KR102631720B1 - Manufacturing method of lithium secondary battery - Google Patents
Manufacturing method of lithium secondary battery Download PDFInfo
- Publication number
- KR102631720B1 KR102631720B1 KR1020200129950A KR20200129950A KR102631720B1 KR 102631720 B1 KR102631720 B1 KR 102631720B1 KR 1020200129950 A KR1020200129950 A KR 1020200129950A KR 20200129950 A KR20200129950 A KR 20200129950A KR 102631720 B1 KR102631720 B1 KR 102631720B1
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- lithium
- negative electrode
- charging
- electrode active
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 112
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000007773 negative electrode material Substances 0.000 claims description 46
- 238000011068 loading method Methods 0.000 claims description 43
- 239000003792 electrolyte Substances 0.000 claims description 20
- 239000007774 positive electrode material Substances 0.000 claims description 19
- 230000002427 irreversible effect Effects 0.000 claims description 15
- 239000011149 active material Substances 0.000 claims description 14
- 239000000654 additive Substances 0.000 claims description 13
- 230000000996 additive effect Effects 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 239000002388 carbon-based active material Substances 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 229910000733 Li alloy Inorganic materials 0.000 claims description 3
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052730 francium Inorganic materials 0.000 claims description 2
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052705 radium Inorganic materials 0.000 claims description 2
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052701 rubidium Inorganic materials 0.000 claims description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 26
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 26
- 239000010410 layer Substances 0.000 description 42
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- -1 etc. Chemical compound 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- 238000007747 plating Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000004020 conductor Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 229910003002 lithium salt Inorganic materials 0.000 description 7
- 159000000002 lithium salts Chemical class 0.000 description 7
- 239000011356 non-aqueous organic solvent Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000009830 intercalation Methods 0.000 description 6
- 230000002687 intercalation Effects 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 239000003660 carbonate based solvent Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000006183 anode active material Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZNBGTBKGFZMWKR-UHFFFAOYSA-N 1,1,2,2,3,3,4,4-octafluoro-5-(1,1,2,2-tetrafluoroethoxy)pentane Chemical compound FC(F)C(F)(F)OCC(F)(F)C(F)(F)C(F)(F)C(F)F ZNBGTBKGFZMWKR-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- QKBJDEGZZJWPJA-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound [CH2]COC(=O)OCCC QKBJDEGZZJWPJA-UHFFFAOYSA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 239000002409 silicon-based active material Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- JYVXNLLUYHCIIH-UHFFFAOYSA-N (+/-)-mevalonolactone Natural products CC1(O)CCOC(=O)C1 JYVXNLLUYHCIIH-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- DNMSBVYZDQGYLU-UHFFFAOYSA-N 2-oxo-1,3-dioxolane-4-carbonitrile Chemical compound O=C1OCC(C#N)O1 DNMSBVYZDQGYLU-UHFFFAOYSA-N 0.000 description 1
- HIGQQEOWQNDHJD-UHFFFAOYSA-N 4,4-dichloro-1,3-dioxolan-2-one Chemical compound ClC1(Cl)COC(=O)O1 HIGQQEOWQNDHJD-UHFFFAOYSA-N 0.000 description 1
- RKDNQLPSWHNCFU-UHFFFAOYSA-N 4,5-dibromo-1,3-dioxolan-2-one Chemical compound BrC1OC(=O)OC1Br RKDNQLPSWHNCFU-UHFFFAOYSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- KQDOUXAQOUQPQW-UHFFFAOYSA-N 4-bromo-1,3-dioxolan-2-one Chemical compound BrC1COC(=O)O1 KQDOUXAQOUQPQW-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- GPSZQZDENOVTHL-UHFFFAOYSA-N 4-nitro-1,3-dioxolan-2-one Chemical compound [O-][N+](=O)C1COC(=O)O1 GPSZQZDENOVTHL-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910018720 Li0.8 Ti2.2 O4 Inorganic materials 0.000 description 1
- 229910009109 Li1.33Ti1.67O4 Inorganic materials 0.000 description 1
- 229910011957 Li2.67Ti1.33O4 Inorganic materials 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010941 LiFSI Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910015644 LiMn 2 - z Ni Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910012573 LiSiO Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910012465 LiTi Inorganic materials 0.000 description 1
- 229910001267 Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910003307 Ni-Cd Inorganic materials 0.000 description 1
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- JYVXNLLUYHCIIH-ZCFIWIBFSA-N R-mevalonolactone, (-)- Chemical compound C[C@@]1(O)CCOC(=O)C1 JYVXNLLUYHCIIH-ZCFIWIBFSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- NXPZICSHDHGMGT-UHFFFAOYSA-N [Co].[Mn].[Li] Chemical compound [Co].[Mn].[Li] NXPZICSHDHGMGT-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910021475 bohrium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000011329 calcined coke Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000010294 electrolyte impregnation Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910021473 hassium Inorganic materials 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000006051 mesophase pitch carbide Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229940057061 mevalonolactone Drugs 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- GHZRKQCHJFHJPX-UHFFFAOYSA-N oxacycloundecan-2-one Chemical compound O=C1CCCCCCCCCO1 GHZRKQCHJFHJPX-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910021481 rutherfordium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910021477 seaborgium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M2010/4292—Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 기존의 리튬 이온 전지 및 리튬 금속 이차전지에 비하여 개선된 용량 및 에너지 밀도를 나타낼 수 있고, 안전성과 수명 특성이 우수한 리튬 이차전지를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a lithium secondary battery that can exhibit improved capacity and energy density compared to existing lithium ion batteries and lithium metal secondary batteries, and has excellent safety and lifespan characteristics.
Description
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2019년 11월 07일자 한국 특허 출원 제10-2019-0141790호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0141790 dated November 7, 2019, and all contents disclosed in the document of the Korean Patent Application are included as part of this specification.
본 발명은 리튬 이차전지의 제조방법에 관한 것이다. The present invention relates to a method of manufacturing a lithium secondary battery.
1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 높아 각광을 받고 있다. 특히, 최근 전기 자동차(EV) 등의 수요가 증가함에 따라 높은 에너지 밀도를 갖는 리튬 이차전지의 필요성이 확대되고 있다. Lithium secondary batteries, developed in the early 1990s, are in the spotlight because they have a higher operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and lead sulfate batteries that use aqueous electrolyte solutions. In particular, as demand for electric vehicles (EVs) increases, the need for lithium secondary batteries with high energy density is increasing.
음극 활물질로 리튬 금속을 사용하는 리튬 금속 이차전지는 종래의 탄소계, 실리콘계 활물질을 사용하는 리튬 이온 전지와 비교하여 에너지 밀도를 크게 향상시킬 수 있어 지속적 연구가 이루어지고 있다. Lithium metal secondary batteries that use lithium metal as a negative electrode active material can significantly improve energy density compared to lithium-ion batteries that use conventional carbon-based or silicon-based active materials, so ongoing research is being conducted.
그러나 리튬 금속은 반응성이 높아 공기 중의 수분 및 산소와 쉽게 반응하므로 조립 공정이 까다롭고, 작동 중 리튬 금속의 용해 및 석출 반응이 일어나면서 리튬 금속이 수지상으로 성장하여 전지 단락을 일으키는 문제가 있다. However, lithium metal is highly reactive and easily reacts with moisture and oxygen in the air, making the assembly process difficult, and as dissolution and precipitation reactions of lithium metal occur during operation, the lithium metal grows into dendrites, causing a short circuit in the battery.
이에, 기존의 리튬 이온 전지와 비교하여 고용량을 가지면서도, 안전성 및 수명 특성이 향상된 리튬 이차전지를 개발하고자 하는 노력이 계속되고 있다.Accordingly, efforts are continuing to develop lithium secondary batteries that have higher capacity and improved safety and lifespan characteristics compared to existing lithium ion batteries.
본 발명은 기존의 리튬 이온 전지 및 리튬 금속 이차전지와 비교하여 보다 높은 에너지 밀도를 달성할 수 있고, 안전성 및 수명 특성이 더욱 우수한 리튬 이차전지를 제공하는 것을 목적으로 한다. The purpose of the present invention is to provide a lithium secondary battery that can achieve higher energy density and has better safety and lifespan characteristics compared to existing lithium ion batteries and lithium metal secondary batteries.
본 발명의 일 구현예에 따르면, 음극 집전체 상에 음극 활물질층이 코팅된 음극; 양극 집전체 상에 양극 활물질층이 코팅된 양극; 분리막; 및 전해질을 포함하는 전지를 조립하는 단계, 및According to one embodiment of the present invention, a negative electrode coated with a negative electrode active material layer on a negative electrode current collector; A positive electrode coated with a positive electrode active material layer on the positive electrode current collector; separation membrane; and assembling a battery containing an electrolyte, and
상기 전지를 충전하는 단계를 포함하는 리튬 이차전지의 제조방법으로서,A method of manufacturing a lithium secondary battery comprising the step of charging the battery,
상기 전지 조립 단계에서, 양극 로딩량에 대한 음극 로딩량 비(N/P ratio)는 0.01 내지 0.99이고,In the battery assembly step, the ratio of the negative electrode loading amount to the positive electrode loading amount (N/P ratio) is 0.01 to 0.99,
상기 전지 충전 단계에서 충전은 양극 로딩량만큼 이루어지는 것인,In the battery charging step, charging is performed by the amount of positive electrode loading,
리튬 이차전지의 제조방법이 제공된다.A method for manufacturing a lithium secondary battery is provided.
본 발명에 따르면 기존의 리튬 이온 전지 및 리튬 금속 이차전지에 비하여 개선된 용량 및 에너지 밀도를 나타낼 수 있고, 안전성과 수명 특성이 우수한 리튬 이차전지를 제조할 수 있다. According to the present invention, a lithium secondary battery can be manufactured that can exhibit improved capacity and energy density compared to existing lithium ion batteries and lithium metal secondary batteries, and has excellent safety and lifespan characteristics.
도 1은 본 발명의 리튬 이차전지의 제조방법에서 음극의 변화를 설명한 모식도이다.Figure 1 is a schematic diagram explaining changes in the negative electrode in the manufacturing method of the lithium secondary battery of the present invention.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise,” “comprise,” or “have” are intended to designate the presence of implemented features, steps, components, or a combination thereof, and are intended to indicate the presence of one or more other features or steps, It should be understood that the existence or addition possibility of components or combinations thereof is not excluded in advance.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can be subject to various changes and can take various forms, specific embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본 발명은 기존의 리튬 이온 전지 및 리튬 금속 이차전지에 비해 고에너지 밀도를 나타내며 안전성 및 수명특성이 우수한 리튬 이차전지의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a lithium secondary battery that exhibits high energy density and has excellent safety and lifespan characteristics compared to existing lithium ion batteries and lithium metal secondary batteries.
이에 본 발명의 일 구현예에 따르면,Accordingly, according to one embodiment of the present invention,
음극 집전체 상에 음극 활물질층이 코팅된 음극; 양극 집전체 상에 양극 활물질층이 코팅된 양극; 분리막; 및 전해질을 포함하는 전지를 조립하는 단계, 및A negative electrode coated with a negative electrode active material layer on a negative electrode current collector; A positive electrode coated with a positive electrode active material layer on the positive electrode current collector; separation membrane; and assembling a battery containing an electrolyte, and
상기 전지를 충전하는 단계를 포함하는 리튬 이차전지의 제조방법으로서,A method of manufacturing a lithium secondary battery comprising the step of charging the battery,
상기 전지 조립 단계에서, 양극 로딩량에 대한 음극 로딩량 비(N/P ratio)는 0.01 내지 0.99이고,In the battery assembly step, the ratio of the negative electrode loading amount to the positive electrode loading amount (N/P ratio) is 0.01 to 0.99,
상기 전지 충전 단계에서 충전은 양극 로딩량만큼 이루어지는 것인,In the battery charging step, charging is performed by the amount of positive electrode loading,
리튬 이차전지의 제조방법이 제공된다.A method for manufacturing a lithium secondary battery is provided.
기존의 리튬 이온 전지는 음극 활물질로서 리튬의 삽입/탈리가 가능한 인조흑연, 천연흑연, 하드카본 등의 탄소계 재료가 널리 적용되어 왔다. 특히 흑연은 구조적 안정성, 낮은 전자 화학 반응성, 우수한 리튬 이온 저장능력으로 인하여 상용 전지에 주로 활용되고 있으나, 이론 용량이 약 372 mAh/g으로, 고용량 전지에 적용하는 데는 한계가 있다. Existing lithium-ion batteries have widely used carbon-based materials such as artificial graphite, natural graphite, and hard carbon that allow insertion/desorption of lithium as anode active materials. In particular, graphite is mainly used in commercial batteries due to its structural stability, low electrochemical reactivity, and excellent lithium ion storage ability, but its theoretical capacity is about 372 mAh/g, which limits its application to high-capacity batteries.
이에, 고용량 음극 소재로서 리튬과 반응하여 합금을 형성할 수 있는 실리콘, 주석 등이 대체재로 연구되고 있으나, 이들은 리튬 이온이 삽입/탈리될 때 상당한 부피변화를 수반하는 문제가 있다. Accordingly, silicon, tin, etc., which can react with lithium to form an alloy, are being studied as replacement high-capacity anode materials, but these have the problem of accompanied by a significant volume change when lithium ions are inserted/desorbed.
한편, 이론적으로 가장 고용량을 달성할 수 있는 리튬 금속의 경우, 수분 및 산소와 반응성이 높고 무른 성질 때문에 취급이 어려워, 리튬 금속 전극 제조 시 공정성이 떨어지는 문제가 있다. 또, 집전체 및 리튬 금속의 박막으로 이루어지는 리튬 금속 전극은 전지 구동 시 리튬 도금(plating) 및 용출(dissolution) 과정에서 전극 표면의 전자 밀도 불균일화로 인하여 리튬 금속이 수지상으로 석출되는 현상이 일어날 수 있다. 이 경우, 수지상으로 석출된 리튬 금속(리튬 덴드라이트)은 활물질로 이용될 수 없고, 수지상 리튬이 계속해서 성장할 경우 전지 단락을 일으키는 문제가 있다.Meanwhile, in the case of lithium metal, which can theoretically achieve the highest capacity, it is highly reactive with moisture and oxygen and is difficult to handle due to its brittle nature, resulting in poor fairness in the manufacture of lithium metal electrodes. In addition, lithium metal electrodes made of a current collector and a thin film of lithium metal may cause dendritic precipitation of lithium metal due to uneven electron density on the electrode surface during the lithium plating and dissolution process during battery operation. . In this case, the lithium metal (lithium dendrite) precipitated in dendrites cannot be used as an active material, and if dendritic lithium continues to grow, there is a problem of causing a short circuit in the battery.
이에, 본 발명에서는 리튬 금속을 제외한, 통상의 음극 활물질을 포함하는 음극을 사용하여 전지를 조립하되, 양극 로딩량에 대한 음극 로딩량의 비, 즉, N/P ratio를 통상의 전지보다 낮게 설정하여 조립한 다음, 이를 음극 로딩량에 비해 높은 양극 로딩량만큼 충전함으로써 음극 활물질의 인터칼레이션(intercalation) 및 리튬 금속의 도금(plating)이 연속적으로 발생하도록 하여 리튬 이차전지를 제조한다. 이렇게 제조된 리튬 이차전지는 전지 조립 시 기 포함되어 있던 음극 활물질 및 충전으로 인해 도금된 리튬 금속이 모두 음극의 활물질로 활용되므로 기존의 리튬 이온 전지 및 리튬 금속 이차전지와 비교하여 고용량을 가지면서도, 현저히 향상된 안전성 및 수명 특성을 나타낸다.Therefore, in the present invention, a battery is assembled using a negative electrode containing a typical negative electrode active material excluding lithium metal, but the ratio of the negative electrode loading amount to the positive electrode loading amount, that is, the N/P ratio, is set lower than that of a normal battery. After assembling it, it is charged with a positive electrode loading amount that is higher than the negative electrode loading amount, so that intercalation of the negative electrode active material and plating of lithium metal occur continuously to manufacture a lithium secondary battery. The lithium secondary battery manufactured in this way uses both the negative electrode active material included during battery assembly and the lithium metal plated during charging as the negative electrode active material, so it has high capacity compared to existing lithium-ion batteries and lithium metal secondary batteries. It exhibits significantly improved safety and longevity characteristics.
즉, 본 발명의 제조방법에 따르면, 최종 제조되는 리튬 이차전지의 음극은 집전체 상에 코팅된 음극 활물질층 및 충전 과정에서 상기 음극 활물질층 상에 형성된 리튬 금속층을 포함하는 구조이나, 전지의 조립 단계에서는 리튬 금속을 별도로 취급하지 않으므로 수분 및 산소의 차단이 불필요하여 조립 공정이 간편하다. 또, 리튬 금속이 도금될 때, 도금 표면인 음극 활물질층의 비표면적이 매우 넓기 때문에, 리튬 금속 박막과 비교하여 전류밀도 및 과전압이 현저히 낮다. 따라서, 리튬 금속이 수지상으로 성장하지 않고 음극 활물질층 표면에 균일하게 도금될 수 있으며, 이에 따라 도금된 리튬 금속이 활물질로 사용될 수 있다.That is, according to the manufacturing method of the present invention, the negative electrode of the finally manufactured lithium secondary battery has a structure including a negative electrode active material layer coated on a current collector and a lithium metal layer formed on the negative electrode active material layer during the charging process, but assembly of the battery Since lithium metal is not handled separately at this stage, blocking moisture and oxygen is not necessary, making the assembly process simple. Additionally, when lithium metal is plated, the specific surface area of the anode active material layer, which is the plating surface, is very large, so the current density and overvoltage are significantly lower than those of a lithium metal thin film. Therefore, lithium metal can be uniformly plated on the surface of the negative electrode active material layer without growing in a dendritic form, and thus the plated lithium metal can be used as an active material.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 제조방법에서는 먼저, 음극 집전체 상에 탄소계 음극 활물질을 포함하는 음극 활물질층이 코팅된 음극; 양극 집전체 상에 양극 활물질층이 코팅된 양극; 분리막; 및 전해질을 포함하는 전지를 조립한다. 이때 양극 로딩량에 대한 음극 로딩량 비(N/P ratio)는 0.01 내지 0.99 범위를 만족하도록 한다.In the manufacturing method of the present invention, first, a negative electrode is coated with a negative electrode active material layer containing a carbon-based negative electrode active material on a negative electrode current collector; A positive electrode coated with a positive electrode active material layer on the positive electrode current collector; separation membrane; and assemble a battery containing the electrolyte. At this time, the ratio of the cathode loading amount to the anode loading amount (N/P ratio) is set to satisfy the range of 0.01 to 0.99.
상기 양극 및 음극 집전체로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않는다. The positive and negative current collectors are not particularly limited as long as they have conductivity without causing chemical changes in the battery.
예를 들어, 양극 집전체로는 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. For example, the positive electrode current collector may be stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface treated with carbon, nickel, titanium, silver, etc.
또, 음극 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.In addition, as the negative electrode current collector, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used. there is.
상기 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. 상기 집전체의 두께는 3 내지 500 ㎛의 범위일 수 있으나, 이에 제한되지 않는다.The current collector can take various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics. The thickness of the current collector may range from 3 to 500 ㎛, but is not limited thereto.
상기 음극 활물질층은 음극 활물질, 바인더, 및 선택적으로 도전재를 포함한다. The negative electrode active material layer includes a negative electrode active material, a binder, and optionally a conductive material.
상기 음극 활물질로는, 탄소계 활물질, 리튬 금속의 합금, 및/또는 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질이 사용될 수 있다. 단, 리튬 금속은 제외된다. As the negative electrode active material, a carbon-based active material, an alloy of lithium metal, and/or a material that can react with lithium ions to reversibly form a lithium-containing compound may be used. However, lithium metal is excluded.
탄소계 활물질로는 결정질 탄소, 비정질 탄소, 또는 이들의 조합을 사용할 수 있다. 상기 결정질 탄소의 예로는 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 이러한 흑연은 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 형태일 수 있다. 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.The carbon-based active material may be crystalline carbon, amorphous carbon, or a combination thereof. Examples of the crystalline carbon include graphite such as natural graphite or artificial graphite, and such graphite may be amorphous, plate-shaped, flake-shaped, spherical, or fibrous. Examples of the amorphous carbon include soft carbon (low-temperature calcined carbon) or hard carbon, mesophase pitch carbide, calcined coke, etc.
리튬 금속의 합금으로는, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al), 게르마늄(Ge) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금을 들 수 있다.Alloys of lithium metal include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), and calcium (Ca). ), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), germanium (Ge), and tin (Sn).
리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질의 예로는, 실리콘계 활물질 및 주석계 활물질을 들 수 있다. 구체적으로, Si, SiOx(0 < x < 2), Si-C 복합체, Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Si은 아님), Sn, SnO2, Sn-C 복합체, Sn-R(상기 R은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Sn은 아님) 등을 들 수 있다. 상기 Q 및 R의 구체적인 원소로는, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 또는 이들의 조합을 들 수 있다.Examples of materials that can react with lithium ions to reversibly form lithium-containing compounds include silicon-based active materials and tin-based active materials. Specifically, Si, SiO , but not Si), Sn, SnO 2 , Sn-C composite, Sn-R (where R is an alkali metal, an alkaline earth metal, a Group 13 to Group 16 element, a transition metal, a rare earth element, or a combination thereof, and Sn is (not), etc. Specific elements of Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, or a combination thereof may be mentioned.
또, 상기 음극 활물질로 리튬 티타늄 산화물(LTO)를 사용할 수 있다. 리튬 티타늄 산화물은 LiaTibO4(0.5 ≤ a ≤ 3, 1 ≤ b ≤2.5)로 표시될 수 있으며, 구체적으로 Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4, Li1.14Ti1.71O4- 등일 수 있으나, 이에 제한되는 것은 아니다.Additionally, lithium titanium oxide (LTO) can be used as the negative electrode active material. Lithium titanium oxide may be expressed as Li a Ti b O 4 (0.5 ≤ a ≤ 3, 1 ≤ b ≤2.5), specifically Li 0.8 Ti 2.2 O 4 , Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , It may be Li 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O 4- , etc., but is not limited thereto.
상술한 음극 활물질은 음극 활물질층(즉, 리튬 금속층이 형성되기 전, 전지 조립 단계의 음극 활물질층으로서, 이하 동일함) 총 중량의 70 내지 99.5 중량%, 또는 80 내지 99 중량%로 포함되는 것이 바람직하다. 만일 음극 활물질 함량이 70 중량% 미만이면 에너지밀도에 불리한 문제가 있을 수 있고, 99.5 중량%를 초과하면 바인더량이 부족해서 활물질이 벗겨지는 문제가 있을 수 있다. 단, 리튬 금속의 합금의 경우는 바인더 없이 포일(foil) 형태로 집전체 상에 전해 도금하여 사용될 수 있으므로, 100 중량%로 사용될 수 있다.The above-mentioned negative electrode active material is contained in 70 to 99.5% by weight, or 80 to 99% by weight of the total weight of the negative electrode active material layer (i.e., the negative electrode active material layer in the battery assembly stage before the lithium metal layer is formed, the same applies hereinafter). desirable. If the negative electrode active material content is less than 70% by weight, there may be a problem with energy density, and if it exceeds 99.5% by weight, there may be a problem with the active material peeling off due to insufficient binder content. However, in the case of lithium metal alloy, it can be used by electrolytic plating on the current collector in the form of a foil without a binder, so it can be used at 100% by weight.
상기 바인더는 활물질 입자들을 서로 잘 부착시키고, 또한 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder serves to adhere the active material particles to each other and also to adhere the active material to the current collector. Representative examples include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, and carboxylated poly. Vinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene. -Butadiene rubber, epoxy resin, nylon, etc. can be used, but are not limited to these.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다. 예를 들어, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.The conductive material is used to provide conductivity to the electrode, and any electronically conductive material can be used as long as it does not cause chemical changes in the battery being constructed. For example, carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, and carbon fiber; Metallic substances such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
상기 양극 활물질층은 양극 활물질, 바인더, 및 선택적으로 도전재를 포함하며, 이때 바인더 및 도전재는 상술한 바인더 및 도전재가 사용될 수 있다. The positive electrode active material layer includes a positive electrode active material, a binder, and optionally a conductive material. In this case, the binder and conductive material described above may be used.
상기 양극 활물질로는 리튬의 가역적인 삽입 및 탈리가 가능한 화합물로서 당 업계에 알려진 화합물이 제한 없이 사용될 수 있다. 구체적으로 상기 양극 활물질은 코발트, 망간, 니켈, 또는 알루미늄과 같은 1종 이상의 금속과, 리튬을 포함하는, 리튬 복합 금속 산화물일 수 있다. As the positive electrode active material, any compound capable of reversible insertion and desorption of lithium and known in the art may be used without limitation. Specifically, the positive electrode active material may be a lithium complex metal oxide containing one or more metals such as cobalt, manganese, nickel, or aluminum and lithium.
상기 리튬 복합 금속 산화물로는 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-Z1CoZ1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되는 1종 이상이고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자 분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. The lithium composite metal oxide includes lithium-manganese-based oxide (e.g., LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt-based oxide (e.g., LiCoO 2 , etc.), and lithium-nickel-based oxide (e.g. For example, LiNiO 2, etc.), lithium-nickel-manganese oxide (for example, LiNi 1-Y Mn Y O 2 (where, 0<Y<1), LiMn 2-z Ni z O 4 (where, 0<Z<2), etc.), lithium-nickel-cobalt-based oxide (for example, LiNi 1-Y1 Co Y1 O 2 (where 0<Y1<1), etc.), lithium-manganese-cobalt-based oxide ( For example, LiCo 1-Y2 Mn Y2 O 2 (where 0<Y2<1), LiMn 2-Z1 Co Z1 O 4 (where 0<Z1<2), etc.), lithium-nickel-manganese- Cobalt-based oxide (for example, Li(Ni p Co q Mn r1 )O 2 (where 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) or Li(Ni p1 Co q1 Mn r2 )O 4 (where 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2), etc.), or lithium-nickel-cobalt -Transition metal (M) oxide (for example, Li(Ni p2 Co q2 Mn r3 M S2 )O 2 (where M is from the group consisting of Al, Fe, V, Cr, Ti, Ta, Mg and Mo) One or more types are selected, and p2, q2, r3 and s2 are independent atomic fractions of elements, respectively, 0 < p2 < 1, 0 < q2 < 1, 0 < r3 < 1, 0 < s2 < 1, p2+ q2+r3+s2=1), etc.), and any one or two or more of these compounds may be included.
또, 전지 조립 후 충전 시 음극에 충분한 양의 리튬 이온을 공급할 수 있도록, Ni-rich 양극재 (NCM811, NCM911) 또는 Li-rich 양극재 (Over -Lithiated layered (1-x)LiMO2, 여기서, 0<x<1)를 사용할 수 있으며, 구체적으로 Li[Li0.2Mn0.54Ni0.13Co0.13]O2를 사용하는 것이 바람직하다. In addition, in order to supply a sufficient amount of lithium ions to the cathode when charging after assembling the battery, Ni-rich anode material (NCM811, NCM911) or Li-rich cathode material (Over -Lithiated layered (1-x)LiMO 2 , where, 0<x<1) can be used, and specifically, it is preferable to use Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 .
또, 상기 양극 활물질층의 단위 면적당 로딩량은 4 내지 15 mAh/cm2, 5 내지 10 mAh/cm2, 또는 5 내지 8 mAh/cm2 인 것이 바람직하다. 상술한 로딩량 범위를 만족할 때, 전지의 충전 단계에서 양극 활물질로부터 충분한 양의 리튬 이온이 음극에 공급될 수 있다. In addition, the loading amount per unit area of the positive active material layer is preferably 4 to 15 mAh/cm 2 , 5 to 10 mAh/cm 2 , or 5 to 8 mAh/cm 2 . When the above-mentioned loading amount range is satisfied, a sufficient amount of lithium ions can be supplied from the positive electrode active material to the negative electrode during the charging stage of the battery.
한편, 본 발명의 양극 활물질층은 음극에 충분한 양의 리튬 이온을 공급하기 위하여 비가역 첨가제를 더 포함할 수 있다. 상기 비가역 첨가제는 전지의 최초 충전 시 리튬 이온이 탈리된 다음, 비가역 상, 즉, 다시 탈리된 리튬 이온을 흡장하지 않는 물질을 의미한다. Meanwhile, the positive electrode active material layer of the present invention may further include an irreversible additive in order to supply a sufficient amount of lithium ions to the negative electrode. The irreversible additive refers to a material that does not occlude the irreversible phase, that is, the desorbed lithium ions again, after the lithium ions are desorbed during the initial charging of the battery.
이때, 비가역 상으로 전환된 비가역 첨가제에 리튬 이온이 남아 있을 수 있는데, 이와 같이 남아 있는 리튬 이온은 흡장 및 방출이 가역적으로 일어나지만, 최초 충전 시 방출된 리튬 이온은 이후 방전 시 다시 비가역 보상 첨가제로 흡장되지 않으며, 음극에 도금된다. At this time, lithium ions may remain in the irreversible additive that has been converted to the irreversible phase. In this way, the remaining lithium ions are reversibly absorbed and released, but the lithium ions released during the initial charge are returned to the irreversible compensation additive during subsequent discharge. It is not absorbed and is plated on the cathode.
상기 비가역 첨가제는 상술한 효과를 갖는 화합물이면 특별히 제한되는 것은 아니나, 구체적으로 Li7/3Ti5/3O4, Li2.3Mo6S7.7, Li2NiO2, Li2CuO2, Li6CoO4, Li5FeO4, Li6MnO4, Li2MoO3, Li3N, Li2O, LiOH 및 Li2CO3로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 이 중, 안정적인 수명 성능 및 에너지 밀도 측면에서 바람직하기로 Li2NiO2, Li6CoO4, 및 Li3N으로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있다.The irreversible additive is not particularly limited as long as it is a compound having the above-mentioned effects, and specifically includes Li 7/3 Ti 5/3 O 4 , Li 2.3 Mo 6 S 7.7 , Li 2 NiO 2 , Li 2 CuO 2, Li 6 CoO 4 , Li 5 FeO 4 , Li 6 MnO 4 , Li 2 MoO 3 , Li 3 N, Li 2 O, LiOH and Li 2 CO 3 selected from the group consisting of There may be more than one type. Among these, one or more types selected from the group consisting of Li 2 NiO 2 , Li 6 CoO 4 , and Li 3 N may be preferably used in terms of stable life performance and energy density.
상기 비가역 첨가제는 양극 활물질층 총 중량의 10 중량% 이하로 포함되는 것이 바람직하다. 비가역 첨가제가 양극 활물질층 총 중량의 10 중량%를 초과하면 양극 슬러리 제조 시 겔화(gelation)되는 문제가 발생할 수 있다. 비가역 첨가제는 음극에 보다 많은 양의 리튬 이온을 공급하기 위하여 선택적으로 사용되는 물질인 바, 하한값에는 제한이 없다.The irreversible additive is preferably included in an amount of 10% by weight or less of the total weight of the positive electrode active material layer. If the irreversible additive exceeds 10% by weight of the total weight of the positive electrode active material layer, gelation problems may occur when manufacturing the positive electrode slurry. The irreversible additive is a material that is selectively used to supply a larger amount of lithium ions to the negative electrode, and there is no limit to the lower limit.
상기 음극 및 양극을 제조하는 방법은 특별히 제한되지 않는다. 예를 들어, 활물질, 바인더, 선택적으로, 도전재 및/또는 비가역 첨가제를 유기 용매 상에서 혼합하여 제조한 활물질 슬러리를 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. The method of manufacturing the cathode and anode is not particularly limited. For example, an active material slurry prepared by mixing an active material, a binder, and optionally a conductive material and/or an irreversible additive in an organic solvent is applied and dried on a current collector, and optionally compression molded on the current collector to improve electrode density. It can be manufactured.
상기 유기 용매로는 활물질, 바인더, 도전재, 비가역 첨가제를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 N-메틸피롤리돈, 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있으나 이에 제한되는 것은 아니다.The organic solvent is preferably one that can uniformly disperse the active material, binder, conductive material, and irreversible additive and that evaporates easily. Specific examples include, but are not limited to, N-methylpyrrolidone, acetonitrile, methanol, ethanol, tetrahydrofuran, water, and isopropyl alcohol.
한편, 상기 음극 및 양극의 로딩량은, N/P ratio(=음극 로딩량/양극 로딩량) 가 0.01 내지 0.99 범위이다. 이와 같이 최초 전극 조립 시 음극 로딩량을 양극 로딩량에 비해 현저히 낮게 할 경우, 전지 충전 시 양극으로부터 리튬 이온이 공급되어 음극 활물질층 상에 도금될 수 있으며, 이에 따라 음극 활물질층 상에 리튬 금속층이 생성되어 고용량 음극을 얻을 수 있다.Meanwhile, the loading amount of the cathode and anode has an N/P ratio (=cathode loading amount/anode loading amount) in the range of 0.01 to 0.99. In this way, if the negative electrode loading amount is significantly lower than the positive electrode loading amount during the initial electrode assembly, lithium ions can be supplied from the positive electrode and plated on the negative electrode active material layer when the battery is charged. As a result, a lithium metal layer is formed on the negative electrode active material layer. It is possible to obtain a high-capacity cathode.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다. 즉, 전해질의 이온 이동에 대하여 저저항이면서 전해액 함침 능력이 우수한 것이 사용될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. The separator separates the cathode from the anode and provides a passage for lithium ions to move, and any type commonly used in lithium batteries can be used. That is, one that has low resistance to ion movement in the electrolyte and has excellent electrolyte impregnation ability can be used. For example, it is selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, and may be in the form of non-woven or woven fabric.
예를 들어, 폴리에틸렌, 폴리프로필렌 등과 같은 폴리올레핀계 고분자 분리막이나, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅층을 포함하는 분리막이 사용될 수도 있으며, 이러한 분리막은 단층 또는 다층 구조로 사용될 수 있다. 일 실시예에서, 상기 분리막으로는 폴리올레핀계 고분자 기재의 양면에 세라믹 입자와 이온성 바인더 고분자를 함유하는 세라믹 코팅재를 코팅하여 제조한 분리막이 사용될 수 있다. For example, a polyolefin-based polymer separator such as polyethylene or polypropylene, or a separator containing a coating layer containing a ceramic component or polymer material to ensure heat resistance or mechanical strength may be used. Such a separator may be used in a single-layer or multi-layer structure. You can. In one embodiment, the separator may be a separator manufactured by coating both sides of a polyolefin-based polymer substrate with a ceramic coating material containing ceramic particles and an ionic binder polymer.
상기 전해질은 통상 리튬 이차전지에 사용되는, 리튬염 및 비수계 유기용매를 포함하는 전해액, 유기 고체 전해질, 무기 고체 전해질 등이 사용 가능하다.The electrolyte may be an electrolyte solution containing lithium salt and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, etc., which are commonly used in lithium secondary batteries.
상기 전해액은 비수성 유기 용매와 리튬염을 포함한다. The electrolyte solution contains a non-aqueous organic solvent and lithium salt.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다. The non-aqueous organic solvent may be carbonate-based, ester-based, ether-based, ketone-based, alcohol-based or aprotic solvent. The carbonate-based solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), etc. can be used, and the ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, and methyl propionate. , ethyl propionate, γ-butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, etc. can be used. The ether-based solvent may be dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc., and the ketone-based solvent may include cyclohexanone. there is. In addition, the alcohol-based solvent may be ethyl alcohol, isopropyl alcohol, etc., and the aprotic solvent may be R-CN (R is a C2 to C20 straight-chain, branched or ring-structured hydrocarbon group, of which Nitriles such as (may include an aromatic ring or ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, etc. may be used.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.The non-aqueous organic solvents can be used alone or in a mixture of one or more, and when used in a mixture of more than one, the mixing ratio can be appropriately adjusted according to the desired battery performance, which is widely understood by those working in the field. It can be.
또한, 상기 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. In addition, in the case of the carbonate-based solvent, it is recommended to use a mixture of cyclic carbonate and chain carbonate. In this case, excellent electrolyte performance can be obtained by mixing cyclic carbonate and chain carbonate in a volume ratio of about 1:1 to about 1:9.
상기 비수성 유기용매는 상기 카보네이트계 용매에 상기 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 상기 방향족 탄화수소계 유기용매는 약 1:1 내지 약 30:1의 부피비로 혼합될 수 있다.The non-aqueous organic solvent may further include the aromatic hydrocarbon-based organic solvent in addition to the carbonate-based solvent. At this time, the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed at a volume ratio of about 1:1 to about 30:1.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.The non-aqueous electrolyte may further include vinylene carbonate or ethylene carbonate-based compounds to improve battery life.
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 비닐렌 에틸렌 카보네이트 등을 들 수 있다. 상기 비닐렌 카보네이트 또는 상기 에틸렌 카보네이트계 화합물을 더욱 사용하는 경우 그 사용량을 적절하게 조절하여 수명을 향상시킬 수 있다.Representative examples of the ethylene carbonate-based compounds include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, and vinylene. Ethylene carbonate, etc. can be mentioned. When the vinylene carbonate or the ethylene carbonate-based compound is further used, the lifespan can be improved by appropriately adjusting the amount used.
상기 리튬염은 상기 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 상기 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, LiI, LiB(C2O4)2(리튬 비스옥살레이토 보레이트(lithium bis(oxalato) borate; LiBOB) 또는 이들의 조합을 들 수 있으며, 이들을 지지(supporting) 전해염으로 포함한다. 상기 리튬염의 농도는 0.1 내지 2.0 M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt is dissolved in the non-aqueous organic solvent and acts as a source of lithium ions in the battery, enabling the operation of a basic lithium secondary battery and serving as a substance that promotes the movement of lithium ions between the positive and negative electrodes. am. Representative examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y +1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, LiB(C 2 O 4 ) 2 (lithium bis(oxalato) borate (LiBOB), or combinations thereof. It can be used as a supporting electrolytic salt. The concentration of the lithium salt is preferably used within the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity. It can exhibit excellent electrolyte performance and lithium ions can move effectively.
상기 전해질 중에서도 리튬금속전지에 적합한 전해질로 알려져 있는 FEC(Fluoroehtylene carbonate)를 다량 함유하는 전해질, 고농도 전해질(High concentrated electrolyte), TTE(1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether), OTE(1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether)와 같은 불화에테르 희석용매가 함유되어 있는 전해질의 경우, 리튬 도금층과의 전해액 부반응 억제가 극대화 되어 본 실험에 가장 바람직한 예가 될 수 있다. 즉, 전해액 부반응을 억제하기 위한 전해질이 본 발명에 바람직하게 사용될 수 있다.Among the above electrolytes, electrolyte containing a large amount of FEC (Fluoroehtylene carbonate), which is known as an electrolyte suitable for lithium metal batteries, high concentrated electrolyte, TTE (1,1,2,2-tetrafluoroethyl-2,2,3,3) In the case of electrolytes containing fluorinated ether dilution solvents such as -tetrafluoropropyl ether) and OTE (1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether), suppression of electrolyte side reactions with the lithium plating layer is maximized. This may be the most desirable example for this experiment. That is, an electrolyte for suppressing electrolyte side reactions can be preferably used in the present invention.
또한 상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이차성 해리기를 포함하는 중합체 등이 사용될 수 있다.In addition, the organic solid electrolyte includes, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, and polyvinylidene fluoride. , polymers containing secondary dissociation groups, etc. may be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 may be used.
리튬 이차전지를 제조하는 방법은 특별히 제한되지 않으며, 일례로 상기 양극, 분리막, 및 음극을 순차로 적층시켜 전극 조립체를 제조하고, 이를 전지 케이스에 넣은 다음, 케이스의 상부에 전해액을 주입하고, 캡 플레이트 및 가스켓으로 밀봉하여 제조될 수 있다. 전해질로 고체 전해질을 포함하는 경우, 상기 양극 및 음극 사이에는 분리막을 대신하여 고체 전해질이 위치할 수 있다.The method of manufacturing a lithium secondary battery is not particularly limited. For example, an electrode assembly is manufactured by sequentially stacking the positive electrode, separator, and negative electrode, placed in a battery case, and then injecting an electrolyte into the upper part of the case and capping the battery. It can be manufactured by sealing with a plate and gasket. When a solid electrolyte is included as the electrolyte, a solid electrolyte may be positioned between the anode and the cathode instead of a separator.
다음으로, 상기와 같이 조립된 전지에 대해, 음극 로딩보다 높게 설계된 양극 로딩만큼 과충전을 진행하여, 최종 리튬 이차전지를 제조한다. Next, the battery assembled as above is overcharged by an anode loading designed to be higher than the anode loading, to manufacture a final lithium secondary battery.
도 1은 본 발명의 리튬 이차전지의 제조방법에서 음극의 변화 과정을 간략히 설명한 모식도이다. Figure 1 is a schematic diagram briefly explaining the change process of the negative electrode in the manufacturing method of the lithium secondary battery of the present invention.
최초 전지 조립 시 음극은 음극 집전체(10) 및 음극 활물질층(21)을 포함한다. 이후 조립된 전지를 과충전하면, 양극 활물질층에서 탈리된 리튬은 먼저 음극 활물질층에 포함된 활물질에 인터칼레이션 되며, 인터칼레이션이 모두 완료된 후에는 음극 활물질층 내의 공극 및 표면에 도금된다. 상기 음극 활물질층은 비표면적이 매우 넓어 전류밀도가 낮고, 리튬 도금 반응에 대한 과전압이 낮으므로, 리튬 금속의 도금 과정에서 리튬 금속이 수지상으로 성장하지 않고, 균일한 도금이 일어날 수 있다. 결과적으로, 도금된 리튬 금속은 제 2 음극 활물질로서 역할 할 수 있게 된다. When initially assembling a battery, the negative electrode includes a negative electrode current collector 10 and a negative electrode active material layer 21. When the assembled battery is overcharged, the lithium desorbed from the positive electrode active material layer is first intercalated with the active material contained in the negative electrode active material layer, and after all intercalation is completed, it is plated on the pores and surfaces within the negative electrode active material layer. The negative active material layer has a very large specific surface area, low current density, and low overvoltage for lithium plating reaction, so lithium metal does not grow into dendrites during the lithium metal plating process and uniform plating can occur. As a result, the plated lithium metal can serve as a second negative electrode active material.
상기 과충전 단계가 완료되어 최종적으로 제조된 리튬 이차전지의 음극(100)은 집전체(10), 리튬이 인터칼레이션 된 음극 활물질층(22) 및 리튬 금속층(23)을 포함하며, 상기 음극 활물질층(22) 및 리튬 금속층(23)에 포함된 음극 활물질과 리튬 금속이 모두 음극의 활물질로 활용될 수 있다.The negative electrode 100 of the lithium secondary battery finally manufactured after completing the overcharge step includes a current collector 10, a negative electrode active material layer 22 intercalated with lithium, and a lithium metal layer 23, and the negative electrode active material Both the negative electrode active material and lithium metal contained in the layer 22 and the lithium metal layer 23 can be used as the active material of the negative electrode.
상기 과충전 단계는 1회의 충전으로 수행될 수 있고, 또는 2회 이상의 연속하는 충전에 의하여 수행될 수 있다. 충전법은 정전류-정전압 모드(CC-CV mode), 정전류 모드(CC mode), 정전압 모드(CV mode), 정전력 모드(CP mode) 충전 등 다양한 충전법을 사용할 수 있으며, 특별히 제한되지 않는다.The overcharging step may be performed in one charge, or may be performed in two or more consecutive charges. Various charging methods can be used, such as constant current-constant voltage mode (CC-CV mode), constant current mode (CC mode), constant voltage mode (CV mode), and constant power mode (CP mode) charging, and are not particularly limited.
상기 과충전 단계를 1회의 충전으로 수행할 경우, 상기 음극 활물질의 충전(리튬 인터칼레이션) 및 리튬 금속의 도금은 연속적으로 일어난다. 충전법은 상술한 바와 같은 다양한 충전법 중 적절한 방법을 택할 수 있다. 단, 음극보다 높게 설계된 양극 용량만큼 충전하여야, 음극에 과충전이 진행되어 음극 활물질 충전 후 리튬 도금층이 생성될 수 있다. When the overcharging step is performed in one charge, charging of the negative electrode active material (lithium intercalation) and plating of lithium metal occur continuously. The charging method may be an appropriate method selected from among the various charging methods described above. However, the positive electrode capacity must be charged to be higher than the negative electrode capacity, which may cause overcharging of the negative electrode and create a lithium plating layer after charging the negative electrode active material.
상기 과충전 단계를 2회의 연속 충전으로 수행할 경우, 음극 활물질층에 포함된 활물질의 1차 충전이 일어날 정도로 1차 충전한 후, 연속하여 리튬 금속이 도금될 수 있도록 2차 충전을 수행할 수 있다. 이때 1회 충전 및 2회 충전의 조건은 각 단계의 특성을 고려하여 서로 다르게 설정할 수 있다. When the overcharging step is performed in two consecutive charges, the first charge is performed enough to cause the first charge of the active material included in the negative electrode active material layer, and then the second charge can be performed so that lithium metal can be continuously plated. . At this time, the conditions for one-time charging and two-time charging can be set differently considering the characteristics of each stage.
구체적으로, 음극 활물질층의 최초 로딩량만큼 1차 충전을 진행하고, 2차 충전 시에는 남은 양극 로딩량만큼 충전하는 방식으로 2회의 연속 충전을 수행할 수 있다. 이때, 리튬 금속이 도금되는 단계에서 고율(high rate) 충전을 수행하면 전해질 부반응이 심해져 내부 저항이 커질 수 있으므로, 1차 충전시보다 2차 충전시의 전류를 낮게 하는 것이 바람직하다. Specifically, two consecutive charges can be performed by performing primary charging equal to the initial loading amount of the negative electrode active material layer, and charging equal to the remaining positive loading amount during secondary charging. At this time, if high rate charging is performed during the lithium metal plating step, electrolyte side reactions may become more severe and internal resistance may increase, so it is desirable to lower the current during secondary charging than during primary charging.
상기 과충전 단계 이후 생성된 리튬 금속층의 두께는 음극 활물질층 두께의 1 내지 5000 % 범위, 또는 1 내지 200 % 범위일 수 있다. 이와 같은 범위를 만족함에 따라 고용량 및 장수명 구현이 가능하다. The thickness of the lithium metal layer generated after the overcharging step may be in the range of 1 to 5000% of the thickness of the anode active material layer, or in the range of 1 to 200%. By satisfying this range, high capacity and long lifespan are possible.
이하, 본 발명의 바람직한 실시예, 이에 대비되는 비교예, 이들을 평가하는 실험예를 기재한다. 그러나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.Hereinafter, preferred examples of the present invention, comparative examples, and experimental examples for evaluating them will be described. However, the above examples are merely illustrative of the present description, and it is clear to those skilled in the art that various changes and modifications are possible within the scope and technical spirit of the present description, and it is natural that such changes and modifications fall within the scope of the appended patent claims. will be.
<실시예 1><Example 1>
양극의 제조Manufacturing of anode
양극 활물질로서 LiNi0.6Co0.2Mn0.2O2을 사용하고, 도전재(carbon black), 바인더(PVdF)를 각각 94:3:3 의 중량비로 NMP(N-methyl-2-pyrrolidone)에 넣고 믹싱하여 양극 합제를 제조하였다.LiNi 0.6 Co 0.2 Mn 0.2 O 2 was used as the positive electrode active material, and the conductive material (carbon black) and binder (PVdF) were added to NMP (N-methyl-2-pyrrolidone) at a weight ratio of 94:3:3, respectively, and mixed. A positive electrode mixture was prepared.
제조된 양극 합제를 20 ㎛ 두께의 알루미늄 호일에 4.5mAh/cm2의 로딩량으로 코팅한 후 압연 및 건조하여 양극을 제조하였다.The prepared positive electrode mixture was coated on a 20 ㎛ thick aluminum foil at a loading amount of 4.5 mAh/cm 2 and then rolled and dried to prepare a positive electrode.
음극의 제조Preparation of cathode
음극으로는 인조 흑연을 사용하고, 도전재(carbon black), 바인더(PVdF)를 95 : 3 : 2의 중량비로 NMP(N-methyl-2-pyrrolidone)에 넣고 믹싱하여 음극 합제를 제조하였다. Artificial graphite was used as the cathode, and a conductive material (carbon black) and binder (PVdF) were added to NMP (N-methyl-2-pyrrolidone) at a weight ratio of 95:3:2 and mixed to prepare a cathode mixture.
제조된 음극 합제를 20 ㎛ 두께의 구리 호일에 3.0mAh/cm2으로 코팅한 후 압연 및 건조하여 음극을 제조하였다.The prepared negative electrode mixture was coated on 20 ㎛ thick copper foil at 3.0 mAh/cm 2 and then rolled and dried to prepare a negative electrode.
이차전지의 제조Manufacturing of secondary batteries
상기 음극과 양극 사이에 분리막(DB307B, BA1 SRS 조성, 두께: 15 ㎛, 원단 7㎛, SRS 한 면당 4㎛ 두께로 도포 총 8㎛) 을 개재하고 1kgf/mm 선압의 압력으로 라미네이션하여 전극조립체를 제조한 후, 상기 전극조립체를 파우치형 전지케이스에 수납하고, 프로필렌 카보네이트와 디메틸 카보네이트가 부피비를 기준으로 2:8로 혼합되어 있고, 리튬염으로 3.8 M의 LiFSI를 포함하고 있는 비수 전해액을 첨가하여 파우치형 리튬 이차전지를 제조하였다.A separator (DB307B, BA1 SRS composition, thickness: 15 ㎛, fabric 7 ㎛, SRS applied at a thickness of 4 ㎛ per side, total of 8 ㎛) was interposed between the cathode and the anode, and laminated at a linear pressure of 1 kgf/mm to form an electrode assembly. After manufacturing, the electrode assembly is stored in a pouch-type battery case, and propylene carbonate and dimethyl carbonate are mixed in a 2:8 ratio based on the volume ratio, and a non-aqueous electrolyte containing 3.8 M of LiFSI as a lithium salt is added. A pouch-type lithium secondary battery was manufactured.
충전 과정Charging process
상기에서 제조된 리튬 이차전지를 0.2C로 양극 로딩량 만큼인 4.5mAh/cm2만큼 충전하였다. The lithium secondary battery prepared above was charged at 0.2C to 4.5 mAh/cm 2 , which is equivalent to the positive electrode loading amount.
<실시예 2> <Example 2 >
상기 실시예 1의 충전 과정에서, 제조된 리튬 이차전지를 0.2C로 음극 로딩량 만큼인 3mAh/cm2 충전하고, 다시 0.1C로 나머지 1.5mAh/cm2만큼 충전하는 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.In the charging process of Example 1, the manufactured lithium secondary battery was charged at 0.2C to 3 mAh/cm 2 , which is equivalent to the negative electrode loading, and then again at 0.1 C for the remaining 1.5 mAh/cm 2 . A lithium secondary battery was manufactured in the same manner as above.
<실시예 3><Example 3>
상기 실시예 1의 양극 제조시, 양극 활물질로서 LiNi0.6Co0.2Mn0.2O2을 사용하고, 비가역 첨가제(Li2NiO2), 도전재(carbon black), 바인더(PVdF)를 각각 88: 2: 5: 4의 중량비로 NMP(N-methyl-2-pyrrolidone)에 넣고 믹싱하여 양극 합제를 제조한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.When manufacturing the positive electrode of Example 1, LiNi 0.6 Co 0.2 Mn 0.2 O 2 was used as the positive electrode active material, and the irreversible additive (Li 2 NiO 2 ), conductive material (carbon black), and binder (PVdF) were used in the ratio of 88:2, respectively. A lithium secondary battery was manufactured in the same manner as in Example 1, except that a positive electrode mixture was prepared by adding N-methyl-2-pyrrolidone (NMP) and mixing at a weight ratio of 5:4.
<실시예 4><Example 4>
상기 실시예 1의 충전 과정에서, 제조된 리튬 이차전지를 0.2C로 음극 로딩량 만큼인 3mAh/cm2을 충전하고, 다시 0.3C로 1.5mAh/cm2을 충전한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.In the charging process of Example 1, the manufactured lithium secondary battery was charged at 0.2C to 3 mAh/cm 2 , equivalent to the negative electrode loading, and then again at 0.3 C to 1.5 mAh/cm 2 . A lithium secondary battery was manufactured in the same manner as above.
<비교예 1><Comparative Example 1>
상기 실시예 1의 충전 과정에서, 제조된 리튬 이차전지를 0.2C로 음극 로딩량만큼인 3mAh/cm2만큼 충전하는 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.In the charging process of Example 1, a lithium secondary battery was manufactured in the same manner as Example 1, except that the manufactured lithium secondary battery was charged at 0.2C at 3 mAh/cm 2 , which is equivalent to the negative electrode loading amount.
<비교예 2><Comparative Example 2>
상기 실시예 1에서 음극 활물질을 60㎛의 리튬 금속 음극을 적용한 것을 제외하고는 실시예1과 동일하게 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured in the same manner as Example 1, except that a 60㎛ lithium metal negative electrode was used as the negative electrode active material.
<실험예 1><Experimental Example 1>
상기 실시예 1 내지 3, 비교예 1에서 양극과 음극의 로딩량을 하기와 같이 측정하였다.In Examples 1 to 3 and Comparative Example 1, the loading amounts of the anode and cathode were measured as follows.
양극 로딩량 측정은 양극을 1.6 cm2로 코인 타발 하고 대극으로 Li금속전극을 사용해서 Coin half cell 평가를 진행하여서 발현용량을 측정한다. 측정된 발현용량에서 양극 면적을 나눠주면 양극 로딩량을 계산할 수 있다. 그 다음 음극을 1.6 cm2로 코인 타발 하고 대극으로 Li 금속전극을 사용해서 Coin half cell 평가를 진행하여서 발현용량을 측정한다. 측정된 발현용량에서 음극의 면적을 나눠주면 음극 로딩량을 계산할수 있다. 이렇게 계산된 음극 로딩량에 양극 로딩량을 나누어주어서 하기 표1에 나타내었다.To measure the anode loading amount, coin punch the anode to 1.6 cm 2 and conduct a coin half cell evaluation using a Li metal electrode as the counter electrode to measure the expressed capacity. The anode loading can be calculated by dividing the anode area by the measured capacity. Next, coin punch the cathode to 1.6 cm 2 and proceed with coin half cell evaluation using a Li metal electrode as the counter electrode to measure the generated capacity. The cathode loading amount can be calculated by dividing the area of the cathode by the measured capacity. The anode loading amount was divided by the calculated cathode loading amount and is shown in Table 1 below.
<실험예 2><Experimental Example 2>
상기 실시예 1 내지 4, 비교예 1 내지 2에서 충전을 완료한 리튬 이차전지를 0.5C로 완전 방전한 후 측정된 충전/방전 용량값을 표 2에 나타내었고 다시 동일 충방전 조건으로 상온에서 200th cycle까지 사이클 평가를 진행해서 용량유지율을 계산해 표 2에 나타내었다. (200 사이클 후의 방전용량/1 사이클 후의 방전용량)×100으로 계산된 값을 수명 유지율(%)로 나타냄)The charge/discharge capacity values measured after fully discharging the lithium secondary batteries in Examples 1 to 4 and Comparative Examples 1 to 2 at 0.5C are shown in Table 2, and again at room temperature for 200 times under the same charge and discharge conditions. Cycle evaluation was performed from cycle to cycle, and the capacity maintenance rate was calculated and shown in Table 2. (Discharge capacity after 200 cycles/discharge capacity after 1 cycle) × 100, expressed as life maintenance rate (%))
@ 200th cycleCapacity maintenance rate
@ 200th cycle
상기 표 2를 참조하면, 실시예 1 내지 4의 경우 음극 활물질의 인터칼레이션(intercalation) 및 리튬 금속의 도금(plating)이 연속적으로 발생하도록 충전을 진행함으로써 초기 충방전 용량이 높게 발현되어 고용량 전지를 제조할 수 있음을 확인할 수 있었다. 또한 200th cycle에서의 용량유지율을 확인하면 음극의 로딩량만큼만 충전을 진행하여 음극 활물질에 인터칼레이션만 진행한 비교예1과 동일 유사한 수명특성을 나타내는 것을 확인할 수 있었고 리튬 금속만을 음극 활물질로 사용하여, 리튬 plating에 의해서만 충전이 진행된 비교예 2보다는 우수한 수명특성을 나타냄을 확인할 수 있었다.한편, 충전을 음극 로딩량만큼 진행한 비교예 1은 수명특성은 좋으나, 기본적인 용량이 본 발명에 따른 발명과 비교하여 현저히 작은 것을 확인할 수 있다.Referring to Table 2, in Examples 1 to 4, charging was performed so that intercalation of the negative electrode active material and plating of lithium metal occurred continuously, resulting in a high initial charge and discharge capacity, resulting in a high-capacity battery. It was confirmed that it could be manufactured. In addition, when checking the capacity maintenance rate at the 200 th cycle, it was confirmed that the battery life characteristics were similar to those of Comparative Example 1, in which only intercalation was performed on the negative electrode active material by charging only as much as the loading amount of the negative electrode, and only lithium metal was used as the negative electrode active material. Therefore, it was confirmed that it exhibited superior lifespan characteristics than Comparative Example 2, in which charging was carried out only by lithium plating. Meanwhile, Comparative Example 1, in which charging was carried out by the amount of negative electrode loading, had good lifespan characteristics, but the basic capacity was lower than that of the invention according to the present invention. It can be seen that it is significantly smaller compared to .
더 나아가, 1회 충전을 진행한 실시예 1보다 2회 충전을 진행한 실시예 2가 더욱 우수한 수명특성을 발휘함을 확인할 수 있다. 다만, 2회 충전에서 2차 충전을 높은 전류에서 수행한 실시예 4는 실시예 1과 유사하므로, 2회 충전을 수행하면서, 2차 충전을 낮은 전류로 수행하는 것이 수명특성 측면에서 가장 우수한 것을 확인할 수 있다.Furthermore, it can be confirmed that Example 2, which was charged twice, exhibited better lifespan characteristics than Example 1, which was charged once. However, Example 4, in which secondary charging was performed at a high current during two charging, is similar to Example 1, so performing secondary charging at a low current while charging twice was the best in terms of lifespan characteristics. You can check it.
10: 음극 집전체
21: 음극 활물질층
22: 리튬 인터칼레이션이 완료된 음극 활물질층
23: 리튬 금속층
100: 최종 제조된 리튬 이차전지의 음극10: cathode current collector
21: Negative active material layer
22: Negative active material layer with completed lithium intercalation
23: Lithium metal layer
100: Negative electrode of the final manufactured lithium secondary battery
Claims (9)
상기 전지를 충전하는 단계를 포함하는 리튬 이차전지의 제조방법으로서,
상기 전지 조립 단계에서, 양극 로딩량에 대한 음극 로딩량 비(N/P ratio)는 0.01 내지 0.99이고,
상기 전지 충전 단계에서 충전은 양극 로딩량만큼 이루어지고, 음극 활물질층의 공극 및 표면에 리튬이 도금되어 음극 활물질층 상에 리튬 금속층이 형성되며,
상기 전지 충전 단계는 음극 활물질층의 최초 로딩량만큼 1차 충전하고, 남은 양극 로딩량만큼 2차 충전하는 방식으로 2회 연속으로 수행되고, 2차 충전시의 충전 전류는 1차 충전시의 충전 전류보다 낮은 것인,
리튬 이차전지의 제조방법.
A negative electrode coated with a negative electrode active material layer on a negative electrode current collector; A positive electrode coated with a positive electrode active material layer on the positive electrode current collector; separation membrane; and assembling a battery containing an electrolyte, and
A method of manufacturing a lithium secondary battery comprising the step of charging the battery,
In the battery assembly step, the ratio of the negative electrode loading amount to the positive electrode loading amount (N/P ratio) is 0.01 to 0.99,
In the battery charging step, charging is performed according to the positive electrode loading amount, and lithium is plated on the pores and surface of the negative electrode active material layer to form a lithium metal layer on the negative electrode active material layer,
The battery charging step is performed twice in succession, with first charging equal to the initial loading of the negative electrode active material layer and secondary charging equal to the remaining positive positive loading, and the charging current during secondary charging is the same as that during primary charging. which is lower than the current,
Manufacturing method of lithium secondary battery.
상기 리튬 금속층의 두께는 음극 활물질층 두께의 1 내지 5000 %인 리튬 이차전지의 제조방법.
According to paragraph 1,
A method of manufacturing a lithium secondary battery wherein the thickness of the lithium metal layer is 1 to 5000% of the thickness of the negative electrode active material layer.
상기 양극 활물질층의 단위 면적당 로딩량은 4 내지 15 mAh/cm2인 리튬 이차전지의 제조방법.
According to paragraph 1,
A method of manufacturing a lithium secondary battery wherein the loading amount per unit area of the positive active material layer is 4 to 15 mAh/cm 2 .
상기 양극 활물질층은 Li7/3Ti5/3O4, Li2.3Mo6S7.7, Li2NiO2, Li2CuO2, Li6CoO4, Li5FeO4, Li6MnO4, Li2MoO3, Li3N, Li2O, LiOH 및 Li2CO3로 이루어지는 군에서 선택되는 1종 이상의 비가역 첨가제를 더 포함하는 것인 리튬 이차전지의 제조방법.
According to paragraph 1,
The positive electrode active material layer is Li 7/3 Ti 5/3 O 4 , Li 2.3 Mo 6 S 7.7 , Li 2 NiO 2 , Li 2 CuO 2, Li 6 CoO 4 , Li 5 FeO 4 , Li 6 MnO 4 , Li 2 MoO 3 , Li 3 N, Li 2 O, LiOH and Li 2 CO 3 selected from the group consisting of A method of manufacturing a lithium secondary battery further comprising one or more types of irreversible additives.
상기 비가역 첨가제는 양극 활물질층 총 중량의 10 중량% 이하로 포함되는 것인 리튬 이차전지의 제조방법.
According to clause 5,
A method of manufacturing a lithium secondary battery, wherein the irreversible additive is contained in an amount of 10% by weight or less of the total weight of the positive electrode active material layer.
상기 음극 활물질은, 탄소계 활물질; 나트륨, 칼륨, 루비듐, 세슘, 프랑슘, 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨, 라듐, 알루미늄, 게르마늄 및 주석으로 이루어지는 군에서 선택되는 금속과 리튬의 합금; 실리콘계 활물질; 주석계 활물질; 및 리튬 티타늄 산화물로 이루어지는 군에서 선택되는 1종 이상인 리튬 이차전지의 제조방법.
According to paragraph 1,
The negative electrode active material includes: a carbon-based active material; alloys of lithium and a metal selected from the group consisting of sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, radium, aluminum, germanium and tin; Silicone-based active material; tin-based active material; and a method of manufacturing a lithium secondary battery comprising at least one selected from the group consisting of lithium titanium oxide.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/013959 WO2021091108A1 (en) | 2019-11-07 | 2020-10-14 | Manufacturing method of lithium secondary battery |
US17/623,698 US20220278358A1 (en) | 2019-11-07 | 2020-10-14 | Manufacturing method of lithium secondary battery |
CN202080047686.3A CN114080710A (en) | 2019-11-07 | 2020-10-14 | Method for manufacturing lithium secondary battery |
EP20885458.8A EP3982460A4 (en) | 2019-11-07 | 2020-10-14 | Manufacturing method of lithium secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190141790 | 2019-11-07 | ||
KR20190141790 | 2019-11-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210055586A KR20210055586A (en) | 2021-05-17 |
KR102631720B1 true KR102631720B1 (en) | 2024-01-31 |
Family
ID=76158249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200129950A KR102631720B1 (en) | 2019-11-07 | 2020-10-08 | Manufacturing method of lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102631720B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220160140A (en) * | 2021-05-26 | 2022-12-06 | 주식회사 엘지에너지솔루션 | Electrode assembly for lithium secondary bettery and lithium secondary bettery containing the same |
KR20220159587A (en) * | 2021-05-26 | 2022-12-05 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery, and lithium secondary battery containing the same |
JP7501973B2 (en) * | 2021-06-02 | 2024-06-18 | エルジー エナジー ソリューション リミテッド | Pre-dispersion liquid for positive electrode and positive electrode slurry for lithium secondary battery containing the same |
WO2022255636A1 (en) * | 2021-06-03 | 2022-12-08 | 주식회사 엘지에너지솔루션 | Positive electrode for lithium secondary battery and lithium secondary battery comprising same |
KR20220164092A (en) * | 2021-06-03 | 2022-12-13 | 주식회사 엘지에너지솔루션 | Lithium secondary battery and manufacture method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013046690A1 (en) * | 2011-09-30 | 2013-04-04 | パナソニック株式会社 | Lithium ion battery charging method and battery-equipped device |
JP2019096610A (en) * | 2017-11-21 | 2019-06-20 | 三星電子株式会社Samsung Electronics Co.,Ltd. | All-solid type secondary battery and charging method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6254258B2 (en) * | 2013-07-30 | 2017-12-27 | エルジー・ケム・リミテッド | Positive electrode mixture for secondary battery containing irreversible additive |
-
2020
- 2020-10-08 KR KR1020200129950A patent/KR102631720B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013046690A1 (en) * | 2011-09-30 | 2013-04-04 | パナソニック株式会社 | Lithium ion battery charging method and battery-equipped device |
JP2019096610A (en) * | 2017-11-21 | 2019-06-20 | 三星電子株式会社Samsung Electronics Co.,Ltd. | All-solid type secondary battery and charging method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20210055586A (en) | 2021-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110476279B (en) | Lithium secondary battery | |
US11431019B2 (en) | Lithium secondary battery | |
KR101744088B1 (en) | Rechargeable lithium battery | |
KR102631720B1 (en) | Manufacturing method of lithium secondary battery | |
KR20190024761A (en) | Lithium Secondary Battery | |
KR102301670B1 (en) | Lithium secondary battery with improved high temperature storage property | |
US8415057B2 (en) | Electrolytic solution for lithium battery, lithium battery comprising the same and method of operating the lithium battery | |
KR102231209B1 (en) | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
KR20140094959A (en) | Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same | |
US12074316B2 (en) | Electrode for lithium secondary battery | |
KR102272271B1 (en) | Rechargeable lithium battery | |
CN108701865B (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
KR101775544B1 (en) | Positive electrode for rechargable lithium battery and rechargable lithium battery including the same | |
KR102283794B1 (en) | Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
US20210273212A1 (en) | Lithium composite negative electrode active material, negative electrode comprising same and methods for manufacturing same | |
KR20060096335A (en) | Negative electrode for non-aqueous secondary battery | |
CN109075383B (en) | Lithium ion secondary battery and battery pack | |
KR20140081467A (en) | Positive active material for rechargeable lithium battery and rechargeable lithium battery | |
CN113632258A (en) | Lithium secondary battery | |
KR20190008099A (en) | Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery | |
EP3982460A1 (en) | Manufacturing method of lithium secondary battery | |
KR102210219B1 (en) | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
KR20140088932A (en) | Negative electrode active material for rechargeable lithium battery, method for preparing negative electrode active material for rechargeable lithium battery and rechargeable lithium battery | |
KR101826143B1 (en) | Rechargeable lithium battery | |
KR20170118489A (en) | Positive active material for rechargeable lithium battery and rechargeable lithium battery including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |