KR102471207B1 - 비디오 신호 처리 방법 및 장치 - Google Patents
비디오 신호 처리 방법 및 장치 Download PDFInfo
- Publication number
- KR102471207B1 KR102471207B1 KR1020170128210A KR20170128210A KR102471207B1 KR 102471207 B1 KR102471207 B1 KR 102471207B1 KR 1020170128210 A KR1020170128210 A KR 1020170128210A KR 20170128210 A KR20170128210 A KR 20170128210A KR 102471207 B1 KR102471207 B1 KR 102471207B1
- Authority
- KR
- South Korea
- Prior art keywords
- intra prediction
- current block
- sample
- block
- prediction
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 96
- 238000012545 processing Methods 0.000 title description 6
- 239000000523 sample Substances 0.000 claims abstract description 190
- 239000013074 reference sample Substances 0.000 claims abstract description 67
- 238000009795 derivation Methods 0.000 claims 2
- 238000012937 correction Methods 0.000 description 35
- 238000005192 partition Methods 0.000 description 31
- 238000001914 filtration Methods 0.000 description 28
- 238000000638 solvent extraction Methods 0.000 description 26
- 230000009466 transformation Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 22
- 238000013139 quantization Methods 0.000 description 18
- 239000013598 vector Substances 0.000 description 10
- 230000008707 rearrangement Effects 0.000 description 8
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/573—Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/11—Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/167—Position within a video image, e.g. region of interest [ROI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/174—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
- H04N19/619—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding the transform being operated outside the prediction loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/80—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
- H04N19/82—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
- H04N19/86—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
- H04N19/88—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving rearrangement of data among different coding units, e.g. shuffling, interleaving, scrambling or permutation of pixel data or permutation of transform coefficient data among different blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
본 발명에 따른 영상 복호화 방법은, 현재 블록의 인트라 예측 모드를 결정하는 단계, 상기 현재 블록의 이웃 샘플로부터 참조 샘플을 유도하는 단계, 상기 인트라 예측 모드 및 상기 참조 샘플들에 기초하여, 상기 현재 블록에 대한 제1 예측 샘플을 획득하는 단계, 상기 제1 예측 샘플에 대한 오프셋을 결정하는 단계, 및 상기 제1 예측 샘플에 상기 오프셋을 적용하여 제2 예측 샘플을 획득하는 단계를 포함할 수 있다.
Description
본 발명은 비디오 신호 처리 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 고효율의 영상 압축 기술들이 활용될 수 있다.
영상 압축 기술로 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면 내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
한편, 고해상도 영상에 대한 수요가 증가함과 함께, 새로운 영상 서비스로서 입체 영상 컨텐츠에 대한 수요도 함께 증가하고 있다. 고해상도 및 초고해상도의 입체 영상 콘텐츠를 효과적으로 제공하기 위한 비디오 압축 기술에 대하여 논의가 진행되고 있다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 부호화/복호화 대상 블록에 대해 효율적으로 인트라 예측을 수행할 수 있는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 복수 참조 샘플들을 이용한 가중 예측을 통해 인트라 예측을 수행하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 인트라 예측을 통해 생성된 예측 샘플을 오프셋을 이용하여 보정하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 인트라 예측을 통해 생성된 수행된 예측 샘플을 오프셋을 이용하여 보정하되, 소정 단위로 상이한 오프셋을 이용하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 비디오 신호 복호화 방법 및 장치는, 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 이웃 샘플로부터 참조 샘플을 유도하고, 상기 인트라 예측 모드 및 상기 참조 샘플들에 기초하여, 상기 현재 블록에 대한 제1 예측 샘플을 획득하고, 상기 제1 예측 샘플에 대한 오프셋을 결정하고, 상기 제1 예측 샘플에 상기 오프셋을 적용하여 제2 예측 샘플을 획득할 수 있다.
본 발명에 따른 비디오 신호 부호화 방법 및 장치는, 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 이웃 샘플로부터 참조 샘플을 유도하고, 상기 인트라 예측 모드 및 상기 참조 샘플들에 기초하여, 상기 현재 블록에 대한 제1 예측 샘플을 획득하고, 상기 제1 예측 샘플에 대한 오프셋을 결정하고, 상기 제1 예측 샘플에 상기 오프셋을 적용하여 제2 예측 샘플을 획득할 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 제1 예측 샘플에 상기 오프셋을 적용할 것인지 여부는, 상기 현재 블록의 인트라 예측 모드에 기초하여 결정될 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 오프셋은 상기 복수 참조 샘플들의 가중합을 기초로 결정될 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 복수 참조 샘플들 각각에 적용되는 가중치는 제1 예측 샘플과의 거리에 기초하여 결정될 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 복수 참조 샘플들은, 고정된 위치의 참조 샘플 및 상기 제1 예측 샘플의 위치에 종속적으로 결정되는 참조 샘플을 포함할 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 고정된 위치의 참조 샘플은, 상기 현재 블록의 좌측 상단 코너에 인접한 참조 샘플을 포함하고, 상기 제1 예측 샘플의 위치에 종속적으로 결정되는 참조 샘플은, 상기 제1 예측 샘플과 동일한 수평선상에 놓인 참조 샘플 또는 상기 제1 예측 샘플과 동일한 수직선상에 놓인 참조 샘플 중 적어도 하나를 포함할 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 복수 참조 샘플들 각각은 상이한 레퍼런스 라인에 포함된 것일 수 있다.
본 발명에 대하여 위에서 간략하게 요약된 특징들은 후술하는 본 발명의 상세한 설명의 예시적인 양상일 뿐이며, 본 발명의 범위를 제한하는 것은 아니다.
본 발명에 의하면, 부호화/복호화 대상 블록에 대해 효율적으로 인트라 예측을 수행할 수 있다.
본 발명에 의하면, 복수 참조 샘플들을 이용한 가중 예측을 기초로 인트라 예측을 수행할 수 있다.
본 발명에 의하면, 인트라 예측을 통해 생성된 예측 샘플을 보정하여 부호화/복호화 효율을 향상시킬 수 있는 이점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 3은 본 발명이 적용되는 일실시예로서, 트리 구조(tree structure)에 기반하여 코딩 블록을 계층적으로 분할하는 일예를 도시한 것이다.
도 4는 본 발명이 적용되는 일실시예로서, 바이너리 트리 기반의 분할이 허용되는 파티션 형태를 나타낸 도면이다.
도 5는 본 발명이 적용되는 일실시예로서, 특정 형태의 바이너리 트리 기반의 분할만이 허용된 예를 나타낸 도면이다.
도 6은 본 발명이 적용되는 일실시예로서, 바이너리 트리 분할 허용 횟수와 관련된 정보가 부호화/복호화되는 예를 설명하기 위한 도면이다.
도 7은 본 발명이 적용되는 일실시예로서, 코딩 블록에 적용될 수 있는 파티션 모드를 예시한 도면이다.
도 8은 본 발명이 적용되는 일실시예로서, 영상 부호화기/복호화기에 기-정의된 인트라 예측 모드의 종류를 도시한 것이다.
도 9는 본 발명이 적용되는 일실시예로서, 확장된 인트라 예측 모드의 종류를 도시한 것이다.
도 10은 본 발명이 적용되는 일실시예로서, 인트라 예측 방법을 개략적으로 도시한 순서도이다.
도 11은 본 발명이 적용되는 일실시예로서, 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정하는 방법을 도시한 것이다.
도 12와 도 13은 본 발명이 적용되는 일실시예로서, 소정의 보정 필터를 기반으로 예측 샘플을 보정하는 방법을 도시한 것이다.
도 14는 본 발명이 적용되는 일실시예로서, 인트라 예측을 위한 참조 샘플의 범위를 도시한 것이다.
도 15는 복수개의 참조 샘플 라인을 예시한 도면이다.
도 16은 본 발명의 일실시예에 따른 예측 샘플을 보정하는 방법을 나타낸 흐름도이다.
도 17은 본 발명의 일 실시예에 따른, 서브 블록 단위로 예측 영상을 보정하는 방법을 나타낸 흐름도이다.
도 18 내지 도 22는 본 발명이 적용되는 일실시예로서, 현재 블록의 인트라 예측 패턴을 예시한 도면이다.
도 23 및 도 24는 서브 블록 내 소정 단위별로 상이한 오프셋이 적용되는 예를 나타낸 도면이다.
도 25는 본 발명이 적용되는 일실시예로서, 잔차 샘플을 획득하는 과정을 도시한 흐름도이다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 3은 본 발명이 적용되는 일실시예로서, 트리 구조(tree structure)에 기반하여 코딩 블록을 계층적으로 분할하는 일예를 도시한 것이다.
도 4는 본 발명이 적용되는 일실시예로서, 바이너리 트리 기반의 분할이 허용되는 파티션 형태를 나타낸 도면이다.
도 5는 본 발명이 적용되는 일실시예로서, 특정 형태의 바이너리 트리 기반의 분할만이 허용된 예를 나타낸 도면이다.
도 6은 본 발명이 적용되는 일실시예로서, 바이너리 트리 분할 허용 횟수와 관련된 정보가 부호화/복호화되는 예를 설명하기 위한 도면이다.
도 7은 본 발명이 적용되는 일실시예로서, 코딩 블록에 적용될 수 있는 파티션 모드를 예시한 도면이다.
도 8은 본 발명이 적용되는 일실시예로서, 영상 부호화기/복호화기에 기-정의된 인트라 예측 모드의 종류를 도시한 것이다.
도 9는 본 발명이 적용되는 일실시예로서, 확장된 인트라 예측 모드의 종류를 도시한 것이다.
도 10은 본 발명이 적용되는 일실시예로서, 인트라 예측 방법을 개략적으로 도시한 순서도이다.
도 11은 본 발명이 적용되는 일실시예로서, 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정하는 방법을 도시한 것이다.
도 12와 도 13은 본 발명이 적용되는 일실시예로서, 소정의 보정 필터를 기반으로 예측 샘플을 보정하는 방법을 도시한 것이다.
도 14는 본 발명이 적용되는 일실시예로서, 인트라 예측을 위한 참조 샘플의 범위를 도시한 것이다.
도 15는 복수개의 참조 샘플 라인을 예시한 도면이다.
도 16은 본 발명의 일실시예에 따른 예측 샘플을 보정하는 방법을 나타낸 흐름도이다.
도 17은 본 발명의 일 실시예에 따른, 서브 블록 단위로 예측 영상을 보정하는 방법을 나타낸 흐름도이다.
도 18 내지 도 22는 본 발명이 적용되는 일실시예로서, 현재 블록의 인트라 예측 패턴을 예시한 도면이다.
도 23 및 도 24는 서브 블록 내 소정 단위별로 상이한 오프셋이 적용되는 예를 나타낸 도면이다.
도 25는 본 발명이 적용되는 일실시예로서, 잔차 샘플을 획득하는 과정을 도시한 흐름도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 1을 참조하면, 영상 부호화 장치(100)는 픽쳐 분할부(110), 예측부(120, 125), 변환부(130), 양자화부(135), 재정렬부(160), 엔트로피 부호화부(165), 역양자화부(140), 역변환부(145), 필터부(150) 및 메모리(155)를 포함할 수 있다.
도 1에 나타난 각 구성부들은 영상 부호화 장치에서 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시한 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
픽쳐 분할부(110)는 입력된 픽쳐를 적어도 하나의 처리 단위로 분할할 수 있다. 이때, 처리 단위는 예측 단위(Prediction Unit: PU)일 수도 있고, 변환 단위(Transform Unit: TU)일 수도 있으며, 부호화 단위(Coding Unit: CU)일 수도 있다. 픽쳐 분할부(110)에서는 하나의 픽쳐에 대해 복수의 부호화 단위, 예측 단위 및 변환 단위의 조합으로 분할하고 소정의 기준(예를 들어, 비용 함수)으로 하나의 부호화 단위, 예측 단위 및 변환 단위 조합을 선택하여 픽쳐를 부호화 할 수 있다.
예를 들어, 하나의 픽쳐는 복수개의 부호화 단위로 분할될 수 있다. 픽쳐에서 부호화 단위를 분할하기 위해서는 쿼드 트리 구조(Quad Tree Structure)와 같은 재귀적인 트리 구조를 사용할 수 있는데 하나의 영상 또는 최대 크기 부호화 단위(largest coding unit)를 루트로 하여 다른 부호화 단위로 분할되는 부호화 유닛은 분할된 부호화 단위의 개수만큼의 자식 노드를 가지고 분할될 수 있다. 일정한 제한에 따라 더 이상 분할되지 않는 부호화 단위는 리프 노드가 된다. 즉, 하나의 코딩 유닛에 대하여 정방형 분할만이 가능하다고 가정하는 경우, 하나의 부호화 단위는 최대 4개의 다른 부호화 단위로 분할될 수 있다.
이하, 본 발명의 실시예에서는 부호화 단위는 부호화를 수행하는 단위의 의미로 사용할 수도 있고, 복호화를 수행하는 단위의 의미로 사용할 수도 있다.
예측 단위는 하나의 부호화 단위 내에서 동일한 크기의 적어도 하나의 정사각형 또는 직사각형 등의 형태를 가지고 분할된 것일 수도 있고, 하나의 부호화 단위 내에서 분할된 예측 단위 중 어느 하나의 예측 단위가 다른 하나의 예측 단위와 상이한 형태 및/또는 크기를 가지도록 분할된 것일 수도 있다.
부호화 단위를 기초로 인트라 예측을 수행하는 예측 단위를 생성시 최소 부호화 단위가 아닌 경우, 복수의 예측 단위 NxN 으로 분할하지 않고 인트라 예측을 수행할 수 있다.
예측부(120, 125)는 인터 예측을 수행하는 인터 예측부(120)와 인트라 예측을 수행하는 인트라 예측부(125)를 포함할 수 있다. 예측 단위에 대해 인터 예측을 사용할 것인지 또는 인트라 예측을 수행할 것인지를 결정하고, 각 예측 방법에 따른 구체적인 정보(예컨대, 인트라 예측 모드, 모션 벡터, 참조 픽쳐 등)를 결정할 수 있다. 이때, 예측이 수행되는 처리 단위와 예측 방법 및 구체적인 내용이 정해지는 처리 단위는 다를 수 있다. 예컨대, 예측의 방법과 예측 모드 등은 예측 단위로 결정되고, 예측의 수행은 변환 단위로 수행될 수도 있다. 생성된 예측 블록과 원본 블록 사이의 잔차값(잔차 블록)은 변환부(130)로 입력될 수 있다. 또한, 예측을 위해 사용한 예측 모드 정보, 모션 벡터 정보 등은 잔차값과 함께 엔트로피 부호화부(165)에서 부호화되어 복호화기에 전달될 수 있다. 특정한 부호화 모드를 사용할 경우, 예측부(120, 125)를 통해 예측 블록을 생성하지 않고, 원본 블록을 그대로 부호화하여 복호화부에 전송하는 것도 가능하다.
인터 예측부(120)는 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐의 정보를 기초로 예측 단위를 예측할 수도 있고, 경우에 따라서는 현재 픽쳐 내의 부호화가 완료된 일부 영역의 정보를 기초로 예측 단위를 예측할 수도 있다. 인터 예측부(120)는 참조 픽쳐 보간부, 모션 예측부, 움직임 보상부를 포함할 수 있다.
참조 픽쳐 보간부에서는 메모리(155)로부터 참조 픽쳐 정보를 제공받고 참조 픽쳐에서 정수 화소 이하의 화소 정보를 생성할 수 있다. 휘도 화소의 경우, 1/4 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 8탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다. 색차 신호의 경우 1/8 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 4탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다.
모션 예측부는 참조 픽쳐 보간부에 의해 보간된 참조 픽쳐를 기초로 모션 예측을 수행할 수 있다. 모션 벡터를 산출하기 위한 방법으로 FBMA(Full search-based Block Matching Algorithm), TSS(Three Step Search), NTS(New Three-Step Search Algorithm) 등 다양한 방법이 사용될 수 있다. 모션 벡터는 보간된 화소를 기초로 1/2 또는 1/4 화소 단위의 모션 벡터값을 가질 수 있다. 모션 예측부에서는 모션 예측 방법을 다르게 하여 현재 예측 단위를 예측할 수 있다. 모션 예측 방법으로 스킵(Skip) 방법, 머지(Merge) 방법, AMVP(Advanced Motion Vector Prediction) 방법, 인트라 블록 카피(Intra Block Copy) 방법 등 다양한 방법이 사용될 수 있다.
인트라 예측부(125)는 현재 픽쳐 내의 화소 정보인 현재 블록 주변의 참조 픽셀 정보를 기초로 예측 단위를 생성할 수 있다. 현재 예측 단위의 주변 블록이 인터 예측을 수행한 블록이어서, 참조 픽셀이 인터 예측을 수행한 픽셀일 경우, 인터 예측을 수행한 블록에 포함되는 참조 픽셀을 주변의 인트라 예측을 수행한 블록의 참조 픽셀 정보로 대체하여 사용할 수 있다. 즉, 참조 픽셀이 가용하지 않는 경우, 가용하지 않은 참조 픽셀 정보를 가용한 참조 픽셀 중 적어도 하나의 참조 픽셀로 대체하여 사용할 수 있다.
인트라 예측에서 예측 모드는 참조 픽셀 정보를 예측 방향에 따라 사용하는 방향성 예측 모드와 예측을 수행시 방향성 정보를 사용하지 않는 비방향성 모드를 가질 수 있다. 휘도 정보를 예측하기 위한 모드와 색차 정보를 예측하기 위한 모드가 상이할 수 있고, 색차 정보를 예측하기 위해 휘도 정보를 예측하기 위해 사용된 인트라 예측 모드 정보 또는 예측된 휘도 신호 정보를 활용할 수 있다.
인트라 예측을 수행할 때 예측 단위의 크기와 변환 단위의 크기가 동일할 경우, 예측 단위의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 단위에 대한 인트라 예측을 수행할 수 있다. 그러나 인트라 예측을 수행할 때 예측 단위의 크기와 변환 단위의 크기가 상이할 경우, 변환 단위를 기초로 한 참조 픽셀을 이용하여 인트라 예측을 수행할 수 있다. 또한, 최소 부호화 단위에 대해서만 NxN 분할을 사용하는 인트라 예측을 사용할 수 있다.
인트라 예측 방법은 예측 모드에 따라 참조 화소에 AIS(Adaptive Intra Smoothing) 필터를 적용한 후 예측 블록을 생성할 수 있다. 참조 화소에 적용되는 AIS 필터의 종류는 상이할 수 있다. 인트라 예측 방법을 수행하기 위해 현재 예측 단위의 인트라 예측 모드는 현재 예측 단위의 주변에 존재하는 예측 단위의 인트라 예측 모드로부터 예측할 수 있다. 주변 예측 단위로부터 예측된 모드 정보를 이용하여 현재 예측 단위의 예측 모드를 예측하는 경우, 현재 예측 단위와 주변 예측 단위의 인트라 예측 모드가 동일하면 소정의 플래그 정보를 이용하여 현재 예측 단위와 주변 예측 단위의 예측 모드가 동일하다는 정보를 전송할 수 있고, 만약 현재 예측 단위와 주변 예측 단위의 예측 모드가 상이하면 엔트로피 부호화를 수행하여 현재 블록의 예측 모드 정보를 부호화할 수 있다.
또한, 예측부(120, 125)에서 생성된 예측 단위를 기초로 예측을 수행한 예측 단위와 예측 단위의 원본 블록과 차이값인 잔차값(Residual) 정보를 포함하는 잔차 블록이 생성될 수 있다. 생성된 잔차 블록은 변환부(130)로 입력될 수 있다.
변환부(130)에서는 원본 블록과 예측부(120, 125)를 통해 생성된 예측 단위의 잔차값(residual)정보를 포함한 잔차 블록을 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT와 같은 변환 방법을 사용하여 변환시킬 수 있다. 잔차 블록을 변환하기 위해 DCT를 적용할지, DST를 적용할지 또는 KLT를 적용할지는 잔차 블록을 생성하기 위해 사용된 예측 단위의 인트라 예측 모드 정보를 기초로 결정할 수 있다.
양자화부(135)는 변환부(130)에서 주파수 영역으로 변환된 값들을 양자화할 수 있다. 블록에 따라 또는 영상의 중요도에 따라 양자화 계수는 변할 수 있다. 양자화부(135)에서 산출된 값은 역양자화부(140)와 재정렬부(160)에 제공될 수 있다.
재정렬부(160)는 양자화된 잔차값에 대해 계수값의 재정렬을 수행할 수 있다.
재정렬부(160)는 계수 스캐닝(Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다. 예를 들어, 재정렬부(160)에서는 지그-재그 스캔(Zig-Zag Scan)방법을 이용하여 DC 계수부터 고주파수 영역의 계수까지 스캔하여 1차원 벡터 형태로 변경시킬 수 있다. 변환 단위의 크기 및 인트라 예측 모드에 따라 지그-재그 스캔 대신 2차원의 블록 형태 계수를 열 방향으로 스캔하는 수직 스캔, 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔이 사용될 수도 있다. 즉, 변환 단위의 크기 및 인트라 예측 모드에 따라 지그-재그 스캔, 수직 방향 스캔 및 수평 방향 스캔 중 어떠한 스캔 방법이 사용될지 여부를 결정할 수 있다.
엔트로피 부호화부(165)는 재정렬부(160)에 의해 산출된 값들을 기초로 엔트로피 부호화를 수행할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 부호화 방법을 사용할 수 있다.
엔트로피 부호화부(165)는 재정렬부(160) 및 예측부(120, 125)로부터 부호화 단위의 잔차값 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, 예측 단위 정보 및 전송 단위 정보, 모션 벡터 정보, 참조 프레임 정보, 블록의 보간 정보, 필터링 정보 등 다양한 정보를 부호화할 수 있다.
엔트로피 부호화부(165)에서는 재정렬부(160)에서 입력된 부호화 단위의 계수값을 엔트로피 부호화할 수 있다.
역양자화부(140) 및 역변환부(145)에서는 양자화부(135)에서 양자화된 값들을 역양자화하고 변환부(130)에서 변환된 값들을 역변환한다. 역양자화부(140) 및 역변환부(145)에서 생성된 잔차값(Residual)은 예측부(120, 125)에 포함된 움직임 추정부, 움직임 보상부 및 인트라 예측부를 통해서 예측된 예측 단위와 합쳐져 복원 블록(Reconstructed Block)을 생성할 수 있다.
필터부(150)는 디블록킹 필터, 오프셋 보정부, ALF(Adaptive Loop Filter)중 적어도 하나를 포함할 수 있다.
디블록킹 필터는 복원된 픽쳐에서 블록간의 경계로 인해 생긴 블록 왜곡을 제거할 수 있다. 디블록킹을 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행 처리되도록 할 수 있다.
오프셋 보정부는 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽쳐에 대한 오프셋 보정을 수행하기 위해 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
ALF(Adaptive Loop Filtering)는 필터링한 복원 영상과 원래의 영상을 비교한 값을 기초로 수행될 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 하나의 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. ALF를 적용할지 여부에 관련된 정보는 휘도 신호는 부호화 단위(Coding Unit, CU) 별로 전송될 수 있고, 각각의 블록에 따라 적용될 ALF 필터의 모양 및 필터 계수는 달라질 수 있다. 또한, 적용 대상 블록의 특성에 상관없이 동일한 형태(고정된 형태)의 ALF 필터가 적용될 수도 있다.
메모리(155)는 필터부(150)를 통해 산출된 복원 블록 또는 픽쳐를 저장할 수 있고, 저장된 복원 블록 또는 픽쳐는 인터 예측을 수행 시 예측부(120, 125)에 제공될 수 있다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 2를 참조하면, 영상 복호화기(200)는 엔트로피 복호화부(210), 재정렬부(215), 역양자화부(220), 역변환부(225), 예측부(230, 235), 필터부(240), 메모리(245)가 포함될 수 있다.
영상 부호화기에서 영상 비트스트림이 입력된 경우, 입력된 비트스트림은 영상 부호화기와 반대의 절차로 복호화될 수 있다.
엔트로피 복호화부(210)는 영상 부호화기의 엔트로피 부호화부에서 엔트로피 부호화를 수행한 것과 반대의 절차로 엔트로피 복호화를 수행할 수 있다. 예를 들어, 영상 부호화기에서 수행된 방법에 대응하여 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 방법이 적용될 수 있다.
엔트로피 복호화부(210)에서는 부호화기에서 수행된 인트라 예측 및 인터 예측에 관련된 정보를 복호화할 수 있다.
재정렬부(215)는 엔트로피 복호화부(210)에서 엔트로피 복호화된 비트스트림을 부호화부에서 재정렬한 방법을 기초로 재정렬을 수행할 수 있다. 1차원 벡터 형태로 표현된 계수들을 다시 2차원의 블록 형태의 계수로 복원하여 재정렬할 수 있다. 재정렬부(215)에서는 부호화부에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 해당 부호화부에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통해 재정렬을 수행할 수 있다.
역양자화부(220)는 부호화기에서 제공된 양자화 파라미터와 재정렬된 블록의 계수값을 기초로 역양자화를 수행할 수 있다.
역변환부(225)는 영상 부호화기에서 수행한 양자화 결과에 대해 변환부에서 수행한 변환 즉, DCT, DST, 및 KLT에 대해 역변환 즉, 역 DCT, 역 DST 및 역 KLT를 수행할 수 있다. 역변환은 영상 부호화기에서 결정된 전송 단위를 기초로 수행될 수 있다. 영상 복호화기의 역변환부(225)에서는 예측 방법, 현재 블록의 크기 및 예측 방향 등 복수의 정보에 따라 변환 기법(예를 들어, DCT, DST, KLT)이 선택적으로 수행될 수 있다.
예측부(230, 235)는 엔트로피 복호화부(210)에서 제공된 예측 블록 생성 관련 정보와 메모리(245)에서 제공된 이전에 복호화된 블록 또는 픽쳐 정보를 기초로 예측 블록을 생성할 수 있다.
전술한 바와 같이 영상 부호화기에서의 동작과 동일하게 인트라 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 동일할 경우, 예측 단위의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 단위에 대한 인트라 예측을 수행하지만, 인트라 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 상이할 경우, 변환 단위를 기초로 한 참조 픽셀을 이용하여 인트라 예측을 수행할 수 있다. 또한, 최소 부호화 단위에 대해서만 NxN 분할을 사용하는 인트라 예측을 사용할 수도 있다.
예측부(230, 235)는 예측 단위 판별부, 인터 예측부 및 인트라 예측부를 포함할 수 있다. 예측 단위 판별부는 엔트로피 복호화부(210)에서 입력되는 예측 단위 정보, 인트라 예측 방법의 예측 모드 정보, 인터 예측 방법의 모션 예측 관련 정보 등 다양한 정보를 입력 받고 현재 부호화 단위에서 예측 단위를 구분하고, 예측 단위가 인터 예측을 수행하는지 아니면 인트라 예측을 수행하는지 여부를 판별할 수 있다. 인터 예측부(230)는 영상 부호화기에서 제공된 현재 예측 단위의 인터 예측에 필요한 정보를 이용해 현재 예측 단위가 포함된 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 정보를 기초로 현재 예측 단위에 대한 인터 예측을 수행할 수 있다. 또는, 현재 예측 단위가 포함된 현재 픽쳐 내에서 기-복원된 일부 영역의 정보를 기초로 인터 예측을 수행할 수도 있다.
인터 예측을 수행하기 위해 부호화 단위를 기준으로 해당 부호화 단위에 포함된 예측 단위의 모션 예측 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), AMVP 모드(AMVP Mode), 인트라 블록 카피 모드 중 어떠한 방법인지 여부를 판단할 수 있다.
인트라 예측부(235)는 현재 픽쳐 내의 화소 정보를 기초로 예측 블록을 생성할 수 있다. 예측 단위가 인트라 예측을 수행한 예측 단위인 경우, 영상 부호화기에서 제공된 예측 단위의 인트라 예측 모드 정보를 기초로 인트라 예측을 수행할 수 있다. 인트라 예측부(235)에는 AIS(Adaptive Intra Smoothing) 필터, 참조 화소 보간부, DC 필터를 포함할 수 있다. AIS 필터는 현재 블록의 참조 화소에 필터링을 수행하는 부분으로써 현재 예측 단위의 예측 모드에 따라 필터의 적용 여부를 결정하여 적용할 수 있다. 영상 부호화기에서 제공된 예측 단위의 예측 모드 및 AIS 필터 정보를 이용하여 현재 블록의 참조 화소에 AIS 필터링을 수행할 수 있다. 현재 블록의 예측 모드가 AIS 필터링을 수행하지 않는 모드일 경우, AIS 필터는 적용되지 않을 수 있다.
참조 화소 보간부는 예측 단위의 예측 모드가 참조 화소를 보간한 화소값을 기초로 인트라 예측을 수행하는 예측 단위일 경우, 참조 화소를 보간하여 정수값 이하의 화소 단위의 참조 화소를 생성할 수 있다. 현재 예측 단위의 예측 모드가 참조 화소를 보간하지 않고 예측 블록을 생성하는 예측 모드일 경우 참조 화소는 보간되지 않을 수 있다. DC 필터는 현재 블록의 예측 모드가 DC 모드일 경우 필터링을 통해서 예측 블록을 생성할 수 있다.
복원된 블록 또는 픽쳐는 필터부(240)로 제공될 수 있다. 필터부(240)는 디블록킹 필터, 오프셋 보정부, ALF를 포함할 수 있다.
영상 부호화기로부터 해당 블록 또는 픽쳐에 디블록킹 필터를 적용하였는지 여부에 대한 정보 및 디블록킹 필터를 적용하였을 경우, 강한 필터를 적용하였는지 또는 약한 필터를 적용하였는지에 대한 정보를 제공받을 수 있다. 영상 복호화기의 디블록킹 필터에서는 영상 부호화기에서 제공된 디블록킹 필터 관련 정보를 제공받고 영상 복호화기에서 해당 블록에 대한 디블록킹 필터링을 수행할 수 있다.
오프셋 보정부는 부호화시 영상에 적용된 오프셋 보정의 종류 및 오프셋 값 정보 등을 기초로 복원된 영상에 오프셋 보정을 수행할 수 있다.
ALF는 부호화기로부터 제공된 ALF 적용 여부 정보, ALF 계수 정보 등을 기초로 부호화 단위에 적용될 수 있다. 이러한 ALF 정보는 특정한 파라메터 셋에 포함되어 제공될 수 있다.
메모리(245)는 복원된 픽쳐 또는 블록을 저장하여 참조 픽쳐 또는 참조 블록으로 사용할 수 있도록 할 수 있고 또한 복원된 픽쳐를 출력부로 제공할 수 있다.
전술한 바와 같이 이하, 본 발명의 실시예에서는 설명의 편의상 코딩 유닛(Coding Unit)을 부호화 단위라는 용어로 사용하지만, 부호화뿐만 아니라 복호화를 수행하는 단위가 될 수도 있다.
또한, 현재 블록은, 부호화/복호화 대상 블록을 나타내는 것으로, 부호화/복호화 단계에 따라, 코딩 트리 블록(또는 코딩 트리 유닛), 부호화 블록(또는 부호화 유닛), 변환 블록(또는 변환 유닛) 또는 예측 블록(또는 예측 유닛) 등을 나타내는 것일 수 있다.
하나의 픽쳐는 정방형 또는 비정방형의 기본 블록으로 분할되어 부호화/복호화될 수 있다. 이때, 기본 블록은, 코딩 트리 유닛(Coding Tree Unit)이라 호칭될 수 있다. 코딩 트리 유닛은, 시퀀스 또는 슬라이스에서 허용하는 가장 큰 크기의 부호화 유닛으로 정의될 수도 있다. 코딩 트리 유닛이 정방형 또는 비정방형인지 여부 또는 코딩 트리 유닛의 크기와 관련한 정보는 시퀀스 파라미터 셋트, 픽처 파라미터 셋트 또는 슬라이스 헤더 등을 통해 시그널링될 수 있다. 코딩 트리 유닛은 더 작은 크기의 파티션으로 분할될 수 있다. 이때, 코딩 트리 유닛을 분할함으로써 생성된 파티션을 뎁스 1이라 할 경우, 뎁스 1인 파티션을 분할함으로써 생성된 파티션은 뎁스 2로 정의될 수 있다. 즉, 코딩 트리 유닛 내 뎁스 k인 파티션을 분할함으로써 생성된 파티션은 뎁스 k+1을 갖는 것으로 정의될 수 있다.
코딩 트리 유닛이 분할됨에 따라 생성된 임의 크기의 파티션을 코딩 유닛이라 정의할 수 있다. 코딩 유닛은 재귀적으로 분할되거나, 예측, 양자화, 변환 또는 인루프 필터링 등을 수행하기 위한 기본 단위로 분할될 수 있다. 일 예로, 코딩 유닛이 분할됨에 따라 생성된 임의 크기의 파티션은 코딩 유닛으로 정의되거나, 예측, 양자화, 변환 또는 인루프 필터링 등을 수행하기 위한 기본 단위인 변환 유닛 또는 예측 유닛으로 정의될 수 있다.
코딩 트리 유닛 또는 코딩 유닛의 파티셔닝은, 수직선(Vertical Line) 또는 수평선(Horizontal Line) 중 적어도 하나에 기초하여 수행될 수 있다. 또한, 코딩 트리 유닛 또는 코딩 유닛을 파티셔닝하는 수직선 또는 수평선의 개수는 적어도 하나 이상일 수 있다. 일 예로, 하나의 수직선 또는 하나의 수평선을 이용하여, 코딩 트리 유닛 또는 코딩 유닛을 2개의 파티션으로 분할하거나, 두개의 수직선 또는 두개의 수평선을 이용하여, 코딩 트리 유닛 또는 코딩 유닛을 3개의 파티션으로 분할할 수 있다. 또는, 하나의 수직선 및 하나의 수평선을 이용하여, 코딩 트리 유닛 또는 코딩 유닛을 길이 및 너비가 1/2 인 4개의 파티션으로 분할할 수 있다.
코딩 트리 유닛 또는 코딩 유닛을 적어도 하나의 수직선 또는 적어도 하나의 수평선을 이용하여 복수의 파티션으로 분할하는 경우, 파티션들은 균일한 크기를 갖거나, 서로 다른 크기를 가질 수 있다. 또는, 어느 하나의 파티션이 나머지 파티션과 다른 크기를 가질 수도 있다.
후술되는 실시예들에서는, 코딩 트리 유닛 또는 코딩 유닛이 쿼드 트리 또는 바이너리 트리 구조로 분할되는 것으로 가정한다. 그러나, 더 많은 수의 수직선 또는 더 많은 수의 수평선을 이용한 코딩 트리 유닛 또는 코딩 유닛의 분할도 가능하다.
도 3은 본 발명이 적용되는 일실시예로서, 트리 구조(tree structure)에 기반하여 코딩 블록을 계층적으로 분할하는 일예를 도시한 것이다.
입력 영상 신호는 소정의 블록 단위로 복호화되며, 이와 같이 입력 영상 신호를 복호화하기 위한 기본 단위를 코딩 블록이라 한다. 코딩 블록은 인트라/인터 예측, 변환, 양자화를 수행하는 단위가 될 수 있다. 또한, 코딩 블록 단위로 예측 모드(예컨대, 화면 내 예측 모드 또는 화면 간 예측 모드)가 결정되고, 코딩 블록에 포함된 예측 블록들은, 결정된 예측 모드를 공유할 수 있다. 코딩 블록은 8x8 내지 64x64 범위에 속하는 임의의 크기를 가진 정방형 또는 비정방형 블록일 수 있고, 128x128, 256x256 또는 그 이상의 크기를 가진 정방형 또는 비정방형 블록일 수 있다.
구체적으로, 코딩 블록은 쿼드 트리(quad tree)와 바이너리 트리(binary tree) 중 적어도 하나에 기초하여 계층적으로 분할될 수 있다. 여기서, 쿼드 트리 기반의 분할은 2Nx2N 코딩 블록이 4개의 NxN 코딩 블록으로 분할되는 방식을, 바이너리 트리 기반의 분할은 하나의 코딩 블록이 2개의 코딩 블록으로 분할되는 방식을 각각 의미할 수 있다. 바이너리 트리 기반의 분할이 수행되었다 하더라도, 하위 뎁스에서는 정방형인 코딩 블록이 존재할 수 있다.
바이너리 트리 기반의 분할은 대칭적으로 수행될 수도 있고, 비대칭적으로 수행될 수도 있다. 바이너리 트리 기반으로 분할된 코딩 블록은 정방형 블록일 수도 있고, 직사각형과 같은 비정방형 블록일 수도 있다. 일 예로, 바이너리 트리 기반의 분할이 허용되는 파티션 형태는 도 4에 도시된 예에서와 같이, 대칭형(symmetric)인 2NxN (수평 방향 비 정방 코딩 유닛) 또는 Nx2N (수직 방향 비정방 코딩 유닛), 비대칭형(asymmetric)인 nLx2N, nRx2N, 2NxnU 또는 2NxnD 중 적어도 하나를 포함할 수 있다.
바이너리 트리 기반의 분할은, 대칭형 또는 비대칭 형태의 파티션 중 어느 하나만 제한적으로 허용될 수도 있다. 이 경우, 코딩 트리 유닛을, 정방형 블록으로 구성하는 것은 쿼드 트리 CU 파티셔닝에 해당하고, 코딩 트리 유닛을, 대칭형인 비정방형 블록으로 구성하는 것은 이진 트리 파티셔닝에 해당할 수 있다. 코딩 트리 유닛을 정방형 블록과 대칭형 비정방형 블록으로 구성하는 것은 쿼드 및 바이너리 트리 CU 파티셔닝에 해당할 수 있다.
바이너리 트리 기반의 분할은 쿼드 트리 기반의 분할이 더 이상 수행되지 않는 코딩 블록에 대해서 수행될 수 있다. 바이너리 트리 기반으로 분할된 코딩 블록에 대해서는 쿼드 트리 기반의 분할이 더 이상 수행되지 않을 수 있다.
또한, 하위 뎁스의 분할은 상위 뎁스의 분할 형태에 종속적으로 결정될 수 있다. 일 예로, 2개 이상의 뎁스에서 바이너리 트리 기반의 분할이 허용된 경우, 하위 뎁스에서는 상위 뎁스의 바이너리 트리 분할 형태와 동일한 형태의 바이너리 트리 기반의 분할만이 허용될 수 있다. 예컨대, 상위 뎁스에서 2NxN 형태로 바이너리 트리 기반의 분할이 수행된 경우, 하위 뎁스에서도 2NxN 형태의 바이너리 트리 기반의 분할이 수행될 수 있다. 또는, 상위 뎁스에서 Nx2N 형태로 바이너리 트리 기반의 분할이 수행된 경우, 하위 뎁스에서도 Nx2N 형태의 바이너리 트리 기반의 분할이 허용될 수 있다.
반대로, 하위 뎁스에서, 상위 뎁스의 바이너리 트리 분할 형태와 상이한 형태의 바이너리 트리 기반의 분할만을 허용하는 것도 가능하다.
시퀀스, 슬라이스, 코딩 트리 유닛 또는 코딩 유닛에 대해, 특정 형태의 바이너리 트리 기반의 분할만이 사용되도록 제한할 수도 있다. 일 예로, 코딩 트리 유닛에 대해 2NxN 또는 Nx2N 형태의 바이너리 트리 기반의 분할만이 허용되도록 제한할 수 있다. 허용되는 파티션 형태는 부호화기 또는 복호화기에 기 정의되어 있을 수도 있고, 허용되는 파티션 형태 또는 허용되지 않는 파티션 형태에 관한 정보를 부호화하여 비트스트림을 통해 시그널링할 수도 있다.
도 5는 특정 형태의 바이너리 트리 기반의 분할만이 허용된 예를 나타낸 도면이다. 도 5의 (a)는 Nx2N 형태의 바이너리 트리 기반의 분할만이 허용되도록 제한된 예를 나타내고, 도 5의 (b)는 2NxN 형태의 바이너리 트리 기반의 분할만이 허용되도록 제한된 예를 나타낸다. 상기 쿼드 트리 또는 바이너리 트리 기반의 적응적 분할을 구현하기 위해 쿼드 트리 기반의 분할을 지시하는 정보, 쿼드 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 관한 정보, 바이너리 트리 기반의 분할을 지시하는 정보, 바이너리 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 대한 정보, 바이너리 트리 기반의 분할이 허용되지 않는 코딩 블록의 크기/깊이에 대한 정보 또는 바이너리 트리 기반의 분할이 세로 방향인지 또는 가로 방향인지에 관한 정보 등이 이용될 수 있다.
또한, 코딩 트리 유닛 또는 소정의 코딩 유닛에 대해, 바이너리 트리 분할이 허용되는 횟수, 바이너리 트리 분할이 허용되는 깊이 또는 바이너리 트리 분할이 허용된 뎁스의 개수 등이 획득될 수 있다. 상기 정보는 코딩 트리 유닛 또는 코딩 유닛 단위로 부호화되어, 비트스트림을 통해 복호화기로 전송될 수 있다.
일 예로, 비트스트림을 통해, 바이너리 트리 분할이 허용되는 최대 뎁스를 나타내는 신택스 'max_binary_depth_idx_minus1'가 비트스트림을 통해 부호화/복호화될 수 있다. 이 경우, max_binary_depth_idx_minus1+1이 바이너리 트리 분할이 허용되는 최대 뎁스를 가리킬 수 있다.
도 6에 도시된 예를 살펴보면, 도 6에서는, 뎁스 2인 코딩 유닛 및 뎁스 3인 코딩 유닛에 대해 바이너리 트리 분할이 수행된 것으로 도시되었다. 이에 따라, 코딩 트리 유닛 내 바이너리 트리 분할이 수행된 횟수(2회)를 나타내는 정보, 코딩 트리 유닛 내 바이너리 트리 분할이 허용된 최대 뎁스(뎁스 3)를 나타내는 정보 또는 코딩 트리 유닛 내 바이너리 트리 분할이 허용된 뎁스의 개수(2개, 뎁스 2 및 뎁스 3)를 나타내는 정보 중 적어도 하나가 비트스트림을 통해 부호화/복호화될 수 있다.
다른 예로, 바이너리 트리 분할이 허용되는 횟수, 바이너리 트리 분할이 허용되는 깊이 또는 바이너리 트리 분할이 허용된 뎁스의 개수 중 적어도 하나는 시퀀스, 슬라이스별로 획득될 수 있다. 일 예로, 상기 정보는, 시퀀스, 픽처 또는 슬라이스 단위로 부호화되어 비트스트림을 통해 전송될 수 있다. 이에 따라, 제1 슬라이스 및 제2 슬라이스의, 바이너리 트리 분할 횟수, 바이너리 트리 분할이 허용되는 최대 뎁스 또는 바이너리 트리 분할이 허용되는 뎁스의 개수 중 적어도 하나가 상이할 수 있다. 일 예로, 제1 슬라이스에서는, 하나의 뎁스에서만 바이너리 트리 분할이 허용되는 반면, 제2 슬라이스에서는, 두개의 뎁스에서 바이너리 트리 분할이 허용될 수 있다.
또 다른 일 예로, 슬라이스 또는 픽쳐의 시간레벨 식별자(TemporalID)에 따라 바이너리 트리 분할이 허용되는 횟수, 바이너리 트리 분할이 허용되는 깊이 또는 바이너리 트리 분할이 허용되는 뎁스의 개수 중 적어도 하나를 상이하게 설정할 수도 있다. 여기서, 시간레벨 식별자(TemporalID)는, 시점(view), 공간(spatial), 시간(temporal) 또는 화질(quality) 중 적어도 하나 이상의 스케일러빌리티(Scalability)를 갖는 영상의 복수개의 레이어 각각을 식별하기 위한 것이다.
도 3에 도시된 바와 같이, 분할 깊이(split depth)가 k인 제1 코딩 블록 300은 쿼드 트리(quad tree)에 기반하여 복수의 제2 코딩 블록으로 분할될 수 있다. 예를 들어, 제2 코딩 블록 310 내지 340은 제1 코딩 블록의 너비와 높이의 절반 크기를 가진 정방형 블록이며, 제2 코딩 블록의 분할 깊이는 k+1로 증가될 수 있다.
분할 깊이가 k+1인 제2 코딩 블록 310은 분할 깊이가 k+2인 복수의 제3 코딩 블록으로 분할될 수 있다. 제2 코딩 블록 310의 분할은 분할 방식에 따라 쿼트 트리 또는 바이너리 트리 중 어느 하나를 선택적으로 이용하여 수행될 수 있다. 여기서, 분할 방식은 쿼드 트리 기반으로의 분할을 지시하는 정보 또는 바이너리 트리 기반의 분할을 지시하는 정보 중 적어도 하나에 기초하여 결정될 수 있다.
제2 코딩 블록 310이 쿼트 트리 기반으로 분할되는 경우, 제2 코딩 블록 310은 제2 코딩 블록의 너비와 높이의 절반 크기를 가진 4개의 제3 코딩 블록 310a으로 분할되며, 제3 코딩 블록 310a의 분할 깊이는 k+2로 증가될 수 있다. 반면, 제2 코딩 블록 310이 바이너리 트리 기반으로 분할되는 경우, 제2 코딩 블록 310은 2개의 제3 코딩 블록으로 분할될 수 있다. 이때, 2개의 제3 코딩 블록 각각은 제2 코딩 블록의 너비와 높이 중 어느 하나가 절반 크기인 비정방형 블록이며, 분할 깊이는 k+2로 증가될 수 있다. 제2 코딩 블록은 분할 방향에 따라 가로 방향 또는 세로 방향의 비정방형 블록으로 결정될 수 있고, 분할 방향은 바이너리 트리 기반의 분할이 세로 방향인지 또는 가로 방향인지에 관한 정보에 기초하여 결정될 수 있다.
한편, 제2 코딩 블록 310은 쿼드 트리 또는 바이너리 트리에 기반하여 더 이상 분할되지 않는 말단 코딩 블록으로 결정될 수도 있고, 이 경우 해당 코딩 블록은 예측 블록 또는 변환 블록으로 이용될 수 있다.
제3 코딩 블록 310a은 제2 코딩 블록 310의 분할과 마찬가지로 말단 코딩 블록으로 결정되거나, 쿼드 트리 또는 바이너리 트리에 기반하여 추가적으로 분할될 수 있다.
한편, 바이너리 트리 기반으로 분할된 제3 코딩 블록 310b은 추가적으로 바이너리 트리에 기반하여 세로 방향의 코딩 블록(310b-2) 또는 가로 방향의 코딩 블록(310b-3)으로 더 분할될 수도 있고, 해당 코딩 블록의 분할 깊이는 k+3으로 증가될 수 있다. 또는, 제3 코딩 블록 310b는 바이너리 트리에 기반하여 더 이상 분할되지 않는 말단 코딩 블록(310b-1)으로 결정될 수 있고, 이 경우 해당 코딩 블록(310b-1)은 예측 블록 또는 변환 블록으로 이용될 수 있다. 다만, 상술한 분할 과정은 쿼드 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 관한 정보, 바이너리 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 대한 정보 또는 바이너리 트리 기반의 분할이 허용되지 않는 코딩 블록의 크기/깊이에 대한 정보 중 적어도 하나에 기초하여 제한적으로 수행될 수 있다.
코딩 블록이 가질 수 있는 크기는 소정 개수로 제한되거나, 소정 단위 내 코딩 블록의 크기는 고정된 값을 가질 수도 있다. 일 예로, 시퀀스 내 코딩 블록의 크기 또는 픽처 내 코딩 블록의 크기는, 256x256, 128x128 또는 32x32로 제한될 수 있다. 시퀀스 또는 픽처 내 코딩 블록의 크기를 나타내는 정보가 시퀀스 헤더 또는 픽처 헤더를 통해 시그널링 될 수 있다.
쿼드 트리 및 바이터리 트리에 기반한 분할 결과, 코딩 유닛은, 정방형 또는 임의 크기의 직사각형을 띨 수 있다.
코딩 블록은, 스킵 모드, 화면 내 예측, 화면 간 예측 또는 스킵 방법 중 적어도 하나를 이용하여 부호화된다. 코딩 블록이 결정되면, 코딩 블록의 예측 분할을 통해 예측 블록(Prediction Block)을 결정할 수 있다. 코딩 블록의 예측 분할은 코딩 블록의 분할 형태를 나타내는 파티션 모드(Part_mode)에 의해 수행될 수 있다. 예측 블록의 크기 또는 형태는 코딩 블록의 파티션 모드에 따라 결정될 수 있다. 일 예로, 파티션 모드에 따라 결정되는 예측 블록의 크기는 코딩 블록의 크기와 동일하거나 작은 값을 가질 수 있다.
도 7은 코딩 블록이 화면 간 예측으로 부호화되었을 때, 코딩 블록에 적용될 수 있는 파티션 모드를 예시한 도면이다.
코딩 블록이 화면 간 예측으로 부호화된 경우, 코딩 블록에는 도 7에 도시된 예에서와 같이, 8개의 파티션 모드 중 어느 하나가 적용될 수 있다.
코딩 블록이 화면 내 예측으로 부호화된 경우, 코딩 블록에는 파티션 모드 PART_2Nx2N 또는 PART_NxN 이 적용될 수 있다.
PART_NxN은 코딩 블록이 최소 크기를 갖는 경우 적용될 수 있다. 여기서, 코딩 블록의 최소 크기는 부호화기 및 복호화기에서 기 정의된 것일 수 있다. 또는, 코딩 블록의 최소 크기에 관한 정보는 비트스트림을 통해 시그널링될 수도 있다. 일 예로, 코딩 블록의 최소 크기는 슬라이스 헤더를 통해 시그널링되고, 이에 따라, 슬라이스별로 코딩 블록의 최소 크기가 정의될 수 있다.
일반적으로, 예측 블록의 크기는 64x64 부터 4x4의 크기를 가질 수 있다. 단, 코딩 블록이 화면 간 예측으로 부호화된 경우, 움직임 보상을 수행할 때, 메모리 대역폭(memory bandwidth)을 줄이기 위해, 예측 블록이 4x4 크기를 갖지 않도록 할 수 있다.
도 8은 본 발명이 적용되는 일실시예로서, 영상 부호화기/복호화기에 기-정의된 인트라 예측 모드의 종류를 도시한 것이다.
영상 부호화기/복호화기는 기-정의된 인트라 예측 모드 중 어느 하나를 이용하여 인트라 예측을 수행할 수 있다. 인트라 예측을 위한 기-정의된 인트라 예측 모드는 비방향성 예측 모드(예를 들어, Planar mode, DC mode) 및 33개의 방향성 예측 모드(directional prediction mode)로 구성될 수 있다.
또는, 인트라 예측의 정확도를 높이기 위해 33개의 방향성 예측 모드보다 더 많은 개수의 방향성 예측 모드가 이용될 수 있다. 즉, 방향성 예측 모드의 각도(angle)를 더 세분화하여 M개의 확장된 방향성 예측 모드를 정의할 수도 있고(M>33), 기-정의된 33개의 방향성 예측 모드 중 적어도 하나를 이용하여 소정의 각도를 가진 방향성 예측 모드를 유도하여 사용할 수도 있다.
도 8에 도시된 35개의 인트라 예측 모드 보다 더 많은 수의 인트라 예측 모드를 이용할 수도 있다. 일 예로, 방향성 예측 모드의 각도를 더 세분화하거나, 기 정의된 소정 개수의 방향성 모드들 중 적어도 하나를 이용하여, 소정의 각도를 가진 방향성 예측 모드를 복호화하여, 35개의 인트라 예측 모드 보다 많은 수의 인트라 예측 모드를 이용할 수 있다. 이때, 35개의 인트라 예측 모드 보다 더 많은 수의 인트라 예측 모드를 이용하는 것을, 확장된 인트라 예측 모드라 호칭할 수 있다.
도 9는 확장된 인트라 예측 모드의 일예이며, 확장된 인트라 예측 모드는 2개의 비방향성 예측 모드와 65개의 확장된 방향성 예측 모드로 구성될 수 있다. 확장된 인트라 예측 모드는 휘도 성분과 색차 성분에 대해서 동일하게 사용할 수도 있고, 성분 별로 서로 상이한 개수의 인트라 예측 모드를 사용할 수도 있다. 예를 들어, 휘도 성분에서는 67개의 확장된 인트라 예측 모드를 사용하고, 색차 성분에서는 35개의 인트라 예측 모드를 사용할 수도 있다.
또는, 색차 포맷(format)에 따라 서로 다른 개수의 인트라 예측 모드를 사용하여 인트라 예측을 수행할 수도 있다. 예를 들어, 4:2:0 format인 경우에는 휘도 성분에서는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행하고 색차 성분에서는 35개의 인트라 예측 모드를 사용할 수 있고, 4:4:4 format인 경우에는 휘도 성분과 색차 성분 모두에서 67개의 인트라 예측 모드를 이용하여 인트라 예측을 사용할 수도 있다.
또는, 블록의 크기 및/또는 형태에 따라 서로 다른 개수의 인트라 예측 모드를 사용하여 인트라 예측을 수행할 수도 있다. 즉, PU 또는 CU의 크기 및/또는 형태에 따라 35개의 인트라 예측 모드 또는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수도 있다. 예를 들어, CU 또는 PU의 크기가 64x64보다 작거나 비대칭 파티션(asymmetric partition)인 경우에는 35개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수 있고, CU 또는 PU의 크기가 64x64보다 같거나 큰 경우에는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수도 있다. Intra_2Nx2N에서는 65개의 방향성 인트라 예측 모드를 허용할 수도 있으며, Intra_NxN에서는 35개의 방향성 인트라 예측 모드만 허용할 수도 있다.
시퀀스, 픽처 또는 슬라이스 별로, 확장된 인트라 예측 모드를 적용하는 블록의 크기를 상이하게 설정할 수도 있다. 일 예로, 제1 슬라이스에서는, 64x64 보다 큰 블록(예컨대, CU 또는 PU)에 확장된 인트라 예측 모드가 적용되도록 설정하고, 제2 슬라이스에서는, 32x32 보다 큰 블록에 확장된 인트라 예측 모드가 적용되도록 설정할 수 있다. 확장된 인트라 예측 모드가 적용되는 블록의 크기를 나타내는 정보는, 시퀀스, 픽처 또는 슬라이스 단위별로 시그널링될 수 있다. 일 예로, 확장된 인트라 예측 모드가 적용되는 블록의 크기를 나타내는 정보는, 블록의 크기에 로그값을 취한 뒤 정수 4를 차감한 'log2_extended_intra_mode_size_minus4'로 정의될 수 있다. 일 예로, log2_extended_intra_mode_size_minus4 의 값이 0인 것은, 16x16 이상의 크기를 갖는 블록 또는 16x16 보다 큰 크기를 갖는 블록에 확장된 인트라 예측 모드를 적용할 수 있음을 나타내고, log2_extended_intra_mode_size_minus4 의 값이 1인 것은, 32x32 이상의 크기를 갖는 블록 또는 32x32 보다 큰 크기를 갖는 블록에 확장된 인트라 예측 모드를 적용할 수 있음을 나타낼 수 있다.
상술한 바와 같이, 색차 성분, 색차 포맷, 블록의 크기 또는 형태 중 적어도 하나를 고려하여, 인트라 예측 모드의 개수가 결정될 수 있다. 설명한 예에 그치지 않고, 부호화/복호화 대상 블록의 인트라 예측 모드를 결정하기 위해 이용되는, 인트라 예측 모드 후보자(예컨대, MPM의 개수)도, 색차 성분, 색차 포맷, 블록의 크기 또는 형태 중 적어도 하나에 따라 결정될 수도 있다. 후술되는 도면을 참조하여, 부호화/복호화 대상 블록의 인트라 예측 모드를 결정하는 방법 및 결정된 인트라 예측 모드를 이용하여, 인트라 예측을 수행하는 방법에 대해 살펴보기로 한다.
도 10은 본 발명이 적용되는 일실시예로서, 인트라 예측 방법을 개략적으로 도시한 순서도이다.
강한 방향성을 띠는 영상 내 포함된 블록이나 이전 프레임에서 나타나지 않은 영상 내 포함된 블록 등에 인트라 예측을 적용하여 부호화/복호화 효율을 향상시킬 수 있다.
도 10을 참조하면, 현재 블록의 인트라 예측 모드를 결정할 수 있다(S1000).
구체적으로, 현재 블록의 인트라 예측 모드는 후보 리스트와 인덱스를 기반으로 유도될 수 있다. 여기서, 후보 리스트는 복수의 후보자를 포함하며, 복수의 후보자는 현재 블록에 인접한 주변 블록의 인트라 예측 모드에 기반하여 결정될 수 있다. 주변 블록은 현재 블록의 상단, 하단, 좌측, 우측 또는 코너에 위치한 블록 중 적어도 하나를 포함할 수 있다. 상기 인덱스는 후보 리스트에 속한 복수의 후보자 중 어느 하나를 특정할 수 있다. 상기 인덱스에 의해 특정된 후보자는 현재 블록의 인트라 예측 모드로 설정될 수 있다.
주변 블록이 인트라 예측에 사용한 인트라 예측 모드가 후보자로 설정될 수 있다. 또한, 주변 블록의 인트라 예측 모드와 유사한 방향성을 가진 인트라 예측 모드가 후보자로 설정될 수도 있다. 여기서, 유사한 방향성을 가진 인트라 예측 모드는 주변 블록의 인트라 예측 모드에 소정의 상수값을 더하거나 뺀 값으로 결정될 수 있다. 소정의 상수값은 1, 2 또는 그 이상의 정수일 수 있다.
상기 후보 리스트는 디폴트 모드를 더 포함할 수도 있다. 디폴트 모드는 플래너 모드, DC 모드, 수직 모드, 수평 모드 중 적어도 하나를 포함할 수 있다. 디폴트 모드는 현재 블록의 후보 리스트에 포함 가능한 후보자의 최대 개수를 고려하여 적응적으로 추가될 수 있다.
후보 리스트에 포함 가능한 후보자의 최대 개수는 3개, 4개, 5개, 6개 또는 그 이상일 수 있다. 후보 리스트에 포함 가능한 후보자의 최대 개수는 영상 부호화기/복호화기에 기-설정된 고정된 값일 수 있고, 현재 블록의 속성에 기초하여 가변적으로 결정될 수도 있다. 속성은 블록의 위치/크기/형태, 블록이 사용 가능한 인트라 예측 모드의 개수/종류, 색차 속성, 색차 포맷 등을 의미할 수 있다. 또는, 후보 리스트에 포함 가능한 후보자의 최대 개수를 나타내는 정보가 별도로 시그날링될 수도 있으며, 이를 이용하여 후보 리스트에 포함 가능한 후보자의 최대 개수가 가변적으로 결정될 수도 있다. 상기 후보자의 최대 개수를 나타내는 정보는 시퀀스 레벨, 픽쳐 레벨, 슬라이스 레벨 또는 블록 레벨 중 적어도 하나에서 시그날링될 수 있다.
확장된 인트라 예측 모드와 기-정의된 35개의 인트라 예측 모드가 선택적으로 사용되는 경우, 주변 블록의 인트라 예측 모드를 확장된 인트라 예측 모드에 대응하는 인덱스로 변환하거나, 또는 35개의 인트라 예측 모드에 대응하는 인덱스로 변환하여 후보자를 유도할 수 있다. 인덱스의 변환을 위해 기-정의된 테이블이 이용될 수도 있고, 소정의 값에 기반한 스케일링 연산이 이용될 수도 있다. 여기서, 기-정의된 테이블은 서로 상이한 인트라 예측 모드 그룹 (예를 들어, 확장된 인트라 예측 모드와 35개의 인트라 예측 모드) 간의 매핑 관계를 정의한 것일 수 있다.
예를 들어, 좌측 주변 블록이 35개의 인트라 예측 모드를 사용하고, 좌측 주변 블록의 인트라 예측 모드가 10(horizontal mode)인 경우, 이를 확장된 인트라 예측 모드에서 horizontal mode에 대응하는 인덱스 16으로 변환할 수 있다.
또는, 상단 주변 블록이 확장된 인트라 예측 모드를 사용하고, 상단 주변 블록의 인트라 예측 모드 인덱스가 50(vertical mode)인 경우, 이를 35개의 인트라 예측 모드에서 vertical mode에 대응하는 인덱스 26으로 변환할 수 있다.
상술한 인트라 예측 모드 결정 방법에 기반하여 휘도 성분과 색차 성분 각각에 대해서 상호 독립적으로 인트라 예측 모드가 유도될 수도 있고, 색차 성분은 휘도 성분의 인트라 예측 모드에 종속성으로 유도될 수도 있다.
구체적으로, 색차 성분의 인트라 예측 모드는 다음 표 1과 같이 휘도 성분의 인트라 예측 모드에 기반하여 결정될 수 있다.
Intra_chroma_pred_mode[xCb][yCb] | IntraPredModeY[xCb][yCb] | ||||
0 | 26 | 10 | 1 | X(0<=X<=34) | |
0 | 34 | 0 | 0 | 0 | 0 |
1 | 26 | 34 | 26 | 26 | 26 |
2 | 10 | 10 | 34 | 10 | 10 |
3 | 1 | 1 | 1 | 34 | 1 |
4 | 0 | 26 | 10 | 1 | X |
표 1에서 intra_chroma_pred_mode는 색차 성분의 인트라 예측 모드를 특정하기 위해 시그날링되는 정보를 의미하며, IntraPredModeY는 휘도 성분의 인트라 예측 모드를 나타낸다.
도 10을 참조하면, 현재 블록의 인트라 예측을 위한 참조 샘플을 유도할 수 있다(S1010).
구체적으로, 현재 블록의 주변 샘플에 기반하여 인트라 예측을 위한 참조 샘플을 유도할 수 있다. 주변 샘플은 상술한 주변 블록의 복원 샘플을 의미할 수 있고, 이는 인루프 필터가 적용되기 이전의 복원 샘플 또는 인루프 필터가 적용된 이후의 복원 샘플일 수 있다.
현재 블록 이전에 복원된 주변 샘플이 참조 샘플로 이용될 수도 있고, 소정의 인트라 필터를 기반으로 필터링된 주변 샘플이 참조 샘플로 이용될 수도 있다. 인트라 필터를 이용하여 주변 샘플을 필터링하는 것을 참조 샘플 스무딩(smoothing)이라 호칭할 수도 있다. 상기 인트라 필터는 동일한 수평 라인에 위치한 복수의 주변 샘플에 적용되는 제1 인트라 필터 또는 동일한 수직 라인에 위치한 복수의 주변 샘플에 적용되는 제2 인트라 필터 중 적어도 하나를 포함할 수 있다. 주변 샘플의 위치에 따라 제1 인트라 필터 또는 제2 인트라 필터 중 어느 하나가 선택적으로 적용될 수도 있고, 2개의 인트라 필터가 중복적으로 적용될 수도 있다. 이때, 제1 인트라 필터 또는 제2 인트라 필터 중 적어도 하나의 필터 계수는 (1,2,1)일 수 있으나, 이에 한정되지는 않는다.
상기 필터링은 현재 블록의 인트라 예측 모드 또는 현재 블록에 관한 변환 블록의 크기 중 적어도 하나에 기초하여 적응적으로 수행될 수 있다. 예를 들어, 현재 블록의 인트라 예측 모드가 DC 모드, 수직 모드 또는 수평 모드인 경우 필터링은 수행되지 않을 수 있다. 상기 변환 블록의 크기가 NxM인 경우, 필터링은 수행되지 않을 수 있다. 여기서, N과 M은 동일하거나 서로 상이한 값일 수 있고, 4, 8, 16 또는 그 이상의 값 중 어느 하나일 수 있다. 일 예로, 변환 블록의 크기가 4x4인 경우, 필터링은 수행되지 않을 수 있다. 또는, 현재 블록의 인트라 예측 모드와 수직 모드(또는 수평 모드)의 차이와 기-정의된 임계치(threshold) 간의 비교 결과에 기초하여 필터링을 선택적으로 수행할 수 있다. 예를 들어, 현재 블록의 인트라 예측 모드와 수직 모드의 차이가 임계치보다 큰 경우에 한하여 필터링을 수행할 수 있다. 상기 임계치는 표 2와 같이 변환 블록의 크기 별로 정의될 수 있다.
8x8 transform | 16x16 transform | 32x32 transform | |
Threshold | 7 | 1 | 0 |
상기 인트라 필터는 영상 부호화기/복호화기에 기-정의된 복수의 인트라 필터 후보 중 어느 하나로 결정될 수 있다. 이를 위해 복수의 인트라 필터 후보 중 현재 블록의 인트라 필터를 특정하는 별도의 인덱스가 시그날링될 수 있다. 또는, 현재 블록의 크기/형태, 변환 블록의 크기/형태, 필터 강도(strength)에 관한 정보, 또는 주변 샘플들의 변화량(variation) 중 적어도 하나에 기초하여 인트라 필터가 결정될 수도 있다.
도 10을 참조하면, 현재 블록의 인트라 예측 모드와 참조 샘플을 이용하여 인트라 예측을 수행할 수 있다(S1020).
즉, S1000에서 결정된 인트라 예측 모드와 S1010에서 유도된 참조 샘플을 이용하여 현재 블록의 예측 샘플을 획득할 수 있다. 다만, 인트라 예측의 경우 주변 블록의 경계 샘플을 이용하기 때문에 예측 영상의 화질이 떨어지는 문제가 발생할 수 있다. 따라서, 상술한 예측 과정을 통해 생성된 예측 샘플에 대한 보정 과정을 더 수반할 수 있으며, 이하 도 11 내지 도 13을 참조하여 자세히 살펴 보기로 한다. 다만, 후술할 보정 과정은 인트라 예측 샘플에 대해서만 적용되는 것으로 한정되는 것은 아니며, 인터 예측 샘플 또는 복원 샘플에도 적용될 수 있음은 물론이다.
도 11은 본 발명이 적용되는 일실시예로서, 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정하는 방법을 도시한 것이다.
현재 블록에 대한 복수의 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정할 수 있다. 상기 보정은 현재 블록에 속한 모든 예측 샘플에 대해서 수행될 수도 있고, 소정의 일부 영역에 속한 예측 샘플에 대해서만 수행될 수도 있다. 일부 영역은 하나의 행/열 또는 복수의 행/열일 수 있고, 이는 영상 부호화기/복호화기에서 보정을 위해 기-설정된 영역일 수도 있다. 일 예로, 현재 블록의 경계에 위치한 하나의 행/열 또는 현재 블록의 경계로부터 복수의 행/열에 보정이 수행될 수 있다. 또는, 일부 영역은 현재 블록의 크기/형태 또는 인트라 예측 모드 중 적어도 하나에 기초하여 가변적으로 결정될 수도 있다.
주변 샘플들은 현재 블록의 상단, 좌측, 좌상단 코너에 위치한 주변 블록 중 적어도 하나에 속할 수 있다. 보정을 위해 이용되는 주변 샘플들의 개수는 2개, 3개, 4개 또는 그 이상일 수 있다. 주변 샘플들의 위치는 현재 블록 내 보정 대상인 예측 샘플의 위치에 따라 가변적으로 결정될 수 있다. 또는, 주변 샘플들 중 일부는 보정 대상인 예측 샘플의 위치와 관계없이 고정된 위치를 가지고, 나머지는 보정 대상인 예측 샘플의 위치에 따른 가변적인 위치를 가질 수도 있다.
주변 샘플들의 차분 정보는 주변 샘플들 간의 차분 샘플을 의미할 수도 있고, 상기 차분 샘플을 소정의 상수값(예를 들어, 1, 2, 3 등)으로 스케일링한 값을 의미할 수도 있다. 여기서, 소정의 상수값은 보정 대상인 예측 샘플의 위치, 보정 대상인 예측 샘플이 속한 열 또는 행의 위치, 열 또는 행 내에서 예측 샘플의 위치 등을 고려하여 결정될 수 있다.
예를 들어, 현재 블록의 인트라 예측 모드가 수직 모드인 경우, 현재 블록의 좌측 경계에 인접한 주변 샘플 p(-1,y)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 다음 수학식 1과 같이 최종 예측 샘플을 획득할 수 있다.
예를 들어, 현재 블록의 인트라 예측 모드가 수평 모드인 경우, 현재 블록의 상단 경계에 인접한 주변 샘플 p(x,-1)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 다음 수학식 2와 같이 최종 예측 샘플을 획득할 수 있다.
예를 들어, 현재 블록의 인트라 예측 모드가 수직 모드인 경우, 현재 블록의 좌측 경계에 인접한 주변 샘플 p(-1,y)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 최종 예측 샘플을 획득할 수 있다. 이때, 상기 차분 샘플을 예측 샘플에 가산할 수도 있고, 상기 차분 샘플을 소정의 상수값으로 스케일링한 후, 이를 예측 샘플에 가산할 수도 있다. 스케일링에 이용되는 소정의 상수값은 열 및/또는 행에 따라 상이하게 결정될 수 있다. 일예로, 다음 수학식 3과 수학식 4와 같이 예측 샘플을 보정할 수 있다.
예를 들어, 현재 블록의 인트라 예측 모드가 수평 모드인 경우, 현재 블록의 상단 경계에 인접한 주변 샘플 p(x,-1)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 최종 예측 샘플을 획득할 수 있으며, 이는 수직 모드에서 상술한 바와 같다. 일예로, 다음 수학식 5와 수학식 6과 같이 예측 샘플을 보정할 수 있다.
도 12와 도 13은 본 발명이 적용되는 일실시예로서, 소정의 보정 필터를 기반으로 예측 샘플을 보정하는 방법을 도시한 것이다.
보정 대상인 예측 샘플의 주변 샘플과 소정의 보정 필터를 기반으로 예측 샘플을 보정할 수 있다. 이때 주변 샘플은 현재 블록의 방향성 예측 모드의 각도 라인(angular line)에 의해 특정될 수 있고, 보정 대상인 예측 샘플과 동일한 각도 라인에 위치한 하나 또는 그 이상의 샘플일 수 있다. 또한, 주변 샘플은 현재 블록에 속하는 예측 샘플일 수도 있고, 현재 블록 이전에 복원된 주변 블록에 속하는 복원 샘플일 수도 있다.
보정 필터의 탭수, 강도(strength) 또는 필터 계수 적어도 하나는 보정 대상인 예측 샘플의 위치, 보정 대상인 예측 샘플이 현재 블록의 경계에 위치하는지 여부, 현재 블록의 인트라 예측 모드, 방향성 예측 모드의 각도, 주변 블록의 예측 모드(인터 또는 인트라 모드) 또는 현재 블록의 크기/형태 중 적어도 하나에 기초하여 결정될 수 있다.
도 12를 참조하면, 방향성 예측 모드 중 인덱스가 2 또는 34인 경우에는 도 12와 같이 보정 대상인 예측 샘플의 좌하단에 위치한 적어도 하나의 예측/복원 샘플과 소정의 보정 필터를 이용하여 최종 예측 샘플을 획득할 수 있다. 여기서, 좌하단의 예측/복원 샘플은 보정 대상인 예측 샘플이 속한 라인의 이전 라인에 속한 것일 수 있고, 이는 현재 샘플과 동일한 블록에 속한 것일 수도 있고, 현재 블록에 인접한 주변 블록에 속한 것일 수도 있다.
예측 샘플에 대한 필터링은 블록 경계에 위치한 라인에서만 수행할 수도 있고, 복수의 라인에서 수행할 수도 있다. 각 라인마다 필터 탭수 또는 필터 계수 중 적어도 하나가 상이한 보정 필터가 사용될 수도 있다. 예를 들어, 블록 경계와 가장 가까운 왼쪽 첫번째 라인의 경우 (1/2,1/2) 필터를 사용할 수 있고, 두번째 라인의 경우 (12/16, 4/16) 필터를 사용할 수 있고, 세번째 라인의 경우 (14/16, 2/16) 필터를 사용하며, 네번째 라인의 경우 (15/16, 1/16) 필터를 사용할 수도 있다.
또는, 방향성 예측 모드 중 인덱스가 3 내지 6사이 또는 30 내지 33 사이의 값일 경우, 도 13과 같이 블록 경계에서 필터링을 수행할 수 있으며, 3-tap의 보정 필터를 사용하여 예측 샘플을 보정할 수 있다. 보정 대상인 예측 샘플의 좌하단 샘플, 좌하단 샘플의 하단 샘플 및 보정 대상인 예측 샘플을 입력으로 하는 3-tap의 보정 필터를 사용하여 필터링을 수행할 수 있다. 보정 필터에 이용되는 주변 샘플의 위치는 방향성 예측 모드에 기반하여 상이하게 결정될 수 있다. 방향성 예측 모드에 따라 보정 필터의 필터 계수가 상이하게 결정될 수도 있다.
주변 블록이 인터 모드인지 인트라 모드인지에 따라 서로 다른 보정 필터가 적용될 수 있다. 주변 블록이 인트라 모드로 부호화된 경우에는 인터 모드로 부호화된 경우보다 예측 샘플에 가중치를 더 주는 필터링 방법을 사용할 수 있다. 예를 들어, 인트라 예측 모드가 34인 경우, 주변 블록이 인터 모드로 부호화된 경우에는 (1/2,1/2) 필터를 사용하고, 주변 블록이 인트라 모드로 부호화된 경우에는 (4/16, 12/16) 필터를 사용할 수 있다.
현재 블록(예를 들어, 코딩 블록, 예측 블록)의 크기/형태에 따라 현재 블록 내 필터링되는 라인의 개수는 상이할 수 있다. 예를 들어, 현재 블록의 크기가 32x32보다 작거나 같은 경우에는 블록 경계에 있는 하나의 라인만 필터링을 수행하고, 그렇지 않은 경우에는 블록 경계에 있는 하나의 라인을 포함한 복수의 라인에 필터링을 수행할 수도 있다.
도 12와 도 13은 도 7에서 언급한 35개의 인트라 예측 모드를 이용하는 경우를 기반으로 설명하나, 확장된 인트라 예측 모드를 이용하는 경우에도 동일/유사하게 적용될 수 있다.
도 14는 본 발명이 적용되는 일실시예로서, 인트라 예측을 위한 참조 샘플의 범위를 도시한 것이다.
현재 블록의 인트라 예측은, 주변 블록에 포함된 복원 샘플을 기초로 유도된 참조 샘플을 이용하여 수행될 수 있다. 여기서, 복원 샘플은, 현재 블록의 부/복호화 이전에 부/복호화가 완료된 것을 의미한다. 일 예로, 현재 블록 주변의 참조 샘플 P(-1,-1), P(-1,y) (0<= y <= 2N-1) , P(x,-1) (0 <= x <= 2N-1) 중 적어도 하나에 기초하여, 현재 블록에 대한 인트라 예측이 수행될 수 있다. 참조 샘플을 평균하여 현재 블록에 대한 예측 샘플을 생성하거나, 현재 블록의 인트라 예측 모드의 방향성을 고려하여 참조 샘플을 특정 방향으로 복사하여 현재 블록에 대한 예측 샘플을 수행할 수 있다.
현재 블록의 인트라 예측은 복수개의 레퍼런스 라인 중 적어도 하나를 이용하여 수행될 수도 있다. 복수개의 레퍼런스 라인의 길이는 전부 또는 일부가 서로 동일하게 결정될 수도 있고, 서로 상이하게 설정될 수도 있다.
예컨대, 현재 블록이 WxH 크기를 갖는다고 가정했을 때, k번째 레퍼런스 라인은, p(-k, -k), p(-k, -k)과 동일 행에 위치하는 참조 샘플(예컨대, p(-k+1,-k)부터 p(W+H+2(k-1),-k)까지의 참조 샘플 또는 p(-k+1, -k)부터 p(2W+2(k-1), -k)까지의 참조 샘플) 및 p(-k, -k)과 동일 열에 위치하는 참조 샘플(예컨대, p(-k, -k+1)부터 p(-k,W+H+2(k-1))까지의 참조 샘플 또는 p(-k, -k+1)부터 p(-k,2H+2(k-1))까지의 참조 샘플)을 포함할 수 있다.
도 15는 복수개의 참조 샘플 라인을 예시한 도면이다. 도 15에 도시된 예에서와 같이, 현재 블록의 경계에 인접한 첫번째 레퍼런스 라인을 '레퍼런스 라인 0'이라 했을 때, k번째 레퍼런스 라인은 k-1번째 레퍼런스 라인과 인접하여 구성될 수 있다.
또는, 도 15에 도시된 것과 달리, 모든 레퍼런스 라인이 동일한 수의 참조 샘플을 갖도록 구성하는 것도 가능하다.
현재 블록의 인트라 예측은, 복수개의 레퍼런스 라인 중 적어도 하나를 선택하고, 선택된 레퍼런스 라인에 포함된 참조 샘플에 기초하여 수행될 수 있다. 이처럼, 복수의 레퍼런스 라인 후보로부터 적어도 하나를 선택하여 인트라 예측을 수행하는 것을, '확장된 레퍼런스 샘플을 이용한 인트라 예측 방법(Extended reference intra prediction)' 또는 '확장된 인트라 예측 방법'이라 호칭할 수 있다. 또한, 복수의 레퍼런스 라인을, '확장된 레퍼런스 라인'이라 호칭할 수 있다.
확장된 레퍼런스 라인을 기초로 인트라 예측을 수행할 것인지 여부는, 비트스트림을 통해 시그널링되는 정보에 기초하여 결정될 수 있다. 이때, 상기 정보는 1비트의 플래그일 수 있으나, 이에 한정되는 것은 아니다. 확장된 레퍼런스 라인을 기초로 인트라 예측을 수행할 것인지 여부에 관한 정보는, 코딩 트리 유닛, 부호화 유닛 또는 예측 유닛 단위로 시그널링될 수도 있고, 시퀀스, 픽처 또는 슬라이스 단위로 시그널링될 수도 있다. 즉, 확장된 레퍼런스 라인을 기초로 인트라 예측을 수행할 것인지 여부는, 시퀀스, 픽처, 슬라이스, CTU, CU 또는 PU 단위로 결정될 수 있다.
인트라 예측은 제한된 참조 샘플을 이용하여 예측 샘플을 생성하기 때문에, 생성되는 예측 샘플이 원본 영상의 특징을 반영하지 못하는 경우가 발생할 수 있다. 즉, 현재 블록에 이웃한 주변 샘플들만을 이용하여 현재 블록의 인트라 예측이 수행되는 바, 원본 영상의 특징을 정확히 반영하지 못할 수 있다. 일 예로, 현재 블록 내 엣지(edge)가 존재하거나, 현재 블록의 경계 주변에서 새로운 객체(object)가 등장하는 경우 등에 있어서, 현재 블록 내 예측 샘플의 위치에 따라, 예측 샘플과 원본 영상 사이의 차이가 큰 경우가 발생할 수 있다.
이 경우, 잔차값이 상대적으로 커져, 부호화/복호화할 비트양이 많아지는 문제점이 발생할 수 있다. 이에 본 발명에서는, 인트라 예측을 통해 생성된 예측 샘플을 보정(refinement)하는 방법을 제안하고자 한다. 도 16 내지 도 24를 참조하여 예측 샘플을 보정하는 방법에 대해 상세히 설명하기로 한다.
도 16은 본 발명의 일실시예에 따른 예측 샘플을 보정하는 방법을 나타낸 흐름도이다.
먼저, 현재 블록의 인트라 예측 모드에 기초하여, 현재 블록에 대한 인트라 예측 영상(예측 블록 또는 예측 샘플)을 획득할 수 있다(S1610). 후술되는 실시예에서는 현재 블록에 대한 인트라 예측 모드에 기초하여 생성된 예측 영상을 제1 인트라 예측 영상 또는 제1 예측 블록이라 호칭하고, 제1 인트라 예측 영상에 포함된 샘플은 제1 예측 샘플이라 호칭하기로 한다.
인트라 예측의 수행 결과 제1 인트라 예측 영상이 생성되면, 현재 블록의 적어도 일부 영역에 오프셋을 적용하여 제1 인트라 예측 영상(또는 제1 예측 샘플)을 보정한 제2 인트라 예측 영상(또는 제2 예측 샘플)을 생성할 수 있다. 일 예로, 현재 블록의 전체 영역, 기-정의된 일부 영역 또는 특정 위치의 샘플에 오프셋을 기반한 제1 인트라 예측 영상의 보정을 수행할 수 있다. 제1 인트라 예측 영상을 제2 인트라 예측 영상으로 보정하는데 사용되는 오프셋을 '인트라 리파인먼트 오프셋(intra refinement offset)'이라 호칭할 수도 있다.
현재 블록의 적어도 일부 영역에 오프셋을 적용할 것인지 여부는, 현재 블록의 인트라 예측 모드의 종류, 인트라 예측 모드의 방향성, 인트라 예측 모드 각도, 현재 블록(또는 예측 블록)의 크기 또는 형태 등에 기초하여 결정될 수 있다. 일 예로, 현재 블록의 인트라 예측 모드가 DC 모드 또는 플레너 모드 등의 비방향성 모드인 경우, 현재 블록의 적어도 일부 영역에 오프셋을 적용하는 반면, 현재 블록의 인트라 예측 모드가 방향성 모드인 경우, 현재 블록에 오프셋을 적용하지 않도록 설정될 수 있다. 다른 예로, 현재 블록의 인트라 예측 모드가 특정 방향의 인트라 예측 모드인 경우, 현재 블록의 적어도 일부 영역에 오프셋을 적용하도록 설정될 수도 있다.
또는, 현재 블록의 적어도 일부 영역에 오프셋을 적용할 것인지 여부는, 비트스트림으로부터 복호화되는 정보에 의해 결정될 수도 있다. 일 예로, 오프셋을 이용하여 제1 인트라 예측 영상을 보정할 것인지 여부를 나타내는 신택스 'is_ predblock_refinement_flag'가 비트스트림을 통해 시그날링될 수 있다. is_ predblock_refinement_flag의 값이 1이면, 현재 블록에서, 오프셋을 이용하여 제1 인트라 예측 영상에 대한 보정이 수행되는 반면, is_predblock_refinement_flag의 값이 0이면, 현재 블록에서, 제1 인트라 예측 영상에 대한 보정이 수행되지 않을 수 있다. 제1 인트라 예측 영상에 대한 보정이 수행되지 않은 경우, 제1 인트라 예측 영상이 현재 블록의 최종 예측 결과로 출력될 수 있다.
현재 블록의 적어도 일부 영역에 오프셋을 적용하기 위해, 현재 블록에 대한 오프셋을 결정할 수 있다(S1620).
오프셋은 현재 블록 내 소정의 단위별로 정의될 수 있다. 여기서, 소정의 단위는, 하나의 샘플, 복수의 샘플로 구성된 라인(예컨대, 행 또는 열), 복수의 라인을 포함하는 서브 블록 또는 소정 크기의 서브 블록 등을 의미할 수 있다. 예컨대, 제1 인트라 예측 영상 내 샘플 별로 오프셋을 정의한 뒤, 각 샘플에 대응하는 오프셋을 각 샘플에 가산 또는 감산함으로써, 제2 인트라 예측 영상을 생성할 수 있다.
오프셋은 현재 블록의 참조 샘플로부터 유도될 수 있다. 구체적으로, 복수 참조 샘플들(예를 들어, 2개, 3개 또는 그 이상의 참조 샘플들) 간의 합산값, 차분값, 평균값, 가중 연산값(예컨대, 가중 평균), 중간값, 최대값 또는 최소값 등을 기초로 오프셋을 유도할 수 있다.
오프셋을 유도하는데 이용되는 참조 샘플은, 고정된 위치의 참조 샘플 또는 예측 샘플(즉, 제1 인트라 예측 영상의 샘플)의 위치에 종속적으로 결정되는 참조 샘플 중 적어도 하나를 포함할 수 있다. 일 예로, 오프셋은, 현재 블록의 좌측 상단 코너에 인접한 참조 샘플 및 오프셋을 적용하고자 하는 예측 샘플과 동일한 수직 선상/수평 선상에 놓인 참조 샘플 중 적어도 하나를 기초로 유도될 수 있다.
또는, 현재 블록의 크기, 형태, 인트라 예측 모드의 방향성 또는 각도 등에 기초하여 오프셋을 산출하는데 이용되는 참조 샘플의 개수 및/또는 위치를 가변적으로 결정할 수도 있다.
오프셋은 참조 샘플은 필터(예컨대, AIS 필터)가 적용되기 전의 참조 샘플을 이용하여 유도될 수도 있다. 즉, 제1 인트라 예측 영상은 필터링이 수행된 참조 샘플을 이용하여 생성되는 반면, 제2 인트라 예측 영상은 필터가 적용되기 전의 참조 샘플을 이용하여 생성될 수 있다.
오프셋은, 동일한 레퍼런스 라인에 속한 복수의 참조 샘플들을 기초로 유도될 수도 있고, 각기 상이한 레퍼런스 라인에 포함된 참조 샘플들을 기초로 유도될 수도 있다.
일 예로, 도 15에 도시된 예에서, 제2 레퍼런스 라인 또는 제4 레퍼런스 라인 중 어느 하나로부터 유도된 참조 샘플의 값에서 제1 레퍼런스 라인으로부터 유도된 참조 샘플의 값을 차분한 값을 기초로 오프셋을 결정할 수 있다.
수학식 7 및 8은 인트라 리파인먼트 오프셋을 유도하는 일 예를 나타낸다. 인트라 리파인먼트 오프셋 h는 수학식 7에 나타난 수식 중 어느 하나를 이용하여 결정될 수 있다.
또는, 복수의 인트라 리파인먼트 오프셋 f0, f1, f2 및 f3이 수학식 8에 나타난 수식과 같이 결정될 수 있다. 현재 블록의 보정은 복수의 인트라 리파인먼트 오프셋 f0 내지 f3 중 어느 하나를 기초로 수행되거나, 소정 영역 단위로 상이한 인트라 리파인먼트 오프셋을 적용하여 수행될 수 있다.
수학식 7 및 수학식 8에서, refn (x=0~4)은 레퍼런스 라인 n을 가리킨다. 또한, (in, jn)은 는 레퍼런스라인 n에 포함된 참조 샘플의 위치를 나타낸다. 오프셋을 유도하는데 이용되는 참조 샘플의 값은, 현재 블록의 인트라 예측을 수행하기 위해 주변의 복원 샘플로부터 유도된 것일 수도 있고, 오프셋을 산출하기 위한 별도의 복원 샘플을 나타낼 수도 있다. 여기서, 별도의 복원 샘플의 값은 별도의 복원 샘플의 주변 샘플 또는 기 정의된 위치의 샘플로부터 유도된 것일 수 있다. 오프셋을 유도하는데 이용되는 참조 샘플의 값은, 이웃 블록에 인루프 필터가 적용되기 전의 값일 수도 있고 또는 이웃 블록에 인루프 필터가 적용된 이후의 값일 수도 있다.
오프셋은 참조 샘플들에 가중치를 적용함으로써 획득될 수 있다. 일 예로, 수학식 8에서는, 참조 샘플들 사이의 차분값에 가중치 w를 적용함으로써, 오프셋이 획득되는 것으로 도시되었다. 이에 그치지 않고, 각 참조 샘플에 상이한 가중치를 적용한 가중 연산을 통해 오프셋을 획득할 수도 있다. 이때, 각 참조 샘플에 적용되는 가중치는, 현재 블록 내 특정 위치의 샘플과 레퍼런스 라인과의 거리, 특정 위치의 샘플과 레퍼런스 샘플 사이의 거리, 참조 샘플들 사이의 거리 또는 레퍼런스 라인 사이의 거리 등에 기초하여 결정될 수 있다. 특정 위치의 샘플은 현재 블록 내 기 정의된 위치에 위치한 샘플을 나타낼 수도 있고, 오프셋 적용 대상이 되는 샘플(이하, '오프셋 적용 대상 샘플' 또는 '보정 대상 샘플'이라 호칭함)을 나타낼 수도 있다. 기 정의된 위치의 샘플은, 현재 블록의 좌측 경계에 인접한 샘플, 현재 블록의 상단 경계에 인접한 샘플 또는 현재 블록의 좌상단 코너에 인접한 샘플 중 적어도 하나를 포함할 수 있다.
일 예로, 가중치는 현재 블록 내 특정 위치의 샘플과 오프셋 계산시 이용되는 참조 샘플 사이의 거리에 비례하여 결정될 수 있다. 예컨대, 현재 블록의 좌측 상단 코너에 위치한 참조 샘플, 오프셋 적용 대상 샘플에 수직 방향에 놓인 참조 샘플 및 오프셋 적용 대상 샘플에 수평 방향에 놓인 참조 샘플을 기초로 오프셋이 유도되는 것으로 가정한다. 이 경우, 현재 블록의 좌측 상단 코너에 위치한 참조 샘플에 적용되는 가중치는 해당 참조 샘플과 오프셋 적용 대상 샘플 간의 x축 거리 차분값 또는 y축 거리 차분값 중 적어도 하나를 이용하여 획득될 수 있다. 또한, 오프셋 적용 대상 샘플과 수직 방향에 놓인 샘플은, 해당 참조 샘플과 오프셋 적용 대상 샘플 간의 y축 거리 차분값에 기초하여 획득되고, 오프셋 적용 대상 샘플과 수평 방향에 놓인 샘플은, 해당 참조 샘플과 오프셋 적용 대상 샘플 간의 x축 거리 차분값에 기초하여 획득될 수 있다.
또는, 가중치는 기 정의된 값에서 현재 블록 내 특정 위치의 샘플과 오프셋 계산시 이용되는 참조 샘플 사이의 거리를 가산/감산하여 결정될 수도 있다.
다른 예로, 가중치는 현재 블록 내 특정 위치의 샘플과 참조 샘플 사이의 거리를 나타내는 값 및 현재 블록의 크기를 나타내는 값 사이의 비율에 기초하여 결정될 수 있다.
인트라 리파인먼트 오프셋은 제1 인트라 예측 영상에 인접한 주변 복원 샘플(즉, 참조 샘플)의 잔차 샘플을 기반으로 유도될 수도 있다. 여기서, 주변 복원 샘플의 위치는, 제1 인트라 예측 영상을 획득하는데 이용된 인트라 예측 모드의 종류, 방향성, 또는 각도 중 적어도 하나에 의해 특정될 수 있다. 예를 들어, 주변 복원 샘플의 위치는 방향성 인트라 예측 모드의 앵귤러 라인(angular line) 상에 위치하는 참조 샘플 또는 인트라 예측 모드의 앵귤러 라인에 수직(orthogonal)인 라인 상에 위치한 것일 수 있다.
또는, 슬라이스 단위, 부호화 유닛 단위 또는 예측 유닛 단위로 오프셋의 값을 시그널링할 수도 있다.
오프셋이 결정되면, 제1 인트라 예측 영상에 오프셋을 적용하여, 제1 인트라 예측 영상을 보정한 제2 인트라 예측 영상을 생성할 수 있다(S1630). 일 예로, 하기 수학식 9는 제1 인트라 예측 영상에 포함된 샘플 P(x, y)로부터 제2 인트라 예측 영상의 샘플 P'(x, y)를 유도하는 예를 나타낸 것이다.
상기 수학식 8에 나타난 것과 같이, 제2 인트라 예측 영상의 샘플 P'(i, j)는 제1 인트라 예측 영상의 샘플 P(i, j)에 오프셋 f를 가산하여 획득될 수 있다. 수학식 9에 나타난 것과 반대로, 제1 인트라 예측 영상에 오프셋을 감산하여 제2 인트라 예측 영상을 획득할 수도 있다. 또는, 제1 인트라 예측 영상과 오프셋의 가중 연산에 기초하여 제2 인트라 예측 영상을 획득할 수도 있다. 이때, 제1 인트라 예측 영상 및 오프셋에 적용되는 가중치는 보정 대상 샘플의 위치 등에 따라 결정될 수 있다.
방향성 인트라 예측 모드의 경우 현재 블록에 인접한 참조 샘플을 복사하여 예측 샘플을 생성하기 때문에, 현재 블록에서 멀리 떨어진 영역에서의 예측 효율이 저하되는 문제점이 있다. 즉, 방향성 인트라 예측 모드를 이용할 경우, 현재 블록의 경계에서 상대적으로 멀리 떨어진 영역에서의 잔차값이 고주파 성분을 다량 포함하게 되어, 부호화/복호화 효율이 저하되는 문제점이 발생할 수 있다.
위와 같은 문제점을 해소하기 위해, 서브 블록 단위로 예측 영상을 보정하는 방법을 고려할 수도 있다. 여기서, 서브 블록 단위로 예측 영상을 보정하는 것은, 현재 블록의 전체 영역 중 소정 서브 블록에 해당하는 영역에서만 예측 영상의 보정이 수행되는 것을 의미하거나, 현재 블록 내 소정 서브 블록 단위로 오프셋이 정의됨(즉, 서브 블록 단위로 상이한 오프셋을 이용함)을 의미할 수 있다. 서브 블록 단위로 예측 영상을 보정하는 경우, 블록 경계에서 상대적으로 멀리 떨어진 영역에서의 예측 정확성을 향상 시킬 수 있다. 이하 도 17을 참조하여, 서브 블록 단위로 예측 영상을 보정하는 방법을 상세히 설명하기로 한다.
도 17은 본 발명의 일 실시예에 따른, 서브 블록 단위로 예측 영상을 보정하는 방법을 나타낸 흐름도이다.
도 17을 참조하면, 현재 블록에 대해, 서브 블록 단위로 제1 인트라 예측 영상을 보정(또는 업데이트)할 것인지 여부가 결정될 수 있다(S1700). 제1 인트라 예측 영상에 대한 보정이 서브 블록 단위로 수행되는지 여부는 현재 블록의 크기, 형태, 인트라 예측 모드의 종류, 방향성 또는 각도 중 적어도 하나를 기초로 결정될 수 있다. 또는, 서브 블록 단위로 제1 인트라 예측 영상을 보정할 것인지 여부는, 비트스트림으로부터 복호화되는 플래그에 의해 결정될 수 있다. 일 예로, 서브 블록 단위로 제1 인트라 예측 영상을 업데이트할 것인지 여부를 나타내는 신택스 'is_sub_block_refinement_flag'가 비트스트림을 통해 시그날링될 수 있다. is_sub_block_refinement_flag의 값이 1이면, 현재 블록 내, 소정 서브 블록에서는, 오프셋을 이용한 제1 예측 샘플 의 보정이 수행되는 반면, is_sub_block_refinement_flag의 값이 0이면, 서브 블록 단위의 보정은 수행되지 않을 수 있다.
제1 인트라 예측 영상의 보정 여부 및 보정 단위는 계층적으로 결정될 수 있다. 일 예로, 제1 인트라 예측 영상의 보정이 수행되는 것으로 결정된 경우에 한하여 보정이 수행 단위가 서브 블록 단위인지 여부가 결정될 수 있다.
서브 블록 단위로 제1 인트라 예측 영상의 보정이 수행되는 것으로 결정된 경우, 현재 블록의 인트라 예측 패턴을 결정할 수 있다(S1710). 인트라 예측 패턴을 통해, 오프셋이 적용되는 현재 블록의 전부 또는 일부 영역, 현재 블록의 분할 형태, 현재 블록에 포함된 서브 블록에 오프셋이 적용되는지 여부, 또는 서브 블록 별로 할당된 오프셋 크기/부호(sign) 등이 결정될 수 있다.
현재 블록의 인트라 예측 패턴은 부후화기/복호화기에 기-정의된 복수의 패턴 중 어느 하나가 선택적으로 이용될 수 있으며, 이를 위해 현재 블록의 인트라 예측 패턴을 특정하는 인덱스가 비트스트림으로부터 시그날링될 수 있다. 다른 예로, 현재 블록의 인트라 예측 패턴은 현재 블록의 예측 유닛 또는 부호화 유닛의 파티션 모드, 블록 크기/형태, 방향성 인트라 예측 모드인지 여부, 방향성 인트라 예측 모드의 각도(angle) 또는 이웃 블록의 인트라 예측 패턴 등에 기초하여 결정될 수도 있다.
현재 블록의 인트라 예측 패턴을 나타내는 인덱스가 시그날링되는지 여부는 비트스트림으로부터 시그날링되는 소정의 플래그 정보에 의해 결정될 수 있다. 일 예로, 플래그 정보가, 비트스트림으로부터 현재 블록의 인트라 예측 패턴을 가리키는 인덱스가 시그날링될 것을 지시하는 경우, 현재 블록의 인트라 예측 패턴은 비트스트림으로부터 복호화되는 인덱스에 기초하여 결정될 수 있다. 이때, 플래그 정보는 픽쳐, 슬라이스 또는 블록 레벨 중 적어도 하나에서 시그날링될 수 있다.
플래그 정보가 비트스트림으로부터 현재 블록의 인트라 예측 패턴을 나타내는 인덱스가 시그날링되지 않음을 지시하는 경우, 현재 블록의 인트라 예측 패턴은 상술한 현재 블록의 예측 유닛 또는 부호화 유닛의 파티션 모드 등에 기초하여 결정될 수 있다. 일 예로, 현재 블록이 서브 블록으로 분할되는 형태는 부호화 블록이 예측 유닛으로 분할된 형태와 동일한 형태를 띨 수 있다.
현재 블록의 인트라 예측 패턴이 결정되면, 서브 블록 단위로 오프셋을 획득할 수 있다(S1720). 오프셋은 슬라이스 단위, 부호화 유닛 단위 또는 예측 유닛 단위로 시그날링될 수 있다. 다른 예로, 오프셋은 현재 블록의 이웃 샘플(예컨대, 참조 샘플)로부터 유도될 수도 있다. 상기 오프셋은 오프셋 크기 정보 또는 오프셋 부호 정보 중 적어도 하나를 포함할 수 있다. 이때, 오프셋 크기 정보는 0보다 크거나 같은 정수 범위 내에 속할 수 있다.
오프셋이 결정되면, 서브 블록별로, 제1 인트라 예측 영상을 보정하여 제2 인트라 예측 영상을 생성할 수 있다(S1730). 제2 인트라 예측 영상은 제1 인트라 예측 영상에 오프셋을 적용하여 획득될 수 있다. 예를 들어, 제2 예측 샘플은 제1 예측 샘플에 상기 오프셋을 가산 또는 감산함으로써 획득될 수 있다. 이때, 서브 블록별로 상이한 오프셋이 제1 인트라 예측 영상에 적용될 수 있다.
도 18 내지 도 22는 본 발명이 적용되는 일실시예로서, 현재 블록의 인트라 예측 패턴을 예시한 도면이다.
일 예로, 도 18에 도시된 예에서, 인덱스가 '0' 또는 '1'인 경우, 현재 블록은 상측 및 하측 서브 블록으로 분할되는 한편, 상측 서브 블록에는 오프셋이 미설정되고, 하측 서브 블록에는 오프셋 'f'가 설정될 수 있다. 이에 따라, 상측 서브 블록에서는 제1 예측 샘플(P(i,j))이 그대로 사용되고, 하측 서브 블록에서는 제1 예측 샘플에 오프셋을 가산 또는 감산하여 생성된 제2 예측 샘플(P(i,j)+f 또는 P(i,j)-f)이 사용될 수 있다. 본 명세서에서 '미설정'이라 함은 해당 블록에 오프셋이 할당되지 않는 경우를 의미할 수도 있고, '0' 값의 오프셋이 할당됨을 의미할 수도 있다.
인덱스가 '2' 또는 '3'인 경우, 현재 블록은 좌측 및 우측 서브 블록으로 분할되는 한편, 좌측 서브 블록에는 오프셋이 미설정되고, 우측 서브 블록에는 오프셋 'f'가 설정될 수 있다. 이에 따라, 좌측 서브 블록에서는 제1 예측 샘플(P(i,j))이 그대로 사용되고, 우측 서브 블록에서는 제1 예측 샘플에 오프셋을 가산 또는 감산함으로써 생성된 제2 예측 샘플(P(i,j)+f 또는 P(i,j)-f)이 사용될 수 있다.
이용 가능한 인트라 예측 패턴은, 현재 블록의 인트라 예측 모드에 기초하여 그 범위가 제한될 수 있다. 일 예로, 현재 블록의 인트라 예측 모드가 수직 방향 인트라 예측 모드 또는 수직 방향 인트라 예측 모드와 유사한 방향의 예측 모드인 경우(예를 들어, 33개의 방향성 예측 모드 중 인트라 예측 모드 인덱스가 22 내지 30인 경우), 현재 블록을 수평 분할한 인트라 예측 패턴(예를 들어, 도 18의 인덱스 0 또는 인덱스 1)만이 현재 블록에 적용될 수 있다.
다른 예로, 현재 블록의 인트라 예측 모드가 수평 방향 인트라 예측 모드 또는 수평 방향 인트라 예측 모드와 유사한 방향의 예측 모드인 경우(예를 들어, 33개의 방향성 예측 모드 중 인트라 예측 모드 인덱스가 6 내지 14인 경우), 현재 블록을 수직 분할한 인트라 예측 패턴(예를 들어, 도 18의 인덱스 2 또는 인덱스 3)만이 현재 블록에 적용될 수 있다.
또는, 현재 블록의 인트라 예측 모드가 비방향성 모드인지 여부에 따라, 현재 블록이 이용할 수 있는 인트라 예측 패턴이 결정될 수도 있다.
도 18에서는 현재 블록에 포함된 서브 블록 중 어느 하나에는 오프셋이 미설정되고, 다른 하나에는 오프셋이 설정되는 것으로 도시되었다. 서브 블록에 오프셋을 설정할 것인지 여부는 서브 블록 별로 시그날링되는 정보에 기초하여 결정될 수도 있다.
또는, 서브 블록에 오프셋을 설정할 것인지 여부는, 서브 블록의 위치 또는 현재 블록 내 서브 블록을 식별하기 위한 인덱스 등에 기초하여 결정될 수도 있다. 일 예로, 현재 블록의 소정의 경계를 기준으로, 소정 경계와 접하는 서브 블록에는 오프셋이 미설정되고, 소정의 경계와 접하지 않는 서브 블록에는 오프셋이 설정될 수 있다. 여기서, 소정 경계는 현재 블록의 크기, 형태 또는 인트라 예측 모드에 기초하여 결정될 수 있다.
소정의 경계가 현재 블록의 상단 경계라 가정할 경우, 인덱스 '0' 또는 '1'에 대응하는 인트라 예측 패턴 하에서, 현재 블록의 상단 경계에 접하는 서브 블록에 대해서는 오프셋이 설정되지 않고, 현재 블록의 상단 경계에 접하지 않는 서브 블록에 대해서는, 오프셋이 설정될 수 있다.
소정 경계가 현재 블록의 좌측 경계라 가정할 경우, 인덱스 '2' 또는 '3'에 대응하는 인트라 예측 패턴 하에서, 현재 블록의 좌측 경계에 접하는 서브 블록에 대해서는 오프셋이 설정되지 않고, 현재 블록의 좌측 경계에 접하지 않는 서브 블록에 대해서는 오프셋이 설정될 수 있다.
도 18에서는, 현재 블록에 포함된 서브 블록 중 어느 하나에는 오프셋이 미설정되고, 다른 하나에는 오프셋이 설정되는 것으로 가정하였다. 다른 예로, 현재 블록에 포함된 서브 블록들에 서로 다른 값의 오프셋이 설정될 수도 있다.
도 19를 참조하여, 서브 블록 별 서로 다른 오프셋이 설정되는 예에 대해 설명하기로 한다.
도 19를 참조하면, 인덱스가 '0' 또는 '1'인 경우, 현재 블록 내 상측 서브 블록에는 오프셋 'h'가 설정되고, 현재 블록 내 하측 서브 블록에는 오프셋 'f'가 설정될 수 있다. 이에 따라, 상측 서브 블록에서는 제1 예측 샘플에 오프셋 'h'를 가산 또는 감산한 제2 예측 샘플(P(i,j)+h 또는 P(i,j)-h)이 생성되고, 하측 서브 블록에서는 제1 예측 샘플에 오프셋 'f'을 가산 또는 감산한 제2 예측 샘플(P(i,j)+f 또는 P(i,j)-f)이 생성될 수 있다.
도 19를 참조하면, 인덱스가 '2' 또는 '3'인 경우, 현재 블록 내 좌측 서브 블록에는 오프셋 'h'가 설정되고, 현재 블록 내 우측 서브 블록에는 오프셋 'f'가 설정될 수 있다. 이에 따라, 좌측 서브 블록에서는 제1 예측 샘플에 오프셋 'h'를 가산 또는 감산한 제2 예측 샘플(P(i,j)+h 또는 P(i,j)-h)이 생성되고, 우측 서브 블록에서는 제1 예측 샘플에 오프셋 'f'를 가산 또는 감산한 제2 예측 샘플(P(i,j)+f 또는 P(i,j)-f)이 생성될 수 있다.
도 18 및 도 19에서는 현재 블록이 동일한 크기를 갖는 2개의 서브 블록으로 분할되는 것으로 도시하였으나, 현재 블록에 포함된 서브 블록의 수 및/또는 서브 블록의 크기는 도 18 및 도 19에 도시된 예에 한정되지 않는다. 현재 블록에 포함된 서브 블록의 수는 3개 이상일 수도 있고, 각 서브 블록은 서로 다른 크기를 가질 수도 있다.
이용 가능한 인트라 예측 패턴의 개수가 복수개인 경우, 이용 가능한 인트라 예측 패턴을 복수의 카테고리로 그룹화할 수 있다. 이 경우, 현재 블록의 인트라 예측 패턴은, 카테고리를 식별하기 위한 제1 인덱스 및 해당 카테고리 내 인트라 예측 패턴을 식별하기 위한 제2 인덱스에 기초하여 선택될 수 있다.
도 20을 참조하여, 제1 인덱스 및 제2 인덱스에 기초하여 현재 블록의 인트라 예측 패턴이 결정되는 예에 대해 설명하기로 한다.
도 20에 도시된 예에서, 12개의 인트라 예측 패턴은 각각 4개의 인트라 예측 패턴을 포함하는 3개의 카테고리로 분류될 수 있다. 일 예로, 인덱스 0 내지 3에 해당하는 인트라 예측 패턴은 카테고리 0로 분류되고, 인덱스 4 내지 인덱스 7에 해당하는 인트라 예측 패턴은 카테고리 1로 분류되며, 인덱스 8 내지 인덱스 11에 해당하는 인트라 예측 패턴은 카테고리 2로 분류될 수 있다.
복호화기는 적어도 하나 이상의 인트라 예측 패턴을 포함하는 카테고리를 특정하기 위해, 비트스트림으로부터 제1 인덱스를 복호화할 수 있다. 도 20에 도시된 예에서, 제1 인덱스는, 카테고리 0, 1 및 2 중 어느 하나를 특정할 수 있다.
제1 인덱스를 기초로 카테고리가 특정되면, 비트스트림으로부터 복호화된 제2 인덱스에 기초하여, 현재 블록의 인트라 예측 패턴을 결정할 수 있다. 제1 인덱스에 의해 카테고리 1이 특정되면, 제2 인덱스는 카테고리 1에 포함된 4개의 인트라 예측 패턴(즉, 인덱스 4 내지 인덱스 7) 중 어느 하나를 특정할 수 있다.
도 20에서는 각 카테고리가 동일한 수의 인트라 예측 패턴을 포함하는 것으로 도시되었으나, 각 카테고리가 반드시 동일한 수의 인트라 예측 패턴을 포함해야 하는 것은 아니다.
이용 가능한 인트라 예측 패턴의 개수 또는 카테고리의 개수는 시퀀스 또는 슬라이스 단위로 결정될 수 있다. 아울러, 이용 가능한 인트라 예측 패턴의 개수 또는 카테고리 개수 중 적어도 하나는 시퀀스 헤더 또는 슬라이스 헤더를 통해 시그날링될 수도 있다.
다른 예로, 이용 가능한 인트라 예측 패턴의 개수 및/또는 카테고리의 개수는 현재 블록의 예측 유닛 또는 부호화 유닛의 크기에 기초하여 결정될 수도 있다. 일 예로, 현재 블록(예를 들어, 현재 블록의 부호화 유닛)의 크기가 64x64 이상인 경우, 현재 블록의 인트라 예측 패턴은 도 21에 도시된 6개의 인트라 예측 패턴 중에서 선택될 수 있다. 이와 달리, 현재 블록(예를 들어, 현재 블록의 부호화 유닛)의 크기가 64x64 보다 작은 경우, 현재 블록의 인트라 예측 패턴은, 도 18, 도 19 또는 도 20에 도시된 인트라 예측 패턴 중에서 선택될 수 있다.
도 18 내지 도 21에서는 각각의 인트라 예측 패턴에 포함된 서브 블록들은 직사각형(rectangular)인 것으로 도시되었다. 다른 예로, 서브 블록들의 크기 또는 형태 중 적어도 하나가 다른 인트라 예측 패턴이 이용될 수도 있다. 일 예로, 도 22는 서브 블록들의 크기 및 형태가 다른 인트라 예측 패턴의 예를 도시한 도면이다.
각 서브 블록에 대한 오프셋 (예를 들어, 도 18 내지 도 22에 도시된 각 서브 블록의 오프셋 h, f, g 또는 i 등)은 비트스트림으로부터 복호화될 수도 있고, 현재 블록에 인접한 이웃 샘플(예컨대, 참조 샘플)로부터 유도될 수도 있다. 예컨대, 도 16을 통해 설명한 바와 같이, 적어도 하나의 참조 샘플들로부터 유도된 오프셋을 서브 블록을 위해 사용하거나, 상이한 레퍼런스 라인에 포함된 참조 샘플들로부터 유도된 오프셋(수학식 7 및 수학식 8 참조)을 서브 블록을 위해 사용할 수 있다.
다른 예로, 서브 블록의 오프셋은 현재 블록 내 특정 위치의 샘플과의 거리를 고려하여 결정될 수도 있다. 일 예로, 오프셋은 현재 블록 내 소정 위치에 위치한 샘플과 서브 블록 내 소정 위치에 위치한 샘플 사이의 거리를 나타내는 값에 비례하여 결정될 수 있다.
다른 예로, 서브 블록의 오프셋은 기 설정된 값에서 현재 블록 내 소정 위치에 위치한 샘플과 서브 블록 내 소정 위치에 위치한 샘플 사이의 거리에 기초하여 결정되는 값을 가산 또는 감산함으로써 결정될 수도 있다.
다른 예로, 오프셋은 현재 블록 내 소정 위치에 위치한 샘플과 서브 블록 내 소정 위치에 위치한 샘플 사이의 거리를 나타내는 값과 현재 블록의 크기를 나타내는 값의 비율에 기초하여 결정될 수도 있다.
여기서, 현재 블록 내 소정 위치에 위치한 샘플은 현재 블록의 좌측 경계에 인접한 샘플, 현재 블록의 상단 경계에 위치한 샘플 또는 현재 블록의 좌상단 코너에 인접한 샘플 등을 포함할 수 있다.
서브 블록 내에서도 소정 단위별로 상이한 오프셋을 적용할 수 있다. 구체적으로, 서브 블록 내 샘플 별로 상이한 오프셋을 적용하거나, 라인(행 또는 열) 또는 복수 라인 별로 상이한 오프셋을 적용할 수 있다.
도 23 및 도 24는 서브 블록 내 소정 단위별로 상이한 오프셋이 적용되는 예를 나타낸 도면이다.
도 23의 좌측 도면은, 서브 블록 내 행 단위로 상이한 오프셋이 적용되는 경우를 나타낸 도면이고, 우측 도면은 서브 블록 내 열 단위로 상이한 오프셋이 적용되는 예를 나타낸 도면이다. 도 23에 도시된 것과 같이, 첫번째 라인에서는 오프셋 f0, 두번째 라인에서는 오프셋 f1, 세번째 라인에서는 오프셋 f2, 네번째 라인에서는 오프셋 f3이 적용되는 등 라인 별로 상이한 오프셋이 이용될 수 있다. 여기서, f0 내지 f3은 수학식 8을 통해 설명한 바와 같이, 각기 다른 레퍼런스 라인에 속한 참조 샘플들 간의 차분값을 기초로 유도된 것일 수 있다.
또는, 도 24에 도시된 것과 같이, 서브 블록 내 위치에 따라 오프셋에 적용되는 가중치를 상이하게 설정할 수도 있다. 일 예로, 첫번째 라인에서는 오프셋 h, 두번째 라인에서는 오프셋 2h, 세번째 라인에서는 오프셋 3h, 네번째 라인에서는 오프셋 4h가 적용되는 등 라인 별로 상이한 오프셋이 이용될 수 있다. 여기서, h는 수학식 7을 통해 설명한 바와 같이, 각기 다른 레퍼런스 라인에 속한 참조 샘플들 간의 차분값을 기초로 유도된 것일 수 있다.
도 25는 본 발명이 적용되는 일실시예로서, 잔차 샘플을 획득하는 과정을 도시한 흐름도이다.
먼저, 현재 블록의 잔차 계수를 획득할 수 있다(S2510). 복호화기는 계수 스캐닝 방법을 통해, 잔차 계수를 획득할 수 있다. 예를 들어, 복호화기는, 대각 스캔, 지그재그 스캔, 업-라이트 스캔, 수직 스캔 또는 수평 스캔을 이용하여, 계수 스캐닝을 수행하고, 그 결과 2차원 블록 형태의 잔차 계수를 획득할 수 있다.
현재 블록의 잔차 계수에 대해 역양자화를 수행할 수 있다(S2520).
현재 블록의 역양자화된 잔차 계수에 역변환을 스킵할 것인지 여부를 결정할 수 있다(S2530). 구체적으로, 복호화기는 현재 블록의 수평 방향 또는 수직 방향 중 적어도 하나 이상에 역변환을 스킵(skip)할 것인지 여부를 결정할 수 있다. 현재 블록의 수직 또는 수평 방향 중 적어도 하나에 역변환을 적용하기로 결정된 경우, 현재 블록의 역양자화된 잔차 계수를 역변환함으로써, 현재 블록의 잔차 샘플을 획득할 수 있다(S2540). 여기서, 역변환은, DCT, DST 또는 KLT 중 적어도 하나를 이용하여 수행될 수 있다.
현재 블록의 수평 방향 및 수직 방향 모두에 역변환이 스킵된 경우, 현재 블록의 수평 방향 및 수직 방향으로 역변환이 수행되지 않는다. 이 경우, 역양자화된 잔차 계수를 기 설정된 값으로 스케일링하여, 현재 블록의 잔차 샘플을 획득할 수 있다(S2550).
수평 방향으로의 역변환을 생략하는 것은, 수평 방향으로는 역변환을 수행하지 않고, 수직 방향으로는 역변환을 수행하는 것을 의미한다. 이때, 수평 방향으로는 스케일링이 수행될 수 있다.
수직 방향의 역변환을 생략하는 것은, 수직 방향으로는 역변환을 수행하지 않고, 수평 방향으로는 역변환을 수행하는 것을 의미한다. 이때, 수직 방향으로는 스케일링이 수행될 수 있다.
현재 블록의 분할 형태에 따라, 현재 블록에 대해 역변환 스킵 기법을 이용할 수 있는지 여부가 결정될 수 있다. 일 예로, 현재 블록이 바이너리 트리 기반의 분할을 통해 생성된 것일 경우, 현재 블록에 대해 역변환 스킵 기법을 이용하지 못하도록 제한할 수 있다. 이에 따라, 현재 블록이 바이너리 트리 기반의 분할을 통해 생성된 것일 경우, 현재 블록을 역변환 함으로써, 현재 블록의 잔차 샘플을 획득할 수 있다. 아울러, 현재 블록이 바이너리 트리 기반의 분할을 통해 생성된 것일 경우, 역변환이 스킵되는지 여부를 나타내는 정보(예컨대, transform_skip_flag)의 부호화/복호화가 생략될 수 있다.
또는, 현재 블록이 바이너리 트리 기반의 분할을 통해 생성된 경우, 수평 방향 또는 수직 방향 중 적어도 하나에서만 역변환 스킵 기법이 허용되도록 제한할 수 있다. 여기서, 역변환 스킵 기법이 제한되는 방향은, 비트스트림으로부터 복호화되는 정보에 기초하여 결정되거나, 현재 블록의 크기, 현재 블록의 형태 또는 현재 블록의 인트라 예측 모드 중 적어도 하나에 기초하여 적응적으로 결정될 수 있다.
일 예로, 현재 블록이 너비가 높이보다 큰 비정방형 블록일 경우, 수직 방향에 대해서만 역변환 스킵 기법을 허용하고, 수평 방향에 대해서는 역변환 스킵 기법 사용을 제한할 수 있다. 즉, 현재 블록이 2NxN인 경우, 현재 블록의 수평 방향으로는 역변환이 수행되고, 수직 방향으로는 선택적으로 역변환이 수행될 수 있다.
반면, 현재 블록의 높이가 너비보다 큰 비정방형 블록일 경우, 수평 방향에 대해서만 역변환 스킵 기법을 허용하고, 수직 방향에 대해서는 역변환 스킵 기법 사용을 제한할 수 있다. 즉, 현재 블록이 Nx2N인 경우, 현재 블록의 수직 방향으로는 역변환이 수행되고, 수평 방향으로는 선택적으로 역변환이 수행될 수 있다.
상기의 예와 반대로, 현재 블록이 너비가 높이보다 큰 비정방형 블록일 경우, 수평 방향에 대해서만 역변환 스킵 기법을 허용하고, 현재 블록이 높이가 너비보다 큰 비정방형 블록일 경우, 수직 방향에 대해서만 역변환 스킵 기법을 허용할 수도 있다.
수평 방향에 대한 역변환을 스킵할 것인지 여부에 대한 정보 또는 수직 방향에 대한 역변환을 스킵할 것인지 여부를 나타내는 정보는 비트스트림을 통해 시그널링될 수 있다. 일 예로, 수평 방향에 대한 역변환을 스킵할 것인지 여부를 나타내는 정보는 1비트의 플래그로, 'hor_transform_skip_flag'이고, 수직 방향에 대한 역변환을 스킵할 것인지 여부를 나타내는 정보는 1비트의 플래그로, 'ver_transform_skip_flag'일 수 있다. 부호화기는, 현재 블록의 형태에 따라, 'hor_transform_skip_flag' 또는 'ver_transform_skip_flag' 중 적어도 하나를 부호화할 수 있다. 또한, 복호화기는 'hor_transform_skip_flag' 또는 'ver_transform_skip_flag' 중 적어도 이용하여, 수평 방향 또는 수직 방향으로의 역변환이 스킵되는지 여부를 판단할 수 있다.
현재 블록의 분할 형태에 따라, 어느 하나의 방향에 대해서는, 역변환이 생략되도록 설정될 수도 있다. 일 예로, 현재 블록이 바이너리 트리 기반의 분할을 통해 생성된 경우, 수평 방향 또는 수직 방향으로의 역변환을 생략할 수 있다. 즉, 현재 블록이 바이너리 트리 기반의 분할로 생성된 것이라면, 현재 블록의 역변환이 스킵되는지 여부를 나타내는 정보(예컨대, transform_skip_flag, hor_transform_skip_flag, ver_transform_skip_flag)의 부호화/복호화 없이도, 현재 블록에 대해 수평 방향 또는 수직 방향 중 적어도 하나에 대해 역변환을 스킵할 것을 결정할 수 있다.
상술한 실시예는 일련의 단계 또는 순서도를 기초로 설명되고 있으나, 이는 발명의 시계열적 순서를 한정한 것은 아니며, 필요에 따라 동시에 수행되거나 다른 순서로 수행될 수 있다. 또한, 상술한 실시예에서 블록도를 구성하는 구성요소(예를 들어, 유닛, 모듈 등) 각각은 하드웨어 장치 또는 소프트웨어로 구현될 수도 있고, 복수의 구성요소가 결합하여 하나의 하드웨어 장치 또는 소프트웨어로 구현될 수도 있다. 상술한 실시예는 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
Claims (15)
- 현재 블록의 인트라 예측 모드를 결정하는 단계;
상기 현재 블록의 인트라 예측 모드에 기초하여, 상기 현재 블록의 인트라 예측 샘플을 획득하는 단계; 및
상기 현재 블록의 상기 인트라 예측 샘플을 보정할 것인지 여부를 결정하는 단계를 포함하되,
상기 인트라 예측 샘플을 보정할 것인지 여부에 대한 결정은, 상기 인트라 예측 모드가 기 정의된 인트라 예측 모드들 중 하나인지 여부에 기초하고,
상기 기 정의된 인트라 예측 모드들은 플래너 모드를 포함하고,
상기 현재 블록의 상기 인트라 예측 모드가 플래너 모드인 경우, 상기 인트라 예측 샘플은 오프셋을 기초로 보정되고,
상기 오프셋은 상기 현재 블록에 인접하는 제1 참조 샘플 및 제2 참조 샘플간의 가중합에 기초하여 유도되는 것을 특징으로 하는, 영상 복호화 방법. - 제1 항에 있어서,
상기 현재 블록 내 제1 영역에서는, 수정된 인트라 예측 샘플이 출력되는 한편, 상기 현재 블록 내 제2 영역에서는, 인트라 예측에 의해 획득된 인트라 예측 샘플이 그대로 출력되고,
상기 제1 영역 및 상기 제2 영역이 형성하는 패턴은, 상기 인트라 예측 모드가 플래너 모드인 경우와 상기 인트라 예측 모드가 방향성 예측 모드인 경우 사이에 상이한 것을 특징으로 하는, 영상 복호화 방법. - 제2 항에 있어서,
상기 패턴은 복수의 후보 패턴들 중 하나이고,
상기 복수의 후보 패턴들은 상기 제2 영역이 너비 및 높이가 상기 현재 블록보다 작은 블록으로 정의되고, 상기 제1 영역은 상기 제2 영역을 제외한 잔여 영역으로 정의되는 다각(Polygonal) 패턴을 포함하는 것을 특징으로 하는, 영상 복호화 방법. - 제1 항에 있어서,
상기 가중합 연산시, 상기 제1 참조 샘플에 적용되는 제1 가중치는, 상기 인트라 예측 샘플의 x 좌표를 기초로 유도되고, 상기 제2 참조 샘플에 적용되는 제2 가중치는, 상기 인트라 예측 샘플의 y 좌표를 기초로 유도되는 것을 특징으로 하는, 영상 복호화 방법. - 제1 항에 있어서,
상기 제1 참조 샘플은 상기 인트라 예측 샘플과 동일한 수평선상에 높인 좌측 이웃 샘플이고, 상기 제2 참조 샘플은 상기 인트라 예측 샘플과 동일한 수직선상에 놓인 상단 이웃 샘플인 것을 특징으로 하는, 영상 복호화 방법. - 제1 항에 있어서,
상기 인트라 예측 모드가 수직 방향 모드인 경우, 상기 인트라 예측 샘플은 상기 현재 블록에 인접하는 이웃 샘플들간의 차분에 기초하여 유도되는 오프셋을 기초로 보정되고,
상기 현재 블록의 크기에 기초하여, 보정될 인트라 예측 샘플들이 포함된 라인의 개수가 결정되는 것을 특징으로 하는, 영상 복호화 방법. - 삭제
- 현재 블록의 인트라 예측 모드를 결정하는 단계;
상기 현재 블록의 상기 인트라 예측 모드에 기초하여, 상기 현재 블록의 인트라 예측 샘플을 획득하는 단계
상기 현재 블록의 상기 인트라 예측 샘플을 보정할 것인지 여부를 결정하는 단계를 포함하되,
상기 인트라 예측 샘플을 보정할 것인지 여부에 대한 결정은, 상기 인트라 예측 모드가 기 정의된 인트라 예측 모드들 중 하나인지 여부에 기초하고,
상기 기 정의된 인트라 예측 모드들은 플래너 모드를 포함하고,
상기 현재 블록의 상기 인트라 예측 모드가 플래너 모드인 경우, 상기 인트라 예측 샘플은 오프셋을 기초로 보정되고,
상기 오프셋은 상기 현재 블록에 인접하는 제1 참조 샘플 및 제2 참조 샘플간의 가중합에 기초하여 유도되는 것을 특징으로 하는, 영상 부호화 방법. - 제8 항에 있어서,
상기 현재 블록 내 제1 영역에서는, 수정된 인트라 예측 샘플이 출력되는 한편, 상기 현재 블록 내 제2 영역에서는, 인트라 예측에 의해 획득된 인트라 예측 샘플이 그대로 출력되고,
상기 제1 영역 및 상기 제2 영역이 형성하는 패턴은, 상기 인트라 예측 모드가 플래너 모드인 경우와 상기 인트라 예측 모드가 방향성 예측 모드인 경우 사이에 상이한 것을 특징으로 하는, 영상 부호화 방법. - 제9 항에 있어서,
상기 패턴은 복수의 후보 패턴들 중 하나이고,
상기 복수의 후보 패턴들은 상기 제2 영역이 너비 및 높이가 상기 현재 블록보다 작은 블록으로 정의되고, 상기 제1 영역은 상기 제2 영역을 제외한 잔여 영역으로 정의되는 다각(Polygonal) 패턴을 포함하는 것을 특징으로 하는, 영상 부호화 방법. - 제8 항에 있어서,
상기 가중합 연산시, 상기 제1 참조 샘플에 적용되는 제1 가중치는, 상기 인트라 예측 샘플의 x 좌표를 기초로 유도되고, 상기 제2 참조 샘플에 적용되는 제2 가중치는, 상기 인트라 예측 샘플의 y 좌표를 기초로 유도되는 것을 특징으로 하는, 영상 부호화 방법. - 제8 항에 있어서,
상기 제1 참조 샘플은 상기 인트라 예측 샘플과 동일한 수평선상에 높인 좌측 이웃 샘플이고, 상기 제2 참조 샘플은 상기 인트라 예측 샘플과 동일한 수직선상에 놓인 상단 이웃 샘플인 것을 특징으로 하는, 영상 부호화 방법. - 제8 항에 있어서,
상기 인트라 예측 모드가 수직 방향 모드인 경우, 상기 인트라 예측 샘플은 상기 현재 블록에 인접하는 이웃 샘플들간의 차분에 기초하여 유도되는 오프셋을 기초로 보정되고,
상기 현재 블록의 크기에 기초하여, 보정될 인트라 예측 샘플들이 포함된 라인의 개수가 결정되는 것을 특징으로 하는, 영상 부호화 방법. - 삭제
- 압축된 비디오 데이터를 저장하는 컴퓨터로 판독 가능한 기록 매체에 있어서,
상기 압축된 비디오 데이터는,
현재 블록의 인트라 예측 모드를 결정하는 단계;
상기 현재 블록의 상기 인트라 예측 모드에 기초하여, 상기 현재 블록의 인트라 예측 샘플을 획득하는 단계
상기 현재 블록의 상기 인트라 예측 샘플을 보정할 것인지 여부를 결정하는 단계를 포함하되,
상기 인트라 예측 샘플을 보정할 것인지 여부에 대한 결정은, 상기 인트라 예측 모드가 기 정의된 인트라 예측 모드들 중 하나인지 여부에 기초하고,
상기 기 정의된 인트라 예측 모드들은 플래너 모드를 포함하고,
상기 현재 블록의 상기 인트라 예측 모드가 플래너 모드인 경우, 상기 인트라 예측 샘플은 오프셋을 기초로 보정되고,
상기 오프셋은 상기 현재 블록에 인접하는 제1 참조 샘플 및 제2 참조 샘플간의 가중합에 기초하여 유도되는 것을 특징으로 하는, 영상 부호화 방법에 의해 부호화되는 것을 특징으로 하는 기록 매체.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160127862 | 2016-10-04 | ||
KR1020160127862 | 2016-10-04 | ||
KR1020160127863 | 2016-10-04 | ||
KR20160127863 | 2016-10-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180037599A KR20180037599A (ko) | 2018-04-12 |
KR102471207B1 true KR102471207B1 (ko) | 2022-11-25 |
Family
ID=61832014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170128210A KR102471207B1 (ko) | 2016-10-04 | 2017-09-29 | 비디오 신호 처리 방법 및 장치 |
Country Status (5)
Country | Link |
---|---|
US (3) | US11218726B2 (ko) |
KR (1) | KR102471207B1 (ko) |
CN (5) | CN116634182A (ko) |
CA (2) | CA3227652A1 (ko) |
WO (1) | WO2018066958A1 (ko) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7430716B2 (ja) | 2018-10-12 | 2024-02-13 | オッポ広東移動通信有限公司 | ビデオ信号の符号化方法および復号化方法並びにその装置 |
JP7005480B2 (ja) * | 2018-12-27 | 2022-01-21 | Kddi株式会社 | 画像復号装置、画像符号化装置、プログラム及び画像処理システム |
WO2020149620A1 (ko) * | 2019-01-14 | 2020-07-23 | 삼성전자 주식회사 | 부호화 방법 및 그 장치, 복호화 방법 및 그 장치 |
WO2020197222A1 (ko) * | 2019-03-23 | 2020-10-01 | 엘지전자 주식회사 | Isp를 이용한 잔차 신호 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 |
AU2019467372B2 (en) | 2019-09-24 | 2022-05-19 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Image coding/decoding method, coder, decoder, and storage medium |
CN113261279B (zh) * | 2019-09-24 | 2024-04-26 | Oppo广东移动通信有限公司 | 预测值的确定方法、编码器、解码器以及存储介质 |
US12058322B2 (en) * | 2020-11-05 | 2024-08-06 | Alibaba Group Holding Limited | Methods and apparatuses for filtering intra predicted video blocks |
US20230007299A1 (en) * | 2021-06-30 | 2023-01-05 | Tencent America LLC | Harmonized design for offset based refinement and multiple reference line selection |
US20230008488A1 (en) * | 2021-07-07 | 2023-01-12 | Tencent America LLC | Entropy coding for intra prediction modes |
US11917136B2 (en) | 2021-07-15 | 2024-02-27 | Tencent America LLC | Intra mode coding |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110292994A1 (en) | 2010-05-30 | 2011-12-01 | Lg Electronics Inc. | Enhanced intra prediction mode signaling |
US20190208209A1 (en) | 2016-09-05 | 2019-07-04 | Lg Electronics Inc. | Image coding/decoding method and apparatus therefor |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100678911B1 (ko) * | 2005-07-21 | 2007-02-05 | 삼성전자주식회사 | 방향적 인트라 예측의 적용을 확장하여 비디오 신호를인코딩하고 디코딩하는 방법 및 장치 |
US20080123947A1 (en) * | 2005-07-22 | 2008-05-29 | Mitsubishi Electric Corporation | Image encoding device, image decoding device, image encoding method, image decoding method, image encoding program, image decoding program, computer readable recording medium having image encoding program recorded therein |
KR101117000B1 (ko) * | 2009-04-08 | 2012-03-16 | 한국전자통신연구원 | 화면 내 예측 오프셋을 이용한 부호화/복호화 방법 및 그 장치 |
CN102668566B (zh) * | 2009-10-22 | 2016-05-04 | 汤姆森特许公司 | 将dc帧内预测模式用于视频编码和解码的方法和装置 |
KR101669388B1 (ko) | 2010-09-30 | 2016-10-25 | 미쓰비시덴키 가부시키가이샤 | 부호화 데이터가 기록된 기록 매체 |
KR101444667B1 (ko) | 2011-01-15 | 2014-09-30 | 에스케이 텔레콤주식회사 | 양방향 인트라 예측을 이용한 영상 부호화/복호화 방법 및 장치 |
KR20120140181A (ko) | 2011-06-20 | 2012-12-28 | 한국전자통신연구원 | 화면내 예측 블록 경계 필터링을 이용한 부호화/복호화 방법 및 그 장치 |
CN107071435A (zh) * | 2011-11-08 | 2017-08-18 | 株式会社Kt | 对视频信号进行解码的方法 |
WO2013168952A1 (ko) | 2012-05-08 | 2013-11-14 | 엘지전자 주식회사 | 인터 레이어 예측 방법 및 이를 이용하는 장치 |
WO2014003421A1 (ko) | 2012-06-25 | 2014-01-03 | 한양대학교 산학협력단 | 비디오 부호화 및 복호화를 위한 방법 |
GB2504069B (en) * | 2012-07-12 | 2015-09-16 | Canon Kk | Method and device for predicting an image portion for encoding or decoding of an image |
CN104838650B (zh) * | 2012-09-28 | 2018-03-30 | 日本电信电话株式会社 | 帧内预测编码方法、帧内预测解码方法、帧内预测编码装置、帧内预测解码装置以及记录程序的记录介质 |
US11284103B2 (en) * | 2014-01-17 | 2022-03-22 | Microsoft Technology Licensing, Llc | Intra block copy prediction with asymmetric partitions and encoder-side search patterns, search ranges and approaches to partitioning |
CN115118966A (zh) * | 2015-11-20 | 2022-09-27 | 韩国电子通信研究院 | 用于对图像进行编/解码的方法和存储比特流的方法 |
KR102028016B1 (ko) * | 2016-01-18 | 2019-10-02 | 한양대학교 산학협력단 | 인트라 예측을 이용한 비디오 부호화/복호화 방법 및 장치 |
WO2018047995A1 (ko) * | 2016-09-08 | 2018-03-15 | 엘지전자(주) | 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치 |
US10880570B2 (en) | 2016-10-05 | 2020-12-29 | Qualcomm Incorporated | Systems and methods of adaptively determining template size for illumination compensation |
-
2017
- 2017-09-29 KR KR1020170128210A patent/KR102471207B1/ko active IP Right Grant
- 2017-09-29 WO PCT/KR2017/011055 patent/WO2018066958A1/ko active Application Filing
- 2017-09-29 CN CN202310693355.2A patent/CN116634182A/zh active Pending
- 2017-09-29 US US16/339,353 patent/US11218726B2/en active Active
- 2017-09-29 CN CN202310692712.3A patent/CN116668690A/zh active Pending
- 2017-09-29 CN CN201780061233.4A patent/CN109804624B/zh active Active
- 2017-09-29 CA CA3227652A patent/CA3227652A1/en active Pending
- 2017-09-29 CN CN202310692922.2A patent/CN116634180A/zh active Pending
- 2017-09-29 CA CA3039153A patent/CA3039153A1/en active Pending
- 2017-09-29 CN CN202310693305.4A patent/CN116634181A/zh active Pending
-
2021
- 2021-11-17 US US17/528,785 patent/US11700392B2/en active Active
-
2023
- 2023-05-24 US US18/201,328 patent/US12108075B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110292994A1 (en) | 2010-05-30 | 2011-12-01 | Lg Electronics Inc. | Enhanced intra prediction mode signaling |
US20190208209A1 (en) | 2016-09-05 | 2019-07-04 | Lg Electronics Inc. | Image coding/decoding method and apparatus therefor |
Also Published As
Publication number | Publication date |
---|---|
CN116634180A (zh) | 2023-08-22 |
KR20180037599A (ko) | 2018-04-12 |
US20200053385A1 (en) | 2020-02-13 |
US20220078480A1 (en) | 2022-03-10 |
CN109804624A (zh) | 2019-05-24 |
CA3227652A1 (en) | 2018-04-12 |
CA3039153A1 (en) | 2018-04-12 |
WO2018066958A1 (ko) | 2018-04-12 |
US20230328277A1 (en) | 2023-10-12 |
US12108075B2 (en) | 2024-10-01 |
CN116634181A (zh) | 2023-08-22 |
CN116668690A (zh) | 2023-08-29 |
US11700392B2 (en) | 2023-07-11 |
CN116634182A (zh) | 2023-08-22 |
CN109804624B (zh) | 2023-06-30 |
US11218726B2 (en) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102549178B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102410032B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102416257B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102599115B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102492809B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102664475B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
CN109716773B (zh) | 用于处理视频信号的方法和设备 | |
KR102471206B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102471207B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102559062B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102435000B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102601267B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102424420B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102471209B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR20190028325A (ko) | 비디오 신호 처리 방법 및 장치 | |
KR102559061B1 (ko) | 비디오 신호 처리 방법 및 장치 | |
KR20190110041A (ko) | 비디오 신호 처리 방법 및 장치 | |
KR20180015599A (ko) | 비디오 신호 처리 방법 및 장치 | |
KR20190028324A (ko) | 비디오 신호 처리 방법 및 장치 | |
CN112204984A (zh) | 用于处理视频信号的方法和设备 | |
KR20180103732A (ko) | 비디오 신호 처리 방법 및 장치 | |
CN112204965B (zh) | 用于处理视频信号的方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |