Nothing Special   »   [go: up one dir, main page]

KR102499940B1 - 천연 식물 유래 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물 - Google Patents

천연 식물 유래 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물 Download PDF

Info

Publication number
KR102499940B1
KR102499940B1 KR1020220078864A KR20220078864A KR102499940B1 KR 102499940 B1 KR102499940 B1 KR 102499940B1 KR 1020220078864 A KR1020220078864 A KR 1020220078864A KR 20220078864 A KR20220078864 A KR 20220078864A KR 102499940 B1 KR102499940 B1 KR 102499940B1
Authority
KR
South Korea
Prior art keywords
ache
disease
mao
formula
compound
Prior art date
Application number
KR1020220078864A
Other languages
English (en)
Other versions
KR20220093309A (ko
Inventor
김훈
이재필
오종민
백승철
서주원
Original Assignee
순천대학교 산학협력단
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단, 명지대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to KR1020220078864A priority Critical patent/KR102499940B1/ko
Publication of KR20220093309A publication Critical patent/KR20220093309A/ko
Application granted granted Critical
Publication of KR102499940B1 publication Critical patent/KR102499940B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Psychiatry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 AChE 억제제, BChE 억제제, 또는 MAO-B 저해제로서 유용한 천연 식물 유래 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 또는 이의 입체 이성질체로부터 선택된 화합물, 및 상기 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방, 경감 또는 치료용 약학 및 식품 조성물에 관한 것으로서, 상기 천연 식물 유래 화합물은 사가크로마놀 G, 사가크로마놀 I, 마세리그난, 디하이드로베르베린, 및 브로우소닌 A 화합물로 이루어진 군으로부터 어느 하나 이상 선택되는 화합물이며, 상기 화합물은 AChE, BChE 및/또는 MAO-B를 저해하는 효과가 우수하므로, 퇴행성 뇌신경 질환의 예방, 경감 또는 치료에 유용하게 사용될 수 있다.

Description

천연 식물 유래 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물{Composition for preventing or treating neurodegenerative disease comprising compounds derived from natural plants}
본 발명은 MAO-B 저해제 및 AChE 억제제로서 유용한 천연 식물 유래 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 또는 이의 입체 이성질체로부터 선택된 화합물, 및 상기 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방, 경감 또는 치료용 약학 조성물에 관한 것이다.
우리나라는 지난 50년간 산업화, 도시화, 서구화, 핵가족화, 고학력화, 고령화, 및 정보화의 과정을 단기간에 동시다발적으로 겪으면서 전 세계적으로 그 유례를 찾아보기 어려울 정도로 급격한 발전이 이루어졌다. 이러한 급격한 발전은 경제적으로 고도의 성장을 야기시켰으나, 고령화, 과도한 빈부격차, 가족해체, 소외감, 치열한 경쟁에서 오는 심리적 스트레스에 의한 알츠하이머(Alzheimer)병, 파키슨(Parkinson)병, 치매(dementia) 등의 신경질환, 정신 분열증, 우울증, 불안장애 등의 신경정신장애(neuropsychiatric disorder)가 증가하고 있다.
아세틸콜린에스테라아제 (acetylcholinesterase, AChE) 및 부티릴콜린에스테라제 (butyrylcholinesterase, BChE)는 각각 아세틸콜린 (ACh) 및 부티릴콜린 (BCh)의 분해와 다른 콜린에스테르의 분해에 관여한다. 아세틸콜린(ACh)은 대뇌 피질의 시냅스에서 발견되는 신경 전달 물질이며 [1], 일반적으로 알츠하이머 질환(Alzheimer's disease, AD)에서 결핍된 물질이다. AChE 억제제는 시냅스 ACh의 수준을 증가시키고 뇌의 콜린작동성전달(cholinergic transmission)을 향상시키며 [2], 현재 FDA(the Food and Drug Administration)에서 AD 치료약으로 승인되어 있다 [3]. 또한, 갈란타민(galantamine)은 임상적으로 관련된 유일한 천연 AChE 억제제이다 [4]. 몇몇 연구자들은 AD 치료를 위한 천연 AChE 억제제에 관하여 연구하였다 [5-9]. 이와 동시에 또는 이에 부가하여, BChE 억제제는 AD 징후의 감소를 위한 콜린 수준을 증가시키는 것으로 연구되었다 [10].
한편, 모노아민 산화효소 (MAO)는 약리학적으로 중요한 모노아민 신경 전달 물질의 산화적 탈아미노화를 촉진하며, 뇌를 포함한 대부분의 조직의 외부 미토콘드리아 막에 2개의 MAO 이소형 (MAO-A 및 MAO-B)으로 존재한다 [11]. MAO-A 및 MAO-B의 기질 특이성이 다르기 때문에 MAO-A는 우울증과 불안을 치료하고 MAO-B는 알츠하이머 병과 파킨슨 병을 타겟으로 한다 [12]. 선택적 MAO-B 억제제는 이러한 질병을 치료하기 위해 널리 연구되어왔다 [13]. 최근 AChE와 MAO-B를 목표로 하는 다표적 치료 전략(multitarget therapeutic strategies)이 고안되었다 [3]. MAO는 AD에서 아밀로이드 플라크 형성과 결정적으로 관련이 있으며 MAO-B는 감마-세크레타제(γ-secretase)와 함께 AD 뇌에서 높은 수준으로 발현된다 [14]. AChE 및 MAO 억제제는 AD에서 인지 기능을 개선하고 증상을 완화시킬 수 있기 때문에, AChE 및 MAO-B를 표적으로 하는 호모이소플라보노이드 유도체(homoisoflavonoid derivatives) [15], BHT (donepezil-butylated hydroxytoluene) 하이브리드(hybirds) [16], 쿠마린-디티오카바메이트 하이브리드(coumarin-dithiocarbamate hybrids) [17] 및 알코올 함유 이중 억제제 (alcohol bearing dual inhibitors) [18]는 다중 표적 억제제로 연구되고 있다.
이에 본 발명자들은 AChE 억제 활성에 대하여 640개의 천연 화합물을 테스트하였고, 몇몇 화합물이 서브 마이크로몰(sub-micromolar) 내지 저 마이크로몰(low-micromolar) 농도 범위의 IC50 값을 갖는 강력한 억제제라는 것을 발견하고 본 발명을 완성하였다.
한편, 본 명세서에서 인용된 논문은 다음과 같다.
[1] L.M. Bierer, V. Haroutunian, S. Gabriel, P.J. Knott, L.S. Carlin, D.P. Purohit, D.P. Perl, J. Schmeidler, P. Kanof, K.L. Davis, Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits. J. Neurochem. 64 (1995) 749-760.
[2] P. Anand, B. Singh, A review on cholinesterase inhibitors for Alzheimer's disease. Arch. Pharm. Res. 36 (2013) 375-399.
[3] M.M. Ibrahim, M.T. Gabr, Multitarget therapeutic strategies for Alzheimer's disease. Neural Regen. Res. 14 (2019) 437-440.
[4] A.P. Murray, M.B. Faraoni, M.J. Castro, N.P. Alza, V. Cavallaro, Natural AChE Inhibitors from plants and their contribution to Alzheimer's disease therapy. Curr. Neuropharmacol. 11 (2013) 388-413.
[5] L. Huang, T. Su, X. Li. Natural products as sources of new lead compounds for the treatment of Alzheimer's disease. Curr. Top. Med. Chem. 13 (2013) 1864-1878.
[6] B.R. Pinho, F. Ferreres, P. Valentao, P.B. Andrade, Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment. J. Pharm. Pharmacol. 65 (2013) 1681-1700.
[7] A.A. Shah, T.A. Dar, P.A. Dar, S.A. Ganie, M.A. Kamal, A current perspective on the inhibition of cholinesterase by natural and synthetic inhibitors. Curr. Drug Metab. 18 (2017) 96-111.
[8] Y. Jiang, H. Gao, G. Turdu, Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer's disease: A review. Bioorg Chem. 75 (2017) 50-61.
[9] T.C. dos Santos, T. M. Gomes, B.A.S. Pinto, A.L. Camara, A.M.A Paes, Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer's disease therapy. Front. Pharmacol. 9 (2018) 1192.
[10] R.M. Lane, S.G. Potkin, A. Enz, Targeting and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9 (2006) 101-124.
[11] R.R. Ramsay, Monoamine oxidases: the biochemistry of the proteins as targets in medicinal chemistry and drug discovery, Curr. Top. Med. Chem. 12 (2012) 2189-2209.
[12] M.B. Youdim, D. Edmondson, K.F. Tipton, The therapeutic potential of monoamine oxidase inhibitors, Nat. Rev. Neurosci. 7 (2006) 295-309.
[13] S. Carradori, M. D'Ascenzio, P. Chimenti, D. Secci, A. Bolasco, Selective MAO-B inhibitors: a lesson from natural products. Mol. Divers. 18 (2014) 219-243.
[14] S. Schedin-Weiss, M Inoue, L. Hromadkova, Y. Teranishi, N.G. Yamamoto, B. Wiehager, N. Bogdanovic, B. Winblad, A. Sandebring-Matton, S. Frykman, L.O. Tjernberg, Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther. 9 (2017) 57.
[15] Y. Li, X. Qiang, L. Luo, X. Yang, G. Xiao, Y. Zheng, Z. Cao, Z. Sang, F. Su, Y. Deng, Multitarget drug design strategy against Alzheimer's disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties. Bioorg. Med. Chem. 25 (2017) 714-726.
[16] P. Cai, S.Q. Fang, H.L. Yang, X.L. Yang, Q.H. Liu, L.Y. Kong, X.B. Wang, Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer's disease agents with cholinergic, antioxidant, and neuroprotective properties. Eur. J. Med. Chem. 157 (2018) 161-176.
[17] Q. He, J. Liu, J.S. Lan, J. Ding, Y. Sun, Y. Fang, N. Jiang, Z. Yang, L. Sun, Y. Jin, S.S. Xie, Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer's disease: Design, synthesis and biological evaluation. Bioorg. Chem. 81 (2018) 512-528.
[18] L. Pisani, R.M. Iacobazzi, M. Catto, M. Rullo, R. Farina, N. Denora, S. Cellamare, C.D. Altomare, Investigating alkyl nitrates as nitric oxide releasing precursors of multitarget acetylcholinesterase-monoamine oxidase B inhibitors. Eur. J. Med. Chem. 161 (2019) 292-309.
[19] S. Lim, A.H. Choi, M. Kwon, E.J. Joung, T. Shin, S.G. Lee, N.G. Kim, H.R. Kim, Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chem. 278 (2019) 178-184.
[20] W.J. Yoon, S.J. Heo, S.C. Han, H.J. Lee, G.J. Kang, E.J. Yang, S.S. Park, H.K. Kang, E.S. Yoo, Sargachromanol G regulates the expression of osteoclastogenic factors in human osteoblast-like MG-63 cells. Food Chem. Toxicol. 50 (2012) 3273-3279.
[21] W.J. Yoon, K.N. Kim, S.J. Heo, S.C. Han, J. Kim, Y.J. Ko, H.K. Kang, E.S. Yoo, Sargachromanol G inhibits osteoclastogenesis by suppressing the activation NF-κB and MAPKs in RANKL-induced RAW 264.7 cells. Biochem. Biophys. Res. Commun. 434 (2013) 892-897.
[22] W.J. Yoon, S.J. Heo, S.C. Han, H.J. Lee, G.J. Kang, H.K. Kang, J.W. Hyun, Y.S. Koh, E.S. Yoo, Anti-inflammatory effect of sargachromanol G isolated from Sargassum siliquastrum in RAW 264.7 cells. Arch. Pharm. Res. 35 (2012) 1421-1430.
[23] J.H. Lee, J.Y. Ko, K. Samarakoon, J.Y. Oh, S.J. Heo, C.Y. Kim, J.W. Nah, M.K. Jang, J.S. Lee, Y.J. Jeon, Preparative isolation of sargachromanol E from Sargassum siliquastrum by centrifugal partition chromatography and its anti-inflammatory activity. Food Chem. Toxicol. 62 (2013) 54-60.
[24] S.J. Heo, J. Jang, B.R. Ye, M.S. Kim, W.J. Yoon, C. Oh, D.H. Kang, J.H. Lee, M.C. Kang, Y.J. Jeon, S.M. Kang, D. Kim, K.N. Kim. Chromene suppresses the activation of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells. Food Chem. Toxicol. 67 (2014) 169-175.
[25] J.A. Kim, B.N. Ahn, C.S. Kong, S.K. Kim, The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts. Br. J. Dermatol. 168 (2013) 968-976.
[26] W.M. Pak, K.B. Kim, M.J. Kim, J.Y. Cho, D.H. Ahn. Inhibitory effect of hexane fraction from Myagropsis myagroides on pancreatic α-amylase in vitro. J. Microbiol. Biotechnol. 25 (2015) 328-333.
[27] N. Turner, J.Y. Li, A. Gosby, S.W. To, Z. Cheng, H. Miyoshi, M.M. Taketo, G.J. Cooney, E.W. Kraegen, D.E. James, L.H. Hu, J. Li, J.M. Ye, Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes. 57 (2008) 1414-1418.
[28] I.J. Kim, Y.J. Park, J.I. Kim, K.T. Lee, S.K. Kim, Studies on the synthesis and in vitro anti-tumor activity of dihydroberberine derivatives. Arch. Pharm. Res. 20 (1997) 476-479.
[29] B. Dai, Y. Ma, W. Wang, Y. Zhan, D. Zhang, R. Liu, Y. Zhang, Dihydroberberine exhibits synergistic effects with sunitinib on NSCLC NCI-H460 cells by repressing MAP kinase pathways and inflammatory mediators. J. Cell. Mol. Med. 21 (2017) 2573-2585.
[30] L. Huang, Z. Luo, F. He, J. Lu, X. Li X, Synthesis and biological evaluation of a new series of berberine derivatives as dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem. 18 (2010) 4475-4484.
[31] J. Castillo, J. Hung, M. Rodriguez, E. Bastidas, I. Laboren, A. Jaimes, LED fluorescence spectroscopy for direct determination of monoamine oxidase B inactivation. Anal. Biochem. 343 (2005) 293-298.
[32] H.F. Ji, L. Shen, Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer's disease. Scientific World J. (2012) 823201.
[33] D.Q. Jin, C.S. Lim, J.K. Hwang, I. Ha, J.S. Han, Anti-oxidant and anti-inflammatory activities of macelignan in murine hippocampal cell line and primary culture of rat microglial cells. Biochem. Biophys. Res. Commun. 331 (2005) 1264-1269.
[34] K. Shin, H.C. Chung, D.U. Kim, J.K. Hwang, S.H. Lee, Macelignan attenuated allergic lung inflammation and airway hyper-responsiveness in murine experimental asthma. Life Sci. 92 (2013) 1093-1099.
[35] J.Y. Chung, J.H. Choo, M.H. Lee, J.K. Hwang. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine. 13 (2006) 261-266.
[36] Yanti, Y. Rukayadi, K.H. Kim, J.K. Hwang, In vitro anti-biofilm activity of macelignan isolated from Myristica fragrans Houtt. against oral primary colonizer bacteria. Phytother. Res. 22 (2008) 308-312.
[37] Y. Cho, K.H. Kim, J.S. Shim, J.K. Hwang, Inhibitory effects of macelignan isolated from Myristica fragrans HOUTT. on melanin biosynthesis. Biol. Pharm. Bull. 31 (2008) 986-989.
[38] E.J. Choi, Y.G. Kang, J. Kim, J.K. Hwang, Macelignan inhibits melanosome transfer mediated by protease-activated receptor-2 in keratinocytes. Biol. Pharm. Bull. 34 (2011) 748-754.
[39] Y.B. Im, I. Ha, K.W. Kang, M.Y. Lee, H.K. Han, Macelignan: a new modulator of P-glycoprotein in multidrug-resistant cancer cells. Nutr. Cancer. 61 (2009) 538-543.
[40] K. Kiyofuji, Y. Kurauchi, A. Hisatsune, T. Seki, S. Mishima, H. Katsuki, A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression. Eur. J. Pharmacol. 760 (2015) 129-135.
[41] Y.K. Shin, K.Y. Kim. Macelignan inhibits bee pathogenic fungi Ascophaera apis growth through HOG1 pathway. Braz. J. Med. Biol. Res. 49 (2016) pii: S0100-879X2016000700607.
[42] S. Paul, J.K. Hwang, H.Y. Kim, W.K. Jeon, C. Chung, J.S. Han, Multiple biological properties of macelignan and its pharmacological implications. Arch. Pharm. Res. 36 (2013) 264-272.
[43] K.H. Jang, B.H. Lee, B.W. Choi, H.Y. Lee, J.H. Shin, Chromenes from the brown alga Sargassum siliquastrum. J. Nat. Prod. 68 (2005) 716-723.
[44] J.W. Lee, S.O. Lee, J.H. Seo, M.Y. Yoo, J.W. Kwon, S.U. Choi, K.R. Lee, D.Y. Kwon, Y.K. Kim, Y.S. Kim, S.Y. Ryu, Inhibitory effects of the seed extract of Myristica fragrans on the proliferation of human tumor cell lines. Korean J. Pharmacogn. 36 (2005) 240-244.
[45] S. Nakamura., X. Li, H. Matsuda, M. Yoshikawa, Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata. Chem. Pharm. Bull. 56 (2008) 536-540.
[46] A. Schramm, I. Baburin, S. Hering, M. Hamburger, hERG channel inhibitors in extracts of Coptidis rhizoma. Planta Med. 77 (2011) 692-697.
[47] X. Zhou, J. Peng, G. Fan, Y. Wu, Isolation and purification of flavonoid glycosides from Trollius ledebouri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase. J. Chromagr. A 1092 (2005) 216-221.
[48] T. Mitsuo, A. Masaki, M. Tadashi, S. Akira, T. Kokichi, Broussonins A and B, new phytoalexins from diseased paper mulberry. Chem. Lett. 3 (1980) 339-340.
[49] G.L. Ellman, K.D. Courtney, V. Andres Jr, R.M. Feather-Stone, A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7 (1961) 88-95.
[50] S.C. Baek, M.H. Park, H.W. Ryu, J.P. Lee, M.G. Kang, D. Park, C.M. Park, S.R. Oh, H. Kim, Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg. Chem. 83 (2018) 317-325.
[51] B. Mathew, S.C. Baek, D.G. Thomas Parambi, P.J. Lee, M. Joy, P.R. Annie Rilda, R.V. Randev, P. Nithyamol, V. Vijayan, S.T. Inasu, G.E. Mathew, K.K. Lohidakshan, G. Kumar Krishnan, H. Kim, Selected aryl thiosemicarbazones as a new class of multi-targeted monoamine oxidase inhibitors. MedChemComm. 9 (2018) 1871-1881.
[52] H.W. Lee, H.W. Ryu, M.G. Kang, D. Park, S.R. Oh, H. Kim, Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens. Bioorg. Med. Chem. Lett. 26 (2016) 4714-4719.
[53] S.C. Baek, H.W. Lee, H.W. Ryu, M.G. Kang, D. Park, S.H. Kim, M.L. Cho, S.R. Oh, H. Kim, Selective inhibition of monoamine oxidase A by hispidol. Bioorg. Med. Chem. Lett. 28 (2018) 584-588.
[54] O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455-461.
[55] M.R. Ali, M. Sadoqi, S.G. Møller, A. Boutajangout, M. Mezei, Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies. J. Mol. Graph. Model. 76 (2017) 36-42.
[56] P. Bar-On, C.B. Millard, M. Harel, H. Dvir, A. Enz, J.L. Sussman, I. Silman, Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry. 41 (2002) 3555-3564.
[57] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C.Meng, T.E. Ferrin, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605-1612.
[58] A. Balkis, K. Tran, Y.Z. Lee, K. Ng, Screening flavonoids for inhibition of acetylcholinesterase identified baicalein as the most potent inhibitor, J. Agric. Sci. 7 (2015) 26-35.
[59] H. Khan, Marya, S. Amin, M.A. Kamal, S. Patel, Flavonoids as acetylcholinesterase inhibitors: current therapeutic standing and future prospects, Biomed. Pharmacother. 101 (2018) 860-870.
[60] P. Anand, B. Singh, N. Singh, A review on coumarins as acetylcholinesterase inhibitors for Alzheimer's disease. Bioorg. Med. Chem. 20 (2012) 1175-1180.
[61] S.Y. Kang, K.Y. Lee, S.H. Sung, M.J. Park, Y.C. Kim, Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J. Nat. Prod. 64 (2001) 683-685.
[62] H.A. Jung, B.S. Min, T. Yokozawa, J.H. Lee, Y.S. Kim, J.S. Choi, Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull. 32 (2009) 1433-1438.
[63] Y. Wang, Y. Sun, Y. Guo, Z. Wang, L. Huang, X. Li, Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives. J. Enzyme Inhib. Med. Chem. 31 (2016) 389-397
[64] J.L. Sussman, M. Harel, I. Silman, Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs. Chem. Biol. Interact. 87 (1993) 187-197.
[65] S. Singla, P. Piplani, Coumarin derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies. Bioorg. Med. Chem. 24 (2016) 4587-4599.
[66] N.C. Inestrosa, A. Alvarez, C.A. P
Figure 112022067421019-pat00001
rez, R.D. Moreno, M. Vicente, C. Linker, O.I. Casanueva, C. Soto, J. Garrido, Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron. 16 (1996) 881-891.
[67] N.C. Inestrosa, R. Alarcon, Molecular interactions of acetylcholinesterase with senile plaques. J. Physiol. Paris. 92 (1998) 341-344.
본 발명의 목적은 MAO-B(monoamine oxidase-B)에 대해 가역적인 저해 활성을 가질 뿐 아니라 AChE(acetylcholinesterase)에 대해서도 저해 활성을 가지는 천연 식물 유래 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 제공하기 위한 것이다.
본 발명의 다른 목적은 천연 식물 유래 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 천연 식물 유래 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물을 제공하기 위한 것이다.
하나의 양태로서, 본 발명은 천연 식물 유래 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 제공한다.
본 발명에 있어서, 상기 천연 식물 유래 화합물은 하기 화학식 1 내지 3, 화학식 5, 및 화학식 7로 이루어진 화합물 중의 어느 하나이다.
[화학식 1]
Figure 112022067421019-pat00002
[화학식 2]
Figure 112022067421019-pat00003
[화학식 3]
Figure 112022067421019-pat00004
[화학식 5]
Figure 112022067421019-pat00005
[화학식 7]
Figure 112022067421019-pat00006
상기 화학식 1의 화합물은 사가크로마놀 G (sargachromanol G; SCG)로, 천연 식물, 예를 들어 꽈배기모자반(Sargassum siliquastrum)으로부터 분리된 화합물이다.
상기 화학식 2의 화합물은 사가크로마놀 I (sargachromanol I; SCI)로, 천연 식물, 예를 들어 꽈배기모자반(Sargassum siliquastrum)으로부터 분리된 화합물이다.
상기 사가크로마놀 G 및 I를 포함한 다양한 사가크로마놀 화합물(sargachromanols, SCs)이 항산화 활성 (SCG) [19], 항골다공성 활성 (SCG) [20,21], 항염증 활성 (SCG 및 SCD) [22-24], 항-광노화 활성 (SCE) [25] 및 항당뇨 활성 (SCI) [26]과 같은 생물학적 활성을 나타내는 것으로 보고되었으나, 본 발명과 같은 AChE에 대한 결합 친화력이 매우 높고, AChE의 가역적으로 억제할 뿐만 아니라 BChE를 효과적으로 억제하는 효과에 대하여는 전혀 알려져 있지 않다.
상기 화학식 3의 화합물은 마세리그난 (macelignan; ML)으로, 천연 식물, 예를 들어 육두구(Myristica fragrans Houttuyn)로부터 분리된 화합물이다. 상기 ML은 항산화 및 항염증 활성 [33,34], 항충치 활성 [35], 항생물막(antibiofilm) 활성 [36], 항색소 활성 [37,38], 항암 활성[39], 신경 보호 활성 [40] ] 및 항진균 활성 [41] 등이 알려져 있으나(Paul et al. [42]에 의해 리뷰됨), 본 발명과 같은 AChE의 가역적 억제 효과 및 MAO-B 및 AChE를 동시에 저해하는 다중 표적 억제 효과, 그리고 BChE를 효과적으로 억제하는 효과에 대하여 전혀 알려져 있지 않다.
상기 화학식 5의 화합물은 디하이드로베르베린(dihydroberberine; DB)으로, 천연 식물, 예를 들어 황련(Coptis chinensis)으로부터 분리된 화합물이다. DB는 호흡 억제 활성 [27], 항종양 활성[28] 및 항염증 활성 [29]을 갖는 것으로 알려져 있으나, 본 발명과 같은 AChE의 가역적 억제 효과에 대하여 전혀 알려져 있지 않다.
상기 화학식 7의 화합물은 브로우소닌 A (broussonin A)로, 천연 식물, 예를 들어 지모(Anemarrhena asphodeloides Bunge)로부터 분리된 화합물이다. 상기 브로우소닌 A 화합물은 BChE의 강력한 억제 효과에 대하여 지금까지 알려진 바가 없다.
본 발명에서 용어 "유도체(derivative)"는 상기 화합물의 구조 일부를 다른 원자나 원자단으로 치환하여 얻어지는 화합물을 말한다.
본 발명에서 용어 "입체 이성질체(stereoisomer)"는 분자식 및 구성원자의 연결 방법도 같으나 원자 사이의 공간적 배치가 다른 화합물을 말한다. 상기 입체 이성질체는 부분입체 이성질체(diasteromer) 또는 거울상 이성질체(enantiomer) 일 수 있다. 거울상 이성질체는 왼손과 오른손의 관계처럼 그 거울상과 겹쳐지지 않는 이성질체를 말하고, 광학 이성질체(optical isomer)라고도 한다. 거울상 이성질체는 키랄 중심 탄소에 4개 이상의 치환기가 서로 다른 경우 R(Rectus: 시계방향) 및 S(sinister: 반시계 방향)로 구분한다. 부분입체 이성질체는 거울상 관계가 아닌 입체 이성질체를 말하고, 원자의 공간 배열이 달라 생기 시스(cis)-트랜스(trans) 이성질체로 나뉠 수 있다.
본 발명에 따른 화학식 1 내지 3, 화학식 5, 및 화학식 7의 화합물은 무기산 또는 유기산으로부터 유도된 약학적으로 허용 가능한 염의 형태로 사용될 수 있으며, 바람직한 염으로는 염산, 브롬화수소산, 황산, 인산, 질산, 아세트산, 글리콜산, 락트산, 피루브산, 말론산, 석신산, 글루타르산, 푸마르산, 말산, 만델산, 타타르산, 시트르산, 아스코빈산, 팔미트산, 말레인산, 하이드록시말레인산, 벤조산, 하이드록시벤조산, 페닐아세트산, 신남산, 살리실산, 메탄설폰산, 벤젠설폰산 및 톨루엔설폰산으로 구성된 군에서 선택되는 하나 이상일 수 있다.
본 발명에 따른 화학식 1 내지 3, 화학식 5, 및 화학식 7의 화합물 또는 이의 약학적으로 허용 가능한 염은 수화물 및 용매화물을 포함할 수 있다. 상기 수화물은 화학식 1 내지 3, 화학식 5, 및 화학식 7의 화합물이 물 분자와 결합하여 형성된 것을 의미할 수 있다.
다른 하나의 양태로서, 본 발명은 활성성분으로서 화학식 1 내지 3, 화학식 5, 및 화학식 7로 이루어진 군으로부터 선택된 하나 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명에서 사용된 용어, "퇴행성 뇌신경 질환"이란 중추신경계의 신경세포에 퇴행성 변화가 나타나면서 여러 가지 증상을 유발하는 질환을 의미하며, 인지 기능, 학습 또는 기억력이 손상되거나, 신경염증 반응을 동반하는 뇌신경 질환을 포함한다. 본 발명에 따른 대표적인 퇴행성 뇌신경 질환에는 치매(dementia), 알츠하이머병(Alzheimer's disease), 파킨슨병(Parkinson's disease), 헌팅톤병(Huntington's disease), 루게릭병(amyotrophic lateral sclerosis, ALS), 크로이츠펠트 야콥병(Creutzfeldt-Jakob disease, CJD), 뇌졸중(Stroke), 다발성 경화증(Multiple sclerosis), 학습 장애, 기억력 손상, 인지 기능 손상 등이 있다.
상기 퇴행성 뇌신경 질환은 뇌 조직 중에 베타아밀로이드(β-amyloid; Aβ)가 포함된 아밀로이드 플라크(plaque) 및 신경섬유 엉킴의 형성과 함께 신경전달물질인 아세틸콜린(acetylcholine)의 양이 감소됨으로써 기억력 및 인지기능의 감퇴증상이 나타나는 것으로 보고되고 있다. 이에 따라, 아세틸콜린에스테라제(AChE) 및 부티릴콜린에스테라제(BChE)와 같은 아세틸콜린 분해제에 대한 저해를 유도하여 알츠하이머병 등의 퇴행성 뇌신경 질환을 치료하고자 하는 연구가 시도되고 있다.
또한, 퇴행성 뇌신경 질환은 도파민, 세로토닌, 아드레날린, 노르아드레날린 등 신경전달물질과 비생체성분성 아민 등을 산화적 탈아민화 반응을 시키는 효소인 'MAO-B' 활성의 증가로 인한 과산화수소에 의한 산화성 스트레스(oxidative stress)에 의해 유발되고, MAO-B 저해제는 산소 라디칼 형성을 감소시키고 뇌 안에 유용한 모노아민의 양을 증가시킬 수 있다. 뇌신경 질환 및 뇌 손상에서 MAO-B는 반응성 성상교세포 내에서 푸트레신 대사 과정을 촉진하여 과량의 GABA가 생산되도록 한다. 따라서 MAO-B 저해제는 성상교세포에 의한 GABA 생성 억제제로 작용하여 신경 신호 전달과 뇌 기능을 회복시키는 효과를 갖는다.
본 발명에 따른 약학 조성물은 AChE(acetylcholinesterase), BChE(butyrylcholinesterase), 및/또는 MAO-B(monoamine oxidase-B)를 저해하는 활성이 우수하다. 따라서, 본 발명의 약학 조성물은 AChE, BChE, 및/또는 MAO-B를 저해하는 활성이 우수하므로, 퇴행성 뇌신경 질환의 치료, 예방 및 경감을 목적으로 사용될 수 있다.
본 발명에 있어서, 상기 AChE의 저해는 AChE의 활성의 저해 또는 생합성의 저해일 수 있다. AChE의 활성의 저해는 가역적 저해일 수 있으며, 혼합, 경쟁, 또는 비경쟁적 억제일 수 있다. 바람직하게는, 화학식 1 내지 3 및 화학식 5의 화합물로 이루어진 군으로부터 하나 이상 선택된 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물, 또는 이의 입체 이성질체가 AChE 활성을 가역적, 선택적 및 경쟁적으로 저해할 수 있다.
하나의 구체적 예로서, 본 발명에 따른 화학식 1의 사가크로마놀 G 화합물, 화학식 2의 사가크로마놀 I 화합물, 화학식 3의 마세리그난 화합물, 화학식 5의 디하이드로베르베린 화합물은 종래 알려진 강력한 AChE 억제제인 베르베른(berberine) 화합물과 비교하여 더 우수하거나 동등한 수준의 AChE 억제 활성을 나타내었다.
본 발명에 있어서, 상기 BChE의 저해는 AChE의 활성의 저해 또는 생합성의 저해일 수 있다. AChE의 활성의 저해는 가역적 저해일 수 있으며, 혼합, 경쟁, 또는 비경쟁적 억제일 수 있다. 바람직하게는, 화학식 1 내지 3 및 화학식 7의 화합물로 이루어진 군으로부터 하나 이상 선택된 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물, 또는 이의 입체 이성질체가 BChE 활성을 가역적, 선택적 및 경쟁적으로 저해할 수 있다.
하나의 구체적 예로, 본 발명에 따른 화학식 1의 사가크로마놀 G 화합물, 화학식 2의 사가크로마놀 I 화합물, 화학식 3의 마세리그난 화합물, 및 화학식 7의 브로우소닌 A 화합물은 효과적인 BChE 억제 활성을 나타내었다.
본 발명에 있어서, MAO-B의 저해는 MAO-B 활성의 저해 또는 MAO-B의 생합성의 저해일 수 있다. 바람직하게는, 화학식 1 내지 3, 화학식 5, 및 화학식 6의 화합물로 이루어진 군으로부터 하나 이상 선택된 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물, 또는 이의 입체 이성질체가 MAO-B 활성을 가역적, 선택적 및 경쟁적으로 저해할 수 있다.
하나의 구체적 예로, 본 발명에 따른 화학식 3의 마세리그난 화합물은 AChE 및 MAO-B의 이중 억제제로 강력한 효과를 나타내었다.
이와 같이, 본 발명에 따른 화학식 1 내지 3, 화학식 5, 및 화학식 7의 화합물은 AChE의 억제 활성, BChE의 억제 활성, 선택적인 MAO-B의 억제 활성, 또는 AChE 및 MAO-B의 이중 억제 활성을 효과적으로 발현하므로, 퇴행성 뇌신경 질환의 치료용 조성물로 유용하게 사용할 수 있음을 입증하였다.
상기 약학 조성물은 마우스, 토끼, 랫트, 기니피그, 또는 햄스터와 같은 실험 동물 또는 인간을 포함한 영장류 등에 적용될 수 있으나 이에 제한되지 않으며, 바람직하게는 인간을 포함한 영장류, 더욱 바람직하게는 인간에 적용될 수 있다.
본 명세서에서, '치료'는 증상의 경감 또는 개선, 질환의 범위 감소, 질환 진행의 지연 또는 완화, 질환 상태의 개선, 경감 또는 안정화, 부분적 또는 완전한 회복, 생존의 연장 기타 다른 이로운 치료 결과 등을 모두 포함하는 의미로 사용될 수 있다.
본 발명의 약학 조성물의 사용 양태 및 사용 방법에 따라 유효성분인 상기 화학식 1 내지 3, 화학식 5, 및 화학식 7로 이루어진 화합물 중의 어느 하나 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물, 및 이의 입체 이성질체로부터 선택된 화합물의 함량은 당업자의 선택에 따라 적절히 조절하여 사용될 수 있다.
상기 화학식 1 내지 3, 화학식 5, 및 화학식 7로 이루어진 화합물 중의 어느 하나 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물은 상기 약학 조성물 내에 단독으로 포함될 수 있으며, 또는 그 외 약리학적으로 허용 가능한 담체, 부형제, 희석제 또는 부성분과 함께 포함될 수도 있다.
상기 약학적으로 허용되는 담체, 부형제 또는 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유, 덱스트린, 칼슘카보네이트, 프로필렌글리콜, 리퀴드 파라핀 및 생리식염수로 이루어진 군에서 선택된 1종 이상을 들 수 있으나, 이에 한정되는 것은 아니며 통상의 담체, 부형제 또는 희석제 모두 사용 가능하다. 또한, 상기 약학 조성물은 통상의 충진제, 증량제, 결합제, 붕해제, 항응집제, 윤활제, 습윤제, pH 조절제, 영양제, 비타민, 전해질, 알긴산 및 그의 염, 펙트산 및 그의 염, 보호성 콜로라이드, 글리세린, 향료, 유화제 또는 방부제 등을 추가로 포함할 수 있다.
본 발명에 따른 상기 화학식 1 내지 3, 화학식 5, 및 화학식 7로 이루어진 화합물 중의 어느 하나 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물은, 퇴행성 뇌신경 질환을 치료하기 위한 다른 AChE 억제제, BChE 억제제 및/또는 MAO-B 억제제와 함께 병용 투여함으로써 AChE 억제제, BChE 억제제 및/또는 MAO-B 억제제의 치료 효과를 강화시킬 수 있다.
구체적으로, 상기 약학 조성물은 상기 유효성분 이외에도 퇴행성 뇌신경 질환의 치료 또는 예방에 유효한 것으로 공지된 1종 이상의 다른 AChE 억제제, BChE 억제제 및/또는 MAO-B 억제제를 더욱 포함하여 동시 또는 이시에 적용되는 병용 요법으로 사용할 수 있다. 상기 병용 요법에 적용될 수 있는 다른 AChE 억제제는 예를 들어, 타크린(tacrine), 도네페질(donepezil), 갈란타민(galantamine), 리바스티그민(rivastigmine)으로 이루어진 군으로부터 선택되는 1종 이상의 화합물을 포함할 수 있으나, 이에 한정되지는 않는다. 또한, 다른 BChE 억제제는 예를 들어 타크린(tacrine) 등의 화합물을 포함할 수 있으나, 이에 한정되지는 않는다. 또한, 다른 MAO-B 억제제는 예를 들어, 셀레길린(selegiline), 라사길린(rasagiline), 사피나마이드(safinamide), 라자베마이드(lazabemide), 파르길린(pargyline)으로 이루어진 군으로부터 선택되는 1종 이상의 화합물을 포함할 수 있으나, 이에 한정되지는 않는다.
상기 약학 조성물의 투여방법은 경구 또는 비경구 모두 가능하며, 일 예로는 경구, 경피, 피하, 정맥, 근육 또는 뇌혈관내(intracerebroventricular) 주사를 포함한 여러 경로를 통해 투여될 수 있다. 또한, 상기 조성물의 제형은 사용 방법에 따라 달라질 수 있으며, 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 본 발명이 속하는 기술분야에 잘 알려진 방법을 사용하여 제형화될 수 있다. 일반적으로는, 경구 투여를 위한 고형제제에는 정제(tablets), 알약, 연질 또는 경질 캅셀제(capsules), 환제(pills), 산제(powders) 및 과립제(granules) 등이 포함되고, 이러한 제제는 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제(suspensions), 내용액제, 유제(emulsions) 및 시럽제(syrups) 등이 해당되는데, 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제 예를 들면, 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구투여를 위한 형태는 크림(cream), 로션제(lotions), 연고제(onitments), 경고제(plasters), 액제(liquids and solutions), 에어로솔제(aerosols), 유동 엑스제(fruidextracts), 엘릭서(elixir), 침제(infusions), 향낭(sAChEt), 패취제(patch) 또는 주사제(injections) 등의 형태일 수 있으며, 주사용 제형이 될 경우 바람직하게는 등장성 수용액 또는 현탁액의 형태가 될 수 있다.
상기 약학 조성물은 멸균제, 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제와, 기타 치료학적으로 유용한 물질을 더 함유할 수 있으며, 통상적인 혼합, 과립화 또는 코팅방법에 따라 제제화할 수 있으며, 이외에도 당해 기술 분야의 공지된 적절한 방법을 사용하여 제형화할 수 있다.
또한, 상기 약학 조성물의 투여량은 투여방법, 복용자의 연령, 성별, 환자의 중증도, 상태, 체내에서 활성 성분의 흡수도, 불활성율 및 병용되는 약물을 고려하여 결정할 수 있으며, 1회 또는 수회로 나누어 투여할 수 있다.
본 발명의 또 다른 하나의 양태는, 상기 화학식 1 내지 3, 화학식 5, 및 화학식 7로 이루어진 화합물 중의 어느 하나 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 치료학적 유효량으로 투여하는 단계를 포함하는, 퇴행성 뇌신경 질환의 예방 또는 치료 방법을 제공한다.
바람직하게는 상기 치료방법은 상기 투여 단계 이전에 상기 퇴행성 뇌신경 질환의 예방 또는 치료를 필요로 하는 환자를 확인하는 단계를 추가로 포함할 수 있다.
본 발명의 "치료학적 유효량"은 퇴행성 뇌신경 질환의 예방 또는 치료에 효과적인, 포유류에 대한 유효 성분의 양을 의미하며, 상기 치료학적 유효량은 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 혈중 청소율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다.
본 발명에 따른 화학식 1 내지 3, 화학식 5, 및 화학식 7로 표시되는 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물은 AChE, BChE, 및/또는 MAO-B를 가역적으로, 선택적으로 그리고 경쟁적으로 저해함으로써 알츠하이머병 등의 퇴행성 뇌신경 질환을 효율적이고 부작용이 적게 예방 또는 치료할 수 있다.
본 발명의 또 다른 하나의 양태는 활성성분으로서 본 발명에 따른 화학식 1 내지 3, 화학식 5, 및 화학식 7로 이루어진 화합물 중의 어느 하나 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물을 제공한다.
본 발명의 식품 조성물은 통상적인 의미의 식품을 모두 포함할 수 있으며, 기능성 식품, 건강기능식품 등 당업계에 알려진 용어와 혼용 가능하다.
상기 건강기능식품은 식품의 생체 조절 기능을 강조한 식품으로 물리적, 생화학적, 생물공학적인 방법을 이용하여 특정 목적에 작용 및 발현하도록 부가가치를 부여한 식품이다. 이러한 건강기능식품의 성분은 생체 방어와 신체 리듬의 조절, 질환의 방지 및 회복에 관계하는 신체 조절 기능을 생체에 대하여 충분히 발휘하도록 설계하여 가공하게 되며, 식품으로 허용 가능한 식품 보조 첨가제, 감미료 또는 기능성 원료를 함유할 수 있다.
본 발명의 화학식 1 내지 3, 화학식 5, 및 화학식 7로 이루어진 화합물 중의 어느 하나 이상의 화합물, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로부터 선택된 화합물을 건강기능식품(또는 건강기능 음료 첨가물)으로 사용할 경우, 상기 화합물을 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용하고, 통상적인 방법에 따라 적절하게 사용할 수 있다. 상기 화합물의 혼합량은 그의 사용 목적(예방, 건강 또는 개선, 치료적 처치)에 따라 적합하게 결정될 수 있다.
상기 건강기능식품은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 증진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 유기산, 보호성 콜로이드 점증제, pH 조절제, 안정화제, 보존제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 또한, 본 발명의 건강기능식품은 과일 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 단독으로 또는 조합으로 사용될 수 있으며, 이러한 첨가제의 비율은 조성물 전체 중량당 0.001 내지 50 중량부의 범위에서 선택되는 것이 일반적이다.
상기 건강기능식품의 종류에는 특별한 제한은 없다. 상기 화합물을 첨가할 수 있는 식품은 소세지, 육류, 빵, 초콜릿류, 스넥류, 캔디류, 과자류, 라면, 피자, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알코올 음료 및 비타민 복합제 등이 있다. 음료수로 제형화할 경우에 상기 조성물 이외에 첨가되는 액체 성분으로는 이에 한정되지는 않으나, 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물은 모노사카라이드(예, 포도당, 과당 등), 디사카라이드(예, 말토오스, 수크로오스 등) 및 폴리사카라이드(예, 덱스트린, 시클로덱스트린 등과 같은 통상적인 당), 및 자일리톨, 소르비톨, 에리스리톨 등의 당 알코올일 수 있다.
본 발명에 따른 화학식 1 내지 3, 화학식 5, 및 화학식 7로 표시되는 화합물은, tls경전달물질인 아세틸콜린(acetylcholine) 분해를 저해하는 효과, 즉 AChE 및/또는 BChE의 활성 저해 효과가 우수할 뿐만 아니라 뇌에서의 도파민 물질대사에 중요한 역할을 할 뿐만 아니라 뇌신경세포 손상을 억제시킨다고 알려져 있는 MAO-B를 저해하는 효과 또한 우수하므로, 퇴행성 뇌신경 질환의 치료, 예방 및 경감을 목적으로 유용하게 사용될 수 있다.
도 1은 본 발명에 따른 투석 방법에 의한 SCI, DB 및 ML에 의한 AChE 억제의 가역성 실험 결과를 나타낸다. 기준 가역적 AChE 억제제는 타크린(tacrine)을 사용하였으며, 사용된 억제제의 농도는 SCI 1.7 μM, ML 7.0 μM, DB, 2.4 μM, 및 타크린 0.4 μM 이었다. 회복 실험을 위해, 예비 배양된 효소 혼합물을 투석시켰으며, 결과는 중복 실험의 평균이다.
도 2는 본 발명에 따른 SCI (A), DB (C) 및 ML (E)에 의한 AChE 억제 유형에 대한 Lineweaver-Burk 플롯 및 억제 농도에 대한 Lineweaver-Burk 플롯의 기울기의 2차 플롯(SCI (B), DB (D), 및 ML (F))을 나타낸 그림이다. 기질은 5개 농도 (0.05 ~ 1.0 mM)로 사용되었다. 실험은 3가지 화합물의 억제제 농도, 약 50%의 IC50, IC50, 및 2배의 IC50 값에서 수행되었다. 초기 속도는 분당 흡광도의 증가로 표현되었다. Km의 값은 0.11mM이었다.
도 3은 본 발명에 따른 AChE와 SCI (A), SCG (B), 또는 DB (C)간의 도킹 시뮬레이션을 나타낸 그림이다. AutoDock Vina에 의해 측정된 AChE에 대한 SCI, SCG, 및 DB의 결합 에너지는 각각 -8.6kcal/mol, -7.9kcal/mol, 및 -8.2kcal/mol 이었다.
도 4는 본 발명에 따른 SCI의 AChE 및 BChE 억제 효과 및 결합 친화력를 종합하여 나타낸 그림이다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실험 재료
에탄올 (EtOH), 메탄올 (MeOH), n-헥산 (Hx), 에틸 아세테이트 (EtOAc), 클로로포름 (CHCl3), 부탄올 (BuOH) 및 아세톤을 포함한 유기 용매는 덕산케미칼(서울, 한국)에서 구매하였다. 실리카 겔 60 (Merck 70-230 메쉬, ASTM, 독일), ODS-A (12 nm, S-150 m, YMC, 도쿄, 일본), MCI 겔 CHP20P (75-100 μm, 미쓰비시사, 일본), 및 Sephadex LH-20 gel (GE Healthcare, Sweden)을 사용하여 컬럼 크로마토그래피를 수행하였다. 1mm 두께의 F254 실리카 겔 (Merck, Darmstadt, Germany)로 코팅된 20 × 20 cm 플레이트를 사용하여 조제용(preparative) TLC를 수행하였다. NMR 스펙트럼을 JEOL ECX-500 분광계에 기록하였으며, 1H에서 500MHz, 13C NMR 스펙트럼에서 125MHz로 작동시켰다 (JEOL Ltd., Japan). 고성능 액체 크로마토그래피 (HPLC) 스펙트럼은 포토다이오드 어레이 (photodiode array, PDA) 및 증발성 광산란 검출기 (eva-porative light scattering detector, ELSD)가 장착된 Agilent 1260 시리즈 시스템 (Agilent Inc., Palo Alto, CA, USA)을 사용하여 기록하였다.
기질 [5,5'-디티오비스(2-니트로벤조산) (5,5′-dithiobis(2-nitrobenzoic acid), DTNB), 아세틸티오콜린 요오다이드 (acetylthiocholine iodide, ATCI), S-부티릴티오콜린 요오다이드 (S-butyrylthiocholine iodide, BTCI) 및 벤질아민(benzylamine)], 기준 억제제 (퀘르세틴(quercetin), 타크린(tacrine) 및 라자베미드(lazabemide)) 및 효소 [전기뱀장어(Electrophorus electricus) (Type VI-S) 유래 AChE, 말 혈청 유래 BChE, 및 재조합 인간 MAO-B]를 Sigma-Aldrich (미국 미주리 주 세인트 루이스)로부터 구입하였다. 다른 모든 화학 물질은 시약 등급이었다.
실시예 2: 실험 방법
2-1. 화합물의 추출 및 분리
꽈배기모자반(Sargassum siliquastrum)은 2012년 9월경에 한국의 영덕 강구에 있는 조간대에서 수집하였다. 약초, 즉 육두구(Myristica fragrans Houttuyn), 만삼(Codonopsis pilosula Nannf.), 황련(Coptis chinensis), 큰까치수염(Lysimachia clethroides) 및 지모(Anemarrhena asphodeloides Bunge)는 한국에서 2012년부터 2017년까지 약초 시장에서 구입했다.
꽈배기모자반(Sargassum siliquastrum)의 건조된 전초(700 g)를 95% EtOH로 3시간 동안 추출하였고 (3 × 500 ml), 획득된 EtOH 추출물을 500 ml의 물 및 동일한 부피의 Hx에 현탁시켰다. Hx 가용성 분획을 CHCl3 / MeOH 구배 (10: 1 - 5: 5)로 용리된 실리카겔 컬럼상에서 크로마토그래피에 의해 10개의 분획 (SSE 1-10)으로 분리하였다. 분획 SSE-5를 Sephadex LH-20 컬럼 크로마토래피(CHCl3: MeOH = 1: 1)에 의해 7개(SSE 5-1 ~ SSE 5-7)의 분획물로 분리하였다. 분획 SSE 5-6 및 SSE 5-7은 9 ml/min의 유속 및 70 % MeOH 용리액으로 YMC 패킹 ODS-A 컬럼 (150 × 20 mm, 5 μm, 일본 도쿄, 도쿄)을 사용하는 조제용(preparative) HPLC (Spot II, France, Armen, France)로 정제하여 각각 화학식 1의 사가크로마놀 G (sargachromanol G; SCG) (60 mg) 및 화학식 2의 사가크로마놀 I (sargachromanol I; SCI) (81 mg)을 수득 하였다.
[화학식 1]
Figure 112022067421019-pat00007
[화학식 2]
Figure 112022067421019-pat00008
육두구(Myristica fragrans Houttuyn)의 건조 종자(1kg)를 95% EtOH로 5시간 동안 추출한 후 (3 × 500 ml), EtOH 추출물(204.64 g)을 1000 ml의 물 및 동일한 부피의 EtOAc에 현탁시켰다. EtOAc 가용성 분획 (16.4 g)을 Hx 및 EtOAc (10: 1 내지 1: 1)의 구배로 용리하는 실리카겔 컬럼을 사용하여 4개의 분획 (MFE 1-4)으로 분리하였다. 분획 MFE-4를 세파덱스 LH-20 컬럼 (100 % MeOH)으로 정제하고 화학식 3의 마세리그난 (macelignan; ML) (1,630 mg)을 수득하였다.
[화학식 3]
Figure 112022067421019-pat00009
만삼(Codonopsis pilosula Nannf.)의 건조된 뿌리(7kg)를 80% EtOH로 5시간 동안 추출한 후(3 × 5000 ml), 2개의 용리액으로 물 및 MeOH을 이용하는 MCI 겔 컬럼 크로마토그래피를 사용하여 EtOH 추출물 (3kg)을 2개의 분획(물 및 MeOH)으로 분리하였다. MeOH 분획물을 실리카겔 컬럼 크로마토그래피(CHCl3: MeOH = 10: 1)에 의해 4개의 서브 분획물(CPEM 1-4)을 수득하였다. 분획물 CPEM-3을 MeOH로 재결정화하여 화학식 4의 크레오사이드 IV (creoside IV) (100mg)를 얻었다.
[화학식 4]
Figure 112022067421019-pat00010
황련(Coptis chinensis)의 건조된 뿌리줄기 (1.2kg)를 EtOH로 5 시간 동안 추출하고 (2 × 1500ml), 2000ml의 물 및 동일한 부피의 EtOAc를 사용하여 용매를 분획하였다. EtOAc 가용성 분획 (29.4 g)을 MeOH : H2O (7: 3 - 3: 7) 구배를 사용하는 ODS 컬럼 크로마토그래피에 의해 5개의 분획(CCE 1-5)으로 분리하였다. 분획 CCE 5를 조제용(preparative) TLC (CHCl3: MeOH: H2O = 5: 4: 1)로 정제하여 화학식 5의 디하이드로베르베린(dihydroberberine; DB) (80mg)을 얻었다.
[화학식 5]
Figure 112022067421019-pat00011
큰까치수염(Lysimachia clethroides Duby)의 건조된 전초(3.7 kg)를 70 % EtOH로 5 시간 동안 추출하고(3 × 3000 ml), EtOH 추출물을 2000 ml의 물 및 동일한 부피의 BuOH에 현탁시켰다. BuOH 가용성 분획 (105g)을 MeOH 및 H2O (3: 7) 구배를 사용하여 ODS-A 컬럼 크로마토그래피에 의해 10개의 분획물(LCE 1-10)로 분리하였다. 분획 LCE-3을 세파덱스 LH-20 컬럼 크로마토그래피(70 % MeOH, 500 ml)에 의해 화학식 6의 퀘르세틴-3-O-네오헤스페리도사이드(quercetin-3-O-neohesperidoside) (150 mg)를 수득하였다.
[화학식 6]
Figure 112022067421019-pat00012
지모(Anemarrhena asphodeloides Bunge)의 건조된 뿌리(1 kg)를 100 % MeOH로 3 시간 동안 추출하고(3 × 500 ml), 얻어진 EtOH 추출물 (111 g)을 1000 ml의 물 및 동일한 부피의 EtOAc에 현탁시켰다. EtOAc 가용성 분획을 클로로포름 및 메탄올 (1: 0 - 0: 1) 구배를 사용하는 실리카겔 컬럼 크로마토그래피에 의해 8개의 분획(AAE 1-8)으로 분리하였다. 분획 AAE-4를 ODS-A 컬럼 크로마토그래피(MeOH: H2O = 1: 1)에 의해 7개의 분획물(AAE 3-1 ~ AAE 3-7)을 수득하였다. 서브분획 AAE 3-2를 8 ml/min의 유속 및 65 % MeOH의 용리액에서 YMC 패킹된 ODS-A 컬럼 (250 x 20 mm, 5 μm)을 사용하는 조제용 HPLC (Spot II, France, Armen, France)로 정제하여 화학식 7의 브로우소닌 A (broussonin A) (42 mg)를 수득하였다.
[화학식 7]
Figure 112022067421019-pat00013
화학식 1의 사가크로마놀 G (sargachromanol G) 및 화학식 2의 사가크로마놀 I (sargachromanol I) [43], 화학식 3의 마세리그난(macelignan) [44], 화학식 4의 크레오사이드(creoside) IV [45], 화학식 5의 디하이드로베르베린(dihydroberberine) [46], 화학식 6의 퀘르세틴-3-오-네오헤스페리도사이드(quercetin-3-O-neohesperidoside) [47]와 화학식 7의 브로우소닌(broussonin) A [48]의 구조는 문헌에 기재된 분광 데이터를 비교하여 결정하였다. 애질런트(Agilent) 1260 시리즈 HPLC 시스템을 사용하여 화합물 순도를 측정하였다.
2-2. 효소 분석
AChE 활성은 본 발명자의 종전 문헌 [50]에 기술된 바와 같이 Ellman et. al. [49]의 방법을 약간 변형하여 측정하였다. 간략하게, 0.2 U/ml AChE를 0.5mM ATCI (4.5 × Km) 및 0.5mM DTNB를 함유하는 50mM 인산나트륨 (pH 7.5)의 0.5ml 반응 혼합물에서 반응시키고 412nm에서 10분 동안 모니터링 하였다. DTNB 및 ATCI 첨가 전에 15분 동안 억제제로 효소를 예비 배양한(preincubating) 후 억제 활성을 측정하였다.
ATCI 대신 BTCI를 첨가한 것을 제외하고는 동일한 방법을 사용하여 BChE 활성을 분석하였다.
MAO-B 활성은 본 발명자의 종전 문헌 [51]에 기술된 바와 같이, 0.3mM 벤질아민 (2.5 × Km)의 존재하에 250nm에서 30분 동안 25℃에서 50mM의 인산 나트륨 (pH 7.4)을 포함하는 1mL 큐벳에서 25mC에서 연속적으로 측정되었다. 반응 속도는 분당 흡광도의 변화로 표현된다. ATCI 및 벤질 아민의 Km 값은 각각 0.11 및 0.12 mM이었다.
2-3. 억제 활성 및 효소 동역학
화합물에 의한 AChE, BChE 및 MAO-B의 활성 억제는 초기에 10 μM의 억제제 농도에서 분석되었다. 화합물 및 가역적 기준 억제제 (각각 AChE/BChE 및 MAO-B에 대한 타크린(tacrine) 및 라자베미드(lazabemide))의 IC50 값을 측정하였다. 본 발명자의 종래 문헌 [52]에 기술된 바와 같이, AChE를 가장 강력하게 억제하는 화합물 (SCI, DB 및 ML)의 시간-의존성, 동역학 파라미터, 억제 유형 및 Ki 값을 AChE 분석 방법으로 조사하였다. 이들 3개의 화합물에 의한 AChE 억제의 동역학은 5가지 상이한 기질 농도(0.05, 0.1, 0.2, 0.5 및 1.0mM) 및 대략 1/2 × IC50, IC50 및 2 × IC50에서 각 억제제의 존재 또는 부재하에 조사되었다. 억제 패턴 및 Ki 값은 Lineweaver-Burk 플롯(plot) 및 2차 플롯을 사용하여 결정되었다.
2-4. 억제제 가역성 분석
MAO 분석이 아닌 AChE 분석을 사용한 것을 제외하고는 본 발명자의 종래 문헌에 기재된 방법 [53]과 같이 투석 방법과 가역적 기준 억제제인 타크린을 사용하여 SCI, DB 및 ML에 대한 가역성 실험을 수행하였다. 15분 동안 예비 배양한 후 1.7μM의 SCI, 2.4μM의 DB 및 7.0μM의 ML에서 AChE에 대한 실험을 수행하였다. 타크린은 0.40 μM에서 사용되었다. 투석되지 않은 (투석 전, AU) 및 투석된 (투석 후, AD) 샘플의 상대 활성을 계산하고 억제제 없이 각각의 대조군과 비교 하였다. 가역성은 상대적인 AU와 AD 값을 비교하여 결정하였다.
2-5. AChE에 대한 SCI, SCG 및 DB의 도킹시뮬레이션
AChE에 대한 도킹을 시뮬레이션하기 위해 자동 도킹 기능이 있는 AutoDock Vina [54]를 사용했다. AChE의 도킹 포켓(docing pocket)을 정의하기 위해, 본 발명자들은 참조 화합물 3-[(1S)-1-(디메틸아미노)에틸]페놀 (3-[(1S)-1-(dimethylamino)ethyl]phenol), 대사 산물, 그리고 AD의 치료에 임상적으로 사용되는 카바메이트(carbamate) AChE 억제제인 리바스티그민(rivastigmine)의 이탈기(leaving group)와 AChE 사이의 복합체로부터 수득된 미리 정의된 활성 부위를 사용하였다 [55]. AChE 및 대사 산물의 공결정 구조(co-crystal structure)는 Bar-On et al.의 방법으로 수행되었다 [56]. 도킹 시뮬레이션을 준비하기 위해 다음 단계를 수행하였다. (1) 화합물의 2D 구조 생성, (2) 2D 구조를 3D 구조로 변환 및 (3) ChemOffice 프로그램 (http://www.cambridgesoft.com)을 사용하여 에너지 최소화 수행. 화합물의 AChE 도킹 시뮬레이션은 AutoDock Vina를 사용하여 수행되었다. 도킹 결과로부터 키메라 프로그램 [57]을 사용하여 수소 결합 구속이 0.4Å 및 20.0도(degree)로 완화된 가능한 수소 결합 상호 작용을 점검했다
실시예 3: 화합물의 분리 및 식별
640개의 천연 화합물을 10 μM의 농도에서 아세틸콜린에스테라제(AChE) 억제 활성을 시험하였다. 측정된 억제 활성 및 신규성을 고려하여, 추가 연구를 위해 7개의 화합물을 선택하였다. 화학식 1의 SCG 및 화학식 2의 SCI는 갈색 조류 꽈배기모자반(Sargassum siliquastrum)으로부터 분리되었다. 화학식 3의 ML은 육두구(Myristica fragrans)로부터 분리되었다. 화학식 4의 크레오사이드(creoside) IV는 만삼(Codonopsis pilosula)으로부터 분리되었다. 화학식 5의 DB는 황련(Coptis chinensis)으로부터 분리되었다. 화학식 6의 케르세틴-3-O-네오헤스페리도시드는 큰까치수염(Lysimachia clethroides)으로부터 분리되었다. 화학식 7의 브로우소닌(broussonin) A는 지모(Anemarrhena asphodeloides)로부터 분리되었다. 이들의 구조는 몇 가지 분석 방법 및 NMR을 사용하여 확인하였고, 이들의 화학 구조를 상기 화학식 1 내지 7에 나타내었다.
실시예 4: 억제 활성의 분석
선택된 화합물 중, 6 개의 화합물은 10 μM의 억제제 농도에서 <50 %의 AChE 잔류 활성을 나타냈다 (표 1 참조). SCI 및 SCG는 각각 0.79 및 1.81 μM의 IC50 값으로 AChE를 강력하고 효과적으로 억제하였다. DB는 AChE를 강력하게 억제하였고 (IC50 = 1.18μM), ML은 AChE를 효과적으로 억제하였다 (IC50 = 4.16μM) (표 1 참조). DB의 효능 (IC50 = 1.18μM)은 강력한 AChE 억제제인 것으로 알려진 베르베린(berberine)의 억제 효과(IC50 = 1.01μM)와 유사하였다. 퀘르세틴-3-오-네오헤스페리도사이드는 AChE를 효과적으로 억제했지만(IC50 = 6.98 μM) 기준 물질인 퀘리세틴(quercetin) (IC50 = 4.84 μM)보다 약했다. 다른 글리코사이드인 크레오사이드 IV도 AChE를 효과적으로 억제하였으며(IC50 = 7.30 μM), 브로우소닌(Broussonin) A도 AChE를 효과적으로 억제했다(IC50 = 15.88 μM). 또한, 브로우소닌 A는 IC50 값이 4.16 μM으로 BChE를 강력하게 억제하였고, 이어서 ML, SCG 및 SCI (각각 9.69, 10.79 및 13.69 μM)가 BChE를 억제하였다 (표 1 참조). 다른 3 개의 화합물은 40 μM 이상의 IC50 값을 가졌다.
화합물의 이중-표적화 능력을 조사하기 위해, AD에서의 치료 표적인 MAO-B에 대한 이들의 억제 효과를 평가하였다. ML 또는 브로우소닌 A로 처리한 결과 MAO-B 활성이 50% 이상 손실되었다 (IC50 값은 각각 7.42 및 9.0 μM 임) (표 1 참조). 반면 SCI 및 SCG는 약한 억제 활동을 나타냈다 (IC50 값> 40 μM). 따라서, ML은 AChE 및 MAO-B 억제에 효과적이고 강력한 것으로 밝혀졌다. 한편, 브로우소닌 A를 제외한 모든 화합물은 10 μM에서> 50 %의 MAO-A 잔류 활성을 나타냈다.
화합물 10 μM 잔류 활성(%) IC50 (μM) SI*
AChE BChE MAO-B MAO-A AChE BChE MAO-B
사가크로마놀 G 21.3 ± 0.14 52.4 ± 0.79 98.4 ± 1.10 81.9 ± 2.40 1.81 ± 0.020 10.79 ± 0.65 > 40 5.96
사가크로마놀 I 8.9 ± 0.08 64.4 ± 2.77 97.7 ± 2.19 82.2 ± 0.20 0.79 ± 0.071 13.69 ± 5.07 > 40 17.33
마세리그난 28.1 ± 0.12 52.0 ± 2.18 43.0 ± 1.64 62.1 ± 5.59 4.16 ± 0.070 9.69 ± 0.98 7.42 ± 0.36 2.33
크레오사이드 IV 45.1 ± 0.12 98.1 ± 1.68 97.8 ± 1.05 98.2 ± 1.65 7.30 ± 0.49 > 40 > 40 > 5.48
디하이드로베르베린 14.6 ± 0.10 82.5 ± 4.69 61.4 ± 1.63 86.0 ± 2.48 1.18 ± 0.03 38.82 ± 0.52 19.9 ± 0.56 32.90
퀘르세틴-3-오-네오헤스페리도사이드 41.5 ± 0.18 100 ± 0.43 85.6 ± 1.57 87.3 ± 1.70 6.98 ± 0.47 > 40 > 40 > 5.73
브로우소닌 A 59.8 ± 0.07 42.9 ± 2.58 49.6 ± 2.10 39.5 ± 0.46 15.88 ± 1.02 7.50 ± 0.075 9.0 ± 0.39 0.47
베르베린 14.3 ± 0.59 93.6 ± 6.57 77.2 ± 1.79 88.6 ± 2.07 1.01 ± 0.01 > 40 26.5 ± 0.78 > 39.60
퀘르세틴 - - - - 4.84 ± 0.34 - - -
타크린 - - - - 0.22 ± 0.004 0.014 ± 0.0043 - 0.0064
라자베마이드 - - - - - - 0.038 ± 0.0046 -
*SI= BChE의 IC50 / AChE의 IC50; -는 조사하지 않음
실험예 5: 가역적 AChE 억제 활성 분석
AChE 활성은 SCI와의 예비 배양 후 최대 15분 동안 감소되지 않았으며, 이는 AChE와 SCI 사이의 상호 작용이 즉각적임을 입증하였다. 억제제와의 예비 배양 후 15 분 동안 억제 분석을 수행하였다.
SCI, DB 및 ML에 의한 AChE 억제의 가역성은 투석 방법을 사용하여 조사되었다. SCI, DB 및 ML에 의한 AChE 억제는 투석에 의해 각각 30.7% (AU)에서 66.9% (AD), 27.8% (AU)에서 84.4% (AD), 16.3%(AU)에서 89.8% (AD)로 회복되었으며 알려진 가역적 AChE 억제제인 타크린의 회복력과 유사하였다(4.9%(AU)에서 55.4%(AD)) (도 1 참조). 이러한 결과는 SCI, DB 및 ML이 AChE의 가역적 억제제임을 나타낸다.
실험예 6: 억제 패턴 분석
SCI, DB 및 ML에 의한 AChE 억제 유형은 Lineweaver-Burk 플롯을 사용하여 조사하였다. SCI에 의한 AChE 억제 플롯은 선형이었고 선의 점에서 교차되었지만 x축 또는 y축은 교차하지 않았다(도 2A 참조). 억제제 농도에 대한 Lineweaver-Burk 플롯의 기울기의 2 차 플롯은 AChE 억제에 대한 SCI의 Ki 값이 0.63 ± 0.0026임을 보여주었다 (도 2B 참조). 이들 결과는 SCI가 AChE의 혼합 억제제로서 작용함을 나타낸다. 반면, DB에 의한 AChE 억제 도표는 선형이고 y축과 교차했으며 (그림 2C), AChE 억제에 대한 DB의 Ki 값은 0.77 ± 0.047 μM (도 2D)로, 이는 DB가 AChE의 경쟁 억제제인 것을 나타낸다. 흥미롭게도, ML에 의한 AChE 억제에 대한 플롯은 선형이고 x축과 교차하였고, AChE의 억제에 대한 ML의 Ki 값은 4.46 ± 0.27 μM (도 2E 및 2F)이며, 이는 ML이 비경쟁적으로 AChE를 억제하는 것을 나타낸다.
실험예 7: 분자 도킹 시뮬레이션
도킹 시뮬레이션은 SC 분자가 AChE와 결합된 3-[(1S)-1-(디메틸아미노)에틸]페놀의 결합 부위에 적절하게 위치함을 보여 주었다. AutoDock Vina에 의해 측정된 AChE에 대한 SCI의 결합 친화력(-8.6kcal/mol)은 SCG (-7.9kcal/mol) 및 DB (-8.2kcal/mol)의 결합 친화력보다 크고 기준 화합물 3-[(1S)-1-(디메틸아미노)에틸]페놀 (-5.7kcal/mol)의 결합 친화력보다 높았다. 효소 억제 분석에 의해 결정된 AChE에 대한 SCI, SCG 및 DB의 IC50 값은 각각 0.79±0.071 μM, 1.81±0.020 μM 및 1.18±0.03 μM이었다. 도킹 시뮬레이션 결과는 SCI 및 SCG가 각각 Trp81 (도 3A) 및 AChE의 Ser119 (도 3B)와 수소 결합에 의해 AChE에 결합한다는 것을 암시하였다. 그러나, 베르베린의 결과와 유사하게 DB (도 3C)에 대한 수소 결합 형성은 예측되지 않았다.
상기 일련의 결과를 종합하면 하기와 같다.
AChE를 억제하는 능력 및 신규성을 기초로 천연 생성물 라이브러리 세트로부터 7개의 화합물이 선택되었다. AChE에 대한 SCI, DB, SCG 및 ML의 IC50 값은 각각 0.79, 1.18, 1.81 및 4.16μM 인 것으로 나타났으며, 이는 IC50 값이 15μM 미만인 매우 강력한 천연 AChE 억제제임을 나타낸다 [9]. 바이칼레인(Baicalein) (IC50 = 0.61 μM)은 AChE의 우수한 천연 플라보노이드 억제제 중 하나이며, 캠퍼롤(kaempferol)과 퀘르세틴(quercetin)의 IC50 값은 각각 3.05 및 3.60 μM 인 것으로 보고되었다 [58, 59]. 이 퀘르세틴의 IC50 값(3.60 μM)은 본 실험에서 얻은 값 (4.84 μM)보다 약간 낮았다. 데쿠시놀(decursinol)의 IC50 값이 원래 28.0 μM 인 것으로 보고되었지만, 2개의 천연 쿠마린인 데쿠시놀(decursinol)과 메수아게닌(mesuagenin)은 각각 0.28과 0.7 μM의 IC50 값으로 AChE를 강력하게 억제하는 것으로 보고되었다 [60]. 6개의 프로토버베린 알칼로이드(protoberberine alkaloids), 즉 베르베린(berberine), 팔마틴(palmatine), 자테리네진(jaterrhinezin), 콥티신(coptisine), 그로엔란디신(groenlandicine), 및 에피베르베린(epiberberine)은 각각 0.44, 0.51, 0.57, 0.80, 0.54 및 1.07 μM의 IC50 값을 갖는 것으로 보고되었으며 [62], 베르베린의 IC50 값(0.44 μM)은 본 실험(1.01 μM)에서 얻은 것보다 낮았다. AD를 치료하는데 사용되는 유일한 천연 기반 약물인 갈란타민(galantamine)은 IC50 값이 0.80 μM이다 [2]. 이러한 결과에 기초하여, SCI 및 DB의 IC50 값은 갈란타민의 IC50 값과 유사하다.
다중-표적화(multi-targeting) 목적을 위해, AChE 및 MAO-B의 이중 억제(dual inhibition)가 AD의 치료를 위해 조사되었다. 합성된 호모이소플라보노이드(homoisoflavonoid) 유도체에 대한 연구에서 각각 3.94 및 3.44 μM의 AChE 및 MAO-B의 이중 억제에 대한 IC50 값이 허용되는 것으로 간주되었다 [63]. 최근에, 강력한 이중 AChE/MAO-B 억제제는 합성된 알킬 질산염에서 각각 1.3과 0.051 μM의 IC50 값으로 확인되었다 [18]. 그러나 자연적으로 균형된 또는 이중 AChE/MAO-B 억제제에 관한 정보는 거의 없다. 천연물과 관련하여 마키아인(maackiain) (IC50 = 0.68 μM)은 가장 강력한 MAO-B 억제제 중 하나이며, 제니스테인(genistein) (IC50 = 4.1 μM)은 강력한 MAO-B 억제제이다 [52]. 본 실험에서, ML은 IC50 값이 각각 4.16 및 7.42 μM인 균형된 AChE/MAO-B 억제제로 확인되었다.
SCI 및 SCG의 구조 비교는 SCG의 7번 위치의 추가 이중 결합이 AChE에 대한 억제 활성을 감소시켰음을 시사하였다. 베르베린과 비교하여, DB의 7번 및 8번 위치의 2개의 수소는 억제 활성에 영향을 미치지 않았다. 현재의 연구에서, 퀘르세틴-3-오-네오헤스페리도사이드에 있는 이당류의 당 부분은 퀘르세틴에 비해 AChE 억제 활성을 1.4배 감소시켰다.
본 실험에서, SCI, DB 및 ML에 의한 AChE의 강력한 억제는 가역적인 것으로 밝혀졌다. 흥미롭게도, 이들 3개의 화합물은 상이한 유형의 억제를 나타냈다. 즉, SCI, DB 및 ML은 각각 0.63, 0.77 및 4.46 μM의 상응하는 Ki 값을 갖는 혼합, 경쟁적 및 비경쟁적 억제제인 것으로 밝혀졌다. 이 결과는 SCI가 AChE의 활성 부위 및 비촉매 부위에 결합되는 반면 DB 및 ML은 각각 활성 부위 또는 비촉매 부위에 결합됨을 의미한다. 사가크로마놀 E (SCE)와 SCG는 40 uM에서 RAW 264.7에 대해 세포 독성 효과가 없거나 매우 낮았지만 [22, 23], SCI, DB, ML의 세포 독성, 신경 독성 및 혈액-뇌 장벽 투과성은 보고되지 않았다.
도킹 시뮬레이션은 AChE에 대한 SCI, SCG 및 DB의 결합 에너지가 3-[(1S)-1-(디메틸아미노)에틸]페놀의 결합 에너지보다 더 크다는 것을 보여주었다. SCI 및 SCG는 각각 AChE의 Trp81 및 Ser119 잔기에 결합하는 것으로 밝혀졌지만, DB는 AChE와 수소 결합을 형성하지 않았다. AutoDock Vina의 도킹 점수는 정전기 결합, 반데르발스 힘 및 용해 효과뿐만 아니라 수소 결합을 기준으로 계산되었기 때문에, 베르베린의 결과와 유사하게 수소 결합 상호 작용의 부재에도 불구하고 DB는 결합 점수(score)가 증가할 수 있었다. X-ray 결정학은 AChE에서 2개의 리간드 결합 부위가 그의 활성, 즉 촉매 활성 부위 (Catalytic active site; CAS) 및 말초 음이온성 부위 (Peripheral anionic site; PAS)를 조절하고, 이의 CAS가 촉매 트라이어드(catalytic triad) (에스테르성 하위부위, esteratic subsite) 및 음이온성 기질 결합 부위(anionic substrate binding site)로 세분될 수 있음을 밝혔다 [64]. AChE의 리간드 결합 부위는 알려진 결합 부위와의 서열 정렬에 기초하여 촉매 트라이어드 (Ser197, Glu324 및 His437), 음이온성 기질 결합 부위 (Trp81, Glu196 및 Phe327) 및 말초 음이온성 부위 (Tyr67, Asp69, Tyr118, Trp276 및 Phe287)로 정의되어 왔다 [65]. PAS는 AChE의 촉매 부위에 아세틸콜린을 전도하는 것으로 생각되며, PAS는 AD에서 아밀로이드 원섬유(amyloid fibrils)의 형성과 관련이 있다고 제안되었다 [66, 67]. 본 실험에 따른 도킹 시뮬레이션 결과는 SCI가 음이온성 기질 결합 부위의 Try81과의 수소 결합에 의해 아세틸콜린의 가수 분해를 방해할 수 있음을 암시하고, SCG는 말초 음이온 부위의 Try118 근처에 위치한 Ser119와의 수소 결합에 의해 촉매 부위에 대한 아세틸콜린의 접근을 제한함을 암시한다. 이는 SCI 및 SCG가 AChE-아밀로이드-β 복합체의 형성 및 AChE 분해를 방해한다는 것을 시사한다(도 3 참조). SCI 및 SCG의 선택적 AChE 억제 활성은 AChE의 활성 포켓과의 결합 형태 및/또는 수소 결합 상호 작용의 결과인 것으로 보인다.
결론
640 개의 천연 화합물 중에서 SCI, SCG, DB 및 ML은 각각 0.79, 1.81, 1.18 및 4.16μM의 IC50 값으로 AChE를 강력하고 효과적으로 억제했다. SCI, DB 및 ML은 또한 AChE의 가역적 억제제이며 각각 혼합, 경쟁 및 비경쟁적 억제 방식으로 작용하는 것으로 밝혀졌다. 브로우소닌 A는 BChE를 강력히 억제하였고 (IC50 = 4.16μM), ML, SCG, SCI는 BChE를 효과적으로 억제하였다 (각각 9.69, 10.79, 13.69μM). ML은 또한 MAO-B (IC50 = 7.42μM)를 억제하였고, 조사된 화합물 중에서 가장 효과적인 이중 억제제였다. 분자 도킹 시뮬레이션은 AChE에 대한 SCI의 결합 친화력이 SCG 및 DB의 결합 친화력보다 크고, SCI가 Trp81에서 AChE와 상호 작용하고, SCG가 Ser119에서 상호 작용한다는 것을 제시하였다. 어떠한 수소 결합도 DB의 AChE 결합에 대하여 예측되지 않았다. 이러한 결과로부터 SCI, SCG, DB 및 ML은 AD 등의 치료에 유망한 가역적 AChE 억제제일 것이다. 한편, SCI의 AChE 및 BChE 억제 효과 및 결합 친화력을 도 4에 종합하여 도시하였다.

Claims (4)

  1. 사가크로마놀 I, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로 이루어진 군으로부터 어느 하나 이상 선택되는 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물로서,
    상기 퇴행성 뇌신경 질환은 치매, 알츠하이머병, 및 파킨슨병으로 이루어진 군으로부터 선택된 하나 이상의 질환인 것인, 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물.
  2. 제1항에 있어서, 상기 화합물은 AChE(acetylcholinesterase), BChE(butyrylcholinesterase), 및 MAO-B(monoamine oxidase-B)로 이루어진 군으로부터 어느 하나 이상을 저해하는 것인, 퇴행성 뇌신경 질환의 예방 또는 치료용 약학 조성물.
  3. 사가크로마놀 I, 이의 약학적으로 허용 가능한 염, 이의 수화물 및 이의 입체 이성질체로 이루어진 군으로부터 어느 하나 이상 선택되는 화합물을 유효성분으로 포함하는 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물로서,
    상기 퇴행성 뇌신경 질환은 치매, 알츠하이머병, 및 파킨슨병으로 이루어진 군으로부터 선택된 하나 이상의 질환인 것인, 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물.
  4. 제3항에 있어서, 상기 화합물은 AChE(acetylcholinesterase), BChE(butyrylcholinesterase), 및 MAO-B(monoamine oxidase-B)로 이루어진 군으로부터 어느 하나 이상을 저해하는 것인, 퇴행성 뇌신경 질환의 예방 또는 개선용 식품 조성물.
KR1020220078864A 2020-05-27 2022-06-28 천연 식물 유래 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물 KR102499940B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220078864A KR102499940B1 (ko) 2020-05-27 2022-06-28 천연 식물 유래 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200063853A KR102465808B1 (ko) 2020-05-27 2020-05-27 천연 식물로부터 유래된 마세리그난 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물
KR1020220078864A KR102499940B1 (ko) 2020-05-27 2022-06-28 천연 식물 유래 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200063853A Division KR102465808B1 (ko) 2020-05-27 2020-05-27 천연 식물로부터 유래된 마세리그난 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물

Publications (2)

Publication Number Publication Date
KR20220093309A KR20220093309A (ko) 2022-07-05
KR102499940B1 true KR102499940B1 (ko) 2023-02-16

Family

ID=78936398

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200063853A KR102465808B1 (ko) 2020-05-27 2020-05-27 천연 식물로부터 유래된 마세리그난 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물
KR1020220078864A KR102499940B1 (ko) 2020-05-27 2022-06-28 천연 식물 유래 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200063853A KR102465808B1 (ko) 2020-05-27 2020-05-27 천연 식물로부터 유래된 마세리그난 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물

Country Status (1)

Country Link
KR (2) KR102465808B1 (ko)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ademosun et al., "Comparison of the inhibition of monoamine oxidase and butyrylcholinesterase activities by infusions from green tea and some citrus peels." International Journal of Alzheimer’s Disease, 2014. Vol. 2014, Article ID 586407.*
김은경. "꽈배기모자반으로부터 생리활성 물질 탐색." 석사학위논문 한밭대학교 산업대학원, 2012.*

Also Published As

Publication number Publication date
KR20210146705A (ko) 2021-12-06
KR20220093309A (ko) 2022-07-05
KR102465808B1 (ko) 2022-11-10

Similar Documents

Publication Publication Date Title
Lee et al. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds
US10842805B2 (en) Compositions containing enriched natural crocin and/or crocetin, and their therapeutic or nutraceutical uses
Ferreira et al. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology
AU2015246090B2 (en) Compounds, compositions and methods for protecting brain health in neurodegenerative disorders
Babkova et al. Prolyl oligopeptidase and its role in the organism: Attention to the most promising and clinically relevant inhibitors
Ferlemi et al. Rosemary tea consumption results to anxiolytic-and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies
CA2601777A1 (en) Compositions and methods for enhancing cognitive function
Wang et al. The traditional uses, secondary metabolites, and pharmacology of Lycopodium species
US8604087B2 (en) Composition for treating or preventing amyloid-related diseases comprising 4-O-methylhonokiol
CN101502585B (zh) 花椒属植物提取物及其制备方法和用途
Singh et al. Exploring the multifaceted potential of chlorogenic acid: Journey from nutraceutical to nanomedicine
Mena et al. Pomegranate fruit for health promotion: Myths and realities
KR101793503B1 (ko) 퇴행성 뇌질환 예방, 개선 또는 치료용 조성물
KR20150069671A (ko) 황칠 추출물을 포함하는 중금속 중독으로 인한 질환의 치료 및 예방용 조성물
KR102499940B1 (ko) 천연 식물 유래 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물
KR101384423B1 (ko) 자소엽 추출물을 포함하는 뇌신경질환 예방 또는 치료용 의약 조성물
JP4176638B2 (ja) 川椒抽出物を含む脳細胞保護及び記憶力増進用組成物
EP3639817B1 (en) Compositions containing pterosin compound and derivatives thereof active ingredients for prevention or treatment of degenerative brain diseases
KR102545193B1 (ko) 칼콘 유도체 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물
KR102269242B1 (ko) 엄벨리페론 유도체를 포함하는 우울증의 예방 또는 치료용 조성물
KR102676991B1 (ko) 8-o-메틸레투신 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물
KR100873222B1 (ko) 담마레인 트리테르펜 화합물을 함유하는 동맥경화증, 암 및 산화적 스트레스의 예방, 개선 및 치료용 조성물
Shine et al. Molecular interaction of naringin and its metabolite naringenin to human liver fibrosis proteins: An In Silico approach
KR20230085718A (ko) 켈렉톤 쿠마린 유도체 화합물을 포함하는 퇴행성 뇌신경 질환의 예방 또는 치료용 조성물
Refaey et al. Neuroprotective effects of steroids

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right