 기반으로 복원 샘플들을 생성할 수 있고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
스킵 모드(skip mode)가 적용되는 경우, 앞에서 머지 모드가 적용되는 경우와 동일한 방법으로 상기 현재 블록의 움직임 정보를 도출할 수 있다. 다만, 스킵 모드가 적용되는 경우 해당 블록에 대한 레지듀얼 신호가 생략되며 따라서 예측 샘플들이 바로 복원 샘플들로 이용될 수 있다. 상기 스킵 모드는 예를 들어 cu_skip_flag 신택스 요소의 값이 1인 경우에 적용될 수 있다.
한편, 상기 페어와이즈 평균 머지 후보(pair-wise average merge candidate)는 페어와이즈 평균 후보 또는 페어와이즈 후보라고 불릴 수 있다. 페어와이즈 평균 후보(들)는 기존의(existing) 머지 후보 리스트에서 미리 정의된 후보들의 페어들을 평균하여 생성될 수 있다. 또한, 미리 정의된 페어들은 {(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3)}와 같이 정의될 수 있다. 여기서, 숫자들은 머지 후보 리스트에 대한 머지 인덱스들을 나타낼 수 있다. 평균화된 움직임 벡터(averaged motion vector)는 각 참조 리스트에 대해 별도로 계산될 수 있다. 예를 들어, 2개의 움직임 벡터들이 하나의 리스트 내에서 이용 가능한 경우, 상기 2개의 움직임 벡터들은 서로 다른 참조 픽처들을 가리켜도 평균화될 수 있다. 예를 들어, 하나의 움직임 벡터만이 이용 가능한 경우, 곧바로(directly) 하나가 사용될 수 있다. 예를 들어, 이용 가능한 움직임 벡터가 없는 경우, 리스트를 유효하지 않은 상태로 유지할 수 있다.
예를 들어, 페어와이즈 평균 머지 후보들이 추가된 이후에도 머지 후보 리스트가 가득차지 않은 경우 즉, 머지 후보 리스트 내에 현재 머지 후보들의 개수가 최대 머지 후보들의 개수보다 작은 경우, 최대 머지 후보 번호가 나타날 때까지 영 벡터(zero MVP)가 마지막으로 삽입될 수 있다. 즉, 머지 후보 리스트 내의 현재 머지 후보들의 개수가 최대 머지 후보 개수가 될 때까지 영 벡터를 삽입할 수 있다.
한편, 기존에는 코딩 블록의 움직임을 표현하기 위해 오직 하나의 움직임 벡터를 사용할 수 있었다. 즉, 옮김(translation) 움직임 모델이 사용될 수 있었다. 다만, 이러한 방법이 블록 단위에서 최적의 움직임을 표현했을 수 있으나, 실제 각 샘플의 최적의 움직임은 아니며, 샘플 단위에서 최적의 움직임 벡터를 결정할 수 있다면 코딩 효율을 높일 수 있다. 이를 위해, 어파인 움직임 모델(affine motion model)이 사용될 수 있다. 어파인 움직임 모델을 사용하여 코딩하는 어파인 움직임 예측 방법은 다음과 같을 수 있다.
어파인 움직임 예측 방법은 2개, 3개 또는 4개의 움직임 벡터를 이용하여 블록의 각 샘플 단위에서 움직임 벡터를 표현할 수 있다. 예를 들어, 어파인 움직임 모델은 4가지의 움직임을 표현할 수 있다. 어파인 움직임 모델이 표현할 수 있는 움직임 중 3가지 움직임(옮김(translation), 스케일(scale), 회전(rotate))을 표현하는 어파인 움직임 모델은 유사(similarity)(또는 간소화된(simplified)) 어파인 움직임 모델이라고 불릴 수 있으며, 이를 기준으로 설명하겠으나, 상술한 움직임 모델에 한정되는 것은 아니다.
도 5a 및 도 5b는 어파인 움직임 예측을 위한 CPMV를 예시적으로 나타낸다.
어파인 움직임 예측은 2개 이상의 컨트롤 포인트 움직임 벡터(CPMV: Control Point Motion Vector)들을 이용하여 블록이 포함하는 샘플 위치의 움직임 벡터를 결정할 수 있다. 이 때, 움직임 벡터들의 집합을 어파인 움직임 벡터 필드(MVF: Motion Vector Field)라고 나타낼 수 있다.
예를 들어, 도 5a는 2개의 CPMV가 이용되는 경우를 나타낼 수 있으며, 이는 4-파라미터 어파인 모델이라고 불릴 수 있다. 이 경우, (x, y) 샘플 위치에서의 움직임 벡터는 예를 들어 수학식 1과 같이 결정될 수 있다.
Figure 112021105645211-pct00001
예를 들어, 도 5b는 3개의 CPMV가 이용되는 경우를 나타낼 수 있으며, 이는 6-파라미터 어파인 모델이라고 불릴 수 있다. 이 경우, (x, y) 샘플 위치에서의 움직임 벡터는 예를 들어 수학식 2와 같이 결정될 수 있다.
Figure 112021105645211-pct00002
수학식 1 및 수학식 2에서, {vx, vy}는 (x, y) 위치에서의 움직임 벡터를 나타낼 수 있다. 또한, {v0x, v0y}는 코딩 블록의 좌상단 코너 위치의 컨트롤 포인트(CP: Control Point)의 CPMV를 나타낼 수 있고, {v1x, v1y}는 코우상단 코너 위치의 CP의 CPMV를 나타낼 수 있고, {v2x, v2y}는 좌하단 코너 위치의 CP의 CPMV를 나타낼 수 있다. 또한, W는 현재 블록의 너비(width)를 나타낼 수 있고, H는 현재 블록의 높이(hight)를 나타낼 수 있다.
도 6은 어파인 MVF가 서브블록 단위에서 결정되는 경우를 예시적으로 나타낸다.
인코딩/디코딩 과정에서 어파인 MVF는 샘플 단위 혹은 이미 정의된 서브블록 단위에서 결정될 수 있다. 예를 들어, 샘플 단위로 결정하는 경우, 각 샘플 값을 기준으로 움직임 벡터가 얻어질 수 있다. 또는 예를 들어, 서브블록 단위로 결정하는 경우, 서브블록의 중앙(센터 우하측, 즉 중앙 4개의 샘플들 중 우하측 샘플) 샘플 값 기준으로 해당 블록의 움직임 벡터를 얻을 수 있다. 즉, 어파인 움직임 예측에서 현재 블록의 움직임 벡터는 샘플 단위 또는 서브블록 단위로 도출될 수 있다.
실시예에서는 어파인 MVF가 4x4 서브블록 단위에서 결정되는 경우를 가정하고 설명할 수 있으나, 이는 설명의 편의를 위함이므로, 서브블록의 사이즈는 다양하게 변형될 수 있다.
즉, 어파인 예측이 가용한 경우, 현재 블록에 적용 가능한 움직임 모델은 3가지(옮김 움직임 모델(translational motion model), 4-파라미터 어파인 움직임 모델(4-parameter affine motion model), 6-파라미터 어파인 움직임 모델(6-parameter affine motion model))를 포함할 수 있다. 여기서 옮김 움직임 모델은 기존 블록 단위 움직임 벡터가 사용되는 모델을 나타낼 수 있고, 4-파라미터 어파인 움직임 모델은 2개의 CPMV가 사용되는 모델을 나타낼 수 있고, 6-파라미터 어파인 움직임 모델은 3개의 CPMV가 사용되는 모델을 나타낼 수 있다.
한편, 어파인 움직임 예측은 어파인 MVP(또는 어파인 인터) 모드 또는 어파인 머지 모드를 포함할 수 있다.
도 7은 인터 예측에서 어파인 머지 모드를 설명하기 위한 도면이다.
예를 들어, 어파인 머지 모드에서 CPMV는 어파인 움직임 예측으로 코딩된 주변 블록의 어파인 움직임 모델에 따라 결정될 수 있다. 예를 들어, 써치(search) 순서 상의 어파인 움직임 예측으로 코딩된 주변 블록이 어파인 머지 모드를 위해 사용될 수 있다. 즉, 주변 블록들 중 적어도 하나가 어파인 움직임 예측으로 코딩된 경우, 현재 블록은 어파인 머지 모드로 코딩될 수 있다. 여기서, 어파인 머지 모드는 AF_MERGE라고 불릴 수 있다.
어파인 머지 모드가 적용되는 경우, 주변 블록의 CPMV들을 이용하여 현재 블록의 CPMV들이 도출될 수 있다. 이 경우 주변 블록의 CPMV들이 그대로 현재 블록의 CPMV들로 사용될 수도 있고, 주변 블록의 CPMV들이 상기 주변 블록의 사이즈 및 상기 현재 블록의 사이즈 등을 기반으로 수정되어 현재 블록의 CPMV들로 사용될 수 있다.
한편, 서브블록 단위로 움직임 벡터(MV: Motion Vector)가 도출되는 어파인 머지 모드의 경우에는, 서브블록 머지 모드라고 불릴 수 있으며, 이는 서브블록 머지 플래그(또는 merge_subblock_flag 신택스 요소)를 기반으로 지시될 수 있다. 또는 merge_subblock_flag 신택스 요소의 값이 1인 경우, 서브블록 머지 모드가 적용되는 것이 지시될 수 있다. 이 경우 후술하는 어파인 머지 후보 리스트는 서브블록 머지 후보 리스트라고 불릴 수도 있다. 이 경우, 상기 서브블록 머지 후보 리스트에는 후술하는 SbTMVP로 도출된 후보가 더 포함될 수 있다. 이 경우, 상기 SbTMVP로 도출된 후보는 상기 서브블록 머지 후보 리스트의 0번 인덱스의 후보로 이용될 수 있다. 다시 말해, 상기 SbTMVP로 도출된 후보는 상기 서브블록 머지 후보 리스트 내에서 후술하는 승계된 어파인 후보(inherited affine candidate) 또는 구성된 어파인 후보(constructed affine candidate)보다 앞에 위치할 수 있다.
어파인 머지 모드가 적용되는 경우, 현재 블록에 대한 CPMV들 도출을 위하여 어파인 머지 후보 리스트가 구성될 수 있다. 예를 들어, 어파인 머지 후보 리스트는 다음 후보들 중 적어도 하나를 포함할 수 있다. 1) 승계된(inherited) 어파인 머지 후보. 2) 구성된(constructed) 어파인 머지 후보. 3) 제로 움직임 벡터 후보(또는 영 벡터). 여기서, 상기 승계된 어파인 머지 후보는 주변 블록이 어파인 모드로 코딩된 경우, 주변 블록의 CPMVs을 기반으로 도출되는 후보이고, 상기 구성된 어파인 머지 후보는 각 CPMV 단위로 해당 CP의 주변 블록의 MV를 기반으로 CPMVs을 구성하여 도출된 후보이고, 제로 움직임 벡터 후보는 그 값이 0인 CPMV들로 구성된 후보를 나타낼 수 있다.
상기 어파인 머지 후보 리스트는 예를 들어 다음과 같이 구성될 수 있다.
최대 2개의 승계된 어파인 후보가 있을 수 있고, 승계된 어파인 후보는 주변 블록들의 어파인 움직임 모델로부터 도출될 수 있다. 주변 블록들은 하나의 좌측 주변 블록과 상측의 주변 블록을 포함할 수 있다. 후보 블록들은 도 4와 같이 위치할 수 있다. 좌측 예측자(left predictor)를 위한 스캔 순서는 A1->A0일 수 있고, 상측 예측자(above predictor)를 위한 스캔 순서는 B1->B0->B2일 수 있다. 좌측 및 상측 각각으로부터 하나의 승계된 후보만이 선택될 수 있다. 두 개의 승계된 후보들 간에는 프루닝 체크(pruning check)가 수행되지 않을 수 있다.
주변 어파인 블록이 확인되는 경우, 확인한 블록의 컨트롤 포인트 움직임 벡터들이 현재 블록의 어파인 머지 리스트 내의 CPMVP 후보를 도출하기 위해 사용될 수 있다. 여기서, 주변 어파인 블록은 현재 블록의 주변 블록 중 어파인 예측 모드로 코딩된 블록을 나타낼 수 있다. 예를 들어, 도 7을 참조하면, 좌하측(bottom-left) 주변 블록 A가 어파인 예측 모드로 코딩된 경우, 주변 블록 A의 좌상측(top-left) 코너, 우상측(top-right) 코너 및 좌하측(bottom-left) 코너의 움직임 벡터 v2, v3 및 v4가 획득될 수 있다. 주변 블록 A가 4-파라미터 어파인 움직임 모델로 코딩된 경우, 현재 블록의 2개의 CPMV들이 v2 및 v3에 따라 산출될 수 있다. 주변 블록 A가 6-파라미터 어파인 움직임 모델로 코딩된 경우, 현재 블록의 3개의 CPMV들 v2, v3 및 v4에 따라 산출될 수 있다.
도 8은 어파인 머지 모드에서 후보들의 위치를 설명하기 위한 도면이다.
구성된(constructed) 어파인 후보는 각 컨트롤 포인트의 주변의 translational 움직임 정보를 조합하여 구성되는 후보를 의미할 수 있다. 컨트롤 포인트들의 움직임 정보는 특정된 공간적 주변 및 시간적 주변으로부터 도출될 수 있다. CPMVk(k=1, 2, 3, 4)는 k번째 컨트롤 포인트를 나타낼 수 있다.
도 8을 참조하면, CPMV1을 위해 B2->B3->A2 순서에 따라 블록들이 체크될 수 있고, 첫 번째로 이용 가능한 블록의 움직임 벡터가 사용될 수 있다. CPMV2를 위해 B1->B0 순서에 따라 블록들이 체크될 수 있고, CPMV3을 위해 A1->A0 순서에 따라 블록들이 체크될 수 있다. TMVP(temporal motion vector predictor)는 이용 가능한 경우 CPMV4로써 사용될 수 있다.
4개의 컨트롤 포인트들의 움직임 벡터들이 획득된 후, 어파인 머지 후보들은 획득한 움직임 정보들을 기반으로 구성될 수 있다. 컨트롤 포인트 움직임 벡터들의 조합은 {CPMV1, CPMV2, CPMV3}, {CPMV1, CPMV2, CPMV4}, {CPMV1, CPMV3, CPMV4}, {CPMV2, CPMV3, CPMV4}, {CPMV1, CPMV2} 및 {CPMV1, CPMV3}와 같이 구성될 수 있으며, 나열한 순서에 따라 구성될 수 있다.
3개의 CPMV들의 조합은 6-파라미터 어파인 머지 후보를 구성할 수 있고, 2개의 CPMV들의 조합은 4-파라미터 어파인 머지 후보를 구성할 수 있다. 움직임 스케일링 과정을 회피하기 위해, 컨트롤 포인트들의 참조 인덱스들이 서로 다른 경우, 컨트롤 포인트 움직임 벡터들의 관련된 조합들은 버려질 수 있다.
도 9는 인터 예측에서 SbTMVP를 설명하기 위한 도면이다.
한편, SbTMVP(subblock-based temporal motion vector prediction) 방법이 이용될 수도 있다. 예를 들어, SbTMVP는 ATMVP(advanced temporal motion vector prediction)라고 불릴 수도 있다. SbTMVP는 움직임 벡터 예측 및 현재 픽처 내의 CU들에 대한 머지 모드를 향상하기 위해 콜로케이티드 픽처(collocated picture) 내의 움직임 필드를 이용할 수 있다. 여기서, 콜로케이티드 픽처는 콜(col) 픽처라고 불릴 수도 있다.
예를 들어, SbTMVP는 서브블록(또는 서브 CU) 레벨에서 움직임을 예측할 수 있다. 또한, SbTMVP는 콜 픽처로부터 시간적 움직임 정보를 패칭(fetching)하기 전에 움직임 쉬프트(shift)를 적용할 수 있다. 여기서, 움직임 쉬프트는 현재 블록의 공간적 주변 블록들 중 하나의 움직임 벡터로부터 획득될 수 있다.
SbTMVP는 두 단계에 따라 현재 블록(또는 CU) 내의 서브블록(또는 서브 CU)의 움직임 벡터를 예측할 수 있다.
제1 단계에서 공간적 주변 블록들은 도 4의 A1, B1, B0 및 A0의 순서에 따라 시험될 수 있다. 콜(col) 픽처를 자신의 참조 픽처로서 사용하는 움직임 벡터를 가지는 첫 번째 공간적 주변 블록이 확인될 수 있고, 움직임 벡터는 적용될 움직임 쉬프트로 선택될 수 있다. 공간적 주변 블록으로부터 이러한 움직임이 확인되지 않는 경우, 움직임 쉬프트는 (0, 0)으로 설정될 수 있다.
제2 단계에서는 제1 단계에서 확인된 움직임 쉬프트가 col 픽처로부터 서브 블록 레벨 움직임 정보(움직임 벡터 및 참조 인덱스들)를 획득하기 위해 적용될 수 있다. 예를 들어, 움직임 쉬프트가 현재 블록의 좌표에 추가될 수 있다. 예를 들어, 움직임 쉬프트가 도 4의 A1의 움직임으로 설정될 수 있다. 이 경우 각 서브 블록들에 대하여 col 픽처 내의 대응 블록의 움직임 정보는 서브블록의 움직임 정보를 도출하기 위해 사용될 수 있다. 시간적 움직임 스케일링은 시간적 움직임 벡터들의 참조 픽처들과 현재 블록의 참조 픽처들을 정렬하기 위해 적용될 수 있다.
SbTVMP 후보 및 어파인 머지 후보들을 모두 포함하는 조합된 서브블록 기반 머지 리스트는 어파인 머지 모드의 시그널링에 사용될 수 있다. 여기서, 어파인 머지 모드는 서브블록 기반 머지 모드라고 불릴 수 있다. SbTVMP 모드는 SPS(sequence parameter set)에 포함된 플래그에 의해 이용 가능 또는 이용 불가능할 수 있다. SbTMVP 모드가 이용 가능한 경우, SbTMVP 예측자는 서브블록 기반 머지 후보들의 리스트의 제1 엔트리로 추가될 수 있고, 어파인 머지 후보들이 다음으로 따라올 수 있다. 어파인 머지 후보 리스트의 최대로 허용되는 사이즈는 5개일 수 있다.
SbTMVP에서 사용되는 서브 CU(또는 서브블록)의 사이즈는 8x8로 고정될 수 있고, 어파인 머지 모드에서와 마찬가지로 SbTMVP 모드는 너비 및 높이가 모두 8 이상인 블록에만 적용될 수 있다. 추가적인 SbTMVP 머지 후보의 인코딩 로직은 다른 머지 후보들과 동일할 수 있다. 즉, P 또는 B 슬라이스 내의 각 CU에 대하여 추가적인 RD(rate-distortion) 코스트를 이용하는 RD 체크가 SbTMVP 후보를 이용할지 결정하기 위해 수행될 수 있다.
한편, 예측 모드에 따라 도출된 움직임 정보를 기반으로 현재 블록에 대한 예측된 블록을 도출할 수 있다. 상기 예측된 블록은 상기 현재 블록의 예측 샘플들(예측 샘플 어레이)를 포함할 수 있다. 현재 블록의 움직임 벡터가 분수 샘플 단위를 가리키는 경우, 보간(interpolation) 절차가 수행될 수 있으며, 이를 통하여 참조 픽처 내에서 분수 샘플 단위의 참조 샘플들을 기반으로 상기 현재 블록의 예측 샘플들이 도출될 수 있다. 현재 블록에 어파인 인터 예측(어파인 예측 모드)이 적용되는 경우, 샘플/서브블록 단위 MV를 기반으로 예측 샘플들을 생성할 수 있다. 쌍(Bi) 예측이 적용되는 경우, L0 예측(즉, 참조 픽처 리스트 L0 내 참조 픽처와 MVL0를 이용한 예측)을 기반으로 도출된 예측 샘플들과 L1 예측(즉, 참조 픽처 리스트 L1 내 참조 픽처와 MVL1을 이용한 예측)을 기반으로 도출된 예측 샘플들의 (위상에 따른) 가중합(weighted sum) 또는 가중평균(weighted average)을 통하여 도출된 예측 샘플들이 현재 블록의 예측 샘플들로 이용될 수 있다. 여기서, L0 방향의 움직임 벡터는 L0 움직임 벡터 또는 MVL0라고 불릴 수 있고, L1 방향의 움직임 벡터는 L1 움직임 벡터 또는 MVL1이라고 불릴 수 있다. 쌍(Bi) 예측이 적용되는 경우, L0 예측에 이용된 참조 픽처와 L1 예측에 이용된 참조 픽처가 현재 픽처를 기준으로 서로 다른 시간적 방향에 위치하는 경우(즉, 쌍 예측이면서 양방향 예측에 해당하는 경우), 이를 트루(true) 쌍 예측이라고 부를 수 있다.
또한, 도출된 예측 샘플들을 기반으로 복원 샘플들 및 복원 픽처가 생성될 수 있고, 이후 인루프 필터링 등의 절차가 수행될 수 있음은 전술한 바와 같다.
한편, 현재 블록에 쌍예측이 적용되는 경우, 가중평균을 기반으로 예측 샘플들을 도출할 수 있다. 예를 들어, 가중 평균을 이용한 쌍 예측은 BCW(Bi-prediction with CU-level Weight), BWA(Bi-prediction with Weighted Average) 또는 가중평균 쌍 예측(wighted averaging bi-prediction)이라고 불릴 수 있다.
기존에 쌍 예측 신호(즉, 쌍 예측 샘플들)은 L0 예측 신호(L0 예측 샘플들)과 L1 예측 신호(L1 예측 샘플들)의 단순 평균을 통하여 도출될 수 있었다. 즉, 쌍 예측 샘플들은 L0 참조 픽처 및 MVL0에 기반한 L0 예측 샘플들과 L1 참조 픽처 및 MVL1에 기반한 L1 예측 샘플들의 평균으로 도출되었다. 다만, 쌍 예측이 적용되는 경우, 다음과 같이 L0 예측 신호와 L1 예측 신호의 가중평균을 통하여 쌍 예측 신호(쌍 예측 샘플들)을 도출할 수도 있다. 예를 들어, 쌍 예측 신호(쌍 예측 샘플들)은 수학식 3과 같이 도출될 수 있다.
Figure 112021105645211-pct00003
수학식 3에서, Pbi-pred는 쌍 예측 신호의 값 즉, 쌍 예측이 적용되어 도출된 예측 샘플 값을 나타낼 수 있고, w는 가중치를 나타낼 수 있다. 또한, P0는 L0 예측 신호의 값 즉, L0 예측이 적용되어 도출된 예측 샘플 값을 나타낼 수 있고, P1는 L1 예측 신호의 값 즉, L1 예측이 적용되어 도출된 예측 샘플 값을 나타낼 수 있다.
예를 들어, 가중평균 쌍 예측에서는 5개의 가중치가 허용될 수 있다. 예를 들어, 상기 5개의 가중치(w)는 -2, 3, 4, 5 또는 10를 포함할 수 있다. 즉, 가중치(w)는 -2, 3, 4, 5 또는 10를 포함하는 가중치 후보들 중 하나로 결정될 수 있다. 쌍 예측이 적용되는 각 CU에 대하여 가중치 w는 2가지 방법 중 하나에 의해 결정될 수 있다. 첫 번째 방법은 병합되지 않은 CU에 대하여 가중치 인덱스가 움직임 벡터 차분(motion vector difference) 이후에 시그널링될 수 있다. 두 번째 방법은 병합된 CU에 대하여 가중치 인덱스가 머지 후보 인덱스를 기반으로 주변 블록들로부터 추론될 수 있다.
예를 들어, 가중평균 쌍 예측은 256개 이상의 루마 샘플들을 가지는 CU에 적용될 수 있다. 즉, CU의 너비 및 높이의 곱이 256보다 크거나 같은 경우에 가중평균 쌍 예측이 적용될 수 있다. 저지연(low-delay) 픽처의 경우, 5개의 가중치가 사용될 수 있고, 저지연이 아닌(non-low-delay) 픽처의 경우 3개의 가중치가 사용될 수 있다. 예를 들어, 상기 3개의 가중치는 3, 4 또는 5를 포함할 수 있다.
예를 들어, 인코딩 장치에서, 빠른 써치 알고리즘은 인코딩 장치의 복잡성(complexity)을 크게 증가시키지 않으면서 가중치 인덱스를 찾기 위해 적용될 수 있다. 이러한 알고리즘은 다음과 같이 요약될 수 있다. 예를 들어, AMVR(adaptive motion vector resolution)과 조합될 때(인터 예측 모드로 AMVR이 이용될 때) 현재 픽처가 저지연 픽처인 경우, 동일하지 않은 가중치는 1-pel 및 4-pel 움직임 벡터 정밀도에 대해 조건부로 체크될 수 있다. 예를 들어, 어파인(affine)과 조합될 때(인터 예측 모드로 어파인 예측 모드가 이용될 때), 어파인 예측 모드가 현재 베스트 모드(best mode)로 선택된 경우, 어파인 ME(Motion Estimation)는 동일하지 않은 가중치들에 대해 수행될 수 있다. 예를 들어, 쌍 예측의 2개의 참조 픽처가 동일한 경우, 동일하지 않은 가중치들이 조건부로 체크될 수 있다. 예를 들어, 현재 픽처와 참조 픽처 간의 POC 거리, 코딩 QP(quantization parameter) 및 시간적 레벨(temporal level)에 의존하여 특정 조건이 만족되는 경우, 동일하지 않은 가중치들이 써치되지 않을 수 있다.
예를 들어, BCW 가중치 인덱스(또는 가중치 인덱스)는 하나의 컨텍스트 코딩된 빈(context coded bin) 및 뒤따르는 바이패스 코딩된 빈(bypass coded bin)을 이용하여 코딩될 수 있다. 첫 번째 컨텍스트 코딩된 빈은 동일한 가중치가 사용되는지 여부를 나타낼 수 있다. 첫 번째 컨텍스트 코딩된 빈을 기반으로 동일하지 않은 가중치가 사용되는 경우, 사용될 동일하지 않은 가중치를 지시하기 위해 바이 패스 코딩을 사용하여 추가적인 빈이 시그널링될 수 있다.
한편, 본 문서의 일 실시예에 따르면, 머지 모드를 위한 움직임 벡터 후보 구성 시, 시간적 움직임 벡터 후보가 쌍 예측을 사용할 때 가중평균을 위한 가중치 인덱스를 유도 또는 도출할 수 있다. 즉, 인터 예측 타입이 쌍(bi) 예측인 경우 머지 후보 리스트 내의 시간적 머지 후보(또는 시간적 움직임 벡터 후보)를 위한 가중치 인덱스 정보를 유도 또는 도출할 수 있다.
예를 들어, 시간적 움직임 벡터 후보에 대하여 가중평균을 위한 가중치 인덱스는 항상 0으로 도출될 수 있다. 여기서, 가중치 인덱스가 0인 것은 각 참조 방향(즉, 쌍 예측에서 L0 예측 방향 및 L1 예측 방향)의 가중치가 동일함을 의미할 수 있다. 예를 들어, 이 경우 머지 모드를 위한 루마 성분의 움직임 벡터를 도출하는 절차는 다음의 표들과 같을 수 있다.
Figure 112021105645211-pct00004
Figure 112021105645211-pct00005
Figure 112021105645211-pct00006
상기 표 1 내지 표 3은 하나의 절차를 나타낼 수 있으며, 표의 순서에 따라 상기 절차가 연속적으로 수행될 수 있다. 상기 절차는 머지 모드를 위한 루마 성분의 움직임 벡터를 도출하는 절차(8.4.2.2)를 포함할 수 있다.
상기 표 1 내지 표 3을 참조하면, gbiIdx는 쌍 예측 가중치 인덱스를 나타낼 수 있으며, gbiIdxCol은 시간적 머지 후보(예를 들어, 머지 후보 리스트 내의 시간적 움직임 벡터 후보)를 위한 쌍 예측 가중치 인덱스를 나타낼 수 있고, 상기 머지 모드를 위한 루마 성분의 움직임 벡터를 도출하는 절차(8.4.2.2에서 제3 단계)에서 상기 gbiIdxCol은 0으로 도출될 수 있다. 즉, 시간적 움직임 벡터 후보의 가중치 인덱스는 0으로 도출될 수 있다.
또는 예를 들어, 시간적 움직임 벡터 후보에 대한 가중평균을 위한 가중치 인덱스는 콜로케이티드(collocated) 블록의 가중치 인덱스로 도출될 수 있다. 여기서, 콜로케이티드 블록은 콜(col) 블록, 동일 위치 블록 또는 동일 위치 참조 블록이라고 불릴 수 있으며, 콜 블록은 참조 픽처 상에서 현재 블록과 동일한 위치의 블록을 나타낼 수 있다. 예를 들어, 이 경우 머지 모드를 위한 루마 성분의 움직임 벡터를 도출하는 절차는 다음의 표들과 같을 수 있다.
Figure 112021105645211-pct00007
Figure 112021105645211-pct00008
Figure 112021105645211-pct00009
상기 표 4 내지 표 6은 하나의 절차를 나타낼 수 있으며, 표의 순서에 따라 상기 절차가 연속적으로 수행될 수 있다. 상기 절차는 머지 모드를 위한 루마 성분의 움직임 벡터를 도출하는 절차(8.4.2.2)를 포함할 수 있다.
상기 표 4 내지 표 6을 참조하면, gbiIdx는 쌍 예측 가중치 인덱스를 나타낼 수 있으며, gbiIdxCol은 시간적 머지 후보(예를 들어, 머지 후보 리스트 내의 시간적 움직임 벡터 후보)를 위한 쌍 예측 가중치 인덱스를 나타낼 수 있고, 상기 머지 모드를 위한 루마 성분의 움직임 벡터를 도출하는 절차(8.4.2.2에서 제3 단계)에서 상기 gbiIdxCol은 0으로 도출될 수 있으나, 슬라이스의 타입 또는 타일 그룹의 타입이 B인 경우(8.4.2.2에서 제4 단계)에는 상기 gbiIdxCol이 gbiIdxCol로 도출될 수 있다. 즉, 시간적 움직임 벡터 후보의 가중치 인덱스는 콜(col) 블록의 가중치 인덱스로 도출될 수 있다.
한편, 본 문서의 다른 실시예에 따르면, 서브블록 단위의 머지 모드를 위한 움직임 벡터 후보 구성 시, 시간적 움직임 벡터 후보가 쌍 예측을 사용할 때 가중평균을 위한 가중치 인덱스를 유도 또는 도출할 수 있다. 여기서, 서브블록 단위의 머지 모드는 (서브블록 단위의) 어파인 머지 모드라고 불릴 수 있으며, 시간적 움직임 벡터 후보는 서브블록 기반 시간적 움직임 벡터 후보를 나타낼 수 있으며, SbTMVP 후보라고 불릴 수도 있다. 즉, 인터 예측 타입이 쌍(bi) 예측인 경우 어파인 머지 후보 리스트 또는 서브블록 머지 후보 리스트 내의 SbTMVP 후보(또는 서브블록 기반 시간적 움직임 벡터 후보)를 위한 가중치 인덱스 정보를 유도 또는 도출할 수 있다.
예를 들어, 서브블록 기반 시간적 움직임 벡터 후보에 대한 가중평균을 위한 가중치 인덱스는 항상 0으로 도출될 수 있다. 여기서, 가중치 인덱스가 0인 것은 각 참조 방향(즉, 쌍 예측에서 L0 예측 방향 및 L1 예측 방향)의 가중치가 동일함을 의미할 수 있다. 예를 들어, 이 경우 서브블록 머지 모드 내의 움직임 벡터 및 참조 인덱스를 도출하는 절차 또는 서브블록 기반 시간적 머지 후보를 도출하는 절차는 다음의 표들과 같을 수 있다.
Figure 112021105645211-pct00010
Figure 112021105645211-pct00011
Figure 112021105645211-pct00012
Figure 112021105645211-pct00013
Figure 112021105645211-pct00014
상기 표 7 내지 표 11은 2가지의 절차들을 나타낼 수 있으며, 표의 순서에 따라 상기 절차들이 각각 연속적으로 수행될 수 있다. 상기 절차들은 서브블록 머지 모드 내의 움직임 벡터 및 참조 인덱스를 도출하는 절차(8.4.4.2) 또는 서브블록 기반 시간적 머지 후보를 도출하는 절차(8.4.4.3)를 포함할 수 있다.
상기 표 7 내지 표 11을 참조하면, gbiIdx는 쌍 예측 가중치 인덱스를 나타낼 수 있으며, gbiIdxSbCol은 서브블록 기반 시간적 머지 후보(예를 들어, 서브블록 기반 머지 후보 리스트 내의 시간적 움직임 벡터 후보)를 위한 쌍 예측 가중치 인덱스를 나타낼 수 있고, 상기 서브블록 기반 시간적 머지 후보를 도출하는 절차(8.4.4.3)에서 상기 gbiIdxSbCol은 0으로 도출될 수 있다. 즉, 서브블록 기반 시간적 움직임 벡터 후보의 가중치 인덱스는 0으로 도출될 수 있다.
또는 예를 들어, 서브블록 기반 시간적 움직임 벡터 후보에 대한 가중평균을 위한 가중치 인덱스는 시간적 센터(center) 블록의 가중치 인덱스로 도출될 수 있다. 예를 들어, 상기 시간적 센터 블록은 콜(col) 블록 또는 콜(col) 블록의 센터에 위치한 서브블록 또는 샘플을 나타낼 수 있으며, 구체적으로는 콜 블록의 중앙 4개의 서브블록 또는 샘플 중 우하측에 위치한 서브블록 또는 샘플을 나타낼 수 있다. 예를 들어, 이 경우 서브블록 머지 모드 내의 움직임 벡터 및 참조 인덱스를 도출하는 절차, 서브블록 기반 시간적 머지 후보를 도출하는 절차 또는 서브블록 기반 시간적 머지를 위한 베이스 움직임 정보를 도출하는 절차는 다음의 표들과 같을 수 있다.
Figure 112021105645211-pct00015
Figure 112021105645211-pct00016
Figure 112021105645211-pct00017
Figure 112021105645211-pct00018
Figure 112021105645211-pct00019
Figure 112021105645211-pct00020
Figure 112021105645211-pct00021
Figure 112021105645211-pct00022
Figure 112021105645211-pct00023
상기 표 12 내지 표 20은 3가지의 절차들을 나타낼 수 있으며, 표의 순서에 따라 상기 절차들이 각각 연속적으로 수행될 수 있다. 상기 절차들은 서브블록 머지 모드 내의 움직임 벡터 및 참조 인덱스를 도출하는 절차(8.4.4.2), 서브블록 기반 시간적 머지 후보를 도출하는 절차(8.4.4.3) 또는 서브블록 기반 시간적 머지를 위한 베이스 움직임 정보를 도출하는 절차(8.4.4.4)를 포함할 수 있다.
상기 표 12 내지 표 20을 참조하면, gbiIdx는 쌍 예측 가중치 인덱스를 나타낼 수 있으며, gbiIdxSbCol은 서브블록 기반 시간적 머지 후보(예를 들어, 서브블록 기반 머지 후보 리스트 내의 시간적 움직임 벡터 후보)를 위한 쌍 예측 가중치 인덱스를 나타낼 수 있고, 서브블록 기반 시간적 머지를 위한 베이스 움직임 정보를 도출하는 절차(8.4.4.4)에서 상기 gbiIdxSbCol은 gbiIdxcolCb로 도출될 수 있다. 즉, 서브블록 기반 시간적 움직임 벡터 후보의 가중치 인덱스는 시간적 센터 블록으로 도출될 수 있다. 예를 들어, 상기 시간적 센터 블록은 콜(col) 블록 또는 콜(col) 블록의 센터에 위치한 서브블록 또는 샘플을 나타낼 수 있으며, 구체적으로는 콜 블록의 중앙 4개의 서브블록 또는 샘플 중 우하측에 위치한 서브블록 또는 샘플을 나타낼 수 있다.
또는 예를 들어, 서브블록 기반 시간적 움직임 벡터 후보에 대한 가중평균을 위한 가중치 인덱스는 각각의 서브블록 단위의 가중치 인덱스로 도출될 수 있고, 서브블록이 이용 가능하지 않은 경우, 시간적 센터(center) 블록의 가중치 인덱스로 도출될 수 있다. 예를 들어, 상기 시간적 센터 블록은 콜(col) 블록 또는 콜(col) 블록의 센터에 위치한 서브블록 또는 샘플을 나타낼 수 있으며, 구체적으로는 콜 블록의 중앙 4개의 서브블록 또는 샘플 중 우하측에 위치한 서브블록 또는 샘플을 나타낼 수 있다. 예를 들어, 이 경우 서브블록 머지 모드 내의 움직임 벡터 및 참조 인덱스를 도출하는 절차, 서브블록 기반 시간적 머지 후보를 도출하는 절차 또는 서브블록 기반 시간적 머지를 위한 베이스 움직임 정보를 도출하는 절차는 다음의 표들과 같을 수 있다.
Figure 112021105645211-pct00024
Figure 112021105645211-pct00025
Figure 112021105645211-pct00026
Figure 112021105645211-pct00027
Figure 112021105645211-pct00028
Figure 112021105645211-pct00029
Figure 112021105645211-pct00030
Figure 112021105645211-pct00031
Figure 112021105645211-pct00032
상기 표 21 내지 표 29는 3가지의 절차들을 나타낼 수 있으며, 표의 순서에 따라 상기 절차들이 각각 연속적으로 수행될 수 있다. 상기 절차들은 서브블록 머지 모드 내의 움직임 벡터 및 참조 인덱스를 도출하는 절차(8.4.4.2), 서브블록 기반 시간적 머지 후보를 도출하는 절차(8.4.4.3) 또는 서브블록 기반 시간적 머지를 위한 베이스 움직임 정보를 도출하는 절차(8.4.4.4)를 포함할 수 있다.
상기 표 21 내지 표 29를 참조하면, gbiIdx는 쌍 예측 가중치 인덱스를 나타낼 수 있으며, gbiIdxSbCol은 서브블록 기반 시간적 머지 후보(예를 들어, 서브블록 기반 머지 후보 리스트 내의 시간적 움직임 벡터 후보)를 위한 쌍 예측 가중치 인덱스를 나타낼 수 있고, 서브블록 기반 시간적 머지를 위한 베이스 움직임 정보를 도출하는 절차(8.4.4.3)에서 상기 gbiIdxSbCol은 gbiIdxcolCb로 도출될 수 있다. 또는 조건(예를 들어, availableFlagL0SbCol 및 availableFlagL1SbCol가 모두 0인 경우)에 따라 서브블록 기반 시간적 머지를 위한 베이스 움직임 정보를 도출하는 절차(8.4.4.3)에서 상기 gbiIdxSbCol은 ctrgbiIdx로 도출될 수 있으며, 서브블록 기반 시간적 머지를 위한 베이스 움직임 정보를 도출하는 절차(8.4.4.4)에서 상기 ctrgbiIdx는 gbiIdxSbCol로 도출될 수 있다. 즉, 서브블록 기반 시간적 움직임 벡터 후보의 가중치 인덱스는 각각의 서브블록 단위의 가중치 인덱스로 도출될 수 있고, 서브블록이 이용 가능하지 않은 경우, 시간적 센터 블록으로 도출될 수 있다. 예를 들어, 상기 시간적 센터 블록은 콜(col) 블록 또는 콜(col) 블록의 센터에 위치한 서브블록 또는 샘플을 나타낼 수 있으며, 구체적으로는 콜 블록의 중앙 4개의 서브블록 또는 샘플 중 우하측에 위치한 서브블록 또는 샘플을 나타낼 수 있다.
한편, 본 문서의 또 다른 실시예에 따르면, 머지 모드를 위한 움직임 벡터 후보 구성 시, 페어와이즈(pair-wise) 후보의 가중치 인덱스를 유도 또는 도출할 수 있다. 다시 말해, 머지 후보 리스트에 페어와이즈 후보가 포함될 수 있으며, 이 경우, 상기 페어와이즈 후보의 가중평균을 위한 가중치 인덱스가 도출될 수 있다. 예를 들어, 상기 페어와이즈 후보는 상기 머지 후보 리스트 내의 다른 머지 후보들을 기반으로 도출될 수 있으며, 상기 페어와이즈 후보가 쌍 예측을 사용하는 경우, 가중평균을 위한 가중치 인덱스를 도출할 수 있다. 즉, 인터 예측 타입이 쌍(bi) 예측인 경우 머지 후보 리스트 내의 페어와이즈 후보를 위한 가중치 인덱스 정보를 유도 또는 도출할 수 있다.
예를 들어, 상기 페어와이즈 후보가 상기 머지 후보 리스트 내의 2개의 머지 후보들(예를 들어, cand0 및 cand1)을 기반으로 도출될 수 있으며, 상기 페어와이즈 후보가 쌍 예측을 사용하는 경우, 상기 페어와이즈 후보의 가중치 인덱스는 상기 머지 후보 cand0 및/또는 머지 후보 cand1의 가중치 인덱스를 기반으로 도출될 수 있다. 다시 말해, 상기 페어와이즈 후보의 가중치 인덱스는 상기 페어와이즈 후보를 도출하는데 이용된 머지 후보들 중 어느 하나의 머지 후보(예를 들어, 머지 후보 cand0 또는 머지 후보 cand1)의 가중치 인덱스로 도출될 수 있다. 또는 예를 들어, 상기 페어와이즈 후보의 가중치 인덱스는 상기 페어와이즈 후보를 도출하는데 이용된 머지 후보들(예를 들어, 머지 후보 cand0 및 머지 후보 cand1)의 가중치 인덱스들의 특정 비율로 도출될 수 있다. 여기서, 특정 비율은 1:1일 수 있으나, 다른 비율에 따라 도출될 수도 있다. 예를 들어, 특정 비율은 디폴트(default) 비율 또는 디폴트 값으로 결정될 수 있으나, 이에 한정되는 것은 아니며, 디폴트 비율은 1:1 비율로 정의될 수 있으나, 다른 비율로 정의될 수도 있다. 또는 예를 들어, 머지 후보들의 가중치 인덱스들의 특정 비율을 기반으로 페어와이즈 후보의 가중치 인덱스를 도출하는 경우, 특정 비율에 따라 상술한 바와 같이 상기 페어와이즈 후보의 가중치 인덱스가 머지 후보들 중 어느 하나의 머지 후보의 가중치 인덱스로 도출되는 것과 동일한 결과가 도출될 수도 있다.
한편, 본 문서의 또 다른 실시예에 따르면, 서브블록 단위의 머지 모드를 위한 움직임 벡터 후보 구성 시, (대표) 움직임 벡터 후보가 쌍 예측을 사용할 때 가중평균을 위한 가중치 인덱스를 유도 또는 도출할 수 있다. 즉, 인터 예측 타입이 쌍(bi) 예측인 경우 어파인 머지 후보 리스트 또는 서브블록 머지 후보 리스트 내의 후보(또는 어파인 머지 후보)를 위한 가중치 인덱스 정보를 유도 또는 도출할 수 있다.
예를 들어, 어파인 머지 후보 중 구성된(constructed) 어파인 머지 후보는 현재 블록의 공간적(spatial)으로 인접한 블록(또는 공간적 주변 블록) 또는 시간적(temporal)으로 인접한 블록(또는 시간적 주변 블록)의 움직임 정보를 기반으로 CP0, CP1, CP2 또는 RB 후보를 도출하여 어파인 모델로 MVF를 도출하는 후보를 나타낼 수 있다. 예를 들어, CP0는 현재 블록의 좌상단 샘플 포지션에서 위치하는 컨트롤 포인트를 나타낼 수 있고, CP1은 현재 블록의 우상단 샘플 포지션에 위치하는 컨트롤 포인트를 나타낼 수 있고, CP2는 현재 블록의 좌하단 샘플 포지션에 위치하는 컨트롤 포인트를 나타낼 수 있다. 또한, RB는 현재 블록의 우하단 샘플 포지션에 위치하는 컨트롤 포인트를 나타낼 수 있다.
예를 들어, (대표) 움직임 벡터 후보가 구성된 어파인 머지 후보(또는 (현재) 어파인 머지 후보)인 경우, (현재) 어파인 머지 후보의 가중치 인덱스는 CP0 후보 블록들 중 CP0에서의 움직임 벡터로 결정된 블록의 가중치 인덱스로 도출될 수 있다. 또는 (현재) 어파인 머지 후보의 가중치 인덱스는 CP1 후보 블록들 중 CP1에서의 움직임 벡터로 결정된 블록의 가중치 인덱스로 도출될 수 있다. 또는 (현재) 어파인 머지 후보의 가중치 인덱스는 CP2 후보 블록들 중 CP2에서의 움직임 벡터로 결정된 블록의 가중치 인덱스로 도출될 수 있다. 또는 (현재) 어파인 머지 후보의 가중치 인덱스는 RB 후보 블록들 중 RB에서의 움직임 벡터로 결정된 블록의 가중치 인덱스로 도출될 수 있다. 또는 (현재) 어파인 머지 후보의 가중치 인덱스는 CP0에서의 움직임 벡터로 결정된 블록의 가중치 인덱스, CP1에서의 움직임 벡터로 결정된 블록의 가중치 인덱스, CP2에서의 움직임 벡터로 결정된 블록의 가중치 인덱스 또는 RB에서의 움직임 벡터로 결정된 블록의 가중치 인덱스 중 적어도 하나를 기반으로 도출될 수도 있다. 예를 들어, 복수의 가중치 인덱스를 기반으로 상기 (현재) 어파인 머지 후보의 가중치 인덱스를 도출하는 경우, 상기 복수의 가중치 인덱스들에 대한 특정 비율이 이용될 수도 있다. 여기서, 특정 비율은 1:1, 1:1:1 또는 1:1:1:1일 수 있으나, 다른 비율에 따라 도출될 수도 있다. 예를 들어, 특정 비율은 디폴트(default) 비율 또는 디폴트 값으로 결정될 수 있으나, 이에 한정되는 것은 아니며, 디폴트 비율은 1:1 비율로 정의될 수 있으나, 다른 비율로 정의될 수도 있다.
또는 예를 들어, 상기 (현재) 어파인 머지 후보의 가중치 인덱스는 각 후보의 가중치 인덱스 중 발생 빈도가 높은 후보의 가중치 인덱스로 도출될 수 있다. 예를 들어, CP0 후보 블록들 중 CP0에서의 움직임 벡터로 결정된 후보 블록의 가중치 인덱스, CP1 후보 블록들 중 CP1에서의 움직임 벡터로 결정된 후보 블록의 가중치 인덱스, CP2 후보 블록들 중 CP2에서의 움직임 벡터로 결정된 후보 블록의 가중치 인덱스 및/또는 RB 후보 블록들 중 RB에서의 움직임 벡터로 결정된 후보 블록의 가중치 인덱스 중 가장 많이 중복되는 가중치 인덱스를 상기 (현재) 어파인 머지 후보의 가중치 인덱스로 도출할 수 있다.
예를 들어, 상기 컨트롤 포인트로 CP0 및 CP1가 이용될 수 있고, CP0, CP1 및 CP2가 이용될 수도 있으며, RB는 이용되지 않을 수도 있다. 다만 예를 들어, 어파인 블록(어파인 예측 모드로 코딩되는 블록)의 RB 후보를 활용하고자 할 때에는 상술한 실시예들에서 설명한 시간적 후보 블록에서의 가중치 인덱스를 유도 또는 도출하는 방법이 활용될 수 있다. 예를 들어, CP0, CP1 또는 CP2는 현재 블록의 공간적 주변 블록을 기반으로 후보들을 도출하고, 후보들 중에서 CP0, CP1 또는 CP2에서의 움직임 벡터(즉, CPMV1, CPMV2 또는 CPMV3)로 이용할 블록을 결정할 수 있다. 또는 예를 들어, RB는 현재 블록의 시간적 주변 블록을 기반으로 후보들을 도출하고, 후보들 중에서 RB에서의 움직임 벡터로 이용할 블록을 결정할 수 있다.
또는 예를 들어, (대표) 움직임 벡터 후보가 SbTMVP(또는 ATMVP) 후보인 경우, 상기 SbTMVP 후보의 가중치 인덱스는 현재 블록의 좌측 주변 블록의 가중치 인덱스로 도출될 수 있다. 즉, SbTMVP(또는 ATMVP)로 유도된 후보가 쌍 예측을 사용하는 경우, 현재 블록의 좌측 주변 블록의 가중치 인덱스를 서브블록 기반 머지 모드를 위한 가중치 인덱스로 도출할 수 있다. 즉, 인터 예측 타입이 쌍(bi) 예측인 경우 어파인 머지 후보 리스트 또는 서브블록 머지 후보 리스트 내의 SbTMVP 후보를 위한 가중치 인덱스 정보를 유도 또는 도출할 수 있다.
예를 들어, SbTMVP 후보는 현재 블록의 공간적으로 인접한 좌측 블록(또는 좌측 주변 블록)을 기준으로 콜(col) 블록을 도출할 수 있으므로, 상기 좌측 주변 블록의 가중치 인덱스는 신뢰받을 수 있다고 볼 수 있다. 이에 따라, 상기 SbTMVP 후보의 가중치 인덱스는 좌측 주변 블록의 가중치 인덱스로 도출될 수 있다.
도 10 및 11은 본 문서의 실시예(들)에 따른 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 10에서 개시된 방법은 도 2 또는 도 11에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 10의 S1000 내지 S1030은 도 11의 상기 인코딩 장치(200)의 예측부(220)에 의하여 수행될 수 있고, 도 10의 S1040은 도 11의 상기 인코딩 장치(200)의 엔트로피 인코딩부(240)에 의하여 수행될 수 있다. 또한, 도 10에서 도시하지 않았으나, 도 11에서 상기 인코딩 장치(200)의 예측부(220)에 의하여 예측 샘플들 또는 예측 관련 정보를 도출할 수 있고, 상기 인코딩 장치(200)의 레지듀얼 처리부(230)에 의하여 원본 샘플들 또는 예측 샘플들로부터 레지듀얼 정보가 도출될 수 있고, 상기 인코딩 장치(200)의 엔트로피 인코딩부(240)에 의하여 레지듀얼 정보 또는 예측 관련 정보로부터 비트스트림이 생성될 수 있다. 도 10에서 개시된 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다.
도 10을 참조하면, 인코딩 장치는 현재 블록의 인터 예측 모드를 결정하고, 인터 예측 모드를 나타내는 인터 예측 모드 정보를 생성할 수 있다(S1000). 예를 들어, 인코딩 장치는 현재 블록에 적용할 인터 예측 모드로 머지 모드, 어파인 (머지) 모드 또는 서브블록 머지 모드를 결정할 수 있고, 이를 나타내는 인터 예측 모드 정보를 생성할 수 있다.
인코딩 장치는 인터 예측 모드를 기반으로 현재 블록의 머지 후보 리스트를 생성할 수 있다(S1010). 예를 들어, 인코딩 장치는 결정한 인터 예측 모드에 따라 머지 후보 리스트를 생성할 수 있다. 여기서, 결정한 인터 예측 모드가 어파인 머지 모드 또는 서브블록 머지 모드인 경우, 상기 머지 후보 리스트는 어파인 머지 후보 리스트 또는 서브블록 머지 후보 리스트 등과 같이 불릴 수 있으나, 간략히 머지 후보 리스트라고 불릴 수도 있다.
예를 들어, 상기 머지 후보 리스트 내의 후보의 개수가 최대 후보 개수가 될 때까지 머지 후보 리스트에 후보가 삽입될 수 있다. 여기서, 후보는 현재 블록의 움직임 정보(또는 움직임 벡터)를 도출하기 위한 후보 또는 후보 블록을 나타낼 수 있다. 예를 들어, 후보 블록은 현재 블록의 주변 블록에 대한 탐색을 통해 도출될 수 있다. 예를 들어, 주변 블록은 현재 블록의 공간적 주변 블록 및/또는 시간적 주변 블록을 포함할 수 있으며, 공간적 주변 블록이 우선적으로 탐색되어 (공간적 머지) 후보가 도출될 수 있고, 이후 시간적 주변 블록이 탐색되어 (시간적 머지) 후보로 도출될 수 있으며, 도출된 후보들은 상기 머지 후보 리스트에 삽입될 수 있다. 예를 들어, 상기 머지 후보 리스트는 상기 후보들을 삽입한 이후에도 상기 머지 후보 리스트 내의 후보의 개수가 최대 후보 개수보다 적은 경우, 추가 후보를 삽입할 수 있다. 예를 들어, 추가 후보는 history based merge candidate(s), pair-wise average merge candidate(s), ATMVP, combined bi-predictive 머지 후보 (현재 슬라이스/타일 그룹의 슬라이스/타일 그룹 타입이 B 타입인 경우) 및/또는 영벡터 머지 후보 중 적어도 하나를 포함할 수 있다.
또는 예를 들어, 어파인 머지 후보 리스트 내의 후보의 개수가 최대 후보 개수가 될 때까지 어파인 머지 후보 리스트에 후보가 삽입될 수 있다. 여기서, 후보는 현재 블록의 CPMV(Control Point Motion Vector)를 포함할 수 있다. 또는 상기 후보는 상기 CPMV를 도출하기 위한 후보 또는 후보 블록을 나타낼 수도 있다. 상기 CPMV는 현재 블록의 CP(Control Point)에서의 움직임 벡터를 나타낼 수 있다. 예를 들어, CP는 2개, 3개 또는 4개일 수 있으며, 현재 블록의 좌상측(또는 좌상측 코너), 우상측(또는 우상측 코너), 좌하측(또는 좌하측 코너) 또는 우하측(또는 우하측 코너) 중 적어도 일부에 위치할 수 있으며, 각 위치마다 하나의 CP만이 존재할 수 있다.
예를 들어, 후보는 현재 블록의 주변 블록(또는 현재 블록의 CP의 주변 블록)에 대한 탐색을 통해 도출될 수 있다. 예를 들어, 어파인 머지 후보 리스트는 승계된(inherited) 어파인 머지 후보, 구성된(constructed) 어파인 머지 후보 또는 제로(zero) 움직임 벡터 후보 중 적어도 하나를 포함할 수 있다. 예를 들어, 어파인 머지 후보 리스트는 우선 상기 승계된 어파인 머지 후보를 삽입할 수 있고, 이후 구성된 어파인 머지 후보를 삽입할 수 있다. 또한, 어파인 머지 후보 리스트에 구성된 어파인 머지 후보까지 삽입하였으나, 상기 어파인 머지 후보 리스트 내의 후보의 개수가 최대 후보 개수보다 작은 경우, 나머지는 제로 움직임 벡터 후보로 채울 수 있다. 여기서, 제로 움직임 벡터 후보는 영벡터라고 불릴 수도 있다. 예를 들어, 어파인 머지 후보 리스트는 샘플 단위로 움직임 벡터가 도출되는 어파인 머지 모드에 따른 리스트일 수 있으나, 서브블록 단위로 움직임 벡터가 도출되는 어파인 머지 모드에 따른 리스트일 수도 있다. 이 경우, 어파인 머지 후보 리스트는 서브블록 머지 후보 리스트라고 불릴 수도 있으며, 서브블록 머지 후보 리스트는 SbTMVP로 도출된 후보(또는 SbTMVP 후보)도 포함될 수 있다. 예를 들어, SbTMVP 후보가 서브블록 머지 후보 리스트에 포함되는 경우, 서브블록 머지 후보 리스트 내에서 승계된 어파인 머지 후보 및 구성된 어파인 머지 후보보다 앞에 위치할 수 있다.
인코딩 장치는 머지 후보 리스트에 포함된 후보들 중 하나의 후보를 선택하고, 선택된 후보를 나타내는 선택 정보를 생성할 수 있다(S1020). 예를 들어, 머지 후보 리스트는 공간적 머지 후보, 시간적 머지 후보, 페어와이즈 후보 또는 영 벡터 후보 중 적어도 일부를 포함할 수 있고, 현재 블록의 인터 예측을 위해 이러한 후보들 중 하나의 후보를 선택할 수 있다. 또는 예를 들어, 서브블록 머지 후보 리스트는 승계된 어파인 머지 후보, 구성된 어파인 머지 후보, SbTMVP 후보 또는 영 벡터 후보 중 적어도 일부를 포함할 수 있고, 현재 블록의 인터 예측을 위해 이러한 후보들 중 하나의 후보를 선택할 수 있다.
예를 들어, 상기 선택 정보는 상기 머지 후보 리스트 내의 선택된 후보를 나타내는 인덱스 정보를 포함할 수 있다. 예를 들어, 상기 선택 정보는 머지 인덱스 정보 또는 서브블록 머지 인덱스 정보라고 불릴 수도 있다.
인코딩 장치는 현재 블록의 인터 예측 타입을 쌍 예측(bi-prediction)으로 나타내는 인터 예측 타입 정보를 생성할 수 있다(S1030). 예를 들어, 상기 현재 블록의 인터 예측 타입은 L0 예측, L1 예측 또는 쌍(bi) 예측 중 쌍 예측으로 결정될 수 있으며, 이를 나타내는 인터 예측 타입 정보를 생성할 수 있다. 여기서, L0 예측은 참조 픽처 리스트 0 기반의 예측을 나타낼 수 있고, L1 예측은 참조 픽처 리스트 1 기반의 예측을 나타낼 수 있으며, 쌍 예측은 참조 픽처 리스트 0 및 참조 픽처 리스트 1 기반의 예측을 나타낼 수 있다. 예를 들어, 인코딩 장치는 상기 인터 예측 타입을 기반으로 인터 예측 타입 정보를 생성할 수 있다. 예를 들어, 상기 인터 예측 타입 정보는 inter_pred_idc 신택스 요소를 포함할 수 있다.
인코딩 장치는 인터 예측 모드 정보, 선택 정보 및 인터 예측 타입 정보를 포함하는 영상 정보를 인코딩할 수 있다(S1040). 예를 들어, 상기 영상 정보는 비디오 정보라고 불릴 수도 있다. 상기 영상 정보는 본 문서의 상술한 실시예(들)에 따른 다양한 정보를 포함할 수 있다. 예를 들어, 영상 정보는 예측 관련 정보 또는 레지듀얼 관련 정보 중 적어도 일부를 포함할 수 있다. 예를 들어, 상기 예측 관련 정보는 상기 인터 예측 모드 정보, 선택 정보 및 인터 예측 타입 정보 중 적어도 일부를 포함할 수 있다. 예를 들어, 인코딩 장치는 상술한 정보들(또는 신택스 요소들) 모두 또는 일부를 포함하는 영상 정보를 인코딩하여 비트스트림 또는 인코딩된 정보를 생성할 수 있다. 또는 비트스트림 형태로 출력할 수 있다. 또한, 상기 비트스트림 또는 인코딩된 정보는 네트워크 또는 저장매체를 통하여 디코딩 장치로 전송될 수 있다.
도 10에 도시하지 않았으나, 예를 들어, 인코딩 장치는 현재 블록의 예측 샘플들을 생성할 수 있다. 또는 예를 들어, 인코딩 장치는 선택된 후보를 기반으로 현재 블록의 예측 샘플들을 생성할 수 있다. 또는 예를 들어, 인코딩 장치는 선택된 후보를 기반으로 움직임 정보를 도출할 수 있고, 움직임 정보를 기반으로 현재 블록의 예측 샘플들을 생성할 수 있다. 예를 들어, 인코딩 장치는 쌍 예측에 따라 L0 예측 샘플들 및 L1 예측 샘플들을 생성할 수 있고, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들을 기반으로 현재 블록의 예측 샘플들을 생성할 수 있다. 이 경우, 쌍 예측을 위한 가중치 인덱스 정보(또는 가중치 정보)를 이용하여 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들로부터 현재 블록의 예측 샘플들을 생성할 수 있다. 여기서, 가중치 정보는 상기 가중치 인덱스 정보를 기반으로 나타내어질 수 있다.
다시 말해, 예를 들어 인코딩 장치는 선택된 후보를 기반으로 현재 블록의 L0 예측 샘플들 및 L1 예측 샘플들을 생성할 수 있다. 예를 들어, 현재 블록의 인터 예측 타입이 쌍 예측으로 결정된 경우, 현재 블록의 예측을 위해 참조 픽처 리스트 0 및 참조 픽처 리스트 1이 이용될 수 있다. 예를 들어, 상기 L0 예측 샘플들은 상기 참조 픽처 리스트 0을 기반으로 도출된 현재 블록의 예측 샘플들을 나타낼 수 있고, 상기 L1 예측 샘플들은 상기 참조 픽처 리스트 1을 기반으로 도출된 현재 블록의 예측 샘플들을 나타낼 수 있다.
예를 들어, 상기 후보들은 공간적 머지 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 상기 공간적 머지 후보인 경우, 상기 공간적 머지 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다.
예를 들어, 상기 후보들은 시간적 머지 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 상기 시간적 머지 후보인 경우, 상기 시간적 머지 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다.
예를 들어, 상기 후보들은 페어와이즈(pair-wise) 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 페어와이즈 후보인 경우, 상기 페어와이즈 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다. 예를 들어, 상기 페어와이즈 후보는 상기 머지 후보 리스트에 포함된 후보들 중 다른 2개의 후보를 기반으로 도출될 수 있다.
또는 예를 들어, 상기 머지 후보 리스트는 서브블록 머지 후보 리스트일 수 있으며, 어파인 머지 후보, 서브블록 머지 후보 또는 SbTMVP 후보가 선택될 수도 있다. 여기서, 서브블록 단위의 어파인 머지 후보는 서브블록 머지 후보라고 불릴 수도 있다.
예를 들어, 상기 후보들은 서브블록 머지 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 상기 서브블록 머지 후보인 경우, 상기 서브블록 머지 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다. 예를 들어, 상기 서브블록 머지 후보는 CPMV(Control Point Motion Vector)들을 포함할 수 있고, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들은 상기 CPMV들을 기반으로 서브블록 단위로 예측이 수행되어 생성될 수 있다.
여기서, CPMV는 상기 현재 블록의 CP(Control Point)의 주변 블록들 중 하나의 블록을 기반으로 나타내어질 수 있다. 예를 들어, CP는 2개, 3개 또는 4개일 수 있으며, 현재 블록의 좌상측(또는 좌상측 코너), 우상측(또는 우상측 코너), 좌하측(또는 좌하측 코너) 또는 우하측(또는 우하측 코너) 중 적어도 일부에 위치할 수 있으며, 각 위치마다 하나의 CP만이 존재할 수 있다.
예를 들어, 상기 CP가 상기 현재 블록의 좌상측에 위치하는 CP0일 수 있다. 이 경우, 상기 주변 블록들은 상기 현재 블록의 좌상측 코너 주변 블록, 상기 좌상측 코너 주변 블록의 하측에 인접한 좌측 주변 블록 및 상기 좌상측 코너 주변 블록의 우측에 인접한 상측 주변 블록을 포함할 수 있다. 또는, 상기 주변 블록들은 도 8에서 A2 블록, B2 블록 또는 B3 블록을 포함할 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 우상측에 위치하는 CP1일 수 있다. 이 경우, 상기 주변 블록들은 상기 현재 블록의 우상측 코너 주변 블록 및 상기 우상측 코너 주변 블록의 좌측에 인접한 상측 주변 블록을 포함할 수 있다. 또는, 상기 주변 블록들은 도 8에서 B0 블록 또는 B1 블록을 포함할 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 좌하측에 위치하는 CP2일 수 있다. 이 경우, 상기 주변 블록들은 상기 현재 블록의 좌하측 코너 주변 블록 및 상기 좌하측 코너 주변 블록의 상측에 인접한 좌측 주변 블록을 포함할 수 있다. 또는, 상기 주변 블록들은 도 8에서 A0 블록 또는 A1 블록을 포함할 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 우하측에 위치하는 CP3일 수 있다. 여기서, CP3은 RB라고 불릴 수도있다. 이 경우, 상기 주변 블록들은 상기 현재 블록의 콜(col) 블록 또는 상기 콜 블록의 우하측 코너 주변 블록을 포함할 수 있다. 여기서, 상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함할 수 있다. 또는 상기 주변 블록은 도 8에서 T 블록을 포함할 수 있다.
또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 상기 SbTMVP 후보인 경우, 상기 현재 블록의 좌측 주변 블록을 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다. 예를 들어, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들은 서브블록 단위로 예측이 수행되어 생성될 수 있다.
예를 들어, L0 움직임 정보는 L0 참조 픽처 인덱스 및 L0 움직임 벡터 등을 포함할 수 있고, L1 움직임 정보는 L1 참조 픽처 인덱스 및 L1 움직임 벡터 등을 포함할 수 있다. L0 참조 픽처 인덱스는 참조 픽처 리스트 0에서 참조 픽처를 나타내는 정보를 포함할 수 있고, L1 참조 픽처 인덱스는 참조 픽처 리스트 1에서 참조 픽처를 나타내는 정보를 포함할 수 있다.
예를 들어, 인코딩 장치는 L0 예측 샘플들, L1 예측 샘플들 및 가중치 정보를 기반으로 현재 블록의 예측 샘플들을 생성할 수 있다. 예를 들어, 상기 가중치 정보는 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 상기 가중치 인덱스 정보는 쌍 예측을 위한 가중치 인덱스 정보를 나타낼 수 있다. 예를 들어, 상기 가중치 정보는 L0 예측 샘플들 또는 L1 예측 샘플들의 가중평균을 위한 정보를 포함할 수 있다. 즉, 상기 가중치 인덱스 정보는 상기 가중평균에 이용된 가중치에 대한 인덱스 정보를 나타낼 수 있고, 상기 가중평균을 기반으로 예측 샘플들을 생성하는 절차에서 가중치 인덱스 정보를 생성할 수도 있다. 예를 들어, 가중치 인덱스 정보는 3개 또는 5개의 가중치들 중 어느 하나의 가중치를 나타내는 정보를 포함할 수 있다. 예를 들어, 상기 가중평균은 BCW(Bi-prediction with CU-level Weight) 또는 BWA(Bi-prediction with Weighted Average)에서의 가중평균을 나타낼 수 있다.
예를 들어, 상기 후보들은 시간적 머지 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 0으로 나타내어질 수 있다. 즉, 시간적 머지 후보를 위한 가중치 인덱스 정보는 0으로 나타내어질 수 있다. 여기서, 0인 가중치 인덱스 정보는 각 참조 방향(즉, 쌍 예측에서 L0 예측 방향 및 L1 예측 방향)의 가중치가 동일함을 나타낼 수 있다. 또는 예를 들어, 상기 후보들은 시간적 머지 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 콜(col) 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 즉, 시간적 머지 후보를 위한 가중치 인덱스 정보는 콜(col) 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 여기서, 상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함할 수 있다.
또는 예를 들어, 상기 후보들은 페어와이즈(pair-wise) 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 상기 페어와이즈 후보를 도출하는데 이용된 머지 후보 리스트 내의 다른 2개의 후보 중 하나의 가중치 인덱스 정보로 나타내어질 수 있다. 즉, 상기 페어와이즈 후보를 위한 가중치 인덱스 정보는 상기 페어와이즈 후보를 도출하는데 이용된 머지 후보 리스트 내의 다른 2개의 후보 중 하나의 가중치 인덱스 정보로 나타내어질 수 있다. 또는 예를 들어, 상기 가중치 인덱스 정보는 상기 2개의 후보의 가중치 인덱스 정보를 기반으로 나타내어질 수도 있다.
또는 예를 들어, 상기 머지 후보 리스트는 서브블록 머지 후보 리스트일 수 있으며, 어파인 머지 후보, 서브블록 머지 후보 또는 SbTMVP 후보가 선택될 수도 있다. 여기서, 서브블록 단위의 어파인 머지 후보는 서브블록 머지 후보라고 불릴 수도 있다.
예를 들어, 상기 후보들은 서브블록 머지 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 현재 블록의 CP의 주변 블록들 중 특정 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 즉, 상기 서브블록 머지 후보를 위한 가중치 인덱스 정보는 현재 블록의 CP의 주변 블록들 중 특정 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 여기서, 상기 특정 블록은 상기 CP에 대한 CPMV의 도출을 위하여 사용되는 블록일 수 있다. 또는, 현재 블록의 CP의 주변 블록들 중 CPMV로 이용되는 MV를 가진 블록일 수 있다.
예를 들어, 상기 CP가 상기 현재 블록의 좌상측에 위치하는 CP0일 수 있다. 이 경우, 상기 가중치 인덱스 정보는 상기 현재 블록의 좌상측 코너 주변 블록의 가중치 인덱스 정보, 상기 좌상측 코너 주변 블록의 하측에 인접한 좌측 주변 블록의 가중치 인덱스 정보 또는 상기 좌상측 코너 주변 블록의 우측에 인접한 상측 주변 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 또는, 상기 가중치 인덱스 정보는 도 8에서 A2 블록의 가중치 인덱스 정보, B2 블록의 가중치 인덱스 정보 또는 B3 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 우상측에 위치하는 CP1일 수 있다. 이 경우, 상기 가중치 인덱스 정보는 상기 현재 블록의 우상측 코너 주변 블록의 가중치 인덱스 정보 또는 상기 우상측 코너 주변 블록의 좌측에 인접한 상측 주변 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 또는, 상기 가중치 인덱스 정보는 도 8에서 B0 블록의 가중치 인덱스 정보 또는 B1 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 좌하측에 위치하는 CP2일 수 있다. 이 경우, 상기 가중치 인덱스 정보는 상기 현재 블록의 좌하측 코너 주변 블록의 가중치 인덱스 정보 또는 상기 좌하측 코너 주변 블록의 상측에 인접한 좌측 주변 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 또는, 상기 가중치 인덱스 정보는 도 8에서 A0 블록의 가중치 인덱스 정보 또는 A1 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 우하측에 위치하는 CP3일 수 있다. 여기서, CP3은 RB라고 불릴 수도있다. 이 경우, 상기 가중치 인덱스 정보는 상기 현재 블록의 콜(col) 블록의 가중치 인덱스 정보 또는 상기 콜 블록의 우하측 코너 주변 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 여기서, 상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함할 수 있다. 또는 상기 가중치 인덱스 정보는 도 8에서 T 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다.
또는 예를 들어, 상기 CP는 복수의 CP들을 포함할 수 있다. 예를 들어, 복수의 CP들은 CP0, CP1, CP2 또는 RB 중 적어도 둘을 포함할 수 있다. 이 경우, 상기 가중치 인덱스 정보는 상기 CPMV들 각각의 도출을 위하여 사용된 특정 블록들의 가중치 인덱스 정보들 중 가장 많이 중복되는 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 또는 상기 가중치 인덱스 정보는 상기 특정 블록들의 가중치 인덱스 정보들 중 발생 빈도가 가장 높은 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 즉, 상기 가중치 인덱스 정보는 복수의 CP들 각각에 대한 CPMV를 도출하기 위해 사용된 특정 블록들의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다.
또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 상기 현재 블록의 좌측 주변 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 즉, SbTMVP 후보를 위한 가중치 인덱스 정보는 상기 좌측 주변 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 0으로 나타내어질 수 있다. 즉, SbTMVP 후보를 위한 가중치 인덱스 정보는 0으로 나타내어질 수 있다. 여기서, 0인 가중치 인덱스 정보는 각 참조 방향(즉, 쌍 예측에서 L0 예측 방향 및 L1 예측 방향)의 가중치가 동일함을 나타낼 수 있다. 또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 콜(col) 블록 내의 센터 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 즉, SbTMVP 후보를 위한 가중치 인덱스 정보는 콜(col) 블록 내의 센터 블록의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 여기서, 상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함할 수 있고, 상기 센터 블록은 상기 콜 블록의 중앙에 위치하는 4개의 서브블록 중 우하측 서브블록을 포함할 수 있다. 또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 콜(col) 블록의 서브블록들 각각의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다. 즉, SbTMVP 후보를 위한 가중치 인덱스 정보는 콜(col) 블록의 서브블록들 각각의 가중치 인덱스 정보를 기반으로 나타내어질 수 있다.
또는 도 10에 도시하지 않았으나, 예를 들어, 인코딩 장치는 상기 예측 샘플들과 원본 샘플들을 기반으로 레지듀얼 샘플들을 도출할 수 있다. 이 경우, 상기 레지듀얼 샘플들을 기반으로 레지듀얼 관련 정보가 도출될 수 있다. 상기 레지듀얼 관련 정보를 기반으로 레지듀얼 샘플들을 도출될 수 있다. 상기 레지듀얼 샘플들 및 상기 예측 샘플들을 기반으로 복원 샘플들이 생성될 수 있다. 상기 복원 샘플들을 기반으로 복원 블록 및 복원 픽처가 도출될 수 있다. 또는 예를 들어, 인코딩 장치는 레지듀얼 관련 정보 또는 예측 관련 정보를 포함하는 영상 정보를 인코딩할 수 있다.
예를 들어, 인코딩 장치는 상술한 정보들(또는 신택스 요소들) 모두 또는 일부를 포함하는 영상 정보를 인코딩하여 비트스트림 또는 인코딩된 정보를 생성할 수 있다. 또는 비트스트림 형태로 출력할 수 있다. 또한, 상기 비트스트림 또는 인코딩된 정보는 네트워크 또는 저장매체를 통하여 디코딩 장치로 전송될 수 있다. 또는, 상기 비트스트림 또는 인코딩된 정보는 컴퓨터 판독 가능한 저장 매체에 저장될 수 있으며, 상기 비트스트림 또는 상기 인코딩된 정보는 상술한 영상 인코딩 방법에 의해 생성될 수 있다.
도 12 및 도 13은 본 문서의 실시예(들)에 따른 비디오/영상 디코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 12에서 개시된 방법은 도 3 또는 도 13에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 12의 S1200은 도 13에서 상기 디코딩 장치(300)의 엔트로피 디코딩부(310)에 의하여 수행될 수 있고, 도 12의 S1210 내지 S1260은 도 13에서 상기 디코딩 장치(300)의 예측부(330)에 의하여 수행될 수 있다. 또한, 도 12에서 도시하지 않았으나, 도 13에서 상기 디코딩 장치(300)의 엔트로피 디코딩부(310)에 의하여 비트스트림으로부터 예측 관련 정보 또는 레지듀얼 정보가 도출할 수 있고, 상기 디코딩 장치(300)의 레지듀얼 처리부(320)에 의하여 레지듀얼 정보로부터 레지듀얼 샘플들이 도출될 수 있고, 상기 디코딩 장치(300)의 예측부(330)에 의하여 예측 관련 정보로부터 예측 샘플들이 도출될 수 있고, 상기 디코딩 장치(300)의 가산부(340)에 의하여 레지듀얼 샘플들 또는 예측 샘플들로부터 복원 블록 또는 복원 픽처가 도출될 수 있다. 도 12에서 개시된 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다.
도 12를 참조하면, 디코딩 장치는 비트스트림을 통하여 인터 예측 모드 정보 및 인터 예측 타입 정보를 포함하는 영상 정보를 수신할 수 있다(S1200). 예를 들어, 상기 영상 정보는 비디오 정보라고 불릴 수도 있다. 상기 영상 정보는 본 문서의 상술한 실시예(들)에 따른 다양한 정보를 포함할 수 있다. 예를 들어, 영상 정보는 예측 관련 정보 또는 레지듀얼 관련 정보 중 적어도 일부를 포함할 수 있다.
예를 들어, 상기 예측 관련 정보는 인터 예측 모드 정보 또는 인터 예측 타입 정보를 포함할 수 있다. 예를 들어, 상기 인터 예측 모드 정보는 다양한 인터 예측 모드 중 적어도 일부를 나타내는 정보를 포함할 수 있다. 예를 들어, 머지 모드, 스킵 모드, MVP(motion vector prediction) 모드, 어파인(Affine) 모드, 서브블록 머지 모드 또는 MMVD(merge with MVD) 모드 등 다양한 모드가 사용될 수 있다. 또한, DMVR(Decoder side motion vector refinement) 모드, AMVR(adaptive motion vector resolution) 모드, BCW(Bi-prediction with CU-level weight) 또는 BDOF(Bi-directional optical flow) 등이 부수적인 모드로 더 또는 대신 사용될 수 있다. 예를 들어, 상기 인터 예측 타입 정보는 inter_pred_idc 신택스 요소를 포함할 수 있다. 또는 상기 인터 예측 타입 정보는 L0 예측, L1 예측 또는 쌍(bi) 예측 중 어느 하나를 나타내는 정보를 포함할 수 있다.
디코딩 장치는 인터 예측 모드 정보를 기반으로 현재 블록의 머지 후보 리스트를 생성할 수 있다(S1210). 예를 들어, 디코딩 장치는 상기 인터 예측 모드 정보를 기반으로 현재 블록의 인터 예측 모드를 머지 모드, 어파인 (머지) 모드 또는 서브블록 머지 모드로 결정할 수 있고, 결정한 인터 예측 모드에 따라 머지 후보 리스트를 생성할 수 있다. 여기서, 인터 예측 모드가 어파인 머지 모드 또는 서브블록 머지 모드로 결정된 경우, 상기 머지 후보 리스트는 어파인 머지 후보 리스트 또는 서브블록 머지 후보 리스트 등과 같이 불릴 수 있으나, 간략히 머지 후보 리스트라고 불릴 수도 있다.
예를 들어, 상기 머지 후보 리스트 내의 후보의 개수가 최대 후보 개수가 될 때까지 머지 후보 리스트에 후보가 삽입될 수 있다. 여기서, 후보는 현재 블록의 움직임 정보(또는 움직임 벡터)를 도출하기 위한 후보 또는 후보 블록을 나타낼 수 있다. 예를 들어, 후보 블록은 현재 블록의 주변 블록에 대한 탐색을 통해 도출될 수 있다. 예를 들어, 주변 블록은 현재 블록의 공간적 주변 블록 및/또는 시간적 주변 블록을 포함할 수 있으며, 공간적 주변 블록이 우선적으로 탐색되어 (공간적 머지) 후보가 도출될 수 있고, 이후 시간적 주변 블록이 탐색되어 (시간적 머지) 후보로 도출될 수 있으며, 도출된 후보들은 상기 머지 후보 리스트에 삽입될 수 있다. 예를 들어, 상기 머지 후보 리스트는 상기 후보들을 삽입한 이후에도 상기 머지 후보 리스트 내의 후보의 개수가 최대 후보 개수보다 적은 경우, 추가 후보를 삽입할 수 있다. 예를 들어, 추가 후보는 history based merge candidate(s), pair-wise average merge candidate(s), ATMVP, combined bi-predictive 머지 후보 (현재 슬라이스/타일 그룹의 슬라이스/타일 그룹 타입이 B 타입인 경우) 및/또는 영벡터 머지 후보 중 적어도 하나를 포함할 수 있다.
또는 예를 들어, 어파인 머지 후보 리스트 내의 후보의 개수가 최대 후보 개수가 될 때까지 어파인 머지 후보 리스트에 후보가 삽입될 수 있다. 여기서, 후보는 현재 블록의 CPMV(Control Point Motion Vector)를 포함할 수 있다. 또는 상기 후보는 상기 CPMV를 도출하기 위한 후보 또는 후보 블록을 나타낼 수도 있다. 상기 CPMV는 현재 블록의 CP(Control Point)에서의 움직임 벡터를 나타낼 수 있다. 예를 들어, CP는 2개, 3개 또는 4개일 수 있으며, 현재 블록의 좌상측(또는 좌상측 코너), 우상측(또는 우상측 코너), 좌하측(또는 좌하측 코너) 또는 우하측(또는 우하측 코너) 중 적어도 일부에 위치할 수 있으며, 각 위치마다 하나의 CP만이 존재할 수 있다.
예를 들어, 후보 블록은 현재 블록의 주변 블록(또는 현재 블록의 CP의 주변 블록)에 대한 탐색을 통해 도출될 수 있다. 예를 들어, 어파인 머지 후보 리스트는 승계된(inherited) 어파인 머지 후보, 구성된(constructed) 어파인 머지 후보 또는 제로(zero) 움직임 벡터 후보 중 적어도 하나를 포함할 수 있다. 예를 들어, 어파인 머지 후보 리스트는 우선 상기 승계된 어파인 머지 후보를 삽입할 수 있고, 이후 구성된 어파인 머지 후보를 삽입할 수 있다. 또한, 어파인 머지 후보 리스트에 구성된 어파인 머지 후보까지 삽입하였으나, 상기 어파인 머지 후보 리스트 내의 후보의 개수가 최대 후보 개수보다 작은 경우, 나머지는 제로 움직임 벡터 후보로 채울 수 있다. 여기서, 제로 움직임 벡터 후보는 영벡터라고 불릴 수도 있다. 예를 들어, 어파인 머지 후보 리스트는 샘플 단위로 움직임 벡터가 도출되는 어파인 머지 모드에 따른 리스트일 수 있으나, 서브블록 단위로 움직임 벡터가 도출되는 어파인 머지 모드에 따른 리스트일 수도 있다. 이 경우, 어파인 머지 후보 리스트는 서브블록 머지 후보 리스트라고 불릴 수도 있으며, 서브블록 머지 후보 리스트는 SbTMVP로 도출된 후보(또는 SbTMVP 후보)도 포함될 수 있다. 예를 들어, SbTMVP 후보가 서브블록 머지 후보 리스트에 포함되는 경우, 서브블록 머지 후보 리스트 내에서 승계된 어파인 머지 후보 및 구성된 어파인 머지 후보보다 앞에 위치할 수 있다.
디코딩 장치는 머지 후보 리스트에 포함된 후보들 중 하나의 후보를 선택할 수 있다(S1220). 예를 들어, 머지 후보 리스트는 공간적 머지 후보, 시간적 머지 후보, 페어와이즈 후보 또는 영 벡터 후보 중 적어도 일부를 포함할 수 있고, 현재 블록의 인터 예측을 위해 이러한 후보들 중 하나의 후보를 선택할 수 있다. 또는 예를 들어, 서브블록 머지 후보 리스트는 승계된 어파인 머지 후보, 구성된 어파인 머지 후보, SbTMVP 후보 또는 영 벡터 후보 중 적어도 일부를 포함할 수 있고, 현재 블록의 인터 예측을 위해 이러한 후보들 중 하나의 후보를 선택할 수 있다. 예를 들어, 상기 선택된 후보는 선택 정보를 기반으로 상기 머지 후보 리스트로부터 선택될 수 있다. 예를 들어, 상기 선택 정보는 상기 상기 머지 후보 리스트 내의 선택된 후보를 나타내는 인덱스 정보를 포함할 수 있다. 예를 들어, 상기 선택 정보는 머지 인덱스 정보 또는 서브블록 머지 인덱스 정보라고 불릴 수도 있다. 예를 들어, 상기 선택 정보는 상기 영상 정보에 포함될 수 있다. 또는 상기 선택 정보는 상기 인터 예측 모드 정보에 포함될 수도 있다.
디코딩 장치는 인터 예측 타입 정보를 기반으로 현재 블록의 인터 예측 타입을 쌍 예측(bi-prediction)으로 도출할 수 있다(S1230). 예를 들어, 상기 현재 블록의 인터 예측 타입은 상기 인터 예측 타입 정보를 기반으로 L0 예측, L1 예측 또는 쌍(bi) 예측 중 쌍 예측으로 도출될 수 있다. 여기서, L0 예측은 참조 픽처 리스트 0 기반의 예측을 나타낼 수 있고, L1 예측은 참조 픽처 리스트 1 기반의 예측을 나타낼 수 있으며, 쌍 예측은 참조 픽처 리스트 0 및 참조 픽처 리스트 1 기반의 예측을 나타낼 수 있다. 예를 들어, 상기 인터 예측 타입 정보는 inter_pred_idc 신택스 요소를 포함할 수 있다.
디코딩 장치는 선택된 후보를 기반으로 현재 블록의 움직임 정보를 도출할 수 있다(S1240). 예를 들어, 디코딩 장치는 인터 예측 타입이 쌍 예측으로 도출됨에 따라 선택된 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보를 도출할 수 있다. 예를 들어, L0 움직임 정보는 L0 참조 픽처 인덱스 및 L0 움직임 벡터 등을 포함할 수 있고, L1 움직임 정보는 L1 참조 픽처 인덱스 및 L1 움직임 벡터 등을 포함할 수 있다. L0 참조 픽처 인덱스는 참조 픽처 리스트 0에서 참조 픽처를 나타내는 정보를 포함할 수 있고, L1 참조 픽처 인덱스는 참조 픽처 리스트 1에서 참조 픽처를 나타내는 정보를 포함할 수 있다.
디코딩 장치는 움직임 정보를 기반으로 현재 블록의 L0 예측 샘플들 및 L1 예측 샘플들을 생성할 수 있다(S1250). 예를 들어, 현재 블록의 인터 예측 타입이 쌍 예측으로 도출된 경우, 현재 블록의 예측을 위해 참조 픽처 리스트 0 및 참조 픽처 리스트 1이 이용될 수 있다. 예를 들어, 상기 L0 예측 샘플들은 상기 참조 픽처 리스트 0을 기반으로 도출된 현재 블록의 예측 샘플들을 나타낼 수 있고, 상기 L1 예측 샘플들은 상기 참조 픽처 리스트 1을 기반으로 도출된 현재 블록의 예측 샘플들을 나타낼 수 있다.
예를 들어, 상기 후보들은 공간적 머지 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 상기 공간적 머지 후보인 경우, 상기 공간적 머지 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다.
예를 들어, 상기 후보들은 시간적 머지 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 상기 시간적 머지 후보인 경우, 상기 시간적 머지 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다.
예를 들어, 상기 후보들은 페어와이즈(pair-wise) 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 페어와이즈 후보인 경우, 상기 페어와이즈 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다. 예를 들어, 상기 페어와이즈 후보는 상기 머지 후보 리스트에 포함된 후보들 중 다른 2개의 후보를 기반으로 도출될 수 있다.
또는 예를 들어, 상기 머지 후보 리스트는 서브블록 머지 후보 리스트일 수 있으며, 어파인 머지 후보, 서브블록 머지 후보 또는 SbTMVP 후보가 선택될 수도 있다. 여기서, 서브블록 단위의 어파인 머지 후보는 서브블록 머지 후보라고 불릴 수도 있다.
예를 들어, 상기 후보들은 서브블록 머지 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 상기 서브블록 머지 후보인 경우, 상기 서브블록 머지 후보를 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다. 예를 들어, 상기 서브블록 머지 후보는 CPMV(Control Point Motion Vector)들을 포함할 수 있고, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들은 상기 CPMV들을 기반으로 서브블록 단위로 예측이 수행되어 생성될 수 있다.
여기서, CPMV는 상기 현재 블록의 CP(Control Point)의 주변 블록들 중 하나의 블록을 기반으로 도출될 수 있다. 예를 들어, CP는 2개, 3개 또는 4개일 수 있으며, 현재 블록의 좌상측(또는 좌상측 코너), 우상측(또는 우상측 코너), 좌하측(또는 좌하측 코너) 또는 우하측(또는 우하측 코너) 중 적어도 일부에 위치할 수 있으며, 각 위치마다 하나의 CP만이 존재할 수 있다.
예를 들어, 상기 CP가 상기 현재 블록의 좌상측에 위치하는 CP0일 수 있다. 이 경우, 상기 주변 블록들은 상기 현재 블록의 좌상측 코너 주변 블록, 상기 좌상측 코너 주변 블록의 하측에 인접한 좌측 주변 블록 및 상기 좌상측 코너 주변 블록의 우측에 인접한 상측 주변 블록을 포함할 수 있다. 또는, 상기 주변 블록들은 도 8에서 A2 블록, B2 블록 또는 B3 블록을 포함할 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 우상측에 위치하는 CP1일 수 있다. 이 경우, 상기 주변 블록들은 상기 현재 블록의 우상측 코너 주변 블록 및 상기 우상측 코너 주변 블록의 좌측에 인접한 상측 주변 블록을 포함할 수 있다. 또는, 상기 주변 블록들은 도 8에서 B0 블록 또는 B1 블록을 포함할 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 좌하측에 위치하는 CP2일 수 있다. 이 경우, 상기 주변 블록들은 상기 현재 블록의 좌하측 코너 주변 블록 및 상기 좌하측 코너 주변 블록의 상측에 인접한 좌측 주변 블록을 포함할 수 있다. 또는, 상기 주변 블록들은 도 8에서 A0 블록 또는 A1 블록을 포함할 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 우하측에 위치하는 CP3일 수 있다. 여기서, CP3은 RB라고 불릴 수도있다. 이 경우, 상기 주변 블록들은 상기 현재 블록의 콜(col) 블록 또는 상기 콜 블록의 우하측 코너 주변 블록을 포함할 수 있다. 여기서, 상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함할 수 있다. 또는 상기 주변 블록은 도 8에서 T 블록을 포함할 수 있다.
또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있다. 예를 들어, 상기 선택된 후보가 상기 SbTMVP 후보인 경우, 상기 현재 블록의 좌측 주변 블록을 기반으로 L0 움직임 정보 및 L1 움직임 정보가 도출될 수 있고, 이를 기반으로 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들이 생성될 수 있다. 예를 들어, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들은 서브블록 단위로 예측이 수행되어 생성될 수 있다.
디코딩 장치는 L0 예측 샘플들, L1 예측 샘플들 및 가중치 정보를 기반으로 현재 블록의 예측 샘플들을 생성할 수 있다(S1260). 예를 들어, 상기 가중치 정보는 가중치 인덱스 정보를 기반으로 도출될 수 있다. 예를 들어, 상기 가중치 정보는 L0 예측 샘플들 또는 L1 예측 샘플들의 가중평균을 위한 정보를 포함할 수 있다. 즉, 상기 가중치 인덱스 정보는 상기 가중평균에 이용된 가중치에 대한 인덱스 정보를 나타낼 수 있고, 상기 가중평균은 가중치 인덱스 정보를 기반으로 수행될 수 있다. 예를 들어, 가중치 인덱스 정보는 3개 또는 5개의 가중치들 중 어느 하나의 가중치를 나타내는 정보를 포함할 수 있다. 예를 들어, 상기 가중평균은 BCW(Bi-prediction with CU-level Weight) 또는 BWA(Bi-prediction with Weighted Average)에서의 가중평균을 나타낼 수 있다.
예를 들어, 상기 후보들은 시간적 머지 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 0으로 도출될 수 있다. 즉, 시간적 머지 후보를 위한 가중치 인덱스 정보는 0으로 도출될 수 있다. 여기서, 0인 가중치 인덱스 정보는 각 참조 방향(즉, 쌍 예측에서 L0 예측 방향 및 L1 예측 방향)의 가중치가 동일함을 나타낼 수 있다. 또는 예를 들어, 상기 후보들은 시간적 머지 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 콜(col) 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 즉, 시간적 머지 후보를 위한 가중치 인덱스 정보는 콜(col) 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 여기서, 상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함할 수 있다.
또는 예를 들어, 상기 후보들은 페어와이즈(pair-wise) 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 상기 페어와이즈 후보를 도출하는데 이용된 머지 후보 리스트 내의 다른 2개의 후보 중 하나의 가중치 인덱스 정보로 도출될 수 있다. 즉, 상기 페어와이즈 후보를 위한 가중치 인덱스 정보는 상기 페어와이즈 후보를 도출하는데 이용된 머지 후보 리스트 내의 다른 2개의 후보 중 하나의 가중치 인덱스 정보로 도출될 수 있다. 또는 예를 들어, 상기 가중치 인덱스 정보는 상기 2개의 후보의 가중치 인덱스 정보를 기반으로 도출될 수도 있다.
또는 예를 들어, 상기 머지 후보 리스트는 서브블록 머지 후보 리스트일 수 있으며, 어파인 머지 후보, 서브블록 머지 후보 또는 SbTMVP 후보가 선택될 수도 있다. 여기서, 서브블록 단위의 어파인 머지 후보는 서브블록 머지 후보라고 불릴 수도 있다.
예를 들어, 상기 후보들은 서브블록 머지 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 현재 블록의 CP의 주변 블록들 중 특정 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 즉, 상기 서브블록 머지 후보를 위한 가중치 인덱스 정보는 현재 블록의 CP의 주변 블록들 중 특정 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 여기서, 상기 특정 블록은 상기 CP에 대한 CPMV의 도출을 위하여 사용되는 블록일 수 있다. 또는, 현재 블록의 CP의 주변 블록들 중 CPMV로 이용되는 MV를 가진 블록일 수 있다.
예를 들어, 상기 CP가 상기 현재 블록의 좌상측에 위치하는 CP0일 수 있다. 이 경우, 상기 가중치 인덱스 정보는 상기 현재 블록의 좌상측 코너 주변 블록의 가중치 인덱스 정보, 상기 좌상측 코너 주변 블록의 하측에 인접한 좌측 주변 블록의 가중치 인덱스 정보 또는 상기 좌상측 코너 주변 블록의 우측에 인접한 상측 주변 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 또는, 상기 가중치 인덱스 정보는 도 8에서 A2 블록의 가중치 인덱스 정보, B2 블록의 가중치 인덱스 정보 또는 B3 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 우상측에 위치하는 CP1일 수 있다. 이 경우, 상기 가중치 인덱스 정보는 상기 현재 블록의 우상측 코너 주변 블록의 가중치 인덱스 정보 또는 상기 우상측 코너 주변 블록의 좌측에 인접한 상측 주변 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 또는, 상기 가중치 인덱스 정보는 도 8에서 B0 블록의 가중치 인덱스 정보 또는 B1 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 좌하측에 위치하는 CP2일 수 있다. 이 경우, 상기 가중치 인덱스 정보는 상기 현재 블록의 좌하측 코너 주변 블록의 가중치 인덱스 정보 또는 상기 좌하측 코너 주변 블록의 상측에 인접한 좌측 주변 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 또는, 상기 가중치 인덱스 정보는 도 8에서 A0 블록의 가중치 인덱스 정보 또는 A1 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다.
또는 예를 들어, 상기 CP가 상기 현재 블록의 우하측에 위치하는 CP3일 수 있다. 여기서, CP3은 RB라고 불릴 수도있다. 이 경우, 상기 가중치 인덱스 정보는 상기 현재 블록의 콜(col) 블록의 가중치 인덱스 정보 또는 상기 콜 블록의 우하측 코너 주변 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 여기서, 상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함할 수 있다. 또는 상기 가중치 인덱스 정보는 도 8에서 T 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다.
또는 예를 들어, 상기 CP는 복수의 CP들을 포함할 수 있다. 예를 들어, 복수의 CP들은 CP0, CP1, CP2 또는 RB 중 적어도 둘을 포함할 수 있다. 이 경우, 상기 가중치 인덱스 정보는 상기 CPMV들 각각의 도출을 위하여 사용된 특정 블록들의 가중치 인덱스 정보들 중 가장 많이 중복되는 가중치 인덱스 정보를 기반으로 도출될 수 있다. 또는 상기 가중치 인덱스 정보는 상기 특정 블록들의 가중치 인덱스 정보들 중 발생 빈도가 가장 높은 가중치 인덱스 정보를 기반으로 도출될 수 있다. 즉, 상기 가중치 인덱스 정보는 복수의 CP들 각각에 대한 CPMV를 도출하기 위해 사용된 특정 블록들의 가중치 인덱스 정보를 기반으로 도출될 수 있다.
또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 상기 현재 블록의 좌측 주변 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 즉, SbTMVP 후보를 위한 가중치 인덱스 정보는 상기 좌측 주변 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 0으로 도출될 수 있다. 즉, SbTMVP 후보를 위한 가중치 인덱스 정보는 0으로 도출될 수 있다. 여기서, 0인 가중치 인덱스 정보는 각 참조 방향(즉, 쌍 예측에서 L0 예측 방향 및 L1 예측 방향)의 가중치가 동일함을 나타낼 수 있다. 또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 콜(col) 블록 내의 센터 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 즉, SbTMVP 후보를 위한 가중치 인덱스 정보는 콜(col) 블록 내의 센터 블록의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 여기서, 상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함할 수 있고, 상기 센터 블록은 상기 콜 블록의 중앙에 위치하는 4개의 서브블록 중 우하측 서브블록을 포함할 수 있다. 또는 예를 들어, 상기 후보들은 SbTMVP 후보를 포함할 수 있으며, 상기 가중치 인덱스 정보는 콜(col) 블록의 서브블록들 각각의 가중치 인덱스 정보를 기반으로 도출될 수 있다. 즉, SbTMVP 후보를 위한 가중치 인덱스 정보는 콜(col) 블록의 서브블록들 각각의 가중치 인덱스 정보를 기반으로 도출될 수 있다.
도 12에 도시하지 않았으나, 예를 들어 디코딩 장치는 상기 영상 정보에 포함된 레지듀얼 관련 정보를 기반으로 레지듀얼 샘플들을 도출할 수 있다. 또한, 디코딩 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 샘플들을 생성할 수 있다. 상기 복원 샘플들을 기반으로 복원 블록 및 복원 픽처가 도출될 수 있다.
예를 들어, 디코딩 장치는 비트스트림 또는 인코딩된 정보를 디코딩하여 상술한 정보들(또는 신택스 요소들) 모두 또는 일부를 포함하는 영상 정보를 획득할 수 있다. 또한, 상기 비트스트림 또는 인코딩된 정보는 컴퓨터 판독 가능한 저장 매체에 저장될 수 있으며, 상술한 디코딩 방법이 수행되도록 야기할 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 해당 실시예는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 실시예들의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 문서의 실시예들에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 문서에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 문서에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 즉, 본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 이 경우 구현을 위한 정보(ex. information on instructions) 또는 알고리즘이 디지털 저장 매체에 저장될 수 있다.
또한, 본 문서의 실시예(들)이 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, VR(virtual reality) 장치, AR(argumente reality) 장치, 화상 전화 비디오 장치, 운송 수단 단말 (ex. 차량(자율주행차량 포함) 단말, 비행기 단말, 선박 단말 등) 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recorder) 등을 포함할 수 있다.
또한, 본 문서의 실시예(들)이 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서의 실시예(들)에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다.
또한, 본 문서의 실시예(들)는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예(들)에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독가능한 캐리어 상에 저장될 수 있다.
도 14는 본 문서에서 개시된 실시예들이 적용될 수 있는 컨텐츠 스트리밍 시스템의 예를 나타낸다.
도 14를 참조하면, 본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다.
상기 비트스트림은 본 문서의 실시예들이 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다.
상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (17)

  1. 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    비트스트림을 통하여 인터 예측 모드 정보를 포함하는 영상 정보를 수신하는 단계;
    상기 인터 예측 모드 정보를 기반으로 현재 블록의 머지 후보 리스트를 생성하는 단계;
    상기 머지 후보 리스트에 포함된 후보들 중 하나의 후보를 선택하는 단계;
    상기 선택된 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계;
    상기 움직임 정보를 기반으로 상기 현재 블록의 L0 예측 샘플들 및 L1 예측 샘플들을 생성하는 단계; 및
    상기 L0 예측 샘플들, 상기 L1 예측 샘플들 및 가중치 정보를 기반으로 상기 현재 블록의 예측 샘플들을 생성하는 단계;를 포함하되,
    상기 가중치 정보는 상기 선택된 후보에 대한 가중치 인덱스 정보를 기반으로 도출되고,
    상기 후보들은 승계된 어파인 후보 및 구성된 어파인 후보를 포함하고,
    상기 구성된 어파인 후보는 CPMV(Control Point Motion Vector)들을 포함하고,
    상기 구성된 어파인 후보가 CP0(control point)에 대한 CPMV를 포함하고 및 쌍 예측이 상기 현재 블록에 적용됨에 기반하여, 상기 구성된 어파인 후보에 대한 가중치 인덱스 정보는 상기 현재 블록의 상기 CP0의 주변 블록들 중 특정 블록의 가중치 인덱스 정보와 동일하게 고정되고,
    상기 CP0은 상기 현재 블록의 좌상측 코너에 관련되고, 및
    상기 특정 블록은 상기 CP0에 대한 상기 CPMV의 도출을 위하여 사용되는 블록인 것을 특징으로 하는, 영상 디코딩 방법.
  2. 제1항에 있어서,
    상기 주변 블록들은 상기 현재 블록의 좌상측 코너 주변 블록, 상기 좌상측 코너 주변 블록의 하측에 인접한 좌측 주변 블록 및 상기 좌상측 코너 주변 블록의 우측에 인접한 상측 주변 블록을 포함하는 것을 특징으로 하는, 영상 디코딩 방법.
  3. 삭제
  4. 삭제
  5. 삭제
  6. 제1항에 있어서,
    상기 후보들은 페어와이즈(pair-wise) 후보를 포함하고, 상기 페어와이즈 후보는 상기 후보들 중 다른 2개의 후보를 기반으로 도출되고,
    상기 페어와이즈 후보에 대한 가중치 인덱스 정보는 상기 2개의 후보 중 하나의 가중치 인덱스 정보를 기반으로 도출되는 것을 특징으로 하는, 영상 디코딩 방법.
  7. 제1항에 있어서,
    상기 후보들은 서브 블록 기반 시간적 머지 후보를 포함하고,
    상기 서브 블록 기반 시간적 머지 후보에 대한 가중치 인덱스 정보는 상기 현재 블록의 좌측 주변 블록의 가중치 인덱스 정보를 기반으로 도출되는 것을 특징으로 하는, 영상 디코딩 방법.
  8. 제1항에 있어서,
    상기 후보들은 서브 블록 기반 시간적 후보를 포함하고,
    상기 서브 블록 기반 시간적 머지 후보에 대한 가중치 인덱스 정보의 값은 0으로 도출되는 것을 특징으로 하는, 영상 디코딩 방법.
  9. 제1항에 있어서,
    상기 후보들은 서브 블록 기반 시간적 후보를 포함하고,
    상기 서브 블록 기반 시간적 후보에 대한 가중치 인덱스 정보는 콜(col) 블록 내의 센터 블록의 가중치 인덱스 정보를 기반으로 도출되고,
    상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함하고,
    상기 센터 블록은 상기 콜 블록의 중앙에 위치하는 4개의 서브블록 중 우하측 서브블록을 포함하는 것을 특징으로 하는, 영상 디코딩 방법.
  10. 제1항에 있어서,
    상기 후보들은 서브 블록 기반 시간적 후보 를 포함하고,
    상기 서브 블록 기반 시간적 후보에 대한 가중치 인덱스 정보는 콜(col) 블록의 서브블록들 각각의 가중치 인덱스 정보를 기반으로 도출되고,
    상기 콜 블록은 상기 현재 블록이 위치하는 현재 픽처와 다른 참조 픽처 내에 상기 현재 블록과 동일한 위치의 블록을 포함하는 것을 특징으로 하는, 영상 디코딩 방법.
  11. 삭제
  12. 삭제
  13. 삭제
  14. 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
    현재 블록의 인터 예측 모드를 결정하고, 상기 인터 예측 모드를 나타내는 인터 예측 모드 정보를 생성하는 단계;
    상기 인터 예측 모드를 기반으로 상기 현재 블록의 머지 후보 리스트를 생성하는 단계;
    상기 머지 후보 리스트에 포함된 후보들 중 하나의 후보를 선택하고, 상기 선택된 후보를 나타내는 선택 정보를 생성하는 단계; 및
    상기 인터 예측 모드 정보 및 상기 선택 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하고,
    가중치 정보는 상기 선택된 후보에 대한 가중치 인덱스 정보를 기반으로 도출되고,
    상기 후보들은 승계된 어파인 후보 및 구성된 어파인 후보를 포함하고,
    상기 구성된 어파인 후보는 CPMV(Control Point Motion Vector)들을 포함하고,
    상기 구성된 어파인 후보가 CP0(control point)에 대한 CPMV를 포함하고 및 쌍 예측이 상기 현재 블록에 적용됨에 기반하여, 상기 구성된 어파인 후보에 대한 가중치 인덱스 정보는 상기 현재 블록의 상기 CP0의 주변 블록들 중 특정 블록의 가중치 인덱스 정보와 동일하게 고정되고,
    상기 CP0은 상기 현재 블록의 좌상측 코너에 관련되고, 및
    상기 특정 블록은 상기 CP0에 대한 상기 CPMV의 도출을 위하여 사용되는 블록인 것을 특징으로 하는, 영상 인코딩 방법.
  15. 삭제
  16. 컴퓨터 판독 가능한 디지털 저장 매체에 있어서, 상기 디지털 저장 매체는 영상 인코딩 방법에 의하여 생성된 인코딩된 영상 정보를 저장하고, 상기 영상 인코딩 방법은,
    현재 블록의 인터 예측 모드를 결정하고, 상기 인터 예측 모드를 나타내는 인터 예측 모드 정보를 생성하는 단계;
    상기 인터 예측 모드를 기반으로 상기 현재 블록의 머지 후보 리스트를 생성하는 단계;
    상기 머지 후보 리스트에 포함된 후보들 중 하나의 후보를 선택하고, 상기 선택된 후보를 나타내는 선택 정보를 생성하는 단계; 및
    상기 인터 예측 모드 정보 및 상기 선택 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하고,
    가중치 정보는 상기 선택된 후보에 대한 가중치 인덱스 정보를 기반으로 도출되고,
    상기 후보들은 승계된 어파인 후보 및 구성된 어파인 후보를 포함하고,
    상기 구성된 어파인 후보는 CPMV(Control Point Motion Vector)들을 포함하고,
    상기 구성된 어파인 후보가 CP0(control point)에 대한 CPMV를 포함하고 및 쌍 예측이 상기 현재 블록에 적용됨에 기반하여, 상기 구성된 어파인 후보에 대한 가중치 인덱스 정보는 상기 현재 블록의 상기 CP0의 주변 블록들 중 특정 블록의 가중치 인덱스 정보와 동일하게 고정되고,
    상기 CP0은 상기 현재 블록의 좌상측 코너에 관련되고, 및
    상기 특정 블록은 상기 CP0에 대한 상기 CPMV의 도출을 위하여 사용되는 블록인 것을 특징으로 하는, 디지털 저장 매체.
  17. 영상 데이터의 전송 방법에 있어서,
    인코딩된 영상 정보를 획득하되, 상기 인코딩된 영상 정보는, 현재 블록의 인터 예측 모드를 결정하고 상기 인터 예측 모드를 나타내는 인터 예측 모드 정보를 생성하는 단계, 상기 인터 예측 모드를 기반으로 상기 현재 블록의 머지 후보 리스트를 생성하는 단계, 상기 머지 후보 리스트에 포함된 후보들 중 하나의 후보를 선택하고 상기 선택된 후보를 나타내는 선택 정보를 생성하는 단계, 및 상기 인터 예측 모드 정보 및 상기 선택 정보를 포함하는 영상 정보를 인코딩하는 단계를 수행하여 생성되는 단계; 및
    상기 인코딩된 영상 정보에 대한 상기 영상 데이터를 전송하는 단계를 포함하고,
    가중치 정보는 상기 선택된 후보에 대한 가중치 인덱스 정보를 기반으로 도출되고,
    상기 후보들은 승계된 어파인 후보 및 구성된 어파인 후보를 포함하고,
    상기 구성된 어파인 후보는 CPMV(Control Point Motion Vector)들을 포함하고,
    상기 구성된 어파인 후보가 CP0(control point)에 대한 CPMV를 포함하고 및 쌍 예측이 상기 현재 블록에 적용됨에 기반하여, 상기 구성된 어파인 후보에 대한 가중치 인덱스 정보는 상기 현재 블록의 상기 CP0의 주변 블록들 중 특정 블록의 가중치 인덱스 정보와 동일하게 고정되고,
    상기 CP0은 상기 현재 블록의 좌상측 코너에 관련되고, 및
    상기 특정 블록은 상기 CP0에 대한 상기 CPMV의 도출을 위하여 사용되는 블록인 것을 특징으로 하는, 전송 방법.
KR1020217029421A 2019-03-12 2020-03-10 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩 KR102695896B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247026834A KR20240128116A (ko) 2019-03-12 2020-03-10 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962817513P 2019-03-12 2019-03-12
US62/817,513 2019-03-12
PCT/KR2020/003323 WO2020184953A1 (ko) 2019-03-12 2020-03-10 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247026834A Division KR20240128116A (ko) 2019-03-12 2020-03-10 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩

Publications (2)

Publication Number Publication Date
KR20210118952A KR20210118952A (ko) 2021-10-01
KR102695896B1 true KR102695896B1 (ko) 2024-08-19

Family

ID=72427507

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217029421A KR102695896B1 (ko) 2019-03-12 2020-03-10 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩
KR1020247026834A KR20240128116A (ko) 2019-03-12 2020-03-10 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020247026834A KR20240128116A (ko) 2019-03-12 2020-03-10 쌍 예측을 위한 가중치 인덱스 정보를 유도하는 비디오 또는 영상 코딩

Country Status (7)

Country Link
US (3) US11595640B2 (ko)
EP (1) EP3923583A4 (ko)
JP (3) JP7256290B2 (ko)
KR (2) KR102695896B1 (ko)
CN (5) CN117692658A (ko)
MX (1) MX2021010942A (ko)
WO (1) WO2020184953A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240155986A (ko) 2019-06-24 2024-10-29 엘지전자 주식회사 영상 디코딩 방법 및 그 장치
CN114402610A (zh) * 2019-09-13 2022-04-26 北京字节跳动网络技术有限公司 视频编解码中的加权样点双向预测

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2738322C (en) * 2001-11-21 2013-12-31 General Instrument Corporation Picture level adaptive frame/field coding for digital video content
CN101610413B (zh) * 2009-07-29 2011-04-27 清华大学 一种视频的编码/解码方法及装置
CN102131094A (zh) * 2010-01-18 2011-07-20 联发科技股份有限公司 运动预测方法
KR102125035B1 (ko) 2011-01-07 2020-06-19 엘지전자 주식회사 영상 정보 부호화 방법 및 복호화 방법과 이를 이용한 장치
US9729873B2 (en) * 2012-01-24 2017-08-08 Qualcomm Incorporated Video coding using parallel motion estimation
US10785501B2 (en) * 2012-11-27 2020-09-22 Squid Design Systems Pvt Ltd System and method of performing motion estimation in multiple reference frame
WO2014083492A2 (en) * 2012-11-27 2014-06-05 Squid Design Systems Pvt Ltd System and method of performing motion estimation in multiple reference frame
WO2014083491A2 (en) * 2012-11-27 2014-06-05 Squid Design Systems Pvt Ltd System and method of mapping multiple reference frame motion estimation on multi-core dsp architecture
CN109274974B (zh) * 2015-09-29 2022-02-11 华为技术有限公司 图像预测的方法及装置
GB2561507B (en) * 2016-01-07 2021-12-22 Mediatek Inc Method and apparatus for affine merge mode prediction for video coding system
CN117221572A (zh) 2016-10-04 2023-12-12 英迪股份有限公司 视频解码方法、图像编码方法以及发送比特流的方法
US10602180B2 (en) * 2017-06-13 2020-03-24 Qualcomm Incorporated Motion vector prediction
RU2770185C2 (ru) * 2017-06-26 2022-04-14 ИНТЕРДИДЖИТАЛ ВиСи ХОЛДИНГЗ, ИНК. Множество кандидатов предсказателя для компенсации движения
CN112997487B (zh) * 2018-11-15 2024-07-09 北京字节跳动网络技术有限公司 仿射模式与其他帧间编解码工具之间的协调
US11202089B2 (en) * 2019-01-28 2021-12-14 Tencent America LLC Method and apparatus for determining an inherited affine parameter from an affine model
US11394999B2 (en) * 2019-03-11 2022-07-19 Alibaba Group Holding Limited Method, device, and system for determining prediction weight for merge mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jianle Chen et al., "Algorithm description for Versatile Video Coding and Test Model 3 (VTM 3)", JVET of ITU-T and ISO/IEC, JVET-L1002-v2(2018.12.24.)*

Also Published As

Publication number Publication date
CN113678455A (zh) 2021-11-19
WO2020184953A1 (ko) 2020-09-17
KR20240128116A (ko) 2024-08-23
US20220007008A1 (en) 2022-01-06
EP3923583A1 (en) 2021-12-15
CN117793374A (zh) 2024-03-29
US20240121382A1 (en) 2024-04-11
JP7485819B2 (ja) 2024-05-16
CN117692659A (zh) 2024-03-12
EP3923583A4 (en) 2022-04-27
US20230164307A1 (en) 2023-05-25
JP7256290B2 (ja) 2023-04-11
CN117692658A (zh) 2024-03-12
JP2022524432A (ja) 2022-05-02
JP2024097086A (ja) 2024-07-17
US11595640B2 (en) 2023-02-28
US11876960B2 (en) 2024-01-16
JP2023073450A (ja) 2023-05-25
CN117692660A (zh) 2024-03-12
KR20210118952A (ko) 2021-10-01
MX2021010942A (es) 2021-12-10
CN113678455B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
KR102702821B1 (ko) 비디오/영상 코딩 시스템에서 머지 데이터 신택스의 시그널링 방법 및 장치
US11445184B2 (en) Image decoding method and device for deriving weight index information for generation of prediction sample
JP7508665B2 (ja) 双予測(bi-prediction)のための加重値インデックス情報を導出する画像デコード方法及びその装置
JP7510550B2 (ja) 双予測(bi-prediction)が適用される場合、加重平均のための加重値インデックス情報を導出する画像デコード方法及びその装置
US12120295B2 (en) Video decoding method using bi-prediction and device therefor
JP7521030B2 (ja) マージデータシンタックスにおける重複シンタックスの除去方法及び装置
JP7485819B2 (ja) 双予測のための加重値インデックス情報を誘導するビデオ又は映像コーディング
KR102712127B1 (ko) 비디오/영상 코딩 시스템에서 중복 시그널링 제거 방법 및 장치
US20220124312A1 (en) Image decoding method for deriving predicted sample by using merge candidate and device therefor
KR102702835B1 (ko) 비디오/영상 코딩 시스템에서 신택스 시그널링 방법 및 장치
US11917131B2 (en) Image decoding method and device therefor

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant