Nothing Special   »   [go: up one dir, main page]

KR102568928B1 - Novel compound and organic light emitting device comprising the same - Google Patents

Novel compound and organic light emitting device comprising the same Download PDF

Info

Publication number
KR102568928B1
KR102568928B1 KR1020210178415A KR20210178415A KR102568928B1 KR 102568928 B1 KR102568928 B1 KR 102568928B1 KR 1020210178415 A KR1020210178415 A KR 1020210178415A KR 20210178415 A KR20210178415 A KR 20210178415A KR 102568928 B1 KR102568928 B1 KR 102568928B1
Authority
KR
South Korea
Prior art keywords
compound
mmol
organic layer
water
layer
Prior art date
Application number
KR1020210178415A
Other languages
Korean (ko)
Other versions
KR20220085032A (en
Inventor
김민준
이동훈
서상덕
김영석
이다정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US18/026,175 priority Critical patent/US20230363266A1/en
Priority to PCT/KR2021/018987 priority patent/WO2022131757A1/en
Publication of KR20220085032A publication Critical patent/KR20220085032A/en
Application granted granted Critical
Publication of KR102568928B1 publication Critical patent/KR102568928B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.The present invention provides a novel compound and an organic light emitting device including the same.

Description

신규한 화합물 및 이를 포함하는 유기발광 소자{Novel compound and organic light emitting device comprising the same}Novel compound and organic light emitting device comprising the same {Novel compound and organic light emitting device comprising the same}

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel compound and an organic light emitting device including the same.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material. An organic light emitting device using an organic light emitting phenomenon has a wide viewing angle, excellent contrast, and a fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.

유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode, a cathode, and an organic material layer between the anode and the cathode. In order to increase the efficiency and stability of the organic light emitting device, the organic material layer is often composed of a multi-layered structure composed of different materials, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. In the structure of this organic light emitting device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and when the injected holes and electrons meet, excitons are formed. When it falls back to the ground state, it glows.

상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in the organic light emitting device as described above is continuously required.

한국특허 공개번호 제10-2000-0051826호Korean Patent Publication No. 10-2000-0051826

본 발명은 신규한 유기발광 재료 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel organic light emitting material and an organic light emitting device including the same.

본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by Formula 1 below:

[화학식 1][Formula 1]

Figure 112021144611149-pat00001
Figure 112021144611149-pat00001

상기 화학식 1에서,In Formula 1,

A는 인접한 고리와 융합된 티아졸 고리 또는 옥사졸 고리이고,A is a thiazole ring or an oxazole ring fused with an adjacent ring,

L1은 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,L 1 is a single bond; Substituted or unsubstituted C 6-60 arylene; Or a C 2-60 heteroarylene containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,

R1

Figure 112021144611149-pat00002
또는
Figure 112021144611149-pat00003
이고,R 1 is
Figure 112021144611149-pat00002
or
Figure 112021144611149-pat00003
ego,

상기 Ar1 내지 Ar4는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,Ar 1 to Ar 4 are each independently a substituted or unsubstituted C 6-60 aryl; Or a C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,

상기 L2 내지 L5는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고, The L 2 to L 5 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or a C 2-60 heteroarylene containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,

R2는 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,R 2 is a substituted or unsubstituted C 6-60 aryl; Or a C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,

D는 중수소이고,D is deuterium;

n은 0 이상 5 이하의 정수이다.n is an integer of 0 or more and 5 or less.

또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 하나 이상 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes at least one compound represented by Chemical Formula 1. to provide.

상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 발광, 전자수송, 및/또는 전자주입 재료로 사용될 수 있다.The compound represented by Chemical Formula 1 may be used as a material for an organic material layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or lifetime characteristics of an organic light emitting device. In particular, the compound represented by Formula 1 may be used as a hole injection, hole transport, light emission, electron transport, and/or electron injection material.

도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4.
2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer ( 9) and an example of an organic light emitting element composed of a cathode 4 is shown.

이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, in order to aid understanding of the present invention, it will be described in more detail.

본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. The present invention provides a compound represented by Formula 1 above.

본 명세서에서, 또는 는 다른 치환기에 연결되는 결합을 의미한다. In this specification, or means a bond connected to another substituent.

본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.In this specification, the term "substituted or unsubstituted" means deuterium; halogen group; nitrile group; nitro group; hydroxy group; carbonyl group; ester group; imide group; amino group; phosphine oxide group; alkoxy group; aryloxy group; Alkyl thioxy group; Arylthioxy group; an alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; Aralkenyl group; Alkyl aryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of a heteroaryl group containing one or more of N, O, and S atoms, or substituted or unsubstituted with two or more substituents linked to each other among the substituents exemplified above. . For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.

본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.

본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the ester group may be substituted with an aryl group having 6 to 25 carbon atoms or a straight-chain, branched-chain or cyclic chain alkyl group having 1 to 25 carbon atoms in the ester group. Specifically, it may be a substituent of the following structural formula, but is not limited thereto.

본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.

본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group is specifically a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. but not limited to

본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, but is not limited thereto.

본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In this specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.

본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be straight-chain or branched-chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the number of carbon atoms of the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms of the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, etc., but is not limited thereto.

본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, etc., but is not limited thereto.

본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 6. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.

본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 30. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 20. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as a monocyclic aryl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.

본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우, 등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted, etc. However, it is not limited thereto.

본 명세서에 있어서, 헤테로아릴기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 6 내지 20이다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heteroaryl group is a heteroaryl group containing one or more of O, N, Si, and S as heterogeneous elements, and the number of carbon atoms is not particularly limited, but preferably has 2 to 60 carbon atoms. According to one embodiment, the heteroaryl group has 6 to 30 carbon atoms. According to one embodiment, the carbon number of the heteroaryl group is 6 to 20. Examples of the heteroaryl group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, and an acridyl group. , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia A zolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.

본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴은 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다.In the present specification, an aralkyl group, an aralkenyl group, an alkylaryl group, and an aryl group among arylamine groups are the same as the examples of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the examples of the above-mentioned alkyl group. In the present specification, the description of the heteroaryl group described above may be applied to the heteroaryl of the heteroarylamine. In the present specification, the alkenyl group among the aralkenyl groups is the same as the examples of the alkenyl group described above. In the present specification, the description of the aryl group described above may be applied except that the arylene is a divalent group. In the present specification, the description of the heteroaryl group described above may be applied except that heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied, except that the hydrocarbon ring is formed by combining two substituents. In the present specification, heteroaryl is not a monovalent group, and the description of the above-described heteroaryl group may be applied, except that it is formed by combining two substituents.

바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-4 중 어느 하나로 표시될 수 있다:Preferably, Chemical Formula 1 may be represented by any one of the following Chemical Formulas 1-1 to 1-4:

[화학식 1-1][Formula 1-1]

Figure 112021144611149-pat00010
Figure 112021144611149-pat00010

[화학식 1-2][Formula 1-2]

Figure 112021144611149-pat00011
Figure 112021144611149-pat00011

[화학식 1-3][Formula 1-3]

Figure 112021144611149-pat00012
Figure 112021144611149-pat00012

[화학식 1-4][Formula 1-4]

Figure 112021144611149-pat00013
Figure 112021144611149-pat00013

상기 화학식 1-1 내지 화학식 1-4에서,In Formula 1-1 to Formula 1-4,

R1, R2, L1, D 및 n에 대한 설명은 상기 화학식 1에서 정의한 바와 같다.Descriptions of R 1 , R 2 , L 1 , D and n are as defined in Formula 1 above.

바람직하게는, L1은 단일결합; 치환 또는 비치환된 C6-20 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴렌일 수 있고,Preferably, L 1 is a single bond; Substituted or unsubstituted C 6-20 arylene; Or a C 2-20 heteroarylene containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,

보다 바람직하게는, L1은 단일결합, 페닐렌, 비페닐디일, 또는 나프탈렌디일일 수 있다.More preferably, L 1 may be a single bond, phenylene, biphenyldiyl, or naphthalenediyl.

가장 바람직하게는, L1은 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Most preferably, L 1 may be a single bond or any one selected from the group consisting of:

Figure 112021144611149-pat00014
.
Figure 112021144611149-pat00014
.

바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,Preferably, Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-20 aryl; Or a substituted or unsubstituted C 2-20 heteroaryl containing at least one selected from the group consisting of N, O and S,

보다 바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있다.More preferably, Ar 1 and Ar 2 may each independently be phenyl, biphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl.

가장 바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Most preferably, Ar 1 and Ar 2 may each independently be any one selected from the group consisting of:

Figure 112021144611149-pat00015
.
Figure 112021144611149-pat00015
.

바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,Preferably, Ar 3 and Ar 4 are each independently substituted or unsubstituted C 6-20 aryl; Or a substituted or unsubstituted C 2-20 heteroaryl containing at least one selected from the group consisting of N, O and S,

보다 바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 디벤조티오페닐, 페닐 카바졸릴, 또는 페닐 나프틸일 수 있다.More preferably, Ar 3 and Ar 4 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, phenyl carbazolyl, or phenyl naphthylyl. can

가장 바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Most preferably, Ar 3 and Ar 4 may each independently be any one selected from the group consisting of:

Figure 112021144611149-pat00016
.
Figure 112021144611149-pat00016
.

바람직하게는, L2 및 L3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C6-20 아릴렌일 수 있고,Preferably, L 2 and L 3 are each independently a single bond; It may be a substituted or unsubstituted C 6-20 arylene,

보다 바람직하게는, L2 및 L3는 각각 독립적으로, 단일결합, 페닐렌, 또는 나프탈렌디일일 수 있다.More preferably, L 2 and L 3 may each independently represent a single bond, phenylene, or naphthalenediyl.

가장 바람직하게는, L2 및 L3는 각각 독립적으로, 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Most preferably, L 2 and L 3 may each independently be a single bond or any one selected from the group consisting of:

Figure 112021144611149-pat00017
.
Figure 112021144611149-pat00017
.

바람직하게는, L4 및 L5는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C6-20 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴렌일 수 있고,Preferably, L 4 and L 5 are each independently a single bond; Substituted or unsubstituted C 6-20 arylene; Or a C 2-20 heteroarylene containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,

보다 바람직하게는, L4 및 L5는 각각 독립적으로, 단일결합, 페닐렌, 비페닐디일, 나프탈렌디일, 또는 카바졸디일일 수 있다.More preferably, L 4 and L 5 may each independently represent a single bond, phenylene, biphenyldiyl, naphthalenediyl, or carbazolediyl.

가장 바람직하게는, L4 및 L5는 각각 독립적으로, 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Most preferably, L 4 and L 5 may each independently be a single bond or any one selected from the group consisting of:

Figure 112021144611149-pat00018
.
Figure 112021144611149-pat00018
.

바람직하게는, Ar1 및 Ar2 중 적어도 하나는 치환 또는 비치환된 C6-60 아릴일 수 있고, 보다 바람직하게는, Ar1 및 Ar2 중 적어도 하나는 치환 또는 비치환된 C6-20 아릴일 수 있고, 보다 바람직하게는, Ar1 및 Ar2 중 적어도 하나는 비치환된 C6-20 아릴일 수 있고, 가장 바람직하게는, Ar1 및 Ar2 중 적어도 하나는 페닐, 또는 나프틸일 수 있다.Preferably, at least one of Ar 1 and Ar 2 may be a substituted or unsubstituted C 6-60 aryl, more preferably, at least one of Ar 1 and Ar 2 is a substituted or unsubstituted C 6-20 aryl, more preferably, at least one of Ar 1 and Ar 2 can be an unsubstituted C 6-20 aryl, and most preferably, at least one of Ar 1 and Ar 2 is phenyl, or naphthylyl can

바람직하게는, Ar3 및 Ar4 중 적어도 하나는 치환 또는 비치환된 C6-60 아릴일 수 있고, 보다 바람직하게는, Ar3 및 Ar4 중 적어도 하나는 치환 또는 비치환된 C6-20 아릴일 수 있고, 보다 바람직하게는, Ar3 및 Ar4 중 적어도 하나는 비치환된 C6-20 아릴일 수 있고, 가장 바람직하게는, Ar3 및 Ar4 중 적어도 하나는 페닐, 비페닐릴, 또는 나프틸일 수 있다.Preferably, at least one of Ar 3 and Ar 4 may be a substituted or unsubstituted C 6-60 aryl, more preferably, at least one of Ar 3 and Ar 4 is a substituted or unsubstituted C 6-20 aryl, more preferably, at least one of Ar 3 and Ar 4 may be an unsubstituted C 6-20 aryl, and most preferably, at least one of Ar 3 and Ar 4 is phenyl, biphenylyl , or naphthyl.

한편, 상기 R2는 고리 A의 치환기이다.Meanwhile, R 2 is a substituent of Ring A.

바람직하게는, R2는 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있다.Preferably, R 2 is a substituted or unsubstituted C 6-20 aryl; Or it may be a C 2-20 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S.

보다 바람직하게는, R2는 페닐, 비페닐릴, 나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있다.More preferably, R 2 can be phenyl, biphenylyl, naphthyl, dibenzofuranyl, or dibenzothiophenyl.

가장 바람직하게는, R2는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Most preferably, R 2 can be any one selected from the group consisting of:

Figure 112021144611149-pat00019
.
Figure 112021144611149-pat00019
.

바람직하게는, n은 0일 수 있다.Preferably, n may be 0.

상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다: Representative examples of the compound represented by Formula 1 are as follows:

Figure 112021144611149-pat00020
Figure 112021144611149-pat00020

Figure 112021144611149-pat00021
Figure 112021144611149-pat00021

Figure 112021144611149-pat00022
Figure 112021144611149-pat00022

Figure 112021144611149-pat00023
Figure 112021144611149-pat00023

Figure 112021144611149-pat00024
Figure 112021144611149-pat00024

Figure 112021144611149-pat00025
Figure 112021144611149-pat00025

Figure 112021144611149-pat00026
Figure 112021144611149-pat00026

Figure 112021144611149-pat00027
Figure 112021144611149-pat00027

Figure 112021144611149-pat00028
Figure 112021144611149-pat00028

Figure 112021144611149-pat00029
Figure 112021144611149-pat00029

Figure 112021144611149-pat00030
Figure 112021144611149-pat00030

Figure 112021144611149-pat00031
Figure 112021144611149-pat00031

Figure 112021144611149-pat00032
Figure 112021144611149-pat00032

Figure 112021144611149-pat00033
Figure 112021144611149-pat00033

Figure 112021144611149-pat00034
Figure 112021144611149-pat00034

Figure 112021144611149-pat00035
Figure 112021144611149-pat00035

Figure 112021144611149-pat00036
Figure 112021144611149-pat00036

Figure 112021144611149-pat00037
Figure 112021144611149-pat00037

Figure 112021144611149-pat00038
Figure 112021144611149-pat00038

Figure 112021144611149-pat00039
Figure 112021144611149-pat00039

Figure 112021144611149-pat00040
Figure 112021144611149-pat00040

Figure 112021144611149-pat00041
Figure 112021144611149-pat00041

Figure 112021144611149-pat00042
Figure 112021144611149-pat00042

Figure 112021144611149-pat00043
Figure 112021144611149-pat00043

Figure 112021144611149-pat00044
Figure 112021144611149-pat00044

Figure 112021144611149-pat00045
Figure 112021144611149-pat00045

Figure 112021144611149-pat00046
Figure 112021144611149-pat00046

Figure 112021144611149-pat00047
Figure 112021144611149-pat00047

Figure 112021144611149-pat00048
Figure 112021144611149-pat00048

Figure 112021144611149-pat00049
Figure 112021144611149-pat00049

Figure 112021144611149-pat00050
Figure 112021144611149-pat00050

Figure 112021144611149-pat00051
Figure 112021144611149-pat00051

Figure 112021144611149-pat00052
Figure 112021144611149-pat00052

Figure 112021144611149-pat00053
Figure 112021144611149-pat00053

Figure 112021144611149-pat00054
Figure 112021144611149-pat00054

Figure 112021144611149-pat00055
Figure 112021144611149-pat00055

Figure 112021144611149-pat00056
Figure 112021144611149-pat00056

Figure 112021144611149-pat00057
Figure 112021144611149-pat00057

Figure 112021144611149-pat00058
Figure 112021144611149-pat00058

Figure 112021144611149-pat00059
Figure 112021144611149-pat00059

Figure 112021144611149-pat00060
Figure 112021144611149-pat00060

Figure 112021144611149-pat00061
Figure 112021144611149-pat00061

Figure 112021144611149-pat00062
Figure 112021144611149-pat00062

Figure 112021144611149-pat00063
Figure 112021144611149-pat00063

Figure 112021144611149-pat00064
Figure 112021144611149-pat00064

Figure 112021144611149-pat00065
Figure 112021144611149-pat00065

Figure 112021144611149-pat00066
Figure 112021144611149-pat00066

Figure 112021144611149-pat00067
Figure 112021144611149-pat00067

Figure 112021144611149-pat00068
Figure 112021144611149-pat00068

Figure 112021144611149-pat00069
Figure 112021144611149-pat00069

Figure 112021144611149-pat00070
Figure 112021144611149-pat00070

Figure 112021144611149-pat00071
Figure 112021144611149-pat00071

Figure 112021144611149-pat00072
Figure 112021144611149-pat00072

Figure 112021144611149-pat00073
Figure 112021144611149-pat00073

Figure 112021144611149-pat00074
Figure 112021144611149-pat00074

Figure 112021144611149-pat00075
Figure 112021144611149-pat00075

Figure 112021144611149-pat00076
Figure 112021144611149-pat00076

Figure 112021144611149-pat00077
Figure 112021144611149-pat00077

Figure 112021144611149-pat00078
Figure 112021144611149-pat00078

Figure 112021144611149-pat00079
Figure 112021144611149-pat00079

Figure 112021144611149-pat00080
Figure 112021144611149-pat00080

Figure 112021144611149-pat00081
Figure 112021144611149-pat00081

Figure 112021144611149-pat00082
Figure 112021144611149-pat00082

Figure 112021144611149-pat00083
Figure 112021144611149-pat00083

Figure 112021144611149-pat00084
Figure 112021144611149-pat00084

Figure 112021144611149-pat00085
Figure 112021144611149-pat00085

Figure 112021144611149-pat00086
Figure 112021144611149-pat00086

Figure 112021144611149-pat00087
Figure 112021144611149-pat00087

Figure 112021144611149-pat00088
Figure 112021144611149-pat00088

Figure 112021144611149-pat00089
Figure 112021144611149-pat00089

Figure 112021144611149-pat00090
Figure 112021144611149-pat00090

Figure 112021144611149-pat00091
Figure 112021144611149-pat00091

Figure 112021144611149-pat00092
Figure 112021144611149-pat00092

Figure 112021144611149-pat00093
Figure 112021144611149-pat00093

Figure 112021144611149-pat00094
Figure 112021144611149-pat00094

Figure 112021144611149-pat00095
Figure 112021144611149-pat00095

Figure 112021144611149-pat00096
Figure 112021144611149-pat00096

Figure 112021144611149-pat00097
Figure 112021144611149-pat00097

Figure 112021144611149-pat00098
Figure 112021144611149-pat00098

Figure 112021144611149-pat00099
Figure 112021144611149-pat00099

Figure 112021144611149-pat00100
Figure 112021144611149-pat00100

Figure 112021144611149-pat00101
Figure 112021144611149-pat00101

Figure 112021144611149-pat00102
Figure 112021144611149-pat00102

Figure 112021144611149-pat00103
Figure 112021144611149-pat00103

Figure 112021144611149-pat00104
Figure 112021144611149-pat00104

Figure 112021144611149-pat00105
Figure 112021144611149-pat00105

Figure 112021144611149-pat00106
Figure 112021144611149-pat00106

Figure 112021144611149-pat00107
Figure 112021144611149-pat00107

Figure 112021144611149-pat00108
Figure 112021144611149-pat00108

Figure 112021144611149-pat00109
Figure 112021144611149-pat00109

Figure 112021144611149-pat00110
Figure 112021144611149-pat00110

Figure 112021144611149-pat00111
Figure 112021144611149-pat00111

Figure 112021144611149-pat00112
Figure 112021144611149-pat00112

Figure 112021144611149-pat00113
Figure 112021144611149-pat00113

Figure 112021144611149-pat00114
Figure 112021144611149-pat00114

Figure 112021144611149-pat00115
Figure 112021144611149-pat00115

Figure 112021144611149-pat00116
Figure 112021144611149-pat00116

Figure 112021144611149-pat00117
Figure 112021144611149-pat00117

Figure 112021144611149-pat00118
Figure 112021144611149-pat00118

Figure 112021144611149-pat00119
Figure 112021144611149-pat00119

Figure 112021144611149-pat00120
Figure 112021144611149-pat00120

Figure 112021144611149-pat00121
Figure 112021144611149-pat00121

Figure 112021144611149-pat00122
Figure 112021144611149-pat00122

Figure 112021144611149-pat00123
Figure 112021144611149-pat00123

Figure 112021144611149-pat00124
Figure 112021144611149-pat00124

Figure 112021144611149-pat00125
Figure 112021144611149-pat00125

Figure 112021144611149-pat00126
Figure 112021144611149-pat00126

Figure 112021144611149-pat00127
Figure 112021144611149-pat00127

Figure 112021144611149-pat00128
Figure 112021144611149-pat00128

Figure 112021144611149-pat00129
Figure 112021144611149-pat00129

Figure 112021144611149-pat00130
Figure 112021144611149-pat00130

Figure 112021144611149-pat00131
Figure 112021144611149-pat00131

Figure 112021144611149-pat00132
Figure 112021144611149-pat00132

Figure 112021144611149-pat00133
Figure 112021144611149-pat00133

Figure 112021144611149-pat00134
Figure 112021144611149-pat00134

Figure 112021144611149-pat00135
Figure 112021144611149-pat00135

Figure 112021144611149-pat00136
Figure 112021144611149-pat00136

Figure 112021144611149-pat00137
Figure 112021144611149-pat00137

Figure 112021144611149-pat00138
Figure 112021144611149-pat00138

Figure 112021144611149-pat00139
Figure 112021144611149-pat00139

Figure 112021144611149-pat00140
Figure 112021144611149-pat00140

Figure 112021144611149-pat00141
Figure 112021144611149-pat00141

Figure 112021144611149-pat00142
Figure 112021144611149-pat00142

Figure 112021144611149-pat00143
Figure 112021144611149-pat00143

Figure 112021144611149-pat00144
Figure 112021144611149-pat00144

Figure 112021144611149-pat00145
Figure 112021144611149-pat00145

Figure 112021144611149-pat00146
Figure 112021144611149-pat00146

Figure 112021144611149-pat00147
Figure 112021144611149-pat00147

Figure 112021144611149-pat00148
Figure 112021144611149-pat00148

Figure 112021144611149-pat00149
Figure 112021144611149-pat00149

Figure 112021144611149-pat00150
Figure 112021144611149-pat00150

Figure 112021144611149-pat00151
Figure 112021144611149-pat00151

Figure 112021144611149-pat00152
Figure 112021144611149-pat00152

Figure 112021144611149-pat00153
Figure 112021144611149-pat00153

Figure 112021144611149-pat00154
Figure 112021144611149-pat00154

Figure 112021144611149-pat00155
Figure 112021144611149-pat00155

Figure 112021144611149-pat00156
Figure 112021144611149-pat00156

Figure 112021144611149-pat00157
Figure 112021144611149-pat00157

Figure 112021144611149-pat00158
Figure 112021144611149-pat00158

Figure 112021144611149-pat00159
Figure 112021144611149-pat00159

Figure 112021144611149-pat00160
Figure 112021144611149-pat00160

Figure 112021144611149-pat00161
Figure 112021144611149-pat00161

Figure 112021144611149-pat00162
Figure 112021144611149-pat00162

Figure 112021144611149-pat00163
Figure 112021144611149-pat00163

Figure 112021144611149-pat00164
Figure 112021144611149-pat00164

Figure 112021144611149-pat00165
Figure 112021144611149-pat00165

Figure 112021144611149-pat00166
Figure 112021144611149-pat00166

Figure 112021144611149-pat00167
Figure 112021144611149-pat00167

Figure 112021144611149-pat00168
Figure 112021144611149-pat00168

Figure 112021144611149-pat00169
Figure 112021144611149-pat00169

Figure 112021144611149-pat00170
Figure 112021144611149-pat00170

Figure 112021144611149-pat00171
Figure 112021144611149-pat00171

Figure 112021144611149-pat00172
Figure 112021144611149-pat00172

Figure 112021144611149-pat00173
Figure 112021144611149-pat00173

Figure 112021144611149-pat00174
Figure 112021144611149-pat00174

Figure 112021144611149-pat00175
Figure 112021144611149-pat00175

Figure 112021144611149-pat00176
Figure 112021144611149-pat00176

Figure 112021144611149-pat00177
Figure 112021144611149-pat00177

Figure 112021144611149-pat00178
Figure 112021144611149-pat00178

Figure 112021144611149-pat00179
Figure 112021144611149-pat00179

Figure 112021144611149-pat00180
Figure 112021144611149-pat00180

Figure 112021144611149-pat00181
Figure 112021144611149-pat00181

Figure 112021144611149-pat00182
Figure 112021144611149-pat00182

Figure 112021144611149-pat00183
Figure 112021144611149-pat00183

Figure 112021144611149-pat00184
Figure 112021144611149-pat00184

Figure 112021144611149-pat00185
Figure 112021144611149-pat00185

Figure 112021144611149-pat00186
Figure 112021144611149-pat00186

Figure 112021144611149-pat00187
Figure 112021144611149-pat00187

Figure 112021144611149-pat00188
Figure 112021144611149-pat00188

Figure 112021144611149-pat00189
Figure 112021144611149-pat00189

Figure 112021144611149-pat00190
Figure 112021144611149-pat00190

Figure 112021144611149-pat00191
Figure 112021144611149-pat00191

Figure 112021144611149-pat00192
Figure 112021144611149-pat00192

Figure 112021144611149-pat00193
Figure 112021144611149-pat00193

Figure 112021144611149-pat00194
Figure 112021144611149-pat00194

Figure 112021144611149-pat00195
Figure 112021144611149-pat00195

Figure 112021144611149-pat00196
Figure 112021144611149-pat00196

Figure 112021144611149-pat00197
Figure 112021144611149-pat00197

Figure 112021144611149-pat00198
Figure 112021144611149-pat00198

Figure 112021144611149-pat00199
Figure 112021144611149-pat00199

Figure 112021144611149-pat00200
Figure 112021144611149-pat00200

Figure 112021144611149-pat00201
Figure 112021144611149-pat00201

Figure 112021144611149-pat00202
Figure 112021144611149-pat00202

Figure 112021144611149-pat00203
Figure 112021144611149-pat00203

Figure 112021144611149-pat00204
Figure 112021144611149-pat00204

Figure 112021144611149-pat00205
Figure 112021144611149-pat00205

Figure 112021144611149-pat00206
Figure 112021144611149-pat00206

Figure 112021144611149-pat00207
Figure 112021144611149-pat00207

Figure 112021144611149-pat00208
Figure 112021144611149-pat00208

Figure 112021144611149-pat00209
Figure 112021144611149-pat00209

Figure 112021144611149-pat00210
Figure 112021144611149-pat00210

Figure 112021144611149-pat00211
Figure 112021144611149-pat00211

Figure 112021144611149-pat00212
Figure 112021144611149-pat00212

Figure 112021144611149-pat00213
Figure 112021144611149-pat00213

Figure 112021144611149-pat00214
Figure 112021144611149-pat00214

Figure 112021144611149-pat00215
Figure 112021144611149-pat00215

Figure 112021144611149-pat00216
Figure 112021144611149-pat00216

Figure 112021144611149-pat00217
Figure 112021144611149-pat00217

Figure 112021144611149-pat00218
Figure 112021144611149-pat00218

Figure 112021144611149-pat00219
Figure 112021144611149-pat00219

Figure 112021144611149-pat00220
Figure 112021144611149-pat00220

Figure 112021144611149-pat00221
Figure 112021144611149-pat00221

Figure 112021144611149-pat00222
Figure 112021144611149-pat00222

Figure 112021144611149-pat00223
Figure 112021144611149-pat00223

Figure 112021144611149-pat00224
Figure 112021144611149-pat00224

Figure 112021144611149-pat00225
Figure 112021144611149-pat00225

Figure 112021144611149-pat00226
Figure 112021144611149-pat00226

Figure 112021144611149-pat00227
Figure 112021144611149-pat00227

Figure 112021144611149-pat00228
Figure 112021144611149-pat00228

Figure 112021144611149-pat00229
Figure 112021144611149-pat00229

Figure 112021144611149-pat00230
Figure 112021144611149-pat00230

Figure 112021144611149-pat00231
Figure 112021144611149-pat00231

Figure 112021144611149-pat00232
Figure 112021144611149-pat00232

Figure 112021144611149-pat00233
Figure 112021144611149-pat00233

Figure 112021144611149-pat00234
Figure 112021144611149-pat00234

Figure 112021144611149-pat00235
.
Figure 112021144611149-pat00235
.

상기 화학식 1로 표시되는 화합물은 일례로 L1이 단일결합이고, R1

Figure 112021144611149-pat00236
인 경우, 하기 반응식 1과 같은 제조 방법으로 제조할 수 있으며, 일부 화합물의 경우 하기 반응식 2와 같은 제조 방법으로 제조할 수 있고, 그 외 나머지 화합물도 유사하게 제조할 수 있다.In the compound represented by Formula 1, for example, L 1 is a single bond, and R 1 is
Figure 112021144611149-pat00236
In the case of, it can be prepared by a manufacturing method such as the following Reaction Scheme 1, and in the case of some compounds, it can be prepared by a manufacturing method such as the following Reaction Scheme 2, and other compounds can be prepared similarly.

[반응식 1][Scheme 1]

Figure 112021144611149-pat00237
Figure 112021144611149-pat00237

[반응식 2][Scheme 2]

Figure 112021144611149-pat00238
Figure 112021144611149-pat00238

상기 반응식 1 및 2에서, R1, R2, L1, L4, L5, Ar3 및 Ar4는 상기 화학식 1에서 정의한 바와 같으며, X1 및 X2는 각각 독립적으로, 할로겐이고, 바람직하게는 X1 및 X2는 각각 독립적으로, 클로로 또는 브로모이다.In Reaction Schemes 1 and 2, R 1 , R 2 , L 1 , L 4 , L 5 , Ar 3 and Ar 4 are as defined in Formula 1, X 1 and X 2 are each independently a halogen, Preferably X 1 and X 2 are each independently chloro or bromo.

상기 반응식 1은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 또한, 상기 반응식 2는 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.Reaction Scheme 1 is an amine substitution reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art. In addition, Reaction Scheme 2 is a Suzuki coupling reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art. The manufacturing method may be more specific in Preparation Examples to be described later.

또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 하나 이상 포함하는, 유기 발광 소자를 제공한다. In addition, the present invention provides an organic light emitting device including the compound represented by Formula 1 above. In one example, the present invention provides a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes at least one compound represented by Chemical Formula 1. provides

본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as organic layers. However, the structure of the organic light emitting diode is not limited thereto and may include a smaller number of organic material layers.

또한, 상기 유기물 층은 전자차단층 또는 발광층을 포함할 수 있고, 상기 전자차단층 또는 발광층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.In addition, the organic material layer may include an electron blocking layer or a light emitting layer, and the electron blocking layer or light emitting layer may include the compound represented by Chemical Formula 1.

또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 도 2에 예시되어 있다.Also, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .

도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층 또는 전자차단층에 포함될 수 있다. 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer ( 9) and an example of an organic light emitting element composed of a cathode 4 is shown. In such a structure, the compound represented by Chemical Formula 1 may be included in the light emitting layer or the electron blocking layer.

본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Chemical Formula 1. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.

예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation, depositing a metal or a metal oxide having conductivity or an alloy thereof on the substrate to form an anode And, after forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조 시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Chemical Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.

이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate from a cathode material (WO 2003/012890). However, the manufacturing method is not limited thereto.

일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.

상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a high work function is generally preferred so that holes can be smoothly injected into the organic layer. Specific examples of the cathode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.

상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is preferably a material having a small work function so as to easily inject electrons into the organic material layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.

상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and the hole injection material has the ability to transport holes and has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and generated in the light emitting layer A compound that prevents migration of excitons to the electron injecting layer or electron injecting material and has excellent thin film formation ability is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer. Specific examples of the hole injection material include metal porphyrins, oligothiophenes, arylamine-based organic materials, hexanitrilehexaazatriphenylene-based organic materials, quinacridone-based organic materials, and perylene-based organic materials. of organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.

상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports the holes to the light emitting layer. As a hole transport material, a material capable of receiving holes from the anode or the hole injection layer and transferring them to the light emitting layer is a material having high hole mobility. this is suitable Specific examples include, but are not limited to, arylamine-based organic materials, conductive polymers, and block copolymers having both conjugated and non-conjugated parts.

상기 전자차단층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로, 전자억제층, 전자저지층으로 불리기도 한다. 전자차단층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다. 바람직하게는 본원발명의 화학식 1로 표시되는 물질이 전자차단층 물질로 사용될 수 있다.The electron blocking layer is a layer placed between the hole transport layer and the light emitting layer to prevent electrons injected from the cathode from passing to the hole transport layer without recombination in the light emitting layer, and is also called an electron blocking layer or an electron blocking layer. A material having a smaller electron affinity than the electron transport layer is preferable for the electron blocking layer. Preferably, a material represented by Chemical Formula 1 of the present invention may be used as an electron blocking layer material.

상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. The light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; Polyfluorene, rubrene, etc., but are not limited thereto.

상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 바람직하게는 본원발명의 화학식 1로 표시되는 물질이 호스트 재료로 사용될 수 있으며, 화학식 1로 표시되는 하나 이상의 물질이 호스트 재료로 포함될 수 있다. 바람직하게는, 상기 발광층에서 상기 화학식 1로 표시되는 화합물이 2종 사용되는 경우, 그 중량비는 10:90 내지 90:10이고, 보다 바람직하게는 20:80 내지 80:20, 30:70 내지 70:30 또는 40:60 내지 60:40이다. The light emitting layer may include a host material and a dopant material. The host material includes a condensed aromatic ring derivative or a compound containing a hetero ring. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc., and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type furan compounds, pyrimidine derivatives, etc., but are not limited thereto. Preferably, a material represented by Formula 1 of the present invention may be used as a host material, and one or more materials represented by Formula 1 may be included as a host material. Preferably, when two types of compounds represented by Formula 1 are used in the light emitting layer, the weight ratio is 10:90 to 90:10, more preferably 20:80 to 80:20, 30:70 to 70 :30 or 40:60 to 60:40.

도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like. Specifically, aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, periplanthene, etc. having an arylamino group, and styrylamine compounds include substituted or unsubstituted arylamine is substituted with at least one arylvinyl group, wherein one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, etc., but is not limited thereto. In addition, metal complexes include, but are not limited to, iridium complexes and platinum complexes.

일례로, 도펀트 재료로 하기로 구성되는 군으로부터 선택되는 어느 하나 이상을 사용할 수 있으나, 이에 한정되지 않는다:For example, as a dopant material, one or more selected from the group consisting of the following may be used, but is not limited thereto:

Figure 112021144611149-pat00239
Figure 112021144611149-pat00239

Figure 112021144611149-pat00240
Figure 112021144611149-pat00240

Figure 112021144611149-pat00241
Figure 112021144611149-pat00241

Figure 112021144611149-pat00242
.
Figure 112021144611149-pat00242
.

상기 정공저지층은 양극에서 주입된 정공이 발광층에서 재결합되지 않고 전자수송층으로 넘어가는 것을 방지하기 위해 전자수송층과 발광층의 사이에 두는 층으로, 정공억제층으로 불리기도 한다. 정공저지층에는 이온화에너지가 큰 물질이 바람직하다.The hole blocking layer is a layer placed between the electron transport layer and the light emitting layer to prevent holes injected from the anode from being recombinated in the light emitting layer and passing to the electron transport layer, and is also called a hole blocking layer. A material having high ionization energy is preferred for the hole-blocking layer.

상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. As the electron transport material, a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable. do. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material as used according to the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by a layer of aluminum or silver.

상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer for injecting electrons from an electrode, has the ability to transport electrons, has an excellent electron injection effect from a cathode, an excellent electron injection effect for a light emitting layer or a light emitting material, and injects holes of excitons generated in the light emitting layer. A compound that prevents migration to a layer and has excellent thin film forming ability is preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preonylidene methane, anthrone, etc. and their derivatives, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.

상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato) aluminum, tris(2-methyl-8-hydroxyquinolinato) aluminum, tris(8-hydroxyquinolinato) gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( There are o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, and bis(2-methyl-8-quinolinato)(2-naphtolato)gallium. Not limited to this.

한편, 본 발명에 있어서 "전자 주입 및 수송층"은 상기 전자주입층과 상기 전자수송층의 역할을 모두 수행하는 층으로 상기 각 층의 역할을 하는 물질을 단독으로, 혹은 혼합하여 사용할 수 있으나, 이에 한정되지 않는다.On the other hand, in the present invention, the "electron injection and transport layer" is a layer that performs both the roles of the electron injection layer and the electron transport layer, and materials that play the role of each layer may be used alone or in combination, but are limited thereto. It doesn't work.

본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.The organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom emission device requiring relatively high light emitting efficiency.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound represented by Chemical Formula 1 may be included in an organic solar cell or an organic transistor in addition to an organic light emitting device.

상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.Preparation of the compound represented by Chemical Formula 1 and the organic light emitting device including the same will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

[제조예][Production Example]

제조예 1-1Preparation Example 1-1

Figure 112021144611149-pat00243
Figure 112021144611149-pat00243

질소 분위기에서 화합물 AA(15 g, 53.9 mmol)와 [1,1'-biphenyl]-4-ylboronic acid(10.7 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAA-1를 13.4 g 제조하였다.(수율 63 %, MS: [M+H]+= 396)In a nitrogen atmosphere, compound AA (15 g, 53.9 mmol) and [1,1'-biphenyl]-4-ylboronic acid (10.7 g, 53.9 mmol) were put in 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.4 g of compound subAA-1. (Yield 63%, MS: [M+H]+= 396)

Figure 112021144611149-pat00244
Figure 112021144611149-pat00244

질소 분위기에서 화합물 subAA-1(15 g, 37.9 mmol)와 bis(pinacolato)diboron(10.6 g, 41.7 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(5.6 g, 56.8 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.7 g, 1.1 mmol) 및 tricyclohexylphosphine(0.6 g, 2.3 mmol)을 투입하였다. 8 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAA-2를 12.4 g 제조하였다.(수율 67 %, MS: [M+H]+= 488)Compound subAA-1 (15 g, 37.9 mmol) and bis(pinacolato)diboron (10.6 g, 41.7 mmol) were stirred while refluxing in 300 ml of 1,4-dioxane in a nitrogen atmosphere. Then, potassium acetate (5.6 g, 56.8 mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.7 g, 1.1 mmol) and tricyclohexylphosphine (0.6 g, 2.3 mmol) were added. After reacting for 8 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.4 g of compound subAA-2. (Yield 67%, MS: [M+H]+= 488)

Figure 112021144611149-pat00245
Figure 112021144611149-pat00245

질소 분위기에서 화합물 subAA-2(15 g, 30.8 mmol)와 Trz1(9.8 g, 30.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.8 g, 92.3 mmol)를 물 38 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1를 11.9 g 제조하였다.(수율 60 %, MS: [M+H]+= 643)In a nitrogen atmosphere, the compound subAA-2 (15 g, 30.8 mmol) and Trz1 (9.8 g, 30.8 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (12.8 g, 92.3 mmol) was dissolved in 38 ml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.9 g of Compound 1-1. (Yield 60%, MS: [M+H]+= 643)

제조예 1-2Preparation Example 1-2

Figure 112021144611149-pat00246
Figure 112021144611149-pat00246

질소 분위기에서 화합물 AB(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAB-1를 13.4 g 제조하였다.(수율 78 %, MS: [M+H]+= 320)In a nitrogen atmosphere, compound AB (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.4 g of compound subAB-1. (Yield 78%, MS: [M+H]+= 320)

Figure 112021144611149-pat00247
Figure 112021144611149-pat00247

질소 분위기에서 화합물 subAB-1(15 g, 46.9 mmol)와 bis(pinacolato)diboron(13.1 g, 51.6 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(6.9 g, 70.4 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.8 g, 1.4 mmol) 및 tricyclohexylphosphine(0.8 g, 2.8 mmol)을 투입하였다. 9 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAB-2를 14.3 g 제조하였다.(수율 74 %, MS: [M+H]+= 412)Compound subAB-1 (15 g, 46.9 mmol) and bis(pinacolato)diboron (13.1 g, 51.6 mmol) were stirred while refluxing in 300 ml of 1,4-dioxane in a nitrogen atmosphere. Then, potassium acetate (6.9 g, 70.4 mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.8 g, 1.4 mmol) and tricyclohexylphosphine (0.8 g, 2.8 mmol) were added. After reacting for 9 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 14.3 g of compound subAB-2. (Yield 74%, MS: [M+H]+= 412)

Figure 112021144611149-pat00248
Figure 112021144611149-pat00248

질소 분위기에서 화합물 subAB-2(15 g, 36.5 mmol)와 Trz2(9.8 g, 36.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.1 g, 109.4 mmol)를 물 45 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2를 12.4 g 제조하였다.(수율 66 %, MS: [M+H]+= 517)In a nitrogen atmosphere, the compounds subAB-2 (15 g, 36.5 mmol) and Trz2 (9.8 g, 36.5 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (15.1 g, 109.4 mmol) was dissolved in 45 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of Compound 1-2. (Yield 66%, MS: [M+H]+= 517)

제조예 1-3Preparation Example 1-3

Figure 112021144611149-pat00249
Figure 112021144611149-pat00249

질소 분위기에서 화합물 AE(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAE-1를 10.7 g 제조하였다.(수율 62 %, MS: [M+H]+= 320)Compound AE (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.7 g of compound subAE-1. (Yield 62%, MS: [M+H]+= 320)

Figure 112021144611149-pat00250
Figure 112021144611149-pat00250

질소 분위기에서 화합물 subAE-1(15 g, 46.9 mmol)와 Trz3(22.5 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3를 25.3 g 제조하였다.(수율 75 %, MS: [M+H]+= 719)In a nitrogen atmosphere, the compound subAE-1 (15 g, 46.9 mmol) and Trz3 (22.5 g, 46.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.3 g of Compound 1-3. (Yield 75%, MS: [M+H]+= 719)

제조예 1-4Preparation Example 1-4

Figure 112021144611149-pat00251
Figure 112021144611149-pat00251

질소 분위기에서 화합물 subAE-1(15 g, 46.9 mmol)와 Trz4(20.8 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4를 22.1 g 제조하였다.(수율 69 %, MS: [M+H]+= 683)In a nitrogen atmosphere, the compound subAE-1 (15 g, 46.9 mmol) and Trz4 (20.8 g, 46.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 11 hours, the mixture was cooled to room temperature, and an organic layer and an aqueous layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 22.1 g of compound 1-4. (Yield 69%, MS: [M+H]+= 683)

제조예 1-5Preparation Example 1-5

Figure 112021144611149-pat00252
Figure 112021144611149-pat00252

질소 분위기에서 화합물 AF(15 g, 53.9 mmol)와 naphthalen-2-ylboronic acid(9.3 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAF-1를 13.1 g 제조하였다.(수율 66 %, MS: [M+H]+= 370)Compound AF (15 g, 53.9 mmol) and naphthalen-2-ylboronic acid (9.3 g, 53.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.1 g of compound subAF-1. (Yield 66%, MS: [M+H]+= 370)

Figure 112021144611149-pat00253
Figure 112021144611149-pat00253

질소 분위기에서 화합물 subAF-1(15 g, 40.6 mmol)와 Trz5(16.4 g, 40.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.8 g, 121.7 mmol)를 물 50 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5를 17.4 g 제조하였다.(수율 62 %, MS: [M+H]+= 693)In a nitrogen atmosphere, the compounds subAF-1 (15 g, 40.6 mmol) and Trz5 (16.4 g, 40.6 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (16.8 g, 121.7 mmol) was dissolved in 50 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 17.4 g of compound 1-5. (Yield 62%, MS: [M+H]+= 693)

제조예 1-6Preparation Example 1-6

Figure 112021144611149-pat00254
Figure 112021144611149-pat00254

질소 분위기에서 화합물 BA(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBA-1를 13.6 g 제조하였다.(수율 79 %, MS: [M+H]+= 320)Compound BA (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.6 g of compound subBA-1. (Yield 79%, MS: [M+H]+= 320)

Figure 112021144611149-pat00255
Figure 112021144611149-pat00255

질소 분위기에서 화합물 subBA-1(15 g, 46.9 mmol)와 bis(pinacolato)diboron(13.1 g, 51.6 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(6.9 g, 70.4 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.8 g, 1.4 mmol) 및 tricyclohexylphosphine(0.8 g, 2.8 mmol)을 투입하였다. 8 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBA-2를 13.1 g 제조하였다.(수율 68 %, MS: [M+H]+= 412)Compound subBA-1 (15 g, 46.9 mmol) and bis(pinacolato)diboron (13.1 g, 51.6 mmol) were stirred while refluxing in 300 ml of 1,4-dioxane in a nitrogen atmosphere. Then, potassium acetate (6.9 g, 70.4 mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.8 g, 1.4 mmol) and tricyclohexylphosphine (0.8 g, 2.8 mmol) were added. After reacting for 8 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.1 g of compound subBA-2. (Yield 68%, MS: [M+H]+= 412)

Figure 112021144611149-pat00256
Figure 112021144611149-pat00256

질소 분위기에서 화합물 subBA-2(15 g, 36.5 mmol)와 Trz7(14.4 g, 36.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.1 g, 109.4 mmol)를 물 45 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-6을 15.5 g 제조하였다.(수율 66 %, MS: [M+H]+= 643)In a nitrogen atmosphere, the compound subBA-2 (15 g, 36.5 mmol) and Trz7 (14.4 g, 36.5 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (15.1 g, 109.4 mmol) was dissolved in 45 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.5 g of Compound 1-6. (Yield 66%, MS: [M+H]+= 643)

제조예 1-7Production Example 1-7

Figure 112021144611149-pat00257
Figure 112021144611149-pat00257

질소 분위기에서 화합물 BB(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBB-1를 11.2 g 제조하였다.(수율 65 %, MS: [M+H]+= 320)Compound BB (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 11 hours, the mixture was cooled to room temperature, and an organic layer and an aqueous layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.2 g of compound subBB-1. (Yield 65%, MS: [M+H]+= 320)

Figure 112021144611149-pat00258
Figure 112021144611149-pat00258

질소 분위기에서 화합물 subBB-1(15 g, 46.9 mmol)와 Trz8(18.9 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-7을 18.1 g 제조하였다.(수율 60 %, MS: [M+H]+= 643)Compound subBB-1 (15 g, 46.9 mmol) and Trz8 (18.9 g, 46.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.1 g of compound 1-7. (Yield 60%, MS: [M+H]+= 643)

제조예 1-8Production Example 1-8

Figure 112021144611149-pat00259
Figure 112021144611149-pat00259

질소 분위기에서 화합물 BE(15 g, 53.9 mmol)와 dibenzo[b,d]thiophen-1-ylboronic acid(12.3 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBE-1를 16.7 g 제조하였다.(수율 73 %, MS: [M+H]+= 426)In a nitrogen atmosphere, compound BE (15 g, 53.9 mmol) and dibenzo[b,d]thiophen-1-ylboronic acid (12.3 g, 53.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 11 hours, the mixture was cooled to room temperature, and an organic layer and an aqueous layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.7 g of compound subBE-1. (Yield 73%, MS: [M+H]+= 426)

Figure 112021144611149-pat00260
Figure 112021144611149-pat00260

질소 분위기에서 화합물 subBE-1(15 g, 35.2 mmol)와 Trz9(14.2 g, 35.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.6 g, 105.7 mmol)를 물 44 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-8을 18.2 g 제조하였다.(수율 69 %, MS: [M+H]+= 749)In a nitrogen atmosphere, the compound subBE-1 (15 g, 35.2 mmol) and Trz9 (14.2 g, 35.2 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (14.6 g, 105.7 mmol) was dissolved in 44 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.2 g of Compound 1-8. (Yield 69%, MS: [M+H]+= 749)

제조예 1-9Production Example 1-9

Figure 112021144611149-pat00261
Figure 112021144611149-pat00261

질소 분위기에서 화합물 BF(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBF-1를 10.5 g 제조하였다.(수율 61 %, MS: [M+H]+= 320)In a nitrogen atmosphere, the compound BF (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.5 g of compound subBF-1. (Yield 61%, MS: [M+H]+= 320)

Figure 112021144611149-pat00262
Figure 112021144611149-pat00262

질소 분위기에서 화합물 subBF-1(15 g, 46.9 mmol)와 Trz10(22.5 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-9를 20.2 g 제조하였다.(수율 60 %, MS: [M+H]+= 719)Compound subBF-1 (15 g, 46.9 mmol) and Trz10 (22.5 g, 46.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 11 hours, the mixture was cooled to room temperature, and an organic layer and an aqueous layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.2 g of Compound 1-9. (Yield 60%, MS: [M+H]+= 719)

제조예 1-10Production Example 1-10

Figure 112021144611149-pat00263
Figure 112021144611149-pat00263

질소 분위기에서 화합물 CA(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCA-1를 10.4 g 제조하였다.(수율 61 %, MS: [M+H]+= 336)In a nitrogen atmosphere, compound CA (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.4 g of compound subCA-1. (Yield 61%, MS: [M+H]+= 336)

Figure 112021144611149-pat00264
Figure 112021144611149-pat00264

질소 분위기에서 화합물 subCA-1(15 g, 44.7 mmol)와 Trz12(19.2 g, 44.7 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.5 g, 134 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10을 20.5 g 제조하였다.(수율 67 %, MS: [M+H]+= 685)Compound subCA-1 (15 g, 44.7 mmol) and Trz12 (19.2 g, 44.7 mmol) were added to 300 ml of THF under nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (18.5 g, 134 mmol) was dissolved in 56 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.5 g of compound 1-10. (Yield 67%, MS: [M+H]+= 685)

제조예 1-11Preparation Example 1-11

Figure 112021144611149-pat00265
Figure 112021144611149-pat00265

질소 분위기에서 화합물 CB(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCB-1를 13.2 g 제조하였다.(수율 77 %, MS: [M+H]+= 336)In a nitrogen atmosphere, compound CB (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.2 g of compound subCB-1. (Yield 77%, MS: [M+H]+= 336)

Figure 112021144611149-pat00266
Figure 112021144611149-pat00266

질소 분위기에서 화합물 subCB-1(15 g, 44.7 mmol)와 bis(pinacolato)diboron(12.5 g, 49.1 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(6.6 g, 67 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.8 g, 1.3 mmol) 및 tricyclohexylphosphine(0.8 g, 2.7 mmol)을 투입하였다. 9 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCB-2를 13.9 g 제조하였다.(수율 73 %, MS: [M+H]+= 428)In a nitrogen atmosphere, the compound subCB-1 (15 g, 44.7 mmol) and bis(pinacolato)diboron (12.5 g, 49.1 mmol) were stirred while refluxing in 300 ml of 1,4-dioxane. Then, potassium acetate (6.6 g, 67 mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.8 g, 1.3 mmol) and tricyclohexylphosphine (0.8 g, 2.7 mmol) were added. After reacting for 9 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.9 g of compound subCB-2. (Yield 73%, MS: [M+H]+= 428)

Figure 112021144611149-pat00267
Figure 112021144611149-pat00267

질소 분위기에서 화합물 subCB-2(15 g, 35.1 mmol)와 Trz13(13.8 g, 35.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.6 g, 105.3 mmol)를 물 44 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-11을 16.6 g 제조하였다.(수율 72 %, MS: [M+H]+= 659)In a nitrogen atmosphere, the compound subCB-2 (15 g, 35.1 mmol) and Trz13 (13.8 g, 35.1 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (14.6 g, 105.3 mmol) was dissolved in 44 ml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.6 g of Compound 1-11. (Yield 72%, MS: [M+H]+= 659)

제조예 1-12Production Example 1-12

Figure 112021144611149-pat00268
Figure 112021144611149-pat00268

질소 분위기에서 화합물 subCB-1(15 g, 36.5 mmol)와 Trz14(14.7 g, 36.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.1 g, 109.4 mmol)를 물 45 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-12를 17 g 제조하였다.(수율 71 %, MS: [M+H]+= 659)In a nitrogen atmosphere, the compound subCB-1 (15 g, 36.5 mmol) and Trz14 (14.7 g, 36.5 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (15.1 g, 109.4 mmol) was dissolved in 45 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17 g of Compound 1-12. (Yield 71%, MS: [M+H]+= 659)

제조예 1-13Production Example 1-13

Figure 112021144611149-pat00269
Figure 112021144611149-pat00269

질소 분위기에서 화합물 CE(15 g, 51 mmol)와 dibenzo[b,d]furan-1-ylboronic acid(10.8 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCE-1를 13.7 g 제조하였다.(수율 63 %, MS: [M+H]+= 426)In a nitrogen atmosphere, compound CE (15 g, 51 mmol) and dibenzo[b,d]furan-1-ylboronic acid (10.8 g, 51 mmol) were put into 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.7 g of compound subCE-1. (Yield 63%, MS: [M+H]+= 426)

Figure 112021144611149-pat00270
Figure 112021144611149-pat00270

질소 분위기에서 화합물 subCE-1(15 g, 35.2 mmol)와 Trz15(12.4 g, 35.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.6 g, 105.7 mmol)를 물 44 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-13를 15.2 g 제조하였다.(수율 62 %, MS: [M+H]+= 699)In a nitrogen atmosphere, the compound subCE-1 (15 g, 35.2 mmol) and Trz15 (12.4 g, 35.2 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (14.6 g, 105.7 mmol) was dissolved in 44 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of compound 1-13. (Yield 62%, MS: [M+H]+= 699)

제조예 1-14Production Example 1-14

Figure 112021144611149-pat00271
Figure 112021144611149-pat00271

질소 분위기에서 화합물 CF(15 g, 51 mmol)와 naphthalen-2-ylboronic acid(8.8 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCF-1를 14.9 g 제조하였다.(수율 76 %, MS: [M+H]+= 386)In a nitrogen atmosphere, compound CF (15 g, 51 mmol) and naphthalen-2-ylboronic acid (8.8 g, 51 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 11 hours, the mixture was cooled to room temperature, and an organic layer and an aqueous layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 14.9 g of compound subCF-1. (Yield 76%, MS: [M+H]+= 386)

Figure 112021144611149-pat00272
Figure 112021144611149-pat00272

질소 분위기에서 화합물 subCF-1(15 g, 38.9 mmol)와 Trz5(15.7 g, 38.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.1 g, 116.6 mmol)를 물 48 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-14를 18.2 g 제조하였다.(수율 66 %, MS: [M+H]+= 709)In a nitrogen atmosphere, the compounds subCF-1 (15 g, 38.9 mmol) and Trz5 (15.7 g, 38.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (16.1 g, 116.6 mmol) was dissolved in 48 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.2 g of Compound 1-14. (Yield 66%, MS: [M+H]+= 709)

제조예 1-15Production Example 1-15

Figure 112021144611149-pat00273
Figure 112021144611149-pat00273

질소 분위기에서 화합물 DA(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDA-1를 11.6 g 제조하였다.(수율 68 %, MS: [M+H]+= 336)In a nitrogen atmosphere, compound DA (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.6 g of compound subDA-1. (Yield 68%, MS: [M+H]+= 336)

Figure 112021144611149-pat00274
Figure 112021144611149-pat00274

질소 분위기에서 화합물 subDA-1(15 g, 44.7 mmol)와 bis(pinacolato)diboron(12.5 g, 49.1 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(6.6 g, 67 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.8 g, 1.3 mmol) 및 tricyclohexylphosphine(0.8 g, 2.7 mmol)을 투입하였다. 7 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDA-2를 13.4 g 제조하였다.(수율 70 %, MS: [M+H]+= 428)In a nitrogen atmosphere, the compound subDA-1 (15 g, 44.7 mmol) and bis(pinacolato)diboron (12.5 g, 49.1 mmol) were stirred while refluxing in 300 ml of 1,4-dioxane. Then, potassium acetate (6.6 g, 67 mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.8 g, 1.3 mmol) and tricyclohexylphosphine (0.8 g, 2.7 mmol) were added. After reacting for 7 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.4 g of compound subDA-2. (Yield 70%, MS: [M+H]+= 428)

Figure 112021144611149-pat00275
Figure 112021144611149-pat00275

질소 분위기에서 화합물 subDA-2(15 g, 35.1 mmol)와 Trz17(13.8 g, 35.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.6 g, 105.3 mmol)를 물 44 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-15를 14.6 g 제조하였다.(수율 63 %, MS: [M+H]+= 659)In a nitrogen atmosphere, the compound subDA-2 (15 g, 35.1 mmol) and Trz17 (13.8 g, 35.1 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (14.6 g, 105.3 mmol) was dissolved in 44 ml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 11 hours, the mixture was cooled to room temperature, and an organic layer and an aqueous layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 14.6 g of compound 1-15. (Yield 63%, MS: [M+H]+= 659)

제조예 1-16Production Example 1-16

Figure 112021144611149-pat00276
Figure 112021144611149-pat00276

질소 분위기에서 화합물 DB(15 g, 51 mmol)와 naphthalen-2-ylboronic acid(8.8 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDB-1를 13.4 g 제조하였다.(수율 68 %, MS: [M+H]+= 386)In a nitrogen atmosphere, compound DB (15 g, 51 mmol) and naphthalen-2-ylboronic acid (8.8 g, 51 mmol) were put into 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.4 g of compound subDB-1. (Yield 68%, MS: [M+H]+= 386)

Figure 112021144611149-pat00277
Figure 112021144611149-pat00277

질소 분위기에서 화합물 subDB-1(15 g, 39 mmol)와 bis(pinacolato)diboron(10.9 g, 42.9 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(5.7 g, 58.5 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.7 g, 1.2 mmol) 및 tricyclohexylphosphine(0.7 g, 2.3 mmol)을 투입하였다. 7 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDB-2를 13.9 g 제조하였다.(수율 75 %, MS: [M+H]+= 478)In a nitrogen atmosphere, the compound subDB-1 (15 g, 39 mmol) and bis(pinacolato)diboron (10.9 g, 42.9 mmol) were stirred while refluxing in 300 ml of 1,4-dioxane. Then, potassium acetate (5.7 g, 58.5 mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (0.7 g, 1.2 mmol) and tricyclohexylphosphine (0.7 g, 2.3 mmol) were added. After reacting for 7 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.9 g of compound subDB-2. (Yield 75%, MS: [M+H]+= 478)

Figure 112021144611149-pat00278
Figure 112021144611149-pat00278

질소 분위기에서 화합물 subDB-2(15 g, 31.4 mmol)와 Trz2(8.4 g, 31.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13 g, 94.3 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-16을 13 g 제조하였다.(수율 71 %, MS: [M+H]+= 583)In a nitrogen atmosphere, the compounds subDB-2 (15 g, 31.4 mmol) and Trz2 (8.4 g, 31.4 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (13 g, 94.3 mmol) was dissolved in 39 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 11 hours, the mixture was cooled to room temperature, and an organic layer and an aqueous layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13 g of compound 1-16. (Yield 71%, MS: [M+H]+= 583)

제조예 1-17Production Example 1-17

Figure 112021144611149-pat00279
Figure 112021144611149-pat00279

질소 분위기에서 화합물 DF(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDF-1를 11.1 g 제조하였다.(수율 65 %, MS: [M+H]+= 336)Compound DF (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.1 g of compound subDF-1. (Yield 65%, MS: [M+H]+= 336)

Figure 112021144611149-pat00280
Figure 112021144611149-pat00280

질소 분위기에서 화합물 subDF-1(15 g, 44.7 mmol)와 Trz18(18 g, 44.7 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.5 g, 134 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-17을 18.2 g 제조하였다.(수율 62 %, MS: [M+H]+= 659)In a nitrogen atmosphere, the compound subDF-1 (15 g, 44.7 mmol) and Trz18 (18 g, 44.7 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (18.5 g, 134 mmol) was dissolved in 56 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.2 g of Compound 1-17. (Yield 62%, MS: [M+H]+= 659)

제조예 2-1Preparation Example 2-1

Figure 112021144611149-pat00281
Figure 112021144611149-pat00281

질소 분위기에서 화합물 AA(15 g, 53.9 mmol)와 naphthalen-2-ylboronic acid(9.3 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAA-3를 15.3 g 제조하였다.(수율 77 %, MS: [M+H]+= 370)In a nitrogen atmosphere, compound AA (15 g, 53.9 mmol) and naphthalen-2-ylboronic acid (9.3 g, 53.9 mmol) were put in 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of compound subAA-3. (Yield 77%, MS: [M+H]+= 370)

Figure 112021144611149-pat00282
Figure 112021144611149-pat00282

질소 분위기에서 화합물 subAA-3(10 g, 27 mmol), 화합물 amine1(9.1 g, 27 mmol), sodium tert-butoxide(8.6 g, 40.6 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-1 10.8 g을 얻었다.(수율 60 %, MS: [M+H]+= 669)In a nitrogen atmosphere, compound subAA-3 (10 g, 27 mmol), compound amine1 (9.1 g, 27 mmol), and sodium tert-butoxide (8.6 g, 40.6 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.8 g of Compound 2-1. (Yield 60%, MS: [M+H]+= 669)

제조예 2-2Preparation Example 2-2

Figure 112021144611149-pat00283
Figure 112021144611149-pat00283

질소 분위기에서 화합물 subAB-1(10 g, 31.3 mmol), 화합물 amine2(9.2 g, 31.3 mmol), sodium tert-butoxide(10 g, 46.9 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-2 11.9 g을 얻었다.(수율 66 %, MS: [M+H]+= 579)In a nitrogen atmosphere, compound subAB-1 (10 g, 31.3 mmol), compound amine2 (9.2 g, 31.3 mmol), and sodium tert-butoxide (10 g, 46.9 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.9 g of Compound 2-2. (Yield 66%, MS: [M+H]+= 579)

제조예 2-3Preparation Example 2-3

Figure 112021144611149-pat00284
Figure 112021144611149-pat00284

질소 분위기에서 화합물 AC(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAC-1를 13.1 g 제조하였다.(수율 76 %, MS: [M+H]+= 320)In a nitrogen atmosphere, compound AC (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.1 g of compound subAC-1. (Yield 76%, MS: [M+H]+= 320)

Figure 112021144611149-pat00285
Figure 112021144611149-pat00285

질소 분위기에서 화합물 subAC-1(10 g, 31.3 mmol), 화합물 amine3(12.8 g, 31.3 mmol), sodium tert-butoxide(10 g, 46.9 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-3 15 g을 얻었다.(수율 69 %, MS: [M+H]+= 694)In a nitrogen atmosphere, compound subAC-1 (10 g, 31.3 mmol), compound amine3 (12.8 g, 31.3 mmol), and sodium tert-butoxide (10 g, 46.9 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15 g of Compound 2-3. (Yield: 69%, MS: [M+H] + = 694)

제조예 2-4Preparation Example 2-4

Figure 112021144611149-pat00286
Figure 112021144611149-pat00286

질소 분위기에서 화합물 subAC-1(15 g, 46.9 mmol)와 화합물 amine4(22.8 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-4를 23.1 g 제조하였다.(수율 68 %, MS: [M+H]+= 725)In a nitrogen atmosphere, compound subAC-1 (15 g, 46.9 mmol) and compound amine4 (22.8 g, 46.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 23.1 g of Compound 2-4. (Yield 68%, MS: [M+H]+= 725)

제조예 2-5Preparation Example 2-5

Figure 112021144611149-pat00287
Figure 112021144611149-pat00287

질소 분위기에서 화합물 AE(15 g, 53.9 mmol)와 [1,1'-biphenyl]-4-ylboronic acid(10.7 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAE-2를 17 g 제조하였다.(수율 80 %, MS: [M+H]+= 396)Compound AE (15 g, 53.9 mmol) and [1,1'-biphenyl] -4-ylboronic acid (10.7 g, 53.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 17 g of compound subAE-2. (Yield 80%, MS: [M+H]+= 396)

Figure 112021144611149-pat00288
Figure 112021144611149-pat00288

질소 분위기에서 화합물 subAE-2(10 g, 25.3 mmol), 화합물 amine5(7.5 g, 25.3 mmol), sodium tert-butoxide(8 g, 37.9 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-5 8.3 g을 얻었다.(수율 50 %, MS: [M+H]+= 655)In a nitrogen atmosphere, compound subAE-2 (10 g, 25.3 mmol), compound amine5 (7.5 g, 25.3 mmol), and sodium tert-butoxide (8 g, 37.9 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.3 g of Compound 2-5. (Yield 50%, MS: [M+H]+= 655)

제조예 2-6Production Example 2-6

Figure 112021144611149-pat00289
Figure 112021144611149-pat00289

질소 분위기에서 화합물 AF(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subAF-2를 12.7 g 제조하였다.(수율 74 %, MS: [M+H]+= 320)In a nitrogen atmosphere, compound AF (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.7 g of compound subAF-2. (Yield 74%, MS: [M+H]+= 320)

Figure 112021144611149-pat00290
Figure 112021144611149-pat00290

질소 분위기에서 화합물 subAF-2(15 g, 46.9 mmol)와 화합물 amine6(20.7 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-6를 20.1 g 제조하였다.(수율 63 %, MS: [M+H]+= 681)In a nitrogen atmosphere, compound subAF-2 (15 g, 46.9 mmol) and compound amine6 (20.7 g, 46.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 20.1 g of compound 2-6. (Yield 63%, MS: [M+H]+= 681)

제조예 2-7Production Example 2-7

Figure 112021144611149-pat00291
Figure 112021144611149-pat00291

질소 분위기에서 화합물 subBA-1(15 g, 46.9 mmol)와 화합물 amine10(18.5 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-7을 23.2 g 제조하였다.(수율 78 %, MS: [M+H]+= 635)In a nitrogen atmosphere, compound subBA-1 (15 g, 46.9 mmol) and compound amine10 (18.5 g, 46.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 23.2 g of compound 2-7. (Yield 78%, MS: [M+H]+= 635)

제조예 2-8Production Example 2-8

Figure 112021144611149-pat00292
Figure 112021144611149-pat00292

질소 분위기에서 화합물 subBB-1(15 g, 46.9 mmol)와 화합물 amine11(23.1 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-8을 26.7 g 제조하였다.(수율 78 %, MS: [M+H]+= 731)In a nitrogen atmosphere, compound subBB-1 (15 g, 46.9 mmol) and compound amine11 (23.1 g, 46.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 26.7 g of Compound 2-8. (Yield 78%, MS: [M+H]+= 731)

제조예 2-9Production Example 2-9

Figure 112021144611149-pat00293
Figure 112021144611149-pat00293

질소 분위기에서 화합물 subBB-1(10 g, 31.3 mmol), 화합물 amine12(13.3 g, 31.3 mmol), sodium tert-butoxide(10 g, 46.9 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-9 13.2 g을 얻었다.(수율 60 %, MS: [M+H]+= 703)In a nitrogen atmosphere, compound subBB-1 (10 g, 31.3 mmol), compound amine12 (13.3 g, 31.3 mmol), and sodium tert-butoxide (10 g, 46.9 mmol) were added to 200 ml of xylene and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.2 g of Compound 2-9. (Yield 60%, MS: [M+H]+= 703)

제조예 2-10Preparation Example 2-10

Figure 112021144611149-pat00294
Figure 112021144611149-pat00294

질소 분위기에서 화합물 BC(15 g, 53.9 mmol)와 naphthalen-2-ylboronic acid(9.3 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBC-1를 15.1 g 제조하였다.(수율 76 %, MS: [M+H]+= 370)In a nitrogen atmosphere, compound BC (15 g, 53.9 mmol) and naphthalen-2-ylboronic acid (9.3 g, 53.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 11 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.1 g of compound subBC-1. (Yield 76%, MS: [M+H]+= 370)

Figure 112021144611149-pat00295
Figure 112021144611149-pat00295

질소 분위기에서 화합물 subBC-1(10 g, 27 mmol), 화합물 amine13(8.7 g, 27 mmol), sodium tert-butoxide(8.6 g, 40.6 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-10 9 g을 얻었다.(수율 51 %, MS: [M+H]+= 655)In a nitrogen atmosphere, compound subBC-1 (10 g, 27 mmol), compound amine13 (8.7 g, 27 mmol), and sodium tert-butoxide (8.6 g, 40.6 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9 g of compound 2-10. (Yield 51%, MS: [M+H] + = 655)

제조예 2-11Preparation Example 2-11

Figure 112021144611149-pat00296
Figure 112021144611149-pat00296

질소 분위기에서 화합물 BC(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBC-2를 13.4 g 제조하였다.(수율 78 %, MS: [M+H]+= 320)In a nitrogen atmosphere, compound BC (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 11 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.4 g of compound subBC-2. (Yield 78%, MS: [M+H]+= 320)

Figure 112021144611149-pat00297
Figure 112021144611149-pat00297

질소 분위기에서 화합물 subBC-2(15 g, 46.9 mmol)와 화합물 amine14(17.8 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-11을 21.5 g 제조하였다.(수율 74 %, MS: [M+H]+= 619)In a nitrogen atmosphere, compound subBC-2 (15 g, 46.9 mmol) and compound amine14 (17.8 g, 46.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 21.5 g of Compound 2-11. (Yield 74%, MS: [M+H]+= 619)

제조예 2-12Preparation Example 2-12

Figure 112021144611149-pat00298
Figure 112021144611149-pat00298

질소 분위기에서 화합물 BC(15 g, 53.9 mmol)와 dibenzo[b,d]furan-1-ylboronic acid(11.4 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBC-3를 13.9 g 제조하였다.(수율 63 %, MS: [M+H]+= 410)In a nitrogen atmosphere, compound BC (15 g, 53.9 mmol) and dibenzo[b,d]furan-1-ylboronic acid (11.4 g, 53.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.9 g of compound subBC-3. (Yield 63%, MS: [M+H]+= 410)

Figure 112021144611149-pat00299
Figure 112021144611149-pat00299

질소 분위기에서 화합물 subBC-3(15 g, 36.6 mmol)와 화합물 amine15(16.2 g, 36.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.2 g, 109.8 mmol)를 물 46 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-12를 18.3 g 제조하였다.(수율 65 %, MS: [M+H]+= 771)In a nitrogen atmosphere, compound subBC-3 (15 g, 36.6 mmol) and compound amine15 (16.2 g, 36.6 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (15.2 g, 109.8 mmol) was dissolved in 46 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.3 g of Compound 2-12. (Yield 65%, MS: [M+H]+= 771)

제조예 2-13Preparation Example 2-13

Figure 112021144611149-pat00300
Figure 112021144611149-pat00300

질소 분위기에서 화합물 BE(15 g, 53.9 mmol)와 phenylboronic acid(6.6 g, 53.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.4 g, 161.8 mmol)를 물 67 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subBE-2를 13.1 g 제조하였다.(수율 76 %, MS: [M+H]+= 320)In a nitrogen atmosphere, compound BE (15 g, 53.9 mmol) and phenylboronic acid (6.6 g, 53.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (22.4 g, 161.8 mmol) was dissolved in 67 ml of water, and after sufficiently stirred, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.1 g of compound subBE-2. (Yield 76%, MS: [M+H]+= 320)

Figure 112021144611149-pat00301
Figure 112021144611149-pat00301

질소 분위기에서 화합물 subBE-2(10 g, 31.3 mmol), 화합물 amine16(10.8 g, 31.3 mmol), sodium tert-butoxide(10 g, 46.9 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-13 13 g을 얻었다.(수율 66 %, MS: [M+H]+= 629)In a nitrogen atmosphere, compound subBE-2 (10 g, 31.3 mmol), compound amine16 (10.8 g, 31.3 mmol), and sodium tert-butoxide (10 g, 46.9 mmol) were added to 200 ml of Xylene, followed by stirring and reflux. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13 g of compound 2-13. (Yield 66%, MS: [M+H]+ = 629)

제조예 2-14Production Example 2-14

Figure 112021144611149-pat00302
Figure 112021144611149-pat00302

질소 분위기에서 화합물 subBE-2(15 g, 46.9 mmol)와 화합물 amine17(21.4 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-14를 23.4 g 제조하였다.(수율 72 %, MS: [M+H]+= 695)In a nitrogen atmosphere, compound subBE-2 (15 g, 46.9 mmol) and compound amine17 (21.4 g, 46.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 23.4 g of Compound 2-14. (Yield 72%, MS: [M+H]+= 695)

제조예 2-15Preparation Example 2-15

Figure 112021144611149-pat00303
Figure 112021144611149-pat00303

질소 분위기에서 화합물 subBF-1(15 g, 46.9 mmol)와 화합물 amine18(22.1 g, 46.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.5 g, 140.7 mmol)를 물 58 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-15를 23.3 g 제조하였다.(수율 70 %, MS: [M+H]+= 711)In a nitrogen atmosphere, compound subBF-1 (15 g, 46.9 mmol) and compound amine18 (22.1 g, 46.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (19.5 g, 140.7 mmol) was dissolved in 58 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 23.3 g of compound 2-15. (Yield 70%, MS: [M+H]+= 711)

제조예 2-16Preparation Example 2-16

Figure 112021144611149-pat00304
Figure 112021144611149-pat00304

질소 분위기에서 화합물 CA(15 g, 51 mmol)와 dibenzo[b,d]thiophen-3-ylboronic acid(11.6 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCA-2를 14.4 g 제조하였다.(수율 64 %, MS: [M+H]+= 442)In a nitrogen atmosphere, compound CA (15 g, 51 mmol) and dibenzo[b,d]thiophen-3-ylboronic acid (11.6 g, 51 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 14.4 g of compound subCA-2. (Yield 64%, MS: [M+H]+= 442)

Figure 112021144611149-pat00305
Figure 112021144611149-pat00305

질소 분위기에서 화합물 subCA-2(15 g, 33.9 mmol)와 화합물 amine22(14.1 g, 33.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.1 g, 101.8 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-16를 20.8 g 제조하였다.(수율 79 %, MS: [M+H]+= 777)In a nitrogen atmosphere, compound subCA-2 (15 g, 33.9 mmol) and compound amine22 (14.1 g, 33.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (14.1 g, 101.8 mmol) was dissolved in 42 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 20.8 g of compound 2-16. (Yield 79%, MS: [M+H]+= 777)

제조예 2-17Preparation Example 2-17

Figure 112021144611149-pat00306
Figure 112021144611149-pat00306

질소 분위기에서 화합물 subCB-1(10 g, 29.8 mmol), 화합물 amine23(12.6 g, 29.8 mmol), sodium tert-butoxide(9.5 g, 44.7 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-17 12.5 g을 얻었다.(수율 58 %, MS: [M+H]+= 722)In a nitrogen atmosphere, compound subCB-1 (10 g, 29.8 mmol), compound amine23 (12.6 g, 29.8 mmol), and sodium tert-butoxide (9.5 g, 44.7 mmol) were added to 200 ml of xylene and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.5 g of compound 2-17. (Yield 58%, MS: [M+H]+= 722)

제조예 2-18Preparation Example 2-18

Figure 112021144611149-pat00307
Figure 112021144611149-pat00307

질소 분위기에서 화합물 subCB-1(15 g, 44.7 mmol)와 화합물 amine24(21.1 g, 44.7 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.5 g, 134 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-18을 20.1 g 제조하였다.(수율 62 %, MS: [M+H]+= 727)In a nitrogen atmosphere, compound subCB-1 (15 g, 44.7 mmol) and compound amine24 (21.1 g, 44.7 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (18.5 g, 134 mmol) was dissolved in 56 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 20.1 g of Compound 2-18. (Yield 62%, MS: [M+H]+= 727)

제조예 2-19Preparation Example 2-19

Figure 112021144611149-pat00308
Figure 112021144611149-pat00308

질소 분위기에서 화합물 CC(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCC-1를 10.9 g 제조하였다.(수율 64 %, MS: [M+H]+= 336)In a nitrogen atmosphere, compound CC (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.9 g of compound subCC-1. (Yield 64%, MS: [M+H]+= 336)

Figure 112021144611149-pat00309
Figure 112021144611149-pat00309

질소 분위기에서 화합물 subCC-1(10 g, 29.8 mmol), 화합물 amine25(12.3 g, 29.8 mmol), sodium tert-butoxide(9.5 g, 44.7 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-19 14 g을 얻었다.(수율 66 %, MS: [M+H]+= 711)In a nitrogen atmosphere, compound subCC-1 (10 g, 29.8 mmol), compound amine25 (12.3 g, 29.8 mmol), and sodium tert-butoxide (9.5 g, 44.7 mmol) were added to 200 ml of xylene and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 14 g of compound 2-19. (Yield: 66%, MS: [M+H] + = 711)

제조예 2-20Preparation Example 2-20

Figure 112021144611149-pat00310
Figure 112021144611149-pat00310

질소 분위기에서 화합물 subCC-1(10 g, 29.8 mmol), 화합물 amine26(11.1 g, 29.8 mmol), sodium tert-butoxide(9.5 g, 44.7 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-20 12 g을 얻었다.(수율 60 %, MS: [M+H]+= 671)In a nitrogen atmosphere, compound subCC-1 (10 g, 29.8 mmol), compound amine26 (11.1 g, 29.8 mmol), and sodium tert-butoxide (9.5 g, 44.7 mmol) were added to 200 ml of xylene and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12 g of compound 2-20. (Yield: 60%, MS: [M+H] + = 671)

제조예 2-21Preparation Example 2-21

Figure 112021144611149-pat00311
Figure 112021144611149-pat00311

질소 분위기에서 화합물 subCC-1(10 g, 29.8 mmol), 화합물 amine27(14.6 g, 29.8 mmol), sodium tert-butoxide(9.5 g, 44.7 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-21 11.8 g을 얻었다.(수율 53 %, MS: [M+H]+= 747)In a nitrogen atmosphere, compound subCC-1 (10 g, 29.8 mmol), compound amine27 (14.6 g, 29.8 mmol), and sodium tert-butoxide (9.5 g, 44.7 mmol) were added to 200 ml of xylene and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.8 g of compound 2-21. (Yield 53%, MS: [M+H]+= 747)

제조예 2-22Preparation Example 2-22

Figure 112021144611149-pat00312
Figure 112021144611149-pat00312

질소 분위기에서 화합물 CD(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCD-1를 12.8 g 제조하였다.(수율 75 %, MS: [M+H]+= 336)In a nitrogen atmosphere, compound CD (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.8 g of compound subCD-1. (Yield 75%, MS: [M+H]+= 336)

Figure 112021144611149-pat00313
Figure 112021144611149-pat00313

질소 분위기에서 화합물 subCD-1(15 g, 44.7 mmol)와 화합물 amine28(19.7 g, 44.7 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.5 g, 134 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-22를 20.2 g 제조하였다.(수율 65 %, MS: [M+H]+= 697)In a nitrogen atmosphere, compound subCD-1 (15 g, 44.7 mmol) and compound amine28 (19.7 g, 44.7 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (18.5 g, 134 mmol) was dissolved in 56 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 11 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 20.2 g of Compound 2-22. (Yield 65%, MS: [M+H]+= 697)

제조예 2-23Preparation Example 2-23

Figure 112021144611149-pat00314
Figure 112021144611149-pat00314

질소 분위기에서 화합물 CE(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCE-2를 13.5 g 제조하였다.(수율 79 %, MS: [M+H]+= 336)In a nitrogen atmosphere, compound CE (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were put into 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.5 g of compound subCE-2. (Yield 79%, MS: [M+H]+= 336)

Figure 112021144611149-pat00315
Figure 112021144611149-pat00315

질소 분위기에서 화합물 subCE-2(10 g, 29.8 mmol), 화합물 amine29(10.3 g, 29.8 mmol), sodium tert-butoxide(9.5 g, 44.7 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-23 11.9 g을 얻었다.(수율 62 %, MS: [M+H]+= 645)In a nitrogen atmosphere, compound subCE-2 (10 g, 29.8 mmol), compound amine29 (10.3 g, 29.8 mmol), and sodium tert-butoxide (9.5 g, 44.7 mmol) were added to 200 ml of xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.9 g of compound 2-23. (Yield 62%, MS: [M+H]+= 645)

제조예 2-24Preparation Example 2-24

Figure 112021144611149-pat00316
Figure 112021144611149-pat00316

질소 분위기에서 화합물 CF(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subCF-2를 11.6 g 제조하였다.(수율 68 %, MS: [M+H]+= 336)In a nitrogen atmosphere, compound CF (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.6 g of compound subCF-2. (Yield 68%, MS: [M+H]+= 336)

Figure 112021144611149-pat00317
Figure 112021144611149-pat00317

질소 분위기에서 화합물 subCF-2(10 g, 29.8 mmol), 화합물 amine30(10.5 g, 29.8 mmol), sodium tert-butoxide(9.5 g, 44.7 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-24 12.4 g을 얻었다.(수율 64 %, MS: [M+H]+= 651)In a nitrogen atmosphere, compound subCF-2 (10 g, 29.8 mmol), compound amine30 (10.5 g, 29.8 mmol), and sodium tert-butoxide (9.5 g, 44.7 mmol) were added to 200 ml of xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.4 g of compound 2-24. (Yield 64%, MS: [M+H]+= 651)

제조예 2-25Preparation Example 2-25

Figure 112021144611149-pat00318
Figure 112021144611149-pat00318

질소 분위기에서 화합물 subDB-1(15 g, 38.9 mmol)와 화합물 amine33(17.2 g, 38.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.1 g, 116.6 mmol)를 물 48 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-25을 21.2 g 제조하였다.(수율 73 %, MS: [M+H]+= 747)In a nitrogen atmosphere, compound subDB-1 (15 g, 38.9 mmol) and compound amine33 (17.2 g, 38.9 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (16.1 g, 116.6 mmol) was dissolved in 48 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 21.2 g of Compound 2-25. (Yield 73%, MS: [M+H]+= 747)

제조예 2-26Preparation Example 2-26

Figure 112021144611149-pat00319
Figure 112021144611149-pat00319

질소 분위기에서 화합물 DB(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDB-2를 13.2 g 제조하였다.(수율 77 %, MS: [M+H]+= 336)In a nitrogen atmosphere, compound DB (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 10 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.2 g of compound subDB-2. (Yield 77%, MS: [M+H]+= 336)

Figure 112021144611149-pat00320
Figure 112021144611149-pat00320

질소 분위기에서 화합물 subDB-2(10 g, 31.3 mmol), 화합물 amine34(12.9 g, 31.3 mmol), sodium tert-butoxide(10 g, 46.9 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-26 15 g을 얻었다.(수율 69 %, MS: [M+H]+= 695)In a nitrogen atmosphere, compound subDB-2 (10 g, 31.3 mmol), compound amine34 (12.9 g, 31.3 mmol), and sodium tert-butoxide (10 g, 46.9 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15 g of compound 2-26. (Yield 69%, MS: [M+H] + = 695)

제조예 2-27Preparation Example 2-27

Figure 112021144611149-pat00321
Figure 112021144611149-pat00321

질소 분위기에서 화합물 DC(15 g, 51 mmol)와 naphthalen-2-ylboronic acid(8.8 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDC-1를 12.8 g 제조하였다.(수율 65 %, MS: [M+H]+= 386)Compound DC (15 g, 51 mmol) and naphthalen-2-ylboronic acid (8.8 g, 51 mmol) were added to 300 ml of THF under nitrogen atmosphere and stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.8 g of compound subDC-1. (Yield 65%, MS: [M+H]+= 386)

Figure 112021144611149-pat00322
Figure 112021144611149-pat00322

질소 분위기에서 화합물 subDC-1(10 g, 25.9 mmol), 화합물 amine13(8.3 g, 25.9 mmol), sodium tert-butoxide(8.3 g, 38.9 mmol)을 Xylene200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-27 10.9 g을 얻었다.(수율 63 %, MS: [M+H]+= 671)In a nitrogen atmosphere, compound subDC-1 (10 g, 25.9 mmol), compound amine13 (8.3 g, 25.9 mmol), and sodium tert-butoxide (8.3 g, 38.9 mmol) were added to 200 ml of Xylene and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Thereafter, the compound was completely dissolved again in chloroform, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.9 g of compound 2-27. (Yield 63%, MS: [M+H]+= 671)

제조예 2-28Preparation Example 2-28

Figure 112021144611149-pat00323
Figure 112021144611149-pat00323

질소 분위기에서 화합물 DC(15 g, 51 mmol)와 phenylboronic acid(6.2 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDC-2를 11.1 g 제조하였다.(수율 65 %, MS: [M+H]+= 336)Compound DC (15 g, 51 mmol) and phenylboronic acid (6.2 g, 51 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.1 g of compound subDC-2. (Yield 65%, MS: [M+H]+= 336)

Figure 112021144611149-pat00324
Figure 112021144611149-pat00324

질소 분위기에서 화합물 subDC-2(15 g, 44.7 mmol)와 화합물 amine7(21 g, 44.7 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.5 g, 134 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-28을 21 g 제조하였다.(수율 65 %, MS: [M+H]+= 725)In a nitrogen atmosphere, compound subDC-2 (15 g, 44.7 mmol) and compound amine7 (21 g, 44.7 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (18.5 g, 134 mmol) was dissolved in 56 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 21 g of compound 2-28. (Yield 65%, MS: [M+H]+= 725)

제조예 2-29Preparation Example 2-29

Figure 112021144611149-pat00325
Figure 112021144611149-pat00325

질소 분위기에서 화합물 DE(15 g, 51 mmol)와 dibenzo[b,d]furan-2-ylboronic acid(10.8 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDE-1를 16 g 제조하였다.(수율 74 %, MS: [M+H]+= 426)In a nitrogen atmosphere, compound DE (15 g, 51 mmol) and dibenzo[b,d]furan-2-ylboronic acid (10.8 g, 51 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16 g of compound subDE-1. (Yield 74%, MS: [M+H]+= 426)

Figure 112021144611149-pat00326
Figure 112021144611149-pat00326

질소 분위기에서 화합물 subDE-1(15 g, 35.2 mmol)와 화합물 amine35(17.3 g, 35.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.6 g, 105.7 mmol)를 물 44 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-29를 19.7 g 제조하였다.(수율 67 %, MS: [M+H]+= 837)In a nitrogen atmosphere, compound subDE-1 (15 g, 35.2 mmol) and compound amine35 (17.3 g, 35.2 mmol) were added to 300 ml of THF, followed by stirring and reflux. Thereafter, potassium carbonate (14.6 g, 105.7 mmol) was dissolved in 44 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 9 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 19.7 g of Compound 2-29. (Yield 67%, MS: [M+H]+= 837)

제조예 2-30Preparation Example 2-30

Figure 112021144611149-pat00327
Figure 112021144611149-pat00327

질소 분위기에서 화합물 DF(15 g, 51 mmol)와 [1,1'-biphenyl]-4-ylboronic acid(10.1 g, 51 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1 g, 153 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(0.6 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subDF-2를 15.5 g 제조하였다.(수율 74 %, MS: [M+H]+= 412)Compound DF (15 g, 51 mmol) and [1,1'-biphenyl] -4-ylboronic acid (10.1 g, 51 mmol) were added to 300 ml of THF under a nitrogen atmosphere, followed by stirring and reflux. Thereafter, potassium carbonate (21.1 g, 153 mmol) was dissolved in 63 ml of water, and after stirring sufficiently, Tetrakis (triphenylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After reacting for 12 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.5 g of compound subDF-2. (Yield 74%, MS: [M+H]+= 412)

Figure 112021144611149-pat00328
Figure 112021144611149-pat00328

질소 분위기에서 화합물 subDF-2(15 g, 57.8 mmol)와 화합물 amine35(28.4 g, 57.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.9 g, 173.3 mmol)를 물 72 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-30을 29.4 g 제조하였다.(수율 62 %, MS: [M+H]+= 823)In a nitrogen atmosphere, the compound subDF-2 (15 g, 57.8 mmol) and the compound amine35 (28.4 g, 57.8 mmol) were added to 300 ml of THF and stirred and refluxed. Thereafter, potassium carbonate (23.9 g, 173.3 mmol) was dissolved in 72 ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 29.4 g of Compound 2-30. (Yield 62%, MS: [M+H]+= 823)

[실시예][Example]

비교예 AComparative Example A

ITO(indium tin oxide)가 1000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30 분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with ITO (indium tin oxide) to a thickness of 1000 Å was put in distilled water in which detergent was dissolved and washed with ultrasonic waves. At this time, a Fischer Co. product was used as the detergent, and distilled water filtered through a second filter of a Millipore Co. product was used as the distilled water. After washing the ITO for 30 minutes, ultrasonic cleaning was performed twice with distilled water for 10 minutes. After washing with distilled water, ultrasonic cleaning was performed with solvents such as isopropyl alcohol, acetone, and methanol, dried, and transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transferred to a vacuum deposition machine.

이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 화합물 HI-1을 1150 Å의 두께로 형성하되 하기 화합물 A-1을 1.5 wt% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150 Å으로 하기 화합물 EB-1을 진공 증착하여 전자차단층을 형성했다. 이어서, 상기 EB-1 증착막 위에 하기 화합물 RH-1, 화합물 Dp-7을 98:2의 중량비로 진공 증착하여 400 Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30 Å으로 하기 화합물 HB-1을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 화합물 ET-1과 하기 화합물 LiQ를 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1000 Å 두께로 알루미늄을 증착하여 음극을 형성했다. The following compound HI-1 was formed to a thickness of 1150 Å as a hole injection layer on the prepared ITO transparent electrode, but the following compound A-1 was p-doped at a concentration of 1.5 wt%. The following compound HT-1 was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Subsequently, an electron blocking layer was formed by vacuum depositing the following compound EB-1 to a film thickness of 150 Å on the hole transport layer. Subsequently, the following compound RH-1 and compound Dp-7 were vacuum deposited on the EB-1 deposited film in a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 Å. A hole blocking layer was formed on the light emitting layer by vacuum depositing the following compound HB-1 to a film thickness of 30 Å. Subsequently, the following compound ET-1 and the following compound LiQ were vacuum deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 Å. A negative electrode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1000 Å on the electron injection and transport layer.

Figure 112021144611149-pat00329
Figure 112021144611149-pat00329

상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2ⅹ10-7 ~ 5ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작했다.In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7 Å/sec, the deposition rate of lithium fluoride on the cathode was 0.3 Å/sec, and the deposition rate of aluminum was 2 Å/sec, and the vacuum level during deposition was 2×10 -7 While maintaining ~ 5ⅹ10 -6 torr, an organic light emitting device was fabricated.

실시예 1 내지 실시예 17Examples 1 to 17

비교예 A의 유기 발광 소자에서 호스트로 화합물 RH-1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 A와 동일한 방법으로 유기 발광 소자를 제조했다. An organic light emitting device was manufactured in the same manner as in Comparative Example A, except that the compound shown in Table 1 was used instead of compound RH-1 as a host in the organic light emitting device of Comparative Example A.

비교예 1 내지 비교예 7Comparative Examples 1 to 7

비교예 A의 유기 발광 소자에서 호스트로 화합물 RH-1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 A와 동일한 방법으로 유기 발광 소자를 제조했다. 하기 표 1의 화합물 B-8 내지 B-14의 구조는 아래와 같다.An organic light emitting device was manufactured in the same manner as in Comparative Example A, except that the compound shown in Table 1 was used instead of compound RH-1 as a host in the organic light emitting device of Comparative Example A. The structures of compounds B-8 to B-14 in Table 1 are as follows.

Figure 112021144611149-pat00330
Figure 112021144611149-pat00330

실시예 18 내지 실시예 47Examples 18 to 47

비교예 A의 유기 발광 소자에서 화합물 EB-1 대신 전자차단층 물질로 하기 표 2에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 A와 동일한 방법으로 유기 발광 소자를 제조했다. An organic light emitting device of Comparative Example A was manufactured in the same manner as in Comparative Example A, except that the compound shown in Table 2 was used as an electron blocking layer material instead of compound EB-1 in the organic light emitting device of Comparative Example A.

비교예 8 내지 비교예 14Comparative Examples 8 to 14

비교예 A의 유기 발광 소자에서 화합물 EB-1 대신 전자차단층 물질로 하기 표 2에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 A와 동일한 방법으로 유기 발광 소자를 제조했다. 하기 표 2의 화합물 B-1 내지 B-7의 구조는 아래와 같다.An organic light emitting device of Comparative Example A was manufactured in the same manner as in Comparative Example A, except that the compound shown in Table 2 was used as an electron blocking layer material instead of compound EB-1 in the organic light emitting device of Comparative Example A. The structures of compounds B-1 to B-7 in Table 2 below are as follows.

Figure 112021144611149-pat00331
Figure 112021144611149-pat00331

실시예 48 내지 실시예 115Examples 48 to 115

비교예 A의 유기 발광 소자에서 호스트로 화합물 RH-1 대신 표3에 기재된 제1호스트와 제2호스트의 화합물을 1:1의 중량비로 사용하는 것을 제외하고는, 상기 비교예 A와 동일한 방법으로 유기 발광 소자를 제조했다. In the organic light emitting device of Comparative Example A, in the same manner as in Comparative Example A, except that the compounds of the first host and the second host described in Table 3 were used in a weight ratio of 1: 1 instead of compound RH-1. An organic light emitting device was manufactured.

[실험예][Experimental Example]

상기 실시예 1 내지 실시예 161 및 비교예 A, 비교예 1 내지 비교예 88에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm2 기준)하고 그 결과를 하기 표 1 내지 표 3에 나타냈다. 수명T95는 휘도가 초기휘도 7,000nit 기준에서 수명이 95 %로 감소되는데 소요되는 시간을 의미한다.When current was applied to the organic light emitting devices prepared in Examples 1 to 161 and Comparative Examples A and Comparative Examples 1 to 88, voltage and efficiency were measured (15 mA/cm 2 standard) and the results It was shown in Tables 1 to 3 below. The lifetime T95 means the time required for the luminance to decrease to 95% from the initial luminance of 7,000 nit.

구분division 호스트host 구동전압
(V)
driving voltage
(V)
효율(cd/A)Efficiency (cd/A) 수명
T95(hr)
life span
T95 (hr)
발광색luminescent color
비교예 AComparative Example A 화합물 RH-1Compound RH-1 3.913.91 16.5416.54 113113 적색Red 실시예 1Example 1 화합물1-1compound 1-1 3.63 3.63 19.3519.35 178178 적색Red 실시예 2Example 2 화합물1-2compound 1-2 3.65 3.65 19.8919.89 187187 적색Red 실시예 3Example 3 화합물1-3compound 1-3 3.61 3.61 20.1420.14 196196 적색Red 실시예 4Example 4 화합물1-4compound 1-4 3.54 3.54 20.8620.86 217217 적색Red 실시예 5Example 5 화합물1-5compound 1-5 3.59 3.59 20.3520.35 203203 적색Red 실시예 6Example 6 화합물1-6compound 1-6 3.63 3.63 19.6719.67 186186 적색Red 실시예 7Example 7 화합물1-7compound 1-7 3.72 3.72 19.0319.03 173173 적색Red 실시예 8Example 8 화합물1-8compound 1-8 3.69 3.69 20.2720.27 193193 적색Red 실시예 9Example 9 화합물1-9compound 1-9 3.73 3.73 19.3819.38 182182 적색Red 실시예 10Example 10 화합물1-10compound 1-10 3.76 3.76 18.8618.86 186186 적색Red 실시예 11Example 11 화합물1-11compound 1-11 3.81 3.81 18.5118.51 179179 적색Red 실시예 12Example 12 화합물1-12compound 1-12 3.83 3.83 18.3018.30 167167 적색Red 실시예 13Example 13 화합물1-13compound 1-13 3.72 3.72 19.3419.34 193193 적색Red 실시예 14Example 14 화합물1-14compound 1-14 3.75 3.75 19.0219.02 190190 적색Red 실시예 15Example 15 화합물1-15compound 1-15 3.80 3.80 18.4518.45 172172 적색Red 실시예 16Example 16 화합물1-16compound 1-16 3.84 3.84 18.2618.26 169169 적색Red 실시예 17Example 17 화합물1-17compound 1-17 3.76 3.76 18.9318.93 184184 적색Red 비교예 1Comparative Example 1 화합물 B-8Compound B-8 4.054.05 16.9216.92 9898 적색Red 비교예 2Comparative Example 2 화합물 B-9Compound B-9 3.983.98 17.3917.39 125125 적색Red 비교예 3Comparative Example 3 화합물 B-10Compound B-10 3.953.95 17.6417.64 133133 적색Red 비교예 4Comparative Example 4 화합물 B-11compound B-11 4.034.03 17.0317.03 117117 적색Red 비교예 5Comparative Example 5 화합물 B-12compound B-12 3.973.97 16.8516.85 102102 적색Red 비교예 6Comparative Example 6 화합물 B-13compound B-13 4.094.09 16.3116.31 9494 적색Red 비교예 7Comparative Example 7 화합물 B-14Compound B-14 4.114.11 12.7612.76 7676 적색Red

구분division 전자차단층electron blocking layer 구동전압
(V)
driving voltage
(V)
효율(cd/A)Efficiency (cd/A) 수명
T95(hr)
life span
T95 (hr)
발광색luminescent color
실시예 18Example 18 화합물2-1compound 2-1 3.71 3.71 18.7218.72 159159 적색Red 실시예 19Example 19 화합물2-2compound 2-2 3.78 3.78 18.7518.75 167167 적색Red 실시예 20Example 20 화합물2-3compound 2-3 3.75 3.75 18.2218.22 172172 적색Red 실시예 21Example 21 화합물2-4compound 2-4 3.82 3.82 19.1919.19 161161 적색Red 실시예 22Example 22 화합물2-5compound 2-5 3.79 3.79 18.6418.64 164164 적색Red 실시예 23Example 23 화합물2-6compound 2-6 3.73 3.73 18.3618.36 166166 적색Red 실시예 24Example 24 화합물2-7compound 2-7 3.71 3.71 18.6718.67 179179 적색Red 실시예 25Example 25 화합물2-8compound 2-8 3.84 3.84 18.7618.76 185185 적색Red 실시예 26Example 26 화합물2-9compound 2-9 3.67 3.67 18.9618.96 165165 적색Red 실시예 27Example 27 화합물2-10compound 2-10 3.69 3.69 19.3719.37 186186 적색Red 실시예 28Example 28 화합물2-11compound 2-11 3.77 3.77 19.8219.82 183183 적색Red 실시예 29Example 29 화합물2-12compound 2-12 3.67 3.67 20.5120.51 178178 적색Red 실시예 30Example 30 화합물2-13compound 2-13 3.71 3.71 19.1219.12 184184 적색Red 실시예 31Example 31 화합물2-14compound 2-14 3.78 3.78 20.6120.61 171171 적색Red 실시예 32Example 32 화합물2-15compound 2-15 3.72 3.72 19.2619.26 169169 적색Red 실시예 33Example 33 화합물2-16compound 2-16 3.84 3.84 21.6321.63 183183 적색Red 실시예 34Example 34 화합물2-17compound 2-17 3.75 3.75 21.9721.97 180180 적색Red 실시예 35Example 35 화합물2-18compound 2-18 3.78 3.78 20.5520.55 174174 적색Red 실시예 36Example 36 화합물2-19compound 2-19 3.76 3.76 19.4919.49 186186 적색Red 실시예 37Example 37 화합물2-20compound 2-20 3.67 3.67 20.4520.45 187187 적색Red 실시예 38Example 38 화합물2-21compound 2-21 3.80 3.80 20.1020.10 180180 적색Red 실시예 39Example 39 화합물2-22compound 2-22 3.81 3.81 19.4419.44 175175 적색Red 실시예 40Example 40 화합물2-23compound 2-23 3.78 3.78 21.7621.76 164164 적색Red 실시예 41Example 41 화합물2-24compound 2-24 3.74 3.74 18.8418.84 193193 적색Red 실시예 42Example 42 화합물2-25compound 2-25 3.81 3.81 20.3720.37 179179 적색Red 실시예 43Example 43 화합물2-26compound 2-26 3.71 3.71 18.6918.69 183183 적색Red 실시예 44Example 44 화합물2-27compound 2-27 3.72 3.72 19.4619.46 176176 적색Red 실시예 45Example 45 화합물2-28compound 2-28 3.83 3.83 20.9720.97 168168 적색Red 실시예 46Example 46 화합물2-29compound 2-29 3.82 3.82 18.9318.93 179179 적색Red 실시예 47Example 47 화합물2-30compound 2-30 3.80 3.80 20.0820.08 175175 적색Red 비교예 8Comparative Example 8 화합물B-1Compound B-1 3.963.96 16.3616.36 104104 적색Red 비교예 9Comparative Example 9 화합물B-2Compound B-2 4.034.03 17.0917.09 127127 적색Red 비교예 10Comparative Example 10 화합물B-3Compound B-3 3.923.92 17.1217.12 138138 적색Red 비교예 11Comparative Example 11 화합물B-4Compound B-4 3.963.96 16.2316.23 106106 적색Red 비교예 12Comparative Example 12 화합물B-5Compound B-5 3.943.94 16.1816.18 9393 적색Red 비교예 13Comparative Example 13 화합물B-6Compound B-6 4.134.13 15.6015.60 7171 적색Red 비교예 14Comparative Example 14 화합물B-7Compound B-7 4.274.27 12.2112.21 8484 적색Red

구분division 제1호스트1st host 제2호스트2nd host 구동전압
(V)
driving voltage
(V)
효율
(cd/A)
efficiency
(cd/A)
수명
T95(hr)
life span
T95 (hr)
발광색luminescent color
실시예 48Example 48 화합물 1-1compound 1-1 화합물 2-1compound 2-1 3.49 3.49 21.5221.52 218218 적색Red 실시예 49Example 49 화합물 1-1compound 1-1 화합물 2-4Compounds 2-4 3.50 3.50 21.8721.87 223223 적색Red 실시예 50Example 50 화합물 1-1compound 1-1 화합물 2-10Compounds 2-10 3.41 3.41 20.1920.19 216216 적색Red 실시예 51Example 51 화합물 1-1compound 1-1 화합물 2-15Compounds 2-15 3.57 3.57 21.1021.10 221221 적색Red 실시예 52Example 52 화합물 1-1compound 1-1 화합물 2-22compound 2-22 3.45 3.45 19.8219.82 207207 적색Red 실시예 53Example 53 화합물 1-1compound 1-1 화합물 2-26compound 2-26 3.49 3.49 19.8419.84 208208 적색Red 실시예 56Example 56 화합물 1-3Compounds 1-3 화합물 2-2compound 2-2 3.65 3.65 23.6523.65 229229 적색Red 실시예 57Example 57 화합물 1-3Compounds 1-3 화합물 2-5Compounds 2-5 3.63 3.63 23.1823.18 220220 적색Red 실시예 58Example 58 화합물 1-3Compounds 1-3 화합물 2-11compound 2-11 3.65 3.65 21.5421.54 230230 적색Red 실시예 59Example 59 화합물 1-3Compounds 1-3 화합물 2-16Compounds 2-16 3.48 3.48 23.3123.31 233233 적색Red 실시예 60Example 60 화합물 1-3Compounds 1-3 화합물 2-23compound 2-23 3.62 3.62 22.1622.16 212212 적색Red 실시예 61Example 61 화합물 1-3Compounds 1-3 화합물 2-27compound 2-27 3.46 3.46 23.6523.65 212212 적색Red 실시예 62Example 62 화합물 1-4Compounds 1-4 화합물 2-3compound 2-3 3.49 3.49 23.8623.86 237237 적색Red 실시예 63Example 63 화합물 1-4Compounds 1-4 화합물 2-6compound 2-6 3.47 3.47 23.1723.17 217217 적색Red 실시예 64Example 64 화합물 1-4Compounds 1-4 화합물 2-12Compounds 2-12 3.44 3.44 23.7723.77 232232 적색Red 실시예 65Example 65 화합물 1-4Compounds 1-4 화합물 2-17Compounds 2-17 3.51 3.51 22.9222.92 232232 적색Red 실시예 66Example 66 화합물 1-4Compounds 1-4 화합물 2-24compound 2-24 3.56 3.56 24.0024.00 229229 적색Red 실시예 67Example 67 화합물 1-4Compounds 1-4 화합물 2-28compound 2-28 3.49 3.49 22.8822.88 232232 적색Red 실시예 68Example 68 화합물 1-5Compounds 1-5 화합물 2-1compound 2-1 3.42 3.42 19.6819.68 216216 적색Red 실시예 69Example 69 화합물 1-5Compounds 1-5 화합물 2-4Compounds 2-4 3.40 3.40 20.9920.99 221221 적색Red 실시예 70Example 70 화합물 1-5Compounds 1-5 화합물 2-13Compounds 2-13 3.56 3.56 19.5819.58 214214 적색Red 실시예 71Example 71 화합물 1-5Compounds 1-5 화합물 2-18Compounds 2-18 3.40 3.40 20.8420.84 206206 적색Red 실시예 72Example 72 화합물 1-5Compounds 1-5 화합물 2-25compound 2-25 3.50 3.50 21.3221.32 218218 적색Red 실시예 73Example 73 화합물 1-5Compounds 1-5 화합물 2-29compound 2-29 3.40 3.40 19.5619.56 222222 적색Red 실시예 74Example 74 화합물 1-8Compounds 1-8 화합물 2-1compound 2-1 3.51 3.51 23.0123.01 215215 적색Red 실시예 75Example 75 화합물 1-8Compounds 1-8 화합물 2-4Compounds 2-4 3.62 3.62 23.2923.29 221221 적색Red 실시예 76Example 76 화합물 1-8Compounds 1-8 화합물 2-10Compounds 2-10 3.64 3.64 23.1723.17 216216 적색Red 실시예 77Example 77 화합물 1-8Compounds 1-8 화합물 2-15Compounds 2-15 3.63 3.63 21.3921.39 233233 적색Red 실시예 78Example 78 화합물 1-8Compounds 1-8 화합물 2-22compound 2-22 3.63 3.63 22.2222.22 238238 적색Red 실시예 79Example 79 화합물 1-8Compounds 1-8 화합물 2-26compound 2-26 3.61 3.61 22.7722.77 234234 적색Red 실시예 80Example 80 화합물 1-9compounds 1-9 화합물 2-2compound 2-2 3.45 3.45 22.4322.43 210210 적색Red 실시예 81Example 81 화합물 1-9compounds 1-9 화합물 2-5Compounds 2-5 3.63 3.63 22.0622.06 218218 적색Red 실시예 82Example 82 화합물 1-9compounds 1-9 화합물 2-11compound 2-11 3.60 3.60 21.9721.97 214214 적색Red 실시예 83Example 83 화합물 1-9compounds 1-9 화합물 2-16Compounds 2-16 3.58 3.58 19.4019.40 214214 적색Red 실시예 84Example 84 화합물 1-9compounds 1-9 화합물 2-23compound 2-23 3.59 3.59 21.4921.49 209209 적색Red 실시예 85Example 85 화합물 1-9compounds 1-9 화합물 2-27compound 2-27 3.58 3.58 21.8621.86 224224 적색Red 실시예 86Example 86 화합물 1-10compounds 1-10 화합물 2-3compound 2-3 3.45 3.45 23.5423.54 224224 적색Red 실시예 87Example 87 화합물 1-10compounds 1-10 화합물 2-6compound 2-6 3.46 3.46 22.5322.53 214214 적색Red 실시예 88Example 88 화합물 1-10compounds 1-10 화합물 2-12Compounds 2-12 3.50 3.50 23.2123.21 217217 적색Red 실시예 89Example 89 화합물 1-10compounds 1-10 화합물 2-17Compounds 2-17 3.48 3.48 23.1623.16 226226 적색Red 실시예 90Example 90 화합물 1-10compounds 1-10 화합물 2-24compound 2-24 3.65 3.65 21.5721.57 206206 적색Red 실시예 91Example 91 화합물 1-10compounds 1-10 화합물 2-28compound 2-28 3.59 3.59 22.6822.68 206206 적색Red 실시예 92Example 92 화합물 1-13Compounds 1-13 화합물 2-1compound 2-1 3.46 3.46 21.3221.32 223223 적색Red 실시예 93Example 93 화합물 1-13Compounds 1-13 화합물 2-4Compounds 2-4 3.60 3.60 20.8620.86 212212 적색Red 실시예 94Example 94 화합물 1-13Compounds 1-13 화합물 2-13Compounds 2-13 3.41 3.41 20.1720.17 211211 적색Red 실시예 95Example 95 화합물 1-13Compounds 1-13 화합물 2-18Compounds 2-18 3.42 3.42 21.6421.64 221221 적색Red 실시예 96Example 96 화합물 1-13Compounds 1-13 화합물 2-25compound 2-25 3.52 3.52 20.8720.87 209209 적색Red 실시예 97Example 97 화합물 1-13Compounds 1-13 화합물 2-29compound 2-29 3.50 3.50 21.2721.27 216216 적색Red 실시예 98Example 98 화합물 1-14Compounds 1-14 화합물 2-1compound 2-1 3.55 3.55 24.2524.25 217217 적색Red 실시예 99Example 99 화합물 1-14Compounds 1-14 화합물 2-4Compounds 2-4 3.36 3.36 24.0324.03 219219 적색Red 실시예 100Example 100 화합물 1-14Compounds 1-14 화합물 2-10Compounds 2-10 3.57 3.57 23.6623.66 240240 적색Red 실시예 101Example 101 화합물 1-14Compounds 1-14 화합물 2-15Compounds 2-15 3.35 3.35 23.5223.52 240240 적색Red 실시예 102Example 102 화합물 1-14Compounds 1-14 화합물 2-22compound 2-22 3.41 3.41 23.5623.56 223223 적색Red 실시예 103Example 103 화합물 1-14Compounds 1-14 화합물 2-26compound 2-26 3.56 3.56 23.6623.66 219219 적색Red 실시예 104Example 104 화합물 1-15compounds 1-15 화합물 2-2compound 2-2 3.49 3.49 21.0521.05 226226 적색Red 실시예 105Example 105 화합물 1-15compounds 1-15 화합물 2-5Compounds 2-5 3.60 3.60 21.6821.68 211211 적색Red 실시예 106Example 106 화합물 1-15compounds 1-15 화합물 2-11compound 2-11 3.48 3.48 21.4921.49 210210 적색Red 실시예 107Example 107 화합물 1-15compounds 1-15 화합물 2-16Compounds 2-16 3.60 3.60 22.0422.04 215215 적색Red 실시예 108Example 108 화합물 1-15compounds 1-15 화합물 2-23compound 2-23 3.56 3.56 22.2622.26 235235 적색Red 실시예 109Example 109 화합물 1-15compounds 1-15 화합물 2-27compound 2-27 3.65 3.65 22.8722.87 228228 적색Red 실시예 110Example 110 화합물 1-16compounds 1-16 화합물 2-3compound 2-3 3.41 3.41 19.2419.24 215215 적색Red 실시예 111Example 111 화합물 1-16compounds 1-16 화합물 2-6compound 2-6 3.45 3.45 20.3620.36 215215 적색Red 실시예 112Example 112 화합물 1-16compounds 1-16 화합물 2-12Compounds 2-12 3.47 3.47 19.9119.91 215215 적색Red 실시예 113Example 113 화합물 1-16compounds 1-16 화합물 2-17Compounds 2-17 3.44 3.44 21.5221.52 224224 적색Red 실시예 114Example 114 화합물 1-16compounds 1-16 화합물 2-24compound 2-24 3.58 3.58 21.4021.40 216216 적색Red 실시예 115Example 115 화합물 1-16compounds 1-16 화합물 2-28compound 2-28 3.42 3.42 21.1721.17 220220 적색Red

실시예 1 내지 115 및 비교예 1 내지 14에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1 내지 표 3의 결과를 얻었다. When current was applied to the organic light emitting devices manufactured in Examples 1 to 115 and Comparative Examples 1 to 14, the results of Tables 1 to 3 were obtained.

본 발명의 화합물 1-1 내지 1-17을 적색 호스트로 사용했을 때 표 1과 같이 비교예 화합물 대비 구동 전압이 감소하고 효율 및 수명이 증가하는 것을 확인하였으며, 본 발명의 화합물 2-1 내지 2-40을 전자차단층으로 사용했을 때 에도 표 2에서와 같이 비교예 화합물 대비 구동전압은 감소하고 효율과 수명이 증가하는 결과를 나타냈다. When the compounds 1-1 to 1-17 of the present invention were used as red hosts, it was confirmed that the driving voltage decreased and the efficiency and lifetime increased compared to the compounds of Comparative Examples, as shown in Table 1. Compounds 2-1 to 2 of the present invention Even when -40 was used as an electron blocking layer, as shown in Table 2, the driving voltage decreased and the efficiency and lifespan increased compared to the comparative compounds.

추가적으로 표 3에서는, 화합물 1-1 내지 1-17 중 하나를 제1 호스트로 선택하고 화합물 2-1 내지 2-40 중 하나를 제2 호스트로 사용하여 공증착함으로써 적색 호스트로 사용했을 때 단일 물질의 호스트를 사용했을 때보다 구동 전압이 감소하고 효율 및 수명이 증가하는 경향을 확인할 수 있었다.Additionally, in Table 3, a single material was used as a red host by co-deposition using one of compounds 1-1 to 1-17 as a first host and one of compounds 2-1 to 2-40 as a second host. It was confirmed that the driving voltage decreased and the efficiency and lifetime increased compared to when using the host of .

즉, 상기 표 1 내지 표 3의 결과로부터 적색을 표현하는 소자에서 적색 발광층의 호스트 또는 전자차단층으로 일 실시예의 화합물을 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있었다. That is, from the results of Tables 1 to 3, when the compound of one embodiment is used as a host of a red light emitting layer or an electron blocking layer in a device expressing red color, the driving voltage, luminous efficiency and lifetime characteristics of the organic light emitting device can be improved. I was able to confirm that there is

1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자차단층 8: 정공저지층
9: 전자 주입 및 수송층
1: substrate 2: anode
3: light emitting layer 4: cathode
5: hole injection layer 6: hole transport layer
7: electron blocking layer 8: hole blocking layer
9: electron injection and transport layer

Claims (13)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure 112023080007699-pat00332

상기 화학식 1에서,
A는 인접한 고리와 융합된 티아졸 고리 또는 옥사졸 고리이고,
L1은 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
R1
Figure 112023080007699-pat00333
또는
Figure 112023080007699-pat00334
이고,
상기 Ar1 내지 Ar4는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
상기 L2 내지 L5는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
R2는 비치환된 C6-60 아릴; 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
D는 중수소이고,
n은 0 이상 5 이하의 정수이고,
단, 하기 화합물은 상기 화학식 1로 표시되는 화합물에서 제외된다:
.
A compound represented by Formula 1 below:
[Formula 1]
Figure 112023080007699-pat00332

In Formula 1,
A is a thiazole ring or an oxazole ring fused with an adjacent ring,
L 1 is a single bond; Substituted or unsubstituted C 6-60 arylene; Or a C 2-60 heteroarylene containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,
R 1 is
Figure 112023080007699-pat00333
or
Figure 112023080007699-pat00334
ego,
Ar 1 to Ar 4 are each independently a substituted or unsubstituted C 6-60 aryl; Or a C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,
The L 2 to L 5 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or a C 2-60 heteroarylene containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,
R 2 is unsubstituted C 6-60 aryl; Or a C 2-60 heteroaryl containing at least one selected from the group consisting of unsubstituted N, O and S,
D is deuterium;
n is an integer of 0 or more and 5 or less;
However, the following compounds are excluded from the compounds represented by Formula 1:
.
제1항에 있어서,
상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-4 중 어느 하나로 표시되는,
화합물:
[화학식 1-1]
Figure 112021144611149-pat00335

[화학식 1-2]
Figure 112021144611149-pat00336

[화학식 1-3]
Figure 112021144611149-pat00337

[화학식 1-4]
Figure 112021144611149-pat00338

상기 화학식 1-1 내지 화학식 1-4에서,
R1, R2, L1, D 및 n에 대한 설명은 제1항에서 정의한 바와 같다.
According to claim 1,
Formula 1 is represented by any one of the following Formulas 1-1 to 1-4,
compound:
[Formula 1-1]
Figure 112021144611149-pat00335

[Formula 1-2]
Figure 112021144611149-pat00336

[Formula 1-3]
Figure 112021144611149-pat00337

[Formula 1-4]
Figure 112021144611149-pat00338

In Formula 1-1 to Formula 1-4,
Descriptions of R 1 , R 2 , L 1 , D and n are as defined in claim 1.
제1항에 있어서,
L1은 단일결합, 페닐렌, 비페닐디일, 또는 나프탈렌디일인,
화합물.
According to claim 1,
L 1 is a single bond, phenylene, biphenyldiyl, or naphthalenediyl;
compound.
제1항에 있어서,
Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 또는 디벤조티오페닐인,
화합물.
According to claim 1,
Ar 1 and Ar 2 are each independently phenyl, biphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl;
compound.
제1항에 있어서,
Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 디벤조티오페닐, 페닐 카바졸릴, 또는 페닐 나프틸인,
화합물.
According to claim 1,
Ar 3 and Ar 4 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, phenyl carbazolyl, or phenyl naphthyl;
compound.
제1항에 있어서,
L2 및 L3는 각각 독립적으로, 단일결합, 페닐렌, 또는 나프탈렌디일인,
화합물.
According to claim 1,
L 2 and L 3 are each independently a single bond, phenylene, or naphthalenediyl;
compound.
제1항에 있어서,
L4 및 L5는 각각 독립적으로, 단일결합, 페닐렌, 비페닐디일, 나프탈렌디일, 또는 카바졸디일인,
화합물.
According to claim 1,
L 4 and L 5 are each independently a single bond, phenylene, biphenyldiyl, naphthalenediyl, or carbazoldiyl;
compound.
제1항에 있어서,
Ar1 및 Ar2 중 적어도 하나는 치환 또는 비치환된 C6-60 아릴인,
화합물.
According to claim 1,
At least one of Ar 1 and Ar 2 is a substituted or unsubstituted C 6-60 aryl;
compound.
제1항에 있어서,
Ar3 및 Ar4 중 적어도 하나는 치환 또는 비치환된 C6-60 아릴인,
화합물.
According to claim 1,
At least one of Ar 3 and Ar 4 is a substituted or unsubstituted C 6-60 aryl;
compound.
제1항에 있어서,
R2는 페닐, 비페닐릴, 나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐인,
화합물.
According to claim 1,
R 2 is phenyl, biphenylyl, naphthyl, dibenzofuranyl, or dibenzothiophenyl;
compound.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure 112021144611149-pat00339

Figure 112021144611149-pat00340

Figure 112021144611149-pat00341

Figure 112021144611149-pat00342

Figure 112021144611149-pat00343

Figure 112021144611149-pat00344

Figure 112021144611149-pat00345

Figure 112021144611149-pat00346

Figure 112021144611149-pat00347

Figure 112021144611149-pat00348

Figure 112021144611149-pat00349

Figure 112021144611149-pat00350

Figure 112021144611149-pat00351

Figure 112021144611149-pat00352

Figure 112021144611149-pat00353

Figure 112021144611149-pat00354

Figure 112021144611149-pat00355

Figure 112021144611149-pat00356

Figure 112021144611149-pat00357

Figure 112021144611149-pat00358

Figure 112021144611149-pat00359

Figure 112021144611149-pat00360

Figure 112021144611149-pat00361

Figure 112021144611149-pat00362

Figure 112021144611149-pat00363

Figure 112021144611149-pat00364

Figure 112021144611149-pat00365

Figure 112021144611149-pat00366

Figure 112021144611149-pat00367

Figure 112021144611149-pat00368

Figure 112021144611149-pat00369

Figure 112021144611149-pat00370

Figure 112021144611149-pat00371

Figure 112021144611149-pat00372

Figure 112021144611149-pat00373

Figure 112021144611149-pat00374

Figure 112021144611149-pat00375

Figure 112021144611149-pat00376

Figure 112021144611149-pat00377

Figure 112021144611149-pat00378

Figure 112021144611149-pat00379

Figure 112021144611149-pat00380

Figure 112021144611149-pat00381

Figure 112021144611149-pat00382

Figure 112021144611149-pat00383

Figure 112021144611149-pat00384

Figure 112021144611149-pat00385

Figure 112021144611149-pat00386

Figure 112021144611149-pat00387

Figure 112021144611149-pat00388

Figure 112021144611149-pat00389

Figure 112021144611149-pat00390

Figure 112021144611149-pat00391

Figure 112021144611149-pat00392

Figure 112021144611149-pat00393

Figure 112021144611149-pat00394

Figure 112021144611149-pat00395

Figure 112021144611149-pat00396

Figure 112021144611149-pat00397

Figure 112021144611149-pat00398

Figure 112021144611149-pat00399

Figure 112021144611149-pat00400

Figure 112021144611149-pat00401

Figure 112021144611149-pat00402

Figure 112021144611149-pat00403

Figure 112021144611149-pat00404

Figure 112021144611149-pat00405

Figure 112021144611149-pat00406

Figure 112021144611149-pat00407

Figure 112021144611149-pat00408

Figure 112021144611149-pat00409

Figure 112021144611149-pat00410

Figure 112021144611149-pat00411

Figure 112021144611149-pat00412

Figure 112021144611149-pat00413

Figure 112021144611149-pat00414

Figure 112021144611149-pat00415

Figure 112021144611149-pat00416

Figure 112021144611149-pat00417

Figure 112021144611149-pat00418

Figure 112021144611149-pat00419

Figure 112021144611149-pat00420

Figure 112021144611149-pat00421

Figure 112021144611149-pat00422

Figure 112021144611149-pat00423

Figure 112021144611149-pat00424

Figure 112021144611149-pat00425

Figure 112021144611149-pat00426

Figure 112021144611149-pat00427

Figure 112021144611149-pat00428

Figure 112021144611149-pat00429

Figure 112021144611149-pat00430

Figure 112021144611149-pat00431

Figure 112021144611149-pat00432

Figure 112021144611149-pat00433

Figure 112021144611149-pat00434

Figure 112021144611149-pat00435

Figure 112021144611149-pat00436

Figure 112021144611149-pat00437

Figure 112021144611149-pat00438

Figure 112021144611149-pat00439

Figure 112021144611149-pat00440

Figure 112021144611149-pat00441

Figure 112021144611149-pat00442

Figure 112021144611149-pat00443

Figure 112021144611149-pat00444

Figure 112021144611149-pat00445

Figure 112021144611149-pat00446

Figure 112021144611149-pat00447

Figure 112021144611149-pat00448

Figure 112021144611149-pat00449

Figure 112021144611149-pat00450

Figure 112021144611149-pat00451

Figure 112021144611149-pat00452

Figure 112021144611149-pat00453

Figure 112021144611149-pat00454

Figure 112021144611149-pat00455

Figure 112021144611149-pat00456

Figure 112021144611149-pat00457

Figure 112021144611149-pat00458

Figure 112021144611149-pat00459

Figure 112021144611149-pat00460

Figure 112021144611149-pat00461

Figure 112021144611149-pat00462

Figure 112021144611149-pat00463

Figure 112021144611149-pat00464

Figure 112021144611149-pat00465

Figure 112021144611149-pat00466

Figure 112021144611149-pat00467

Figure 112021144611149-pat00468

Figure 112021144611149-pat00469

Figure 112021144611149-pat00470

Figure 112021144611149-pat00471

Figure 112021144611149-pat00472

Figure 112021144611149-pat00473

Figure 112021144611149-pat00474

Figure 112021144611149-pat00475

Figure 112021144611149-pat00476

Figure 112021144611149-pat00477

Figure 112021144611149-pat00478

Figure 112021144611149-pat00479

Figure 112021144611149-pat00480

Figure 112021144611149-pat00481

Figure 112021144611149-pat00482

Figure 112021144611149-pat00483

Figure 112021144611149-pat00484

Figure 112021144611149-pat00485

Figure 112021144611149-pat00486

Figure 112021144611149-pat00487

Figure 112021144611149-pat00488

Figure 112021144611149-pat00489

Figure 112021144611149-pat00490

Figure 112021144611149-pat00491

Figure 112021144611149-pat00492

Figure 112021144611149-pat00493

Figure 112021144611149-pat00494

Figure 112021144611149-pat00495

Figure 112021144611149-pat00496

Figure 112021144611149-pat00497

Figure 112021144611149-pat00498

Figure 112021144611149-pat00499

Figure 112021144611149-pat00500

Figure 112021144611149-pat00501

Figure 112021144611149-pat00502

Figure 112021144611149-pat00503

Figure 112021144611149-pat00504

Figure 112021144611149-pat00505

Figure 112021144611149-pat00506

Figure 112021144611149-pat00507

Figure 112021144611149-pat00508

Figure 112021144611149-pat00509

Figure 112021144611149-pat00510

Figure 112021144611149-pat00511

Figure 112021144611149-pat00512

Figure 112021144611149-pat00513

Figure 112021144611149-pat00514

Figure 112021144611149-pat00515

Figure 112021144611149-pat00516

Figure 112021144611149-pat00517

Figure 112021144611149-pat00518

Figure 112021144611149-pat00519

Figure 112021144611149-pat00520

Figure 112021144611149-pat00521

Figure 112021144611149-pat00522

Figure 112021144611149-pat00523

Figure 112021144611149-pat00524

Figure 112021144611149-pat00525

Figure 112021144611149-pat00526

Figure 112021144611149-pat00527

Figure 112021144611149-pat00528

Figure 112021144611149-pat00529

Figure 112021144611149-pat00530

Figure 112021144611149-pat00531

Figure 112021144611149-pat00532

Figure 112021144611149-pat00533

Figure 112021144611149-pat00534

Figure 112021144611149-pat00535

Figure 112021144611149-pat00536

Figure 112021144611149-pat00537

Figure 112021144611149-pat00538

Figure 112021144611149-pat00539

Figure 112021144611149-pat00540

Figure 112021144611149-pat00541

Figure 112021144611149-pat00542

Figure 112021144611149-pat00543

Figure 112021144611149-pat00544

Figure 112021144611149-pat00545

Figure 112021144611149-pat00546

Figure 112021144611149-pat00547

Figure 112021144611149-pat00548

Figure 112021144611149-pat00549

Figure 112021144611149-pat00550

Figure 112021144611149-pat00551

Figure 112021144611149-pat00552

Figure 112021144611149-pat00553

Figure 112021144611149-pat00554
.
According to claim 1,
The compound represented by Formula 1 is any one selected from the group consisting of
compound:
Figure 112021144611149-pat00339

Figure 112021144611149-pat00340

Figure 112021144611149-pat00341

Figure 112021144611149-pat00342

Figure 112021144611149-pat00343

Figure 112021144611149-pat00344

Figure 112021144611149-pat00345

Figure 112021144611149-pat00346

Figure 112021144611149-pat00347

Figure 112021144611149-pat00348

Figure 112021144611149-pat00349

Figure 112021144611149-pat00350

Figure 112021144611149-pat00351

Figure 112021144611149-pat00352

Figure 112021144611149-pat00353

Figure 112021144611149-pat00354

Figure 112021144611149-pat00355

Figure 112021144611149-pat00356

Figure 112021144611149-pat00357

Figure 112021144611149-pat00358

Figure 112021144611149-pat00359

Figure 112021144611149-pat00360

Figure 112021144611149-pat00361

Figure 112021144611149-pat00362

Figure 112021144611149-pat00363

Figure 112021144611149-pat00364

Figure 112021144611149-pat00365

Figure 112021144611149-pat00366

Figure 112021144611149-pat00367

Figure 112021144611149-pat00368

Figure 112021144611149-pat00369

Figure 112021144611149-pat00370

Figure 112021144611149-pat00371

Figure 112021144611149-pat00372

Figure 112021144611149-pat00373

Figure 112021144611149-pat00374

Figure 112021144611149-pat00375

Figure 112021144611149-pat00376

Figure 112021144611149-pat00377

Figure 112021144611149-pat00378

Figure 112021144611149-pat00379

Figure 112021144611149-pat00380

Figure 112021144611149-pat00381

Figure 112021144611149-pat00382

Figure 112021144611149-pat00383

Figure 112021144611149-pat00384

Figure 112021144611149-pat00385

Figure 112021144611149-pat00386

Figure 112021144611149-pat00387

Figure 112021144611149-pat00388

Figure 112021144611149-pat00389

Figure 112021144611149-pat00390

Figure 112021144611149-pat00391

Figure 112021144611149-pat00392

Figure 112021144611149-pat00393

Figure 112021144611149-pat00394

Figure 112021144611149-pat00395

Figure 112021144611149-pat00396

Figure 112021144611149-pat00397

Figure 112021144611149-pat00398

Figure 112021144611149-pat00399

Figure 112021144611149-pat00400

Figure 112021144611149-pat00401

Figure 112021144611149-pat00402

Figure 112021144611149-pat00403

Figure 112021144611149-pat00404

Figure 112021144611149-pat00405

Figure 112021144611149-pat00406

Figure 112021144611149-pat00407

Figure 112021144611149-pat00408

Figure 112021144611149-pat00409

Figure 112021144611149-pat00410

Figure 112021144611149-pat00411

Figure 112021144611149-pat00412

Figure 112021144611149-pat00413

Figure 112021144611149-pat00414

Figure 112021144611149-pat00415

Figure 112021144611149-pat00416

Figure 112021144611149-pat00417

Figure 112021144611149-pat00418

Figure 112021144611149-pat00419

Figure 112021144611149-pat00420

Figure 112021144611149-pat00421

Figure 112021144611149-pat00422

Figure 112021144611149-pat00423

Figure 112021144611149-pat00424

Figure 112021144611149-pat00425

Figure 112021144611149-pat00426

Figure 112021144611149-pat00427

Figure 112021144611149-pat00428

Figure 112021144611149-pat00429

Figure 112021144611149-pat00430

Figure 112021144611149-pat00431

Figure 112021144611149-pat00432

Figure 112021144611149-pat00433

Figure 112021144611149-pat00434

Figure 112021144611149-pat00435

Figure 112021144611149-pat00436

Figure 112021144611149-pat00437

Figure 112021144611149-pat00438

Figure 112021144611149-pat00439

Figure 112021144611149-pat00440

Figure 112021144611149-pat00441

Figure 112021144611149-pat00442

Figure 112021144611149-pat00443

Figure 112021144611149-pat00444

Figure 112021144611149-pat00445

Figure 112021144611149-pat00446

Figure 112021144611149-pat00447

Figure 112021144611149-pat00448

Figure 112021144611149-pat00449

Figure 112021144611149-pat00450

Figure 112021144611149-pat00451

Figure 112021144611149-pat00452

Figure 112021144611149-pat00453

Figure 112021144611149-pat00454

Figure 112021144611149-pat00455

Figure 112021144611149-pat00456

Figure 112021144611149-pat00457

Figure 112021144611149-pat00458

Figure 112021144611149-pat00459

Figure 112021144611149-pat00460

Figure 112021144611149-pat00461

Figure 112021144611149-pat00462

Figure 112021144611149-pat00463

Figure 112021144611149-pat00464

Figure 112021144611149-pat00465

Figure 112021144611149-pat00466

Figure 112021144611149-pat00467

Figure 112021144611149-pat00468

Figure 112021144611149-pat00469

Figure 112021144611149-pat00470

Figure 112021144611149-pat00471

Figure 112021144611149-pat00472

Figure 112021144611149-pat00473

Figure 112021144611149-pat00474

Figure 112021144611149-pat00475

Figure 112021144611149-pat00476

Figure 112021144611149-pat00477

Figure 112021144611149-pat00478

Figure 112021144611149-pat00479

Figure 112021144611149-pat00480

Figure 112021144611149-pat00481

Figure 112021144611149-pat00482

Figure 112021144611149-pat00483

Figure 112021144611149-pat00484

Figure 112021144611149-pat00485

Figure 112021144611149-pat00486

Figure 112021144611149-pat00487

Figure 112021144611149-pat00488

Figure 112021144611149-pat00489

Figure 112021144611149-pat00490

Figure 112021144611149-pat00491

Figure 112021144611149-pat00492

Figure 112021144611149-pat00493

Figure 112021144611149-pat00494

Figure 112021144611149-pat00495

Figure 112021144611149-pat00496

Figure 112021144611149-pat00497

Figure 112021144611149-pat00498

Figure 112021144611149-pat00499

Figure 112021144611149-pat00500

Figure 112021144611149-pat00501

Figure 112021144611149-pat00502

Figure 112021144611149-pat00503

Figure 112021144611149-pat00504

Figure 112021144611149-pat00505

Figure 112021144611149-pat00506

Figure 112021144611149-pat00507

Figure 112021144611149-pat00508

Figure 112021144611149-pat00509

Figure 112021144611149-pat00510

Figure 112021144611149-pat00511

Figure 112021144611149-pat00512

Figure 112021144611149-pat00513

Figure 112021144611149-pat00514

Figure 112021144611149-pat00515

Figure 112021144611149-pat00516

Figure 112021144611149-pat00517

Figure 112021144611149-pat00518

Figure 112021144611149-pat00519

Figure 112021144611149-pat00520

Figure 112021144611149-pat00521

Figure 112021144611149-pat00522

Figure 112021144611149-pat00523

Figure 112021144611149-pat00524

Figure 112021144611149-pat00525

Figure 112021144611149-pat00526

Figure 112021144611149-pat00527

Figure 112021144611149-pat00528

Figure 112021144611149-pat00529

Figure 112021144611149-pat00530

Figure 112021144611149-pat00531

Figure 112021144611149-pat00532

Figure 112021144611149-pat00533

Figure 112021144611149-pat00534

Figure 112021144611149-pat00535

Figure 112021144611149-pat00536

Figure 112021144611149-pat00537

Figure 112021144611149-pat00538

Figure 112021144611149-pat00539

Figure 112021144611149-pat00540

Figure 112021144611149-pat00541

Figure 112021144611149-pat00542

Figure 112021144611149-pat00543

Figure 112021144611149-pat00544

Figure 112021144611149-pat00545

Figure 112021144611149-pat00546

Figure 112021144611149-pat00547

Figure 112021144611149-pat00548

Figure 112021144611149-pat00549

Figure 112021144611149-pat00550

Figure 112021144611149-pat00551

Figure 112021144611149-pat00552

Figure 112021144611149-pat00553

Figure 112021144611149-pat00554
.
제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제11항 중 어느 하나의 항에 따른 화합물을 하나 이상 포함하는,
유기 발광 소자.
a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers contains one compound according to any one of claims 1 to 11. including more than
organic light emitting device.
제12항에 있어서,
상기 유기물층은 발광층 또는 전자차단층인,
유기 발광 소자.
According to claim 12,
The organic material layer is a light emitting layer or an electron blocking layer,
organic light emitting device.
KR1020210178415A 2020-12-14 2021-12-14 Novel compound and organic light emitting device comprising the same KR102568928B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/026,175 US20230363266A1 (en) 2020-12-14 2021-12-14 Novel compound and organic light emitting device comprising the same
PCT/KR2021/018987 WO2022131757A1 (en) 2020-12-14 2021-12-14 Novel compound and organic light emitting device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200174596 2020-12-14
KR1020200174596 2020-12-14

Publications (2)

Publication Number Publication Date
KR20220085032A KR20220085032A (en) 2022-06-21
KR102568928B1 true KR102568928B1 (en) 2023-08-22

Family

ID=82221129

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210178415A KR102568928B1 (en) 2020-12-14 2021-12-14 Novel compound and organic light emitting device comprising the same

Country Status (2)

Country Link
KR (1) KR102568928B1 (en)
CN (1) CN116323621A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240139389A (en) * 2023-03-14 2024-09-23 삼성에스디아이 주식회사 Compound for organic optoelectronic device, organic optoelectronic device and display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (en) 1999-01-27 2004-05-10 주식회사 엘지화학 New organomattalic complex molecule for the fabrication of organic light emitting diodes
KR101982746B1 (en) * 2012-06-27 2019-05-28 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
KR101641409B1 (en) * 2014-01-23 2016-07-20 주식회사 두산 Organic compounds and organic electro luminescence device comprising the same
KR20170016701A (en) * 2015-08-04 2017-02-14 주식회사 두산 Organic light-emitting compound and organic electroluminescent device using the same
KR20210111971A (en) * 2020-03-04 2021-09-14 덕산네오룩스 주식회사 An organic electronic element comprising a layer for improving light efficiency, and an electronic device comprising the same

Also Published As

Publication number Publication date
CN116323621A (en) 2023-06-23
KR20220085032A (en) 2022-06-21

Similar Documents

Publication Publication Date Title
KR102506584B1 (en) Novel compound and organic light emitting device comprising the same
KR102469107B1 (en) Organic light emitting device
KR102486517B1 (en) Novel compound and organic light emitting device comprising the same
KR102602156B1 (en) Novel compound and organic light emitting device comprising the same
KR102500849B1 (en) Novel compound and organic light emitting device comprising the same
KR102469106B1 (en) Novel compound and organic light emitting device comprising the same
KR102441470B1 (en) Novel compound and organic light emitting device comprising the same
KR102623893B1 (en) Novel compound and organic light emitting device comprising the same
KR102441471B1 (en) Novel compound and organic light emitting device comprising the same
KR102217268B1 (en) Novel compound and organic light emitting device comprising the same
KR102568928B1 (en) Novel compound and organic light emitting device comprising the same
KR102441472B1 (en) Novel compound and organic light emitting device comprising the same
KR102486518B1 (en) Novel compound and organic light emitting device comprising the same
KR20220117848A (en) Novel compound and organic light emitting device comprising the same
KR20220038009A (en) Novel compound and organic light emitting device comprising the same
KR20210098390A (en) Novel compound and organic light emitting device comprising the same
KR20200110227A (en) Organic light emitting device
KR20210089523A (en) Novel compound and organic light emitting device comprising the same
KR20200117257A (en) Novel compound and organic light emitting device comprising the same
KR102719407B1 (en) Novel compound and organic light emitting device comprising the same
KR102500850B1 (en) Novel compound and organic light emitting device comprising the same
KR102602155B1 (en) Novel compound and organic light emitting device comprising the same
KR102573176B1 (en) Organic light emitting device
KR102511933B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102419609B1 (en) Novel compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant