KR102450830B1 - 고밀도 무선 네트워크들 내의 무선 디바이스들을 위한 절전 채널 액세스 - Google Patents
고밀도 무선 네트워크들 내의 무선 디바이스들을 위한 절전 채널 액세스 Download PDFInfo
- Publication number
- KR102450830B1 KR102450830B1 KR1020177016446A KR20177016446A KR102450830B1 KR 102450830 B1 KR102450830 B1 KR 102450830B1 KR 1020177016446 A KR1020177016446 A KR 1020177016446A KR 20177016446 A KR20177016446 A KR 20177016446A KR 102450830 B1 KR102450830 B1 KR 102450830B1
- Authority
- KR
- South Korea
- Prior art keywords
- trigger frame
- frame
- beacon interval
- indication
- trigger
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 109
- 238000000034 method Methods 0.000 claims abstract description 50
- 230000000737 periodic effect Effects 0.000 claims abstract description 21
- 230000005540 biological transmission Effects 0.000 claims description 28
- 238000012545 processing Methods 0.000 claims description 11
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000015654 memory Effects 0.000 description 19
- 239000000523 sample Substances 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000004044 response Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000007704 transition Effects 0.000 description 7
- 238000007726 management method Methods 0.000 description 6
- 230000005291 magnetic effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000013468 resource allocation Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001168730 Simo Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005404 monopole Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/04—Scheduled access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0216—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
고밀도 무선 네트워크에서 채널 액세스를 위한 예의 시스템, 방법 및 디바이스가 개시된다. 특히, 방법은 하나 이상의 트리거 프레임을 액세스 포인트로부터 하나 이상의 통신 스테이션으로 전송하는 것을 포함할 수 있으며, 하나 이상의 트리거 프레임은 복수의 컴포넌트를 포함하며, 복수의 컴포넌트는 비컨 간격 내에 트리거 프레임이 주기적 또는 비주기적인 방식으로 스케줄링되는지를 나타내며, 만약 주기적인 트리거 프레임이 스케줄링된다면 다음 트리거 프레임으로의 카운트다운을 나타내며, 만약 비주기적인 트리거 프레임이 스케줄링된다면 액세스 포인트에 의해 스케줄링되는 다음 트리거 프레임까지의 시간을 나타낸다. 본 명세서에 기술되는 방법, 장치 및 시스템은 802.11ax 또는 임의의 다른 무선 표준에 적용될 수 있다.
Description
본 출원은 2015년 1월 20일에 출원된 미국 가특허 출원 제62/105,634호 및 2015년 3월 27일에 출원된 미국 특허 출원 제14/671,350호의 우선권을 주장하며, 이들의 전체 내용은 참조로 본 명세서에 포함된다.
본 명세서에 개시되는 실시예는 일반적으로 무선 네트워크에 관한 것으로, 특히 WLAN 시스템에서 채널에 액세스하기 위한 방법 및 장치에 관한 것이다.
최근의 정보 통신 기술의 개발로 인해, 다양한 무선 통신 기술이 개발되고 있다. 이러한 기술들 중에서 WLAN은 무선 주파수 기술에 기반하여 PDA, 랩탑 컴퓨터 및 휴대형 멀티미디어 플레이어(PMP)와 같은 모바일 단말을 사용하여 가정에서, 기업에서 또는 특정의 서비스 제공 지역에서 인터넷에 대한 무선 액세스를 가능하게 하는 기술이다.
WLAN의 가능성있는 약점으로 지적된 제한된 통신 속도를 극복하기 위해, 시스템이 네트워크의 속도 및 신뢰성을 향상시키면서 무선 네트워크의 커버리지 영역을 확장할 수 있는 기술 표준들이 최근에 도입되었다. 가령, IEEE 802.11n은 540 Mbps의 최대 데이터 처리 속도를 가진 높은 처리능력을 지원한다. 또한, 송신 에러를 최소화하며 데이터 레이트를 최적화하기 위해 송신기 및 수신기 모두를 위한 다중 안테나를 이용하는 다중 입력 다중 출력(MIMO) 기술이 도입되고 있다. 차세대 WLAN인 IEEE 802.11ax 또는 High-Efficiency WLAN(고효율 WLAN: HEW)이 개발중이다. 업링크 멀티유저 MIMO (UL MU-MIMO) 및 직교 주파수 분할 다중 액세스(OFDMA)는 새로운 표준에 포함되는 두 개의 주요한 특징이 된다.
도 1은 하나 이상의 실시예에 따른, 예의 네트워크 환경을 도시한 네트워크 도면이다.
도 2는 하나 이상의 실시예에 따른, 사물 인터넷(IoT) 통신 스테이션들(STAs)의 채널 액세스를 위한 트리거 프레임의 부분적인 프레임 포맷을 도시하고 있다.
도 3은 하나 이상의 실시예에 따른, 디프 슬리프 모드(deep sleep mode) 및 샬로우 슬리프 모드(shallow sleep mode)를 도시한, AP 디바이스 및 IoT 디바이스로부터의 프레임 전송의 예의 타이밍 도면을 도시하고 있다.
도 4는 하나 이상의 실시예에 따른, 시스템 및 디바이스에 사용하기 위한 방법에서의 동작들의 예를 도시하고 있다.
도 5는 하나 이상의 실시예에 따른, 시스템 및 디바이스에 사용하기 위한 방법에서의 동작들의 예를 도시하고 있다.
도 6은 하나 이상의 실시예에 따른, 예의 통신 스테이션 또는 예의 액세스 포인트의 기능도를 도시하고 있다.
도 7은 본 명세서에서 기술되는 하나 이상의 실시예에 따른 하나 이상의 기술(가령, 방법) 중 임의의 기술이 수행될 수 있는 머신의 예의 블럭도를 도시하고 있다.
도 2는 하나 이상의 실시예에 따른, 사물 인터넷(IoT) 통신 스테이션들(STAs)의 채널 액세스를 위한 트리거 프레임의 부분적인 프레임 포맷을 도시하고 있다.
도 3은 하나 이상의 실시예에 따른, 디프 슬리프 모드(deep sleep mode) 및 샬로우 슬리프 모드(shallow sleep mode)를 도시한, AP 디바이스 및 IoT 디바이스로부터의 프레임 전송의 예의 타이밍 도면을 도시하고 있다.
도 4는 하나 이상의 실시예에 따른, 시스템 및 디바이스에 사용하기 위한 방법에서의 동작들의 예를 도시하고 있다.
도 5는 하나 이상의 실시예에 따른, 시스템 및 디바이스에 사용하기 위한 방법에서의 동작들의 예를 도시하고 있다.
도 6은 하나 이상의 실시예에 따른, 예의 통신 스테이션 또는 예의 액세스 포인트의 기능도를 도시하고 있다.
도 7은 본 명세서에서 기술되는 하나 이상의 실시예에 따른 하나 이상의 기술(가령, 방법) 중 임의의 기술이 수행될 수 있는 머신의 예의 블럭도를 도시하고 있다.
본원 개시물에서 기술되는 시스템, 방법 및 디바이스는 고밀도로 배치된 무선 네트워크들 내에서 채널 액세스를 위한 기술을 제공하고 있다. 아래의 설명 및 도면들은 당업자가 특정의 실시예를 구현할 수 있게 특정의 실시예를 충분하게 예시하고 있다. 다른 실시예는 구조적인 변경, 논리적인 변경, 전기적인 변경, 프로세스적인 변경 및 다른 변경을 포함할 수 있다. 일부 실시예의 부분들 및 특징들은 다른 실시예의 것들에 포함될 수 있거나 대체될 수 있다. 하나 이상의 구현예의 세부사항들은 첨부되는 도면 및 아래의 상세한 설명에서 기술된다. 다른 실시예, 특징, 및 측면들은 상세한 설명, 도면 및 청구범위로부터 분명해질 것이다. 청구범위에서 기술되는 실시예는 그 청구항의 모든 가용 등가물을 포함하고 있다.
본 명세서에 기술되는 실시예는, IEEE 802.11ax(이에 국한되는 것은 아님)를 포함한 고밀도로 배치된 WLAN 네트워크들에서 사물 인터넷 기반(IoT 기반) 통신 스테이션들(STAs)을 위한 채널 액세스를 위한 시스템, 방법 및 디바이스를 제공하고 있다.
캐리어 감지 다중 액세스(CSMA)는, 노드가 전기적 버스 또는 전자기적 스펙트럼의 밴드와 같은 공유 전송 매체 상의 송신 전에 다른 트래픽의 부존재를 검증하는 확률적 매체 액세스 제어(MAC) 프로토콜이다. 캐리어 감지는, 송신기가 송신을 개시하기 전에 다른 송신이 진행중인지를 결정하기 위해 수신기로부터의 피드백을 사용하고 있음을 의미한다. 즉, 송신기는 송신을 시도하기 전에 다른 스테이션으로부터의 반송파의 존재를 검출하도록 시도한다. 만약 반송파가 감지되면, 스테이션은 자신의 송신을 개시하기 전에 진행중인 송신이 끝나기를 기다린다. 즉, CSMA는 "송신전 감지" 또는 "발언전 경청"의 원리에 기반하고 있다. 다중 액세스는 다중 스테이션이 그 매체 상에서 전송 및 수신하는 것을 의미한다. 하나의 노드에 의한 송신은 일반적으로 그 매체에 접속된 모든 다른 스테이션에 의해 수신된다. 일부 CSMA 충돌 회피(CSMA-CA) 프로토콜에서, STAs는 20MHz 또는 40MHz의 채널로 동작하도록 0 내지 31로부터 선택되는 경합 윈도우(contention window;CW)를 사용하여 매체에 대해 경합한다. 그러나, 본 명세서에 개시되는 예의 시스템, 방법 및 디바이스에서, 스케줄링된 채널 액세스는 CSMA-CA를 사용하는 채널 액세스 대신에 사용된다.
IEEE 802.11ax(High-Efficiency WLAN; HEW))에 포함된 새로운 Wi-Fi 표준인 DensiFi를 개발할 경우, 직교 주파수 분할 다중 액세스(OFMDA)를 사용하는 스케줄링된 매체 액세스에 대한 진행중인 논의가 있으며, 여기서, 액세스 포인트(AP)로부터의 스케줄링 메시지는 통신 스테이션(STA)의 ID, 할당된 서브-채널, 및 액세스 기간을 나타낼 수 있다. 그러나, 이러한 스케줄링 메시지는 증가하는 개수의 사용자 디바이스 또는 STA 및 사용자 디바이스 또는 STA 마다의 서브-채널 할당들을 갖도록 지수함수적으로 증가할 수 있다. 이는 중앙집중식 스케줄링된 OFDMA 채널 액세스 방법의 하나의 결함일 수 있다.
본 명세서에 기술되는 실시예들은 고밀도로 배치된 무선 LAN (WLAN) 네트워크들 내에서 사물 인터넷 기반(IoT 기반) 통신 스테이션(STA)에 대한 채널 액세스를 위한 시스템, 방법 및 디바이스를 제공한다. 개시된 예의 시스템, 방법 및 디바이스는 트리거 프레임(trigger frame)으로 지칭될 수 있는 스케줄링 메시지를 사용하는 초저전력 IoT STA를 위한 전력 효율적 채널 액세스 메카니즘을 제공한다. 트리거 프레임은 STA와 통신하는 데 사용될 수 있는 임의의 데이터 프레임일 수 있다. 가령, 트리거 프레임은 다운링크 데이터 프레임, 버퍼링된 프레임, 또는 STA로 전송될 수 있는 단순한 스케줄링 메시지를 포함할 수 있다. 트리거 프레임은 채널 경합을 사용하여 송신될 수 있으며, 이러한 트리거 프레임의 서브세트는 IoT 디바이스용으로 사용될 수 있다. 개시된 예의 시스템, 방법 및 디바이스는 샬로우 슬리프 모드로 지칭될 수 있는 새로운 슬리프 모드를 제공하기도 하지만, 디프 슬리프 모드(deep sleep mode)는 STA가 최소한의 전력을 소비할 때의 모드용으로 사용될 수 있다. 이러한 개시물의 목적을 위해, 샬로우 슬리프 모드는 STA가 디프 슬리프 모드보다 높은 전력을 소비할 수 있지만 디프 슬리프 모드로부터 이 디프 슬리프 모드보다 더 빠르게 활성 또는 경청 모드로 전이할 수 있는 모드로서 정의될 수 있다.
본 명세서에 사용되는 용어들 "통신 스테이션", "스테이션", "핸드헬드 디바이스", "모바일 디바이스", "무선 디바이스" 및 "사용자 장비(UE)"는 셀룰러 텔레폰, 스마트폰, 태블릿, 넷북, 무선 단말, 랩탑 컴퓨터, 웨어러블 컴퓨터 디바이스, 펨포셀, 고속 데이터 레이트(HDR) 가입자 스테이션, 액세스 포인트, 액세스 단말, 또는 다른 PCS 디바이스와 같은 무선 통신 디바이스를 지칭한다. 이 무선 통신 디바이스는 이동형이거나 고정형일 수 있다.
본 명세서에 사용되는 용어 "액세스 포인트(AP)"는 고정 스테이션일 수 있다. 액세스 포인트는 또한 액세스 노드, 베이스 스테이션, 또는 당해 분야에서 알려진 몇몇 다른 유사한 용어로 지칭될 수도 있다. 액세스 단말은 또한 모바일 스테이션, 사용자 장비(UE), 무선 통신 디바이스, 또는 당해 분야에서 알려진 몇몇 다른 유사한 용어로 지칭될 수 있다. 본 명세서에 개시된 실시예는 일반적으로 무선 네트워크와 관련된다. 일부 실시예는 IEEE 802.11ax 표준을 구비한 IEEE 802.11 표준들 중의 하나에 따라 동작하는 무선 네트워크와 관련될 수 있다.
도 1은 몇몇 실시예에 따른 네트워크 환경의 예를 도시한 네트워크 도면이다. 무선 네트워크(100)는, IEEE 802.11ax 표준을 구비한 IEEE 802.11 표준들 중의 하나에 따라 통신 매체(106)와 통신할 수 있는, 하나 이상의 통신 스테이션(STA)(112, 114, 116)과 하나 이상의 액세스 포인트(AP)(102)를 포함할 수 있다. 통신 스테이션(112, 114, 116)은, 비고정형이며 고정된 위치를 갖지 않는 모바일 디바이스일 수 있거나, 또는 통신 스테이션은 고정형이며 고정된 위치를 가질 수 있다. 하나 이상의 AP는 고정형이며 고정된 위치를 가질 수 있다. 통신 스테이션(112, 114, 116)은 가령, 이후에 IoT 디바이스로 지칭되기도 하는 하나 이상의 IoT 기반형 STA를 포함할 수 있다.
몇몇 IEEE 802.11ax (고효율 WLAN (HEW))에 따라, 액세스 포인트는, (가령, 경합 기간 동안) 무선 매체를 경합하여 HEW 제어 기간(즉, 송신 기회(TXOP)) 동안 상기 무선 매체의 독점적 제어를 수신하도록 구성될 수 있는 마스터 스테이션(master station)으로서 동작할 수 있다. 마스터 스테이션은 HEW 제어 기간의 개시시에 HEW 마스터 동기화 전송을 송신할 수 있다. HEW 제어 기간 동안, HEW 스테이션은 비경합 기반 다중 액세스 기술에 따라 마스터 스테이션과 통신할 수 있다. 이는, 디바이스들이 다중 액세스 기술보다는 경합 기반 통신 기술에 따라 통신한다는 점에서 기존의 Wi-Fi 통신과는 상이하다. HEW 제어 기간 동안, 마스터 스테이션은 하나 이상의 HEW 프레임을 사용하여 HEW 스테이션과 통신할 수 있다. 또한, HEW 제어 기간 동안, 레거시 스테이션들(legacy stations)은 통신의 방해를 받는다. 일부 실시예에서, 마스터 동기화 전송은 HEW 제어 및 스케줄 전송으로 지칭될 수 있다.
일부 실시예에서, HEW 제어 기간 동안 사용되는 다중 액세스 기술은 스케줄링된 직교 주파수 분할 다중 액세스(OFDMA) 기술일 수 있지만, 이는 필요 요건은 아니다. 다른 실시예에서, 다중 액세스 기술은 시분할 다중 액세스(TDMA) 기술 또는 주파수 분할 다중 액세스(FDMA) 기술일 수 있다. 소정의 실시예에서, 다중 액세스 기술은 공간 분할 다중 액세스(SDMA) 기술일 수 있다.
마스터 스테이션은 또한 레거시 IEEE 802.11 통신 기술에 따라 레거시 스테이션들과 통신할 수 있다. 일부 실시예에서, 마스터 스테이션은 또한 레거시 IEEE 802.11 통신 기술에 따라 HEW 제어 기간 외부에서 HEW 스테이션과 통신하도록 구성될 수 있지만, 이는 필수 요건은 아니다.
다른 실시예에서, HEW 프레임의 링크들(links)은 동일한 대역폭을 갖도록 구성될 수 있으며, 그 대역폭은 20 MHz, 40 MHz, 또는 80 MHz의 연속 대역폭들 또는 80+80 MHz (160 MHz) 불연속 대역폭 중의 하나일 수 있다. 소정의 실시예에서, 320 MHz 연속 대역폭이 사용될 수 있다. 다른 실시예에서, 5 MHz 및/또는 10 MHz의 대역폭이 또한 사용될 수 있다. 이러한 실시예에서,HEW 프레임의 각각의 링크는 다수의 공간 스트림을 전송하기 위해 구성될 수 있다.
직교 주파수 분할 다중 액세스(OFDMA)는 802.11ax의 또다른 특징이다. OFDMA는 AP(102)가 통신 스테이션(STA)(112, 114, 116)의 클리어 채널 평가(clear channel assessment;CCA) 상태를 알지 못하거나 그 STA가 롱 패킷(long packet)을 수신하기 위한 채널을 유지하지 않으면 수신 재밍(reception jamming)을 경험할 수 있다. 고밀도로 배치된 WLAN 네트워크에서 사물 인터넷 기반(IoT 기반) 통신 스테이션(STA)에 대한 채널 액세스를 위한 소정 예의 방법 및 장치가 도 2 내지 도 7에서 상세하게 도시된다.
능동 스캐닝 프로세스를 포함한 네트워크 디스커버리 동작의 예에서, 스캐닝을 수행하도록 구성된 STA는 채널들 사이를 이동하여 인접한 AP를 탐색하기 위해, 프로브 요청 프레임을 전송하고 그 프로브 요청 프레임에 대한 응답을 기다린다. 응답기(responder)는 프로브 요청 프레임에 응답하여 그 프로브 요청 프레임을 전송한 STA에게 프로브 응답 프레임을 전송한다. 여기서, 응답기는 스캐닝된 채널의 기본 서비스 세트(BSS)에서 비컨 프레임을 전송한 최종 STA일 수 있다. BSS에서, AP는 비컨 프레임을 전송하며 따라서 그 AP는 상기 응답기로서 기능한다. 독립적인 기본 서비스 세트(IBSS)에서, 그 IBSS 내의 STA들은 비컨 프레임을 교대로 전송하며 따라서 그 응답기는 고정되지 않는다. 가령, 채널 #1 상에서 프로브 요청 프레임을 전송하며 그리고 채널 #1 상에서 프로브 응답 프레임을 수신한 STA는 수신된 프로브 응답 프레임 내에 포함된 BSS 관련 정보를 저장할 수 있으며 동일한 방식으로 스캐닝을 수행하기 위해 다음 채널로 이동(가령, 채널 #2 상에서 프로브 요청/응답의 전송/수신)할 수 있다.
스캐닝은 또한 수동 스캐닝 방식으로 수행될 수 있다. 수동 스캐닝 동작을 수행할 때, 스캐닝을 수행하는 STA는 한 채널에서 다른 채널로 이동하는 동안 비컨 프레임을 기다린다. IEEE 802.11에서 관리 프레임들 중의 하나인 비컨 프레임은 무선 네트워크의 존재를 통지하고 스캐닝을 수행하는 STA가 무선 네트워크를 찾아서 그 무선 네트워크에 참여할 수 있도록 주기적으로 전송된다. BSS에서, AP는 이 비컨 프레임을 주기적으로 전송한다. IBSS에서, 상기 IBSS 내의 STA들은 비컨 프레임을 교대로 전송한다. 스캐닝을 수행하는 STA가 비컨 프레임을 수신하면, 그 STA는 비컨 프레임 내에 포함된 BSS에 관한 정보를 저장하며, 다음 채널로 이동한다. 이러한 방식으로, STA는 각각의 채널 상에서 수신되는 비컨 프레임 정보를 기록한다. 비컨 프레임을 수신한 STA는 수신한 비컨 프레임 내에 포함된 BSS 관련 정보를 저장하며, 그 후 다음 채널로 이동하여 동일한 방식으로 스캐닝을 수행한다.
일부 WLAN 시스템 내의 STA들은 전송/수신 동작을 수행하기 전에 채널 감지를 수행한다. 지속적으로 채널 감지를 수행하게 되면 STA의 전력 소비는 지속된다. 수신 모드와 송신 모드 간의 전력 소비에는 많은 차이가 존재하지 않으며, 수신 모드의 지속적인 관리는 제한된 전원이 제공되는(즉, 배터리에 의해 구동되는) STA들에게 상당한 부담을 야기할 수 있다. 따라서, STA가 채널 감지를 지속적으로 수행하기 위해 수신 스탠바이 모드를 유지한다면, WLAN의 효율의 측면에서 특별한 이점을 갖지 못하면서 전력이 비효율적으로 소비된다. 이러한 문제를 해결하기 위해, WLAN 시스템은 STA의 전력 관리(PM) 모드를 지원한다.
STA의 PM 모드는 능동 모드와 절전(PS) 모드로 분류된다. STA는 기본적으로 능동 모드에서 동작된다. 능동 모드에서 동작하는 STA는 기동 모드(awake mode)를 보유하고 있다. STA가 기동 모드에 있을 때, STA는 통상적으로 프레임 송신/수신, 채널 스캐닝 등을 수행할 수 있다. 한편, PS 모드에 있는 STA는 슬리프 모드(또는 수면 모드)와 기동 모드 간의 스위칭을 통해 동작한다. 슬리프 모드에 있는 STA는 최소의 전력으로 동작하며, 프레임 송신/수신이나 채널 스캐닝 어느 것도 수행하지 않는다.
STA가 슬리프 모드에서 동작하는 시간이 증가하면, 그 STA의 전력 소비는 감소되며 따라서 그 STA 동작 지속기간은 증가하게 된다. 그러나, 프레임의 송신 또는 수신이 슬리프 모드에서 허용되지 않으므로, STA는 장시간 동안 슬리프 모드에서 무조건적으로 동작할 수는 없다. 슬리프 모드에서 동작하는 STA가 AP로 전송하기 위한 프레임을 가질 경우, 슬리프 모드는 그 프레임을 송신/수신하기 위해 기동 모드로 스위칭될 수 있다. 한편, AP가 슬리프 모드에 있는 STA로 송신하기 위한 프레임을 가질 경우, STA는 그 프레임을 수신할 수 없을 뿐만 아니라 그 프레임의 존재를 인식할 수도 없다. 따라서, STA로 전송될 프레임의 존재 또는 부존재를 인식하기 위해(또는 그 프레임이 존재할 경우 그 프레임을 수신하기 위해), STA는 특정의 주기성에 따라 기동 모드로 스위칭할 필요가 있다.
하나 이상의 실시예에 의하면, 도 1에 도시된 IoT STA(112, 114, 116)는 모든 비컨 프레임들을 수신하거나 디코딩할 수는 없다. 그러나, 이는 AP(102)로부터 하나 이상의 트리거 프레임(trigger frame)을 수신할 수 있다. 트리거 프레임은 STA와 통신하는 데 사용될 수 있는 임의의 데이터 프레임일 수 있다. 트리거 프레임은 가령, 다운링크 데이터 프레임, 버퍼링된 프레임, 또는 STA로 전송될 수 있는 단순한 스케줄링 메시지를 포함할 수 있다.
하나 이상의 실시예에 의하면, IoT STA의 채널 액세스에 기반한, 모든 트리거 프레임 내의 최소 세트의 정보 필드가 도 2에 도시된 바와 같이 설계되고 구현될 수 있다. 가령, 도 2는 하나 이상의 실시예에 따른, IoT STA(114, 116)의 채널 액세스를 위한 트리거 프레임의 부분적인 프레임 포맷(200)을 도시하고 있다. AP(102)는 상기 트리거 프레임이 전송되고 있는 디바이스의 타입에 기반하여 상기 트리거 프레임의 주기성을 결정할 수 있다. 주기성 또는 비주기성 컴포넌트(202)는 비컨 간격 내의 트리거 프레임들이 주기적 또는 비주기적 방식으로 스케줄링될 수 있는지를 나타낼 수 있다. 가령, 1로 설정된 비트는 주기적이라는 것을 의미하며 0으로 설정된 비트는 그외의 것을 나타낼 수 있다. 다음 트리거 컴포넌트(204)까지의 카운트다운 또는 시간에서, 주기적인 트리거 프레임이 컴포넌트(202) 내에 표시된다면, 이 필드는 카운트다운을 나타낼 수 있으며, 만약 비주기적인 트리거 프레임이 표시된다면, 이 필드는 AP에 의해 스케줄링되는 다음 트리거 프레임까지의 시간을 나타낼 수 있다. IoT 컴포넌트(206)를 위한 트리거 시간은 AP가 IoT 디바이스를 위한 트리거 프레임을 스케줄링할려는 의향을 가질 때 그 다음 시간을 나타낼 수 있으며, 그리고 만약 이 필드 내의 값이 0이면, 현재의 트리거 프레임은 IoT 디바이스용으로 스케줄링될 수 있다. 트리거 프레임 포맷(200)은 선택사양적으로 IoT 그룹(208)을 포함할 수 있으며, 이는 IoT STA를 위해 할당된 현재의 트리거 프레임에서 AP가 스케줄링할려는 IoT 그룹을 나타낼 수 있다. 트리거 프레임 포맷(200)은 또한 IoT TIM(208)을 포함할 수 있으며, 이는 IoT 그룹 필드에 의해 표시되는 그룹 내의 IoT STA들에 대한 DL 버퍼링된 표시의 비트맵을 나타낼 수 있으며, 이 비트맵 내의 각각의 비트는 IoT 그룹 내의 AID 위치에 매핑된 DL 버퍼링된 데이터의 존재 또는 부존재를 나타낼 수 있으며, 그에 따라 DL 버퍼링된 데이터를 갖지 않는 STA들은 즉시 디프 슬리프 모드로 되돌아 갈 수 있다.
트리거 프레임 포맷(300)은 또한 가령 UL 데이터 트래픽을 위한 IoT STA들의 각각에 대해 할당된 리소스를 나타낼 수 있는 리소스 할당(310)을 포함할 수 있다. 이 필드는 두 개의 서브 필드(314, 316)를 포함할 수 있다. OFDMA 또는 MU-MIMO 컴포넌트(314)는 AP가 OFDMA 또는 MU-MIMO를 사용하여 리소스를 할당할려는 의도를 갖는지를 나타낼 수 있다. 만약 비트가 0으로 설정된다면, 이는 OFDMA를 나타낼 수 있으며, 그리고 만약 이 비트가 1로 설정된다면, 이는 MU-MIMO를 나타낼 수 있다. 트리거 프레임 포맷(300)은 또한 타이머 동기화 기능(TSF) 컴포넌트(312)를 포함할 수 있으며, 이는 AP의 클럭 시간을 참조하는 TSF 타이머를 나타낼 수 있다. 이 필드는 IoT STA가 가령, AP의 클럭과 동기화하는 것을 지원할 수 있다. TSF는 1 MHz에서 실행되는 64 비트 타이머이며, 다른 스테이션들로부터의 비컨 프레임 및 프로브 응답 프레임에 의해 업데이트될 수 있다. 이러한 타이머의 허용 오차는 25 ppm일 수 있으며, 이 타이머의 값은 타임스탬프로서 비컨 프레임 및 프로브 응답 프레임 내에 위치될 수 있다. 애드혹 스테이션(ad-hoc station)이 먼저 동작을 개시할 경우, 이 애드혹 스테이션은 그 TSF 타이머를 제로로 리셋할 수 있으며, 이미 동작중인 BSS를 찾는 시도를 행하는 수 개의 프로브 요청 프레임을 전송할 수 있다. 프로브 요청(probe request), 프로브 응답(probe response) 및 확인 시퀀스(ack sequence)는 대략 1 밀리초를 가질 수 있다. AP는 그 후 TSF 클럭 및 비컨 간격을 포함하는 비컨 프레임(디폴트는 매 100 밀리초임)의 전송을 개시할 수 있다. 이는 IBSS의 기본 비컨 간격을 수립할 수 있다.
또다른 실시예에 의하면, 모든 트리거 프레임에서 IoT STA를 위한 트리거의 시간 표시의 중요도는 서브-채널들 또는 숏 트레이닝 시퀀스(short trainning sequence;STS)의 사용에 의해 설명될 수 있다. 만약 이전의 서브필드가 OFDMA를 나타내면, 이 필드는 IoT 그룹 내의 관련 ID들(AIDs)의 측면에서 순서화된 STA들의 각각에 할당된 서브-채널들을 나타낼 수 있다. 만약 이전의 서브필드가 MU-MIMO를 나타내면, 이 필드는 가령 각각의 STA에 할당된 복수의 공간 스트림을 나타낼 수 있다.
IoT 필드(206)를 위해 트리거할 시간으로 표시된 값에 기반하여, 저전력 STA들은 샬로우 슬리프 모드로 또는 디프 슬리프 모드로 스위칭할 것을 결정할 수 있다. 가령, IoT를 위해 트리거할 시간의 값이 3 밀리초 보다 낮거나 동일하다면, STA는 샬로우 슬리프 모드로 스위칭할 수 있다. 그렇지 않으면, STA는 디프 슬리프 모드로 스위칭할 수 있다. 그러나, 각각의 IoT 디바이스는 AP의 클럭을 참조하여 소정의 양만큼 시프팅된 클럭을 가질 수 있으며, 따라서 BSS 내의 모든 STA들은 TSF를 수신하고 그 내부 클럭을 업데이트하도록 AP와 통신할 수 있다. IoT 필드(206)를 위해 트리거할 시간의 값은 IoT 디바이스가 임의의 하나의 트리거 프레임(이는 모든 각각의 트리거 프레임은 아님)을 디코딩하는 것을 가능하게 한다.
IoT 필드(206)를 위해 트리거할 시간으로 표시된 값에 기반하여, 저전력 STA는 샬로우 슬리프 내에 스위칭 오프할 특정의 회로를 결정할 수 있으며, 소정의 다른 회로가 턴온되도록 결정할 수 있다. 디바이스 컴포먼트들의 각각을 ON 또는 OFF로 스위칭하기 위한 지연 문제는 샬로우 슬리프 모드 또는 디프 슬리프 모드로 전이하기 위한 정확한 임계치를 정의하도록 결정될 수 있다. 본 명세서에 개시된 실시예의 하나의 이점은, 초저전력 IoT STA들에 대해 전력 효율 채널 액세스가 제공될 수 있다는 것이다. 이러한 IoT STA들은 비컨 프레임을 수신하거나 디코딩하지 못하며 트리거 프레임으로부터 직접 정보를 수신할 수 있다.
도 3으로 다시 돌아가서, 다음 스케줄링된 트리거 프레임을 나타낼 수 있는 트리거 프레임 내의 시간 표시는 IoT STA(112, 114, 116)에 대해 할당될 수 있다. 이 시간 표시는 STA들에 대한 다중 슬리프 모드(또는 수면 모드), 가령 단기간 또는 장기간의 슬리프 최적화를 위한 샬로우 슬리프 모드 또는 디프 슬리프 모드를 정의할 시에 이용될 수 있다. 추가로, 주기성 기간 필드는, 가령 트래픽 유닛(TU)의 측면에서 번역되는 IoT용 트리거 프레임의 주기적인 전송의 기간을 나타낼 수 있는 주기적 또는 비주기적 필드에 후속해서 포함될 수 있다.
도 3은 하나 이상의 실시예에 따른, 디프 슬리프 모드 및 샬로우 슬리프 모드를 도시하는, AP(102)로부터 IoT 디바이스(112, 114, 116)로의 프레임 전송의 타이밍도(300)을 통한 채널 액세스의 예를 도시하고 있다. 이러한 예의 목적을 위해, 절전 디바이스(112)는 스마트폰, 태블릿 또는 랩탑 컴퓨터와 같은 사용자 디바이스일 수 있으며, IoT 디바이스(114, 116)는 써모스탯(thermostat), 램프(lamp), 워터 스프링컬러(water sprinkler), 또는 화재 경보기와 같은 임의의 저전력 디바이스일 수 있다. AP(102)와 STA(112, 114, 116) 간의 동작의 시퀀스는 제각기 시간 라인(310, 312, 314, 316)에 따라 도시된다. 도 3에 도시된 바와 같이, AP(102)는 하나 이상의 비컨 프레임(302, 318, 328)과 상기 비컨 프레임(302, 318, 328) 간의 하나 이상의 트리거 프레임(304, 306, 308, 320, 326)을 전송할 수 있다. 두 개의 비컨 프레임 간의 시간 기간은 비컨 간격으로서 정의될 수 있다. 임의의 STA로 전송될 수 있는 하나 이상의 트리거 프레임(304, 306, 308, 320, 326) 중에서, 일부의 트리거 프레임 또는 그 트리거 프레임의 서브세트는 IoT(114, 116)용으로 지정된 트리거 프레임(306, 308, 326)일 수 있다. 이러한 트리거 프레임은 STA들(112-116)과 통신하는 AP에 의해 사용될 수 있으며, 가령, 디프 슬리프 모드, 샬로우 슬리프 모드 및 기동 또는 활성 모드 사이와 같은 전력 모드들 간의 전이시를 결정할 때 이용될 수 있는 정보를 제공함으로써 STA들(112-116)의 전력 관리를 지원한다. 기동 모드는, STA 또는 IoT 디바이스가 AP에서 버퍼링될 수 있는 하나 이상의 데이터 프레임을 수신할 수 있는 상태로서 정의될 수 있다.
도 3의 좌측 상부로부터 시작하여, AP(102)는 비컨 프레임(302)을 절전 디바이스(112)로 전송할 수 있으며, 이 절전 디바이스는 스마트폰 또는 태블릿과 같은 사용자 디바이스일 수 있다. 화살표 334는 절전 디바이스(112)가 AP로부터 비컨 프레임을 수신할 수 있는 시점을 나타낸다. 통합 리소스 애플리케이션 플랫폼(URAP) 시간일 수 있는 사전결정된 시간 기간(330) 후, AP(102)는 하나 이상의 트리거 프레임(304, 306, 308)을 IoT 디바이스(114, 116)로 전송할 수 있다. 시간 라인 314에 도시된 IoT 디바이스(114)는 336에서 트리거 프레임(304)을 수신할 수 있으며, 이 시점에서, IOT 디바이스(114)는 디프 슬리프 모드(338)로부터 샬로우 슬리프 모드(340)로 전이할 수 있으며, 이 샬로우 슬리프 코드에서 IoT 디바이스(114)는 기동 모드에서만큼의 전력을 소비할 수는 없지만, 디프 슬리프 모드에 있는 동안보다 더 많은 전력을 소비할 수 있다. IoT 디바이스(116)는 342에서 트리거 프레임(306)을 수신할 수 있으며, 이 시점에서 IoT 디바이스(116)는 디프 슬리프 모드(344)로부터 샬로우 슬리프 모드(346)로 전이할 수 있다. 이 시점에서, IoT 디바이스(114) 및 IoT 디바이스(116) 모두는 AP(102)에서 버퍼링될 수 있는 데이터 프레임을 수신할 준비가 되어 있다. 또한, 이 라인을 따라, IoT 디바이스(114, 116)는 데이터 프레임을 수신하기 위해 리소스 할당 정보를 포함할 수 있는 또다른 트리거 프레임(308)을 수신할 수 있다. 가령, 트리거 프레임(308)은 데이터 프레임을 제각기의 IoT 디바이스(114, 116)로 전송하기 위한 랜덤 서브-채널 선택(348, 350)을 나타낼 수 있다. 대략 동일한 시간에, 절전 디바이스(112)는 숏 인터-프레임 공간(short inter-frame space; SIFS)(332)을 사용할 수 있으며, 이 공간은 디바이스(112)가 수신된 프레임을 프로세싱하고 응답 프레임으로 응답하는 데 요구되는 시간의 양으로 정의될 수 있다.
마찬가지로, IoT 디바이스(114)는 342에서 트리거 프레임(320)을 수신할 수 있으며, 이 시점에서 IoT 디바이스(114)는 디프 슬리프 모드(354)로부터 샬로우 슬리프 모드(356)로 전이할 수 있다. 이 시점에서, IoT 디바이스(114)는 AP(102)에서 버퍼링될 수 있는 데이터 프레임을 수신할 준비가 되어 있다. 또한, 이 라인을 따라, IoT 디바이스(114)는 데이터 프레임을 수신하기 위해 리소스 할당 정보를 포함할 수 있는 또다른 트리거 프레임(358)을 수신할 수 있다. 가령, 트리거 프레임(326)은 데이터 프레임을 제각기의 IoT 디바이스(114, 116)로 전송하기 위한 랜덤 서브-채널 선택(358, 360)을 나타낼 수 있다.
일 실시예에 의하면, AP(102)는 모든 트리거 프레임 내에 IoT STA들(114, 116)에 대한 다음 트리거 프레임의 시간을 나타낼 수 있으며, 그 결과, IoT STA들은 디프 슬리프 모드로부터 기동하여 임의의 하나의 트리거 프레임을 수신하며 IoT STA들(114, 116)용의 다음 스케줄링된 트리거 프레임을 통지받을 수 있다. IoT STA들이 전형적으로 250 바이트일 수 있는 비컨 프레임(302, 318, 328)을 수신 또는 디코딩하지 못하므로, 이들 디바이스의 전력 소비에서 상당한 감소가 있을 수 있다. 또한, IoT STA(206)에 할당된 다음 트리거 프레임까지의 시간 표시는 STA가 소정의 RF 컴포넌트 및 베이스밴드 컴포넌트를 ON/OFF로 스위칭하는 것을 가능하게 할 수 있다. 이는 추가로 STA의 고속 기동 시간을 지원할 수 있다.
도 4 및 도 5는 가령, 일 실시예에 따른, Wi-Fi 네트워크에서 채널 액세스를 위한 방법에 포함될 수 있는 방법들의 예를 도시하고 있다. 도 4에 도시된 방법(400)은 동작(402)을 포함할 수 있으며, 이 동작에서, 네트워크 디바이스, 무선 통신 디바이스, 또는 액세스 포인트는 트리거 프레임을 수신하는 디바이스의 타입에 기반하여, 비컨 간격 내의 하나 이상의 트리거 프레임이 주기적 또는 비주기적 방식으로 스케줄링되는지를 결정할 수 있다. 동작(404)에서, 주기적인 트리거 프레임이 스케줄링된다면, 카운트다운이 표시될 수 있으며, 그리고 비주기적인 트리거 프레임이 스케줄링된다면, 그 디바이스에 의해 스케줄링되는 다음 트리거 프레임까지의 시간이 표시될 수 있다. 동작(406)에서, 네트워크 디바이스는 또한 업링크 데이터 트래픽을 위해 통신 스테이션에 할당된 하나 이상의 리소스를 식별하도록 구성될 수 있다. 네트워크 디바이스는 또한 리소스들이 직교 주파수 분할 다중 액세스(OFDMA) 또는 다중 유저 다중 입력 다중 출력(MU-MIMO) 프로토콜을 사용하여 할당되는지를 식별하도록 구성될 수 있다. 이 디바이스는 또한 만약 OFDMA가 선택된다면 통신 스테이션에 할당되는 하나 이상의 서브-채널을 식별하도록 구성될 수 있다. 이 디바이스는 또한 만약 MU-MIMO가 선택된다면 통신 스테이션에 할당된 복수의 공간 스트림을 식별하도록 구성될 수 있다. 동작(408)에서, 네트워크 디바이스는 또한 상기 통신 스테이션으로 그 디바이스의 타이머 동기화 기능(TSF)을 전송하도록 구성될 수 있다. 동작(410)에서, 네트워크 디바이스는 다운링크 버퍼링된 데이터의 트래픽 표시 맵(TIM)을 하나 이상의 사용자 디바이스로 전송할 수 있다. 동작(412)에서, 네트워크 디바이스는 이 스케줄링 정보를 포함한 복수의 컴포넌트를 포함한 하나 이상의 트리거 프레임을 생성할 수 있다. 예의 동작(414)에서, 네트워크 디바이스는 상기 하나 이상의 트리거 프레임을 상기 통신 스테이션에 전송할 수 있다.
도 5는 일 실시예에 따른, 고밀도 무선 네트워크에서 채널 액세스를 획득하기 위해 하나 이상의 무선 통신 디바이스 또는 IoT 디바이스 또는 통신 스테이션에 의해 실행되는 방법(500)에서의 동작들의 예를 도시하고 있다. 동작(502)에서, 가령 IoT 디바이스는 네트워크 디바이스 또는 액세스 포인트로부터, 복수의 컴포넌트를 구비한 하나 이상의 트리거 프레임을 수신할 수 있으며, 상기 복수의 컴포넌트는 비컨 간격 내에 하나 이상의 트리거 프레임이 주기적 또는 비주기적 방식으로 스케줄링되는지를 나타낸다. 동작(504)에서, IoT 디바이스는 만약 주기적 트리거 프레임이 스케줄링된다면 다음 트리거 프레임으로의 카운트다운을 결정할 수 있으며, 만약 비주기적 트리거 프레임이 스케줄링된다면 네트워크 디바이스에 의해 스케줄링된 다음 트리거 프레임까지의 시간을 결정할 수 있다. 동작(506)에서, IoT 디바이스는 적어도 다음 트리거 프레임까지의 시간에 기반하여 샬로우 슬리프 모드 또는 디프 슬리프 모드로 전이하도록 구성될 수 있다. 이 디바이스는 또한 업링크 데이터 트래픽을 위해 네트워크에 의해 할당된 하나 이상의 리소스를 결정하도록 구성될 수 있다. 동작(508)에서, 이 디바이스는 OFDMA가 선택된다면 통신 스테이션에 할당된 하나 이상의 서브-채널을 결정하도록 구성될 수 있거나, 또는 만약 MU-MIMO가 할당된다면 통신 스테이션에 할당된 복수의 공간 스트림을 결정하도록 구성될 수 있다. 동작(510)에서, 이 디바이스는 통신 스테이션으로부터, 네트워크 디바이스의 타이머 동기화 기능(TSF)을 수신하고 무선 통신 디바이스의 내부 클럭과 네트워크 디바이스의 TSF를 동기화하도록 구성될 수 있다. 동작(512)에서, IoT 디바이스는 복수의 컴포넌트들 중의 하나로부터, 무선 통신 디바이스가 속하는 그룹을 나타내는 다운링크 버퍼링된 데이터의 트래픽 표시 맵(TIM)을 결정할 수 있다.
도 6은 일부 실시예에 따라 예의 통신 스테이션(600)의 기능도를 도시하고 있다. 일 실시예에서, 도 6은 일부 실시예에 따라 AP(102)(도 1) 또는 통신 스테이션(STA)(112, 114, 116)(도 1)으로서 사용하기에 적합할 수 있는 통신 스테이션의 기능 블럭도를 도시하고 있다. 통신 스테이션(600)은 또한 핸드헬드 디바이스, 모바일 디바이스, 셀룰러 텔레폰, 스마트폰, 태블릿, 넷북, 무선 단말, 랩탑 컴퓨터, 웨어러블 컴퓨터 디바이스, 피코셀, 펨토셀, 하이 데이터 레이트(HDR) 가입자 스테이션, 액세스 포인트, 액세스 단말, 또는 다른 PCS 디바이스로서 사용하기에 적합할 수 있다.
통신 스테이션(600)은 하나 이상의 안테나(612)를 사용하여 다른 통신 스테이션들에 대해 신호를 송신하고 신호를 수신하기 위한 하나 이상의 송수신기(610)를 갖는 물리층 회로(602)를 포함할 수 있다. 물리층 회로(602)는 또한 무선 매체로의 액세스를 제어하기 위한 매체 액세스 제어(MAC) 회로(604)를 포함할 수 있다. 통신 스테이션(600)은 또한 프로세싱 회로(606), 가령 하나 이상의 프로세서와 본 명세서에 기술되는 동작을 수행하도록 구성된 하나 이상의 메모리(608)를 포함할 수 있다. 일부 실시예에서, 물리층 회로(602) 및 프로세싱 회로(606)는 도 2 내지 도 5에서 세부화된 동작을 수행하도록 구성될 수 있다.
일부 실시예에 따라, MAC 회로(604)는 무선 매체에 대해 경합하고 상기 무선 매체를 통해 통신하기 위한 프레임 또는 패킷을 구성하도록 배치되고, 물리층 회로(602)는 신호를 송신 및 수신하도록 구성될 수 있다. 물리층 회로(602)는 변조/복조, 업변환/다운변환, 필터링, 증폭 등을 위한 회로를 포함할 수 있다. 일부 실시예에서, 통신 스테이션(600)의 프로세싱 회로(606)는 하나 이상의 프로세서를 포함할 수 있다. 다른 실시예에서, 두 개 이상의 안테나(612)는 신호를 송신 및 수신하기 위한 물리층 회로(602)에 연결될 수 있다. 메모리(608)는 메시지 프레임을 구성 및 송신하기 위한 동작을 수행하는 프로세싱 회로(606)를 구성하고 본 명세서에 기술된 다양한 동작을 수행하기 위한 정보를 저장할 수 있다. 메모리(608)는 머신(가령, 컴퓨터)에 의해 판독가능한 형태로 정보를 저장하기 위해, 비일시적인 메모리를 구비한 임의의 타입의 메모리를 포함할 수 있다. 가령, 메모리(608)는 ROM, RAM, 자기 디스크 저장 매체, 광 저장 매체, 플래시 메모리 디바이스 및 다른 저장 디바이스 및 매체를 포함한 컴퓨터 판독가능 저장 디바이스를 포함할 수 있다.
일부 실시예에서, 통신 스테이션(600)은, IoT 디바이스, PDA, 무선 통신 기능을 가진 랩탑 또는 휴대형 컴퓨터, 웹 태블릿, 무선 텔레폰, 스마트폰, 무선 헤드셋, 페이저, 인스탄트 메시징 디바이스, 디지털 카메라, 액세스 포인트, 텔레비전, 의료 디바이스(가령, 심박수 모니터, 혈압 모니터 등), 웨어러블 컴퓨터 디바이스, 또는 정보를 무선으로 수신 및/또는 송신할 수 있는 또다른 디바이스와 같은 휴대형 무선 통신 디바이스의 일부일 수 있다.
일부 실시예에서, 통신 스테이션(600)은 하나 이상의 안테나(612)를 포함할 수 있다. 안테나(612)는 가령, 다이폴 안테나, 모노폴 안테나, 패치 안테나, 루프 안테나, 마이크로칩 안테나, 또는 RF 신호의 전송에 적합한 다른 타입의 안테나를 구비한 하나 이상의 지향성 또는 무지향성 안테나를 포함할 수 있다. 일부 실시예에서, 두 개 이상의 안테나 대신에, 복수의 개구를 가진 단일 안테나가 사용될 수 있다. 이 실시예에서, 각각의 개구는 개별 안테나로서 간주될 수 있다. 일부의 다중 입력 다중 출력(MIMO) 실시예에서, 안테나는, 공간 다이버시티를 위해 그리고 각각의 안테나 및 송신 스테이션의 안테나 사이에서 발생할 수 있는 상이한 채널 특성을 위해 효율적으로 분리될 수 있다.
일부 실시예에서, 통신 스테이션(600)은, 키보드, 디스플레이, 비휘발성 메모리 포트, 다중 안테나, 그래픽 프로세서, 애플리케이션 프로세서, 스피커, 및 다른 모바일 디바이스 엘리먼트 중의 하나 이상을 포함할 수 있다. 디스플레이는 터치 스크린을 구비한 LCD 스크린일 수 있다.
통신 스테이션(600)이 수 개의 개별 기능 엘리먼트를 갖는 것으로 도시되고 있지만, 두 개 이상의 기능 엘리먼트는 조합될 수 있고, 그리고 디지털 신호 프로세서(DSP)와 같은 소프트웨어 구성된 엘리먼트, 및/또는 다른 하드웨어 엘리먼트의 조합에 의해 구현될 수 있다. 가령, 일부 엘리먼트는 하나 이상의 마이크로프로세서, DSP, FPGA, ASIC, RFIC, 및 적어도 본 명세서에 기술된 기능을 수행하기 위한 다양한 하드웨어 및 로직 회로의 조합을 포함할 수 있다. 일부 실시예에서, 통신 스테이션(600)의 기능 엘리먼트는 하나 이상의 프로세싱 엘리먼트 상에서 동작하는 하나 이상의 프로세스로 지칭될 수 있다.
소정의 실시예는 하드웨어, 펌웨어 및 소프트웨어 중의 하나 또는 이들의 조합으로 구현될 수 있다. 다른 실시예는 또한 본 명세서에서 기술되는 동작을 수행하기 위해 적어도 하나의 프로세서에 의해 판독 및 실행될 수 있는 컴퓨터 판독가능 저장 디바이스 상에 저장된 인스트럭션으로서 구현될 수 있다. 컴퓨터 판독가능 저장 디바이스는 머신(가령, 컴퓨터)에 의해 판독가능한 형태로 정보를 저장하는 임의의 비일시적인 메모리 메카니즘을 포함할 수 있다. 가령, 컴퓨터 판독가능 저장 디바이스는 ROM, RAM, 자기 디스크 저장 매체, 광 저장 매체, 플래시 메모리 디바이스, 및 다른 저장 디바이스 및 매체를 포함할 수 있다. 일부 실시예에서, 통신 스테이션(800)은 하나 이상의 프로세서를 포함할 수 있으며, 컴퓨터 판독가능 저장 디바이스 메모리 상에 저장된 인스트럭션으로 구성될 수 있다.
도 7은 본 명세서에서 논의된 임의의 하나 이상의 기술(가령, 방법)이 수행될 수 있는 IoT 디바이스(700) 또는 시스템의 블럭도를 도시하고 있다. 다른 실시예에서, 머신(700)은 독립형 디바이스로서 동작할 수 있거나, 다른 머신들에 접속(가령, 네트워크화)될 수 있다. 네트워크화된 배치에서, 머신(700)은 서버 머신, 클라이언트 머신, 또는 서버 클라이언트 네트워크 환경에서의 서버 및 클라이언트의 머신으로서 동작할 수 있다. 예에서, 머신(700)은 피어 투 피어(P2P)(또는 다른 분산형) 네트워크 환경에서의 피어 머신(peer machine)으로서 기능할 수 있다. 머신(700)은 PC, 태블릿 PC, 셋탑 박스(STB), PDA, 모바일 텔레폰, 웨어러블 컴퓨터 디바이스, 웹 애플리케이션, 네트워크 라우터, 스위치 또는 브릿지, 또는 가령 베이스 스테이션과 같은 머신에 의해 취해질 동작을 지정하는 인스트럭션(순차적 또는 비순차적)을 실행할 수 있는 임의의 머신일 수 있다. 또한, 오직 단일 머신만이 도시되고 있지만, 용어 "머신"은 본 명세서에서 논의된 임의의 하나 이상의 방법, 가령 클라우드 컴퓨팅, 소프트웨어 애즈 어 서비스(software as a service; SaaS), 또는 다른 컴퓨터 클러스터 구성을 수행하는 인스트럭션의 세트(또는 다중 세트)를 개별적으로 또는 결합적으로 실행하는 머신들의 임의의 집합체를 포함하는 것으로 간주될 것이다.
본 명세서에서 기술되는 예는 로직 또는 다수의 컴포넌트, 모듈, 또는 메카니즘을 포함할 수 있거나 이들 상에서 동작할 수 있다. 모듈들은 동작시 특정의 동작을 수행할 수 있는 유형의 엔티티(가령, 하드웨어)들이다. 하나의 모듈은 하드웨어를 포함한다. 일 예에서, 하드웨어는 특히 특정의 동작(가령, 하드와이어드 동작)을 수행하도록 구성될 수 있다. 다른 예에서, 하드웨어는 구성가능 실행 유닛(가령, 트랜지스터, 회로 등)과 인스트럭션을 구비한 컴퓨터 판독가능 매체를 포함할 수 있으며, 인스트럭션은 그 실행 유닛을 구성하여 동작시에 특정 동작을 수행하게 한다. 이러한 실행 유닛의 구성은 실행 유닛 또는 로딩 메카니즘의 관리하에서 발생할 수 있다. 따라서, 이 실행 유닛은 디바이스가 동작중일 때 컴퓨터 판독가능 매체에 통신가능하게 연결된다. 이 예에서, 상기 실행 유닛은 하나 초과의 개수의 모듈일 수 있다. 가령, 동작중에, 실행 유닛은 제1 시점에 제1 모듈을 구현하도록 제1 세트의 인스트럭션에 의해 구성될 수 있고 그리고 제2 시점에 제2 모듈을 구현하도록 제2 세트의 인스트럭션에 의해 재구성될 수 있다.
머신(가령, 컴퓨터 시스템)(700)은 하드웨어 프로세서(702)(가령, 중앙 프로세싱 유닛(CPU), 그래픽 프로세싱 유닛(GPU), 하드웨어 프로세서 코어, 또는 이들의 조합), 메인 메모리(704) 및 정적 메모리(706)를 포함할 수 있으며, 이들의 일부 또는 모두는 인터링크(가령, 버스)(908)를 통해 서로 통신할 수 있다. 머신(700)은 전력 관리 디바이스(732), 그래픽 디스플레이 디바이스(710), 문자 숫자 입력 디바이스(712)(가령, 키보드), 및 사용자 인터페이스(UI) 네비게이션 디바이스(714)(가령, 마우스)를 더 포함할 수 있다. 일 예에서, 그래픽 디스플레이 디바이스(710), 문자 숫자 입력 디바이스(712) 및 UI 네비게이션 디바이스(714)는 터치 스크린 디스플레이일 수 있다. 머신(700)은 추가적으로 저장 디바이스(즉, 드라이브 유닛)(716), 신호 생성 디바이스(718)(가령, 스피커), 안테나(730)에 연결된 네트워크 인터페이스 디바이스/송수신기(720), 및 하나 이상의 센서(728)(가령, GPS 센서, 나침반, 가속계, 또는 다른 센서)를 포함할 수 있다. 머신(700)은 출력 제어기(734), 가령 하나 이상의 주변 디바이스(가령, 프린터, 카드 판독기 등)와 통신하거나 이를 제어하기 위한 시리얼 커넥션(가령, 통합 시리얼 버스(USB) 커넥션, 패러렐 커넥션 또는 다른 유선 또는 무선 커넥션(가령, 적외선(IR), 근거리 통신(NFC) 등)을 포함할 수 있다.
저장 디바이스(916)는 본 명세서에 기술되는 임의의 하나 이상의 기술 또는 방법을 구현하거나 이에 의해 이용되는 하나 이상의 세트의 데이터 구조 또는 인스트럭션(724)(가령, 소프트웨어)을 저장하고 있는 머신 판독가능 매체(722)를 포함할 수 있다. 인스트럭션(724)은 또한 머신(700)에 의한 실행 동안 완전하게 또는 적어도 부분적으로는 메인 메모리(704), 정적 메모리(706), 또는 하드웨어 프로세서(702) 내에 상주할 수 있다. 일 예에서, 하드웨어 프로세서(702), 메인 메모리(704), 정적 메모리(706), 또는 저장 디바이스(716) 중의 하나 또는 이들의 임의의 조합은 머신 판독가능 매체를 구성할 수 있다.
머신 판독가능 매체(722)가 단일 매체로서 도시되고 있지만, 용어 "머신 판독가능 매체"는 하나 이상의 인스트럭션(724)을 저장하도록 구성된 단일 매체 또는 다중 매체(가령, 중앙 집중식 또는 분산식 데이터베이스, 및/또는 관련 캐시 및 서버)를 포함할 수 있다.
용어 "머신 판독가능 매체"는, 머신(700)에 의한 실행을 위한 인스트럭션을 저장, 인코딩, 또는 전달할 수 있으며, 머신(700)으로 하여금 본원 개시물의 임의의 하나 이상의 기술을 수행하게 하거나 상기 인스트럭션에 의해 사용되거나 상기 인스트럭션과 관련되는 데이터 구조를 저장, 인코딩 또는 전달할 수 있는 임의의 매체를 포함할 수 있다. 비제한적인 머신 판독가능 매체의 예는 고체 모드의 메모리와, 광 및 자기 매체를 포함할 수 있다. 일 예에서, 대용량(a massed) 머신 판독가능 매체는 정지 질량을 가진 복수의 입자를 구비한 머신 판독가능 매체를 포함한다. 대용량 머신 판독가능 매체의 특정의 예는 반도체 메모리 디바이스(가령, EPROM, 또는 EEPROM) 및 플래시 메모리 디바이스와 같은 비휘발성 메모리와, 내부 하드 디스크 및 이동식 디스크와 같은 자기 디스크와, 자기 광학 디스크와, CD-ROM 및 DVD-ROM 디스크를 포함할 수 있다.
인스트럭션(724)은 또한, 복수의 전송 프로토콜(가령, 프레임 릴레이, 인터넷 프로토콜(IP), 전송 제어 프로토콜(TCP), 사용자 데이터그램 프로토콜(UDP), 하이퍼텍스트 전송 프로토콜(HTTP), 등)을 이용하는 네트워크 인터페이스 디바이스/송수신기(720)를 통해 전송 매체를 사용하여 통신 네트워크(726)를 통해 송신 또는 수신될 수 있다. 통신 네트워크의 예는 무엇보다도, LAN, WAN, 패킷 데이터 네트워크(가령, 인터넷), 모바일 텔레폰 네트워크(가령, 셀룰러 네트워크), 플레인 올드 텔레폰(POTS) 네트워크, 무선 데이터 네트워크(가령, Wi-Fi®로 알려진 IEEE 802.11 표준 계열, WiMax®로 알려진 IEEE 802.16 표준 계열), IEEE 802.15.4 표준 계열, 및 P2P 네트워크를 포함할 수 있다. 일 예에서, 네트워크 인터페이스 디바이스/송수신기(720)는 통신 네트워크(726)에 접속하기 위한 하나 이상의 물리적인 잭(가령, 이더넷 잭, 동축 잭, 또는 폰 잭) 또는 하나 이상의 안테나를 포함할 수 있다. 일 예에서, 네트워크 인터페이스 디바이스/송수신기(720)는 단일 입력 단일 출력(SIMO) 기술, 다중 입력 다중 출력(MIMO) 기술, 또는 다중 입력 단일 출력(MISO) 기술 중 적어도 하나를 사용하여 무선 통신하는 다수의 안테나를 포함할 수 있다. 용어 "전송 매체"는 머신(700)에 의한 실행을 위한 인스트럭션을 저장, 인코딩 또는 전달할 수 있는 임의의 무형의 매체를 포함하는 것으로 간주될 것이며, 그러한 소프트웨어의 통신을 가능하게 하는 디지털 또는 아날로그 통신 신호 또는 다른 무형의 매체를 포함한다.
실시예
일 실시예는 무선 통신 디바이스로서, 컴퓨터 실행가능 인스트럭션을 저장한 적어도 하나의 메모리와, 상기 컴퓨터 실행가능 인스트럭션을 실행하는 하나 이상의 프로세서를 포함하며, 상기 프로세서는, 수신기(recipient)의 타입에 기반하여, 비컨 간격 내에 하나 이상의 트리거 프레임을 스케줄링하기 위한 주기성을 결정하는 것―상기 주기성은 주기적 또는 비주기적인 것임―과, 스케줄링 정보를 구비한 하나 이상의 컴포넌트를 포함하는 하나 이상의 트리거 프레임을 생성하는 것―상기 스케줄링 정보는 주기적인 트리거 프레임이 스케줄링된다면 다음 트리거 프레임으로의 카운트다운을 나타내며 비주기적인 트리거 프레임이 스케줄링된다면 상기 다음 트리거 프레임까지의 시간을 나타냄―과, 상기 주기성에 기반하여 상기 하나 이상의 트리거 프레임을 통신 스테이션으로 전송하는 것을 수행한다. 이 무선 통신 디바이스는 또한, 업링크 데이터 트래픽을 위해 상기 통신 스테이션에 할당될 하나 이상의 리소스를 결정하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한, 상기 리소스가 직교 주파수 분할 다중 액세스(OFDMA) 프로토콜 또는 다중 유저 다중 입력 다중 출력(MU-MIMO) 프로토콜을 사용하여 할당되는지를 결정하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한, 상기 직교 주파수 분할 다중 액세스(OFDMA) 프로토콜이 선택되면 상기 통신 스테이션에 할당되는 하나 이상의 서브-채널을 결정하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한, 상기 MU-MIMO 프로토콜이 선택되면, 상기 통신 스테이션에 할당되는 복수의 공간 스트림을 결정하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한, 상기 무선 통신 디바이스의 타이머 동기화 기능(TSF)을 상기 통신 스테이션에 전송하도록 구성될 수 있다. 복수의 컴포넌트는 다운링크 버퍼링된 데이터의 트래픽 표시 맵(TIM)을 포함할 수 있다.
다른 예의 실시예는, 무선 통신 디바이스의 적어도 하나의 프로세서에 의해 실행될 때, 상기 무선 통신 디바이스로 하여금 아래의 동작을 수행하게 하는 인스트럭션을 저장한 비일시적인 컴퓨터 판독가능 매체로서, 상기 동작은, 수신기(recipient)의 타입에 기반하여, 비컨 간격 내에 하나 이상의 트리거 프레임을 스케줄링하기 위한 주기성을 결정하는 것―상기 주기성은 주기적 또는 비주기적인 것임―과, 스케줄링 정보를 구비한 하나 이상의 컴포넌트를 포함하는 하나 이상의 트리거 프레임을 생성하는 것―상기 스케줄링 정보는 주기적인 트리거 프레임이 스케줄링된다면 다음 트리거 프레임으로의 카운트다운을 나타내며 비주기적인 트리거 프레임이 스케줄링된다면 상기 다음 트리거 프레임까지의 시간을 나타냄―과, 상기 주기성에 기반하여 상기 하나 이상의 트리거 프레임을 통신 스테이션으로 전송하는 것을 포함한다. 상기 동작은 또한, 업링크 데이터 트래픽을 위해 상기 통신 스테이션에 할당되는 하나 이상의 리소스를 결정하는 것을 더 포함할 수 있다. 상기 동작은, 상기 리소스가 직교 주파수 분할 다중 액세스(OFDMA) 프로토콜 또는 다중 유저 다중 입력 다중 출력(MU-MIMO) 프로토콜을 사용하여 할당되는지를 결정하는 것을 더 포함할 수 있다. 상기 동작은, 직교 주파수 분할 다중 액세스(OFDMA) 프로토콜이 선택되면, 상기 통신 스테이션에 할당되는 하나 이상의 서브-채널을 결정하는 것을 더 포함할 수 있다. 상기 동작은, MU-MIMO 프로토콜이 선택되면 상기 통신 스테이션에 할당되는 복수의 공간 스트림을 결정하는 것을 더 포함할 수 있다. 상기 동작은, 상기 무선 통신 디바이스의 타이머 동기화 기능(TSF)을 상기 통신 스테이션에 전송하는 것을 더 포함할 수 있다. 복수의 컴포넌트는 다운링크 버퍼링된 데이터의 트래픽 표시 맵(TIM)을 더 포함할 수 있다.
또다른 예의 실시예는 무선 통신 디바이스로서, 컴퓨터 실행가능 인스트럭션을 저장한 적어도 하나의 메모리와, 상기 컴퓨터 실행가능 인스트럭션을 실행하는 하나 이상의 프로세서를 포함하며, 상기 프로세서는, 네트워크 디바이스로부터, 복수의 컴포넌트를 포함하는 하나 이상의 트리거 프레임을 수신하는 것―상기 복수의 컴포넌트 중 제1 컴포넌트는 비컨 간격 내에 상기 하나 이상의 트리거 프레임이 주기적 또는 비주기적인 방식으로 스케줄링되는지를 결정하는 것을 나타냄―과, 주기적인 프레임이 스케줄링된다면 다음 트리거 프레임으로의 카운트다운을 결정하고 비주기적인 프레임이 스케줄링된다면 상기 다음 트리거 프레임까지의 시간을 결정하는 것을 수행한다. 이 무선 통신 디바이스는 적어도 부분적으로 상기 다음 트리거 프레임까지의 시간에 기반하여, 샬로우 슬리프 모드 또는 디프 슬리프 모드로 전이하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한 업링크 데이터 트래픽을 위해 상기 네트워크 디바이스에 의해 할당되는 하나 이상의 리소스를 결정하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한 만약 직교 주파수 분할 다중 액세스(OFDMA) 프로토콜이 할당되면 상기 통신 스테이션에 할당되는 하나 이상의 서브-채널을 결정하거나, 또는 만약 MU-MIMO 프로토콜이 할당되면 상기 통신 스테이션에 할당되는 복수의 공간 스트림을 결정하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한 상기 통신 스테이션으로부터 상기 네트워크 디바이스의 클럭 시간을 포함하는 타이머 동기화 기능(TSF)을 수신하고, 무선 통신 디바이스의 내부 클럭을 네트워크 디바이스의 TSF에 동기화시키도록 구성될 수 있다. 복수의 컴포넌트는 상기 무선 통신 디바이스가 속하는 그룹을 나타내는 다운링크 버퍼링된 데이터의 트래픽 표시 맵(TIM)을 포함할 수 있다.
또다른 예의 실시예는 무선 통신 디바이스의 적어도 하나의 프로세서에 의해 실행될 때, 상기 무선 통신 디바이스로 하여금 아래의 동작을 수행하게 하는 인스트럭션을 저장한 비일시적인 컴퓨터 판독가능 매체로서, 상기 동작은 네트워크 디바이스로부터, 복수의 컴포넌트를 포함하는 하나 이상의 트리거 프레임을 수신하는 것―상기 복수의 컴포넌트는 비컨 간격 내에 상기 하나 이상의 트리거 프레임이 주기적 또는 비주기적인 방식으로 스케줄링되는지를 결정하는 것을 나타냄―과, 주기적인 프레임이 스케줄링된다면 카운트다운을 표시하고 비주기적인 프레임이 스케줄링된다면 상기 네트워크 디바이스에 의해 스케줄링되는 다음 트리거 프레임까지의 시간을 표시하는 것을 수행한다. 이 무선 통신 디바이스는 또한 적어도 부분적으로 상기 다음 트리거 프레임까지의 시간에 기반하여, 샬로우 슬리프 모드 또는 디프 슬리프 모드로 전이하도록 구성될 수 있다. 이 무선 통신 디바이스는 업링크 데이터 트래픽을 위해 상기 네트워크 디바이스에 의해 할당되는 하나 이상의 리소스를 결정하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한 만약 직교 주파수 분할 다중 액세스(OFDMA) 프로토콜이 할당되면 상기 통신 스테이션에 할당되는 하나 이상의 서브-채널을 결정하거나, 또는 만약 MU-MIMO 프로토콜이 할당되면 상기 통신 스테이션에 할당되는 복수의 공간 스트림을 결정하도록 구성될 수 있다. 이 무선 통신 디바이스는 또한 상기 통신 스테이션으로부터, 상기 네트워크 디바이스의 타이머 동기화 기능(TSF)을 수신하고, 무선 통신 디바이스의 내부 클럭을 네트워크 디바이스의 TSF에 동기화시키도록 구성될 수 있다. 복수의 컴포넌트는 상기 무선 통신 디바이스가 속하는 그룹을 나타내는 다운링크 버퍼링된 데이터의 트래픽 표시 맵(TIM)을 포함할 수 있다.
본 발명의 기본적인 신규 특징이 본 발명의 실시예에 적용되는 것으로 도시, 기술 및 지적되었지만, 도시된 디바이스의 형태 및 세부사항과 그 동작에서 본 발명의 사상을 벗어나지 않고 다양한 생략 및 대체 및 변경이 당업자에 의해 행해질 수 있다는 것을 이해해야 한다. 또한, 실질적으로 동일한 기능을 실질적으로 동일한 방식으로 수행하여 동일한 결과를 달성하는 엘리먼트 및/또는 방법 동작의 모든 조합이 본 개시물의 범주 내의 것이라는 것을 명시적으로 의도하고 있다. 또한, 본 개시물의 임의의 개시된 형태 또는 실시예와 관련하여 도시 및/또는 기술되는 구조 및/또는 엘리먼트 및/또는 방법 동작들이 일반적인 디자인 선택의 문제로서 임의의 다른 개시되거나 기술되거나 제안되는 형태 또는 실시예에 포함될 수 있다는 것을 인식해야 한다. 따라서, 오직 본 명세서에 첨부되는 청구항들의 영역에 의해 표시되는 것에 국한된다는 것이 의도된다.
Claims (20)
- 저장소 및 프로세싱 회로를 포함하는 무선 디바이스로서,
상기 저장소 및 프로세싱 회로는,
비컨 간격에 대응하는 비컨 프레임을 전송하게 하고(cause to send),
제1 트리거 프레임을 생성하고 - 상기 제1 트리거 프레임은 상기 비컨 간격 내에 제2 트리거 프레임이 전송될 예정이라는 표시와, 직교 주파수 분할 다중 액세스(orthogonal frequency division multiple access; OFDMA) 통신을 위한 제1 리소스 유닛의 표시를 포함함 -,
상기 제2 트리거 프레임을 생성하고 - 상기 제2 트리거 프레임은 OFDMA 통신을 위한 제2 리소스 유닛의 표시를 포함함 -,
상기 비컨 간격 내에 상기 제1 트리거 프레임을 타겟 기동 시간이 스케줄링된 하나 이상의 디바이스로 전송하게 하고,
상기 비컨 간격 내에 상기 제2 트리거 프레임을 상기 타겟 기동 시간이 스케줄링된 하나 이상의 디바이스로 전송하게 하도록 구성되는
무선 디바이스.
- 제1항에 있어서,
상기 제2 트리거 프레임은 상기 비컨 간격 내에 제3 트리거 프레임이 전송될 예정이라는 표시를 더 포함하는
무선 디바이스.
- 제1항에 있어서,
상기 제2 트리거 프레임은 상기 비컨 간격 내의 최종 트리거 프레임이고, 상기 제2 트리거 프레임은 상기 비컨 간격 내에 더 이상 트리거 프레임이 전송되지 않을 것이라는 표시를 포함하는
무선 디바이스.
- 제1항에 있어서,
상기 제1 리소스 유닛은 업링크 전송과 연관되고, 상기 저장소 및 상기 프로세싱 회로는 스테이션 디바이스로부터 수신된 데이터 프레임을 식별하도록 더 구성되는
무선 디바이스.
- 제1항에 있어서,
상기 제1 리소스 유닛은 다운링크 전송과 연관되고, 상기 저장소 및 상기 프로세싱 회로는 타겟 기동 시간 스케줄에 따라 스테이션 디바이스로 데이터 프레임을 전송하도록 더 구성되는
무선 디바이스.
- 제1항에 있어서,
상기 제1 트리거 프레임 및 상기 제2 트리거 프레임은 주기적인
무선 디바이스.
- 제1항에 있어서,
상기 제1 트리거 프레임 및 상기 제2 트리거 프레임은 비주기적(aperiodic)인
무선 디바이스.
- 제1항에 있어서,
무선 신호를 송수신하도록 구성된 송수신기를 더 포함하는
무선 디바이스.
- 제8항에 있어서,
상기 송수신기에 연결된 하나 이상의 안테나를 더 포함하는
무선 디바이스.
- 무선 디바이스의 하나 이상의 프로세서에 의해 실행될 때, 상기 무선 디바이스로 하여금 동작을 수행하게 하는 컴퓨터 실행가능 인스트럭션을 저장한 비일시적인 컴퓨터 판독가능 매체로서,
상기 동작은,
비컨 간격 내에 제1 디바이스에 의해, 제2 디바이스로부터 수신된 제1 트리거 프레임을 식별하는 것 - 상기 제1 트리거 프레임은 직교 주파수 분할 다중 액세스(OFDMA) 통신을 위한 제1 리소스 유닛의 제1 표시를 포함함 - 과,
상기 비컨 간격 내에 제2 트리거 프레임이 전송될 예정이라는 제2 표시를 식별하는 것 - 상기 제2 표시는 상기 제1 트리거 프레임 내에 포함됨 - 과,
상기 제2 디바이스로부터 수신된 상기 제2 트리거 프레임을 식별하는 것 - 상기 제2 트리거 프레임은 OFDMA 통신을 위한 제2 리소스 유닛의 제3 표시를 포함함 - 과,
상기 제2 디바이스로부터 수신된 제4 표시에 기초하여 수면 모드(doze state)로 진입하는 것을 포함하는
비일시적인 컴퓨터 판독가능 매체.
- 제10항에 있어서,
상기 제2 트리거 프레임은 상기 비컨 간격 내에 제3 트리거 프레임이 전송될 예정이라는 제4 표시를 더 포함하는
비일시적인 컴퓨터 판독가능 매체.
- 제10항에 있어서,
상기 제2 트리거 프레임은 상기 비컨 간격 내의 최종 트리거 프레임이고, 상기 제2 트리거 프레임은 상기 비컨 간격 내에 더 이상 트리거 프레임이 전송되지 않을 것이라는 제4 표시를 더 포함하는
비일시적인 컴퓨터 판독가능 매체.
- 제10항에 있어서,
상기 제1 리소스 유닛은 업링크 전송과 연관되고, 상기 동작은 제1 타겟 기동 시간 스케줄에 따라 데이터 프레임을 전송하게 하는 것을 더 포함하는
비일시적인 컴퓨터 판독가능 매체.
- 제10항에 있어서,
상기 제1 리소스 유닛은 다운링크 전송과 연관되고, 상기 동작은 상기 제2 디바이스로부터 수신한 데이터 프레임을 식별하는 것을 더 포함하는
비일시적인 컴퓨터 판독가능 매체.
- 제10항에 있어서,
상기 제1 트리거 프레임과 상기 제2 트리거 프레임은 주기적인
비일시적인 컴퓨터 판독가능 매체.
- 제10항에 있어서,
상기 제1 트리거 프레임과 상기 제2 트리거 프레임은 비주기적인
비일시적인 컴퓨터 판독가능 매체.
- 방법으로서,
제1 디바이스의 하나 이상의 프로세서에 의해, 비컨 간격을 개시하는 비컨 프레임을 전송하게 하는 단계와,
제1 트리거 프레임을 생성하는 단계 - 상기 제1 트리거 프레임은 상기 비컨 간격 내에 제2 트리거 프레임이 전송될 예정이라는 표시와, 직교 주파수 분할 다중 액세스(OFDMA) 통신을 위한 제1 리소스 유닛의 표시를 포함함 - 와,
상기 제2 트리거 프레임을 생성하는 단계 - 상기 제2 트리거 프레임은 OFDMA 통신을 위한 제2 리소스 유닛의 표시를 포함함 - 와,
상기 비컨 간격 내에 상기 제1 트리거 프레임을 타겟 기동 시간이 스케줄링된 하나 이상의 디바이스로 전송하게 하는 단계와,
상기 비컨 간격 내에 상기 제2 트리거 프레임을 상기 타겟 기동 시간이 스케줄링된 하나 이상의 디바이스로 전송하게 하는 단계를 포함하는
방법.
- 장치로서,
비컨 간격을 개시하는 비컨 프레임을 전송하게 하기 위한 수단과,
제1 트리거 프레임을 생성하기 위한 수단 - 상기 제1 트리거 프레임은 상기 비컨 간격 내에 제2 트리거 프레임이 전송될 예정이라는 표시와, 직교 주파수 분할 다중 액세스(OFDMA) 통신을 위한 제1 리소스 유닛의 표시를 포함함 - 과,
상기 제2 트리거 프레임을 생성하기 위한 수단 - 상기 제2 트리거 프레임은 OFDMA 통신을 위한 제2 리소스 유닛의 표시를 포함함 - 과,
상기 비컨 간격 내에 상기 제1 트리거 프레임을 타겟 기동 시간이 스케줄링된 하나 이상의 디바이스로 전송하게 하기 위한 수단과,
상기 비컨 간격 내에 상기 제2 트리거 프레임을 상기 타겟 기동 시간이 스케줄링된 하나 이상의 디바이스로 전송하게 하기 위한 수단을 포함하는
장치. - 삭제
- 삭제
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562105634P | 2015-01-20 | 2015-01-20 | |
US62/105,634 | 2015-01-20 | ||
US14/671,350 US9854520B2 (en) | 2015-01-20 | 2015-03-27 | Power saving channel access for wireless devices in dense wireless networks |
US14/671,350 | 2015-03-27 | ||
PCT/US2015/066827 WO2016118275A1 (en) | 2015-01-20 | 2015-12-18 | Power saving channel access for wireless devices in dense wireless networks |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170105489A KR20170105489A (ko) | 2017-09-19 |
KR102450830B1 true KR102450830B1 (ko) | 2022-10-04 |
Family
ID=56293160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177016446A KR102450830B1 (ko) | 2015-01-20 | 2015-12-18 | 고밀도 무선 네트워크들 내의 무선 디바이스들을 위한 절전 채널 액세스 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9854520B2 (ko) |
EP (1) | EP3248433B1 (ko) |
KR (1) | KR102450830B1 (ko) |
CN (1) | CN107113731B (ko) |
DE (2) | DE102015017275B3 (ko) |
RU (1) | RU2688267C1 (ko) |
WO (1) | WO2016118275A1 (ko) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10454768B2 (en) | 2013-11-15 | 2019-10-22 | F5 Networks, Inc. | Extending policy rulesets with scripting |
US10257854B2 (en) * | 2015-02-02 | 2019-04-09 | Samsung Electronics Co., Ltd. | Management of uplink multi-user transmissions in wireless local area networks |
US10524201B2 (en) * | 2015-05-14 | 2019-12-31 | Lg Electronics Inc. | Method for operating in power saving mode in wireless LAN system and apparatus therefor |
US9801133B2 (en) * | 2015-06-16 | 2017-10-24 | Intel Corporation | Apparatus, system and method of communicating a wakeup packet response |
US10015745B2 (en) | 2015-06-16 | 2018-07-03 | Intel Corporation | Apparatus, system and method of communicating a wakeup packet |
CN111132362B (zh) * | 2015-09-02 | 2024-06-28 | 华为技术有限公司 | 一种物联网通信方法、网络侧设备及物联网终端 |
JP6376109B2 (ja) * | 2015-11-19 | 2018-08-22 | 京セラドキュメントソリューションズ株式会社 | 情報処理装置及びプログラム |
US10725170B2 (en) | 2015-12-17 | 2020-07-28 | Honeywell International Inc. | Frequency modulated continuous wave radio altimeter spectral monitoring |
US10177868B2 (en) | 2015-12-17 | 2019-01-08 | Honeywell International Inc. | Systems and methods to synchronize wireless devices in the presence of a FMCW radio altimeter |
US20170195954A1 (en) * | 2016-01-05 | 2017-07-06 | Chittabrata Ghosh | Restrictive service period for power save devices |
KR101988861B1 (ko) * | 2016-03-02 | 2019-06-13 | 한국전자통신연구원 | 네트워크 접속 방법 및 네트워크 장치 |
US10326700B1 (en) * | 2016-03-29 | 2019-06-18 | F5 Networks, Inc. | Hash based per subscriber DNS based traffic classification |
CN105978675B (zh) * | 2016-06-24 | 2019-01-08 | 西安电子科技大学 | 基于正交频分多址上行接入方法 |
US20180020405A1 (en) * | 2016-07-13 | 2018-01-18 | Intel IP Corporation | Wake-up packet acknowledgement procedure |
US11224016B2 (en) * | 2016-09-26 | 2022-01-11 | Telefonaktiebolaget Lm Ericsson (Publ) | First communications device and a method therein for handling of active mode operation |
US10574445B2 (en) * | 2016-12-21 | 2020-02-25 | Intel IP Corporation | Range constrained device configuration |
US10701707B2 (en) * | 2017-03-28 | 2020-06-30 | Arris Enterprises Llc | Allocation of wireless channels for preferred stations |
WO2018236422A1 (en) * | 2017-06-19 | 2018-12-27 | Intel IP Corporation | METHODS AND APPARATUS FOR MANAGING COORDINATED PAIR-PAID COMMUNICATIONS IN A WIRELESS NETWORK |
CN110225557B (zh) * | 2018-03-02 | 2022-04-22 | 华为技术有限公司 | 一种基于物联网的通信方法及装置 |
JP2019220101A (ja) * | 2018-06-22 | 2019-12-26 | レノボ・シンガポール・プライベート・リミテッド | 情報処理装置及び情報処理方法 |
US11051310B2 (en) * | 2018-10-01 | 2021-06-29 | Qualcomm Incorporated | UE indication of supported number of trigger states |
US11516757B2 (en) * | 2019-06-07 | 2022-11-29 | Intel Corporation | Multi-access point collaboration in wireless communications |
US10965441B1 (en) * | 2019-10-10 | 2021-03-30 | Rohde & Schwarz Gmbh & Co. Kg | Frame trigger recreation method and frame trigger recreator |
US11581746B2 (en) * | 2020-02-19 | 2023-02-14 | Schlage Lock Company Llc | Battery life of battery powered wireless devices |
US11240755B2 (en) | 2020-03-20 | 2022-02-01 | Cypress Semiconductor Corporation | Apparatus, systems, and methods for battery life based wireless communication scheduling |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109699A (ja) * | 2011-01-19 | 2011-06-02 | Casio Computer Co Ltd | 無線端末装置、無線中継装置及びプログラム |
WO2014074832A1 (en) * | 2012-11-09 | 2014-05-15 | Interdigital Patent Holdings, Inc. | Method and apparatus for coordinated orthogonal channel access (coca) |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2814296A (en) | 1954-04-15 | 1957-11-26 | S & R J Everett & Co Ltd | Surgical needles |
JP4444660B2 (ja) * | 2002-01-22 | 2010-03-31 | フリースケール セミコンダクター インコーポレイテッド | 非同期タイムスロットにおける長非同期データを取り扱うためのシステム及び方法 |
US7965675B2 (en) * | 2005-08-22 | 2011-06-21 | Motorola Mobility, Inc. | System and method for detecting an unlicensed mobile alliance (UMA) service in GSM wireless communication networks |
US9318026B2 (en) * | 2008-08-21 | 2016-04-19 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US20100284425A1 (en) * | 2009-05-11 | 2010-11-11 | David Hood | System and method of using tdm variable frame lengths in a telecommunications network |
RU2518206C2 (ru) * | 2009-08-26 | 2014-06-10 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Способ и устройство для передачи множества кадров для поддежки mu-mimo |
US8717957B2 (en) * | 2010-02-10 | 2014-05-06 | Broadcom Corporation | Preamble and header bit allocation for power savings within multiple user, multiple access, and/or MIMO wireless communications |
US8526346B1 (en) | 2010-04-28 | 2013-09-03 | Qualcomm Incorporated | Power save communication mechanism for wireless communication systems |
US8843076B2 (en) * | 2010-07-06 | 2014-09-23 | Intel Corporation | Device, system and method of wireless communication over a beamformed communication link |
ES2587834T3 (es) * | 2010-10-08 | 2016-10-27 | Lg Electronics Inc. | Método de ahorro de energía en una red de área local inalámbrica y aparato correspondiente |
WO2012077952A2 (ko) * | 2010-12-07 | 2012-06-14 | 엘지전자 주식회사 | 무선랜 시스템에서 파워 세이브 모드 운영 방법 및 이를 지원하는 장치 |
WO2013066097A2 (ko) * | 2011-11-04 | 2013-05-10 | 엘지전자 주식회사 | 무선랜 시스템에서 파워 세이브 모드로 동작하는 스테이션에 의한 통신 방법 및 장치 |
KR101492949B1 (ko) | 2012-01-11 | 2015-02-12 | 브로드콤 코포레이션 | 단일 사용자, 다수 사용자, 다중 액세스, 및/또는 mimo 무선 통신들 내에서의 주파수 선택적 송신 |
CN104335662A (zh) * | 2012-02-10 | 2015-02-04 | Lg电子株式会社 | 在wlan系统中接入信道的方法和装置 |
CN104254983B (zh) | 2012-03-02 | 2017-08-04 | 交互数字专利控股公司 | 用于提供信标信息的方法和系统 |
JP5961749B2 (ja) * | 2012-04-28 | 2016-08-02 | エルジー エレクトロニクス インコーポレイティド | 無線lanシステムにおけるチャネルアクセス方法及び装置 |
CN104272830B (zh) | 2012-05-02 | 2018-10-02 | 马维尔国际贸易有限公司 | 分配无线介质资源或操作与其他客户端站共享信道带宽的客户端站的方法和通信设备 |
CN104396334B (zh) * | 2012-06-19 | 2018-06-12 | 韩国电子通信研究院 | 无线局域网系统的基于时隙的信道存取控制装置和方法,无线局域网系统的基于时隙的信道存取终端 |
JP6162801B2 (ja) | 2012-07-13 | 2017-07-12 | エルジー エレクトロニクス インコーポレイティド | 無線lanシステムにおいてヌルデータパケットフレームを用いるチャネルアクセス方法及び装置 |
US8830976B2 (en) * | 2012-07-25 | 2014-09-09 | The Boeing Company | WLAN channel allocation |
US9713088B2 (en) * | 2012-10-08 | 2017-07-18 | Apple Inc. | Buffered indication of individually addressed traffic with reduced power consumption |
US9692459B2 (en) * | 2012-11-28 | 2017-06-27 | Intel Corporation | Using multiple frequency bands with beamforming assistance in a wireless network |
US9961630B2 (en) * | 2013-02-01 | 2018-05-01 | Telefonaktiebolaget L M Ericsson (Publ) | Handling modes in a wireless device |
KR102213058B1 (ko) | 2013-07-10 | 2021-02-05 | 주식회사 케이티 | 무선랜 시스템에서 데이터 전송 방법 및 장치 |
CN110784937B (zh) * | 2013-09-11 | 2023-06-06 | 韩国电子通信研究院 | 在无线局域网系统的信道访问控制方法及装置 |
JP6071838B2 (ja) * | 2013-10-18 | 2017-02-01 | 三菱重工業株式会社 | Co2又はh2s又はその双方の回収装置及び方法 |
CN103761194B (zh) * | 2013-12-28 | 2017-06-06 | 华为技术有限公司 | 一种内存管理方法及装置 |
KR101818873B1 (ko) * | 2014-01-10 | 2018-01-15 | 엘지전자 주식회사 | 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치 |
-
2015
- 2015-03-27 US US14/671,350 patent/US9854520B2/en active Active
- 2015-11-26 DE DE102015017275.1A patent/DE102015017275B3/de active Active
- 2015-11-26 DE DE102015120575.0A patent/DE102015120575A1/de not_active Ceased
- 2015-12-18 CN CN201580070118.4A patent/CN107113731B/zh active Active
- 2015-12-18 WO PCT/US2015/066827 patent/WO2016118275A1/en active Application Filing
- 2015-12-18 EP EP15879251.5A patent/EP3248433B1/en active Active
- 2015-12-18 RU RU2017121585A patent/RU2688267C1/ru active
- 2015-12-18 KR KR1020177016446A patent/KR102450830B1/ko active IP Right Grant
-
2017
- 2017-12-22 US US15/852,964 patent/US10425893B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109699A (ja) * | 2011-01-19 | 2011-06-02 | Casio Computer Co Ltd | 無線端末装置、無線中継装置及びプログラム |
WO2014074832A1 (en) * | 2012-11-09 | 2014-05-15 | Interdigital Patent Holdings, Inc. | Method and apparatus for coordinated orthogonal channel access (coca) |
Also Published As
Publication number | Publication date |
---|---|
EP3248433A1 (en) | 2017-11-29 |
US9854520B2 (en) | 2017-12-26 |
US20160212702A1 (en) | 2016-07-21 |
WO2016118275A1 (en) | 2016-07-28 |
RU2688267C1 (ru) | 2019-05-21 |
US10425893B2 (en) | 2019-09-24 |
DE102015017275B3 (de) | 2022-03-24 |
EP3248433A4 (en) | 2018-09-12 |
CN107113731A (zh) | 2017-08-29 |
DE102015120575A1 (de) | 2016-07-21 |
CN107113731B (zh) | 2021-08-20 |
BR112017012685A2 (pt) | 2018-01-02 |
US20180199286A1 (en) | 2018-07-12 |
KR20170105489A (ko) | 2017-09-19 |
EP3248433B1 (en) | 2023-12-06 |
EP3248433C0 (en) | 2023-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102450830B1 (ko) | 고밀도 무선 네트워크들 내의 무선 디바이스들을 위한 절전 채널 액세스 | |
KR102527694B1 (ko) | 캐스케이드 트리거 프레임 표시 | |
US10687282B2 (en) | Integration of wake-up radio with existing power save protocol | |
CN109328475B (zh) | 低功率唤醒接收器协商过程 | |
US11723015B2 (en) | Systems and methods for concurrent operation of devices over different network types | |
US9749958B1 (en) | Low power signaling using a wake-up receiver | |
US10098067B2 (en) | Service discovery via low-power wake-up radio | |
US20170280392A1 (en) | Fine timing measurement signaling | |
US20180167137A1 (en) | Enabling coexistence with narrowband wi-fi devices through device class definitions | |
US11178660B2 (en) | Determining access slot for communications on radio interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |