KR102439186B1 - 반도체 발광 소자를 이용한 디스플레이 장치 - Google Patents
반도체 발광 소자를 이용한 디스플레이 장치 Download PDFInfo
- Publication number
- KR102439186B1 KR102439186B1 KR1020170094893A KR20170094893A KR102439186B1 KR 102439186 B1 KR102439186 B1 KR 102439186B1 KR 1020170094893 A KR1020170094893 A KR 1020170094893A KR 20170094893 A KR20170094893 A KR 20170094893A KR 102439186 B1 KR102439186 B1 KR 102439186B1
- Authority
- KR
- South Korea
- Prior art keywords
- light emitting
- semiconductor light
- emitting device
- electrode
- layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 339
- 239000000758 substrate Substances 0.000 claims abstract description 87
- 229910052751 metal Inorganic materials 0.000 claims abstract description 66
- 239000002184 metal Substances 0.000 claims abstract description 66
- 229910000679 solder Inorganic materials 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 36
- 239000011810 insulating material Substances 0.000 claims abstract description 7
- 239000007769 metal material Substances 0.000 claims description 29
- 238000002161 passivation Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 187
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 36
- 239000012790 adhesive layer Substances 0.000 description 34
- 239000000463 material Substances 0.000 description 27
- 239000012530 fluid Substances 0.000 description 19
- 238000001338 self-assembly Methods 0.000 description 18
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 17
- 229910002601 GaN Inorganic materials 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 15
- 239000004642 Polyimide Substances 0.000 description 14
- 229920001721 polyimide Polymers 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 10
- 230000017525 heat dissipation Effects 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 238000009713 electroplating Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 description 6
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 6
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229920001621 AMOLED Polymers 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000011112 polyethylene naphthalate Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- -1 region Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/10—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Device Packages (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명은 디스플레이 장치에 관한 것으로 특히, 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법에 관한 것이다. 본 발명에 따른 디스플레이 장치는, 기판에 결합되는 적어도 하나의 반도체 발광소자를 구비하며, 상기 기판은, 관통홀을 구비하며, 절연물질로 형성되는 베이스 몸체와, 환형으로 형성되어 상기 반도체 발광소자와 결합하며, 상기 환형의 중공부분이 상기 관통홀에 오버랩되도록 상기 베이스 몸체의 일면에 배치되는 솔더, 및 상기 관통홀을 충전하도록 이루어지는 금속부를 포함한다.
Description
본 발명은 디스플레이 장치에 관한 것으로 특히, 반도체 발광 소자를 이용한 디스플레이 장치에 관한 것이다.
최근에는 디스플레이 기술분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liguid Crystal Display)와 AMOLED(Active Matrix Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 존재하고, AMOLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 취약점이 존재한다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 디스플레이를 구현하여, 상기의 문제점을 해결하는 방안이 제시될 수 있다.
이와 같이, 반도체 발광소자를 이용한 디스플레이의 경우에 대화면의 디스플레이 장치의 구현이 어렵다. 따라서, 최근에는 자가조립 방식으로 반도체 발광소자가 기판에 결합되는 제조방법이 개발되고 있다.
하지만, 자가조립 방식에서는 반도체 발광소자의 도전형 전극과 솔더의 표면장력(surface tension)에 의존하므로, 조립 효율이 떨어지는 단점이 있다. 또한, 열이 집중되는 구조에 의하여 신뢰성 측면에서 약한 단점이 발생할 수 있다. 따라서, 자가조립 방식에서 이러한 단점들을 완화할 수 있는 메커니즘에 대하여 고려될 수 있다.
본 발명의 일 목적은 디스플레이 장치에서 반도체 발광소자의 자가조립시에 조립 효율을 향상할 수 있는 구조를 제공하기 위한 것이다.
본 발명의 다른 일 목적은, 방열 구조를 가지는 반도체 발광소자를 이용한 디스플레이 장치를 제공하기 위한 것이다.
본 발명은 홀을 통해 유동이 유도되며 이에 따라 반도체 발광소자들이 조립 영역으로 이동하게 되어 조립율을 향상시킬 수 있는 구조를 제시한다. 또한, 솔더로 반도체 발광소자를 기판에 결합 후에, 추가적인 본딩을 전기도금 방식으로 구현하여 방열 구조를 구현한다.
구체적으로, 본 발명에 따른 디스플레이 장치는, 기판에 결합되는 적어도 하나의 반도체 발광소자를 구비하며, 상기 기판은, 관통홀을 구비하며, 절연물질로 형성되는 베이스 몸체와, 환형으로 형성되어 상기 반도체 발광소자와 결합하며, 상기 환형의 중공부분이 상기 관통홀에 오버랩되도록 상기 베이스 몸체의 일면에 배치되는 솔더, 및 상기 관통홀을 충전하도록 이루어지는 금속부를 포함한다.
실시 예에 있어서, 상기 금속부는 상기 관통홀의 입구에서 상기 반도체 발광소자를 향하여 돌출된다. 상기 금속부는 상기 돌출을 통하여 상기 중공부분을 통과하여 상기 반도체 발광소자의 도전형 전극으로 이어질 수 있다.
실시 예에 있어서, 상기 금속부는 도금가능한 금속재질로 이루어진다. 상기 금속부는 상기 관통홀의 내측벽에 도포되는 제1금속재질과, 상기 관통홀을 채우도록 상기 제1금속재질에 도금되는 제2금속재질을 구비할 수 있다. 상기 제1금속재질은 상기 반도체 발광소자의 도전형 전극을 덮는 제1부분과, 상기 제1부분과 수직한 방향으로 형성되어 상기 관통홀의 내측벽에 형성되는 제2부분을 구비할 수 있다.
실시 예에 있어서, 상기 베이스 몸체의 타면에는 상기 금속부를 덮는 산화방지층이 형성된다.
실시 예에 있어서, 상기 베이스 몸체의 일면에는 반사층이 형성된다. 상기 반사층에는 상기 관통홀에 대응하는 반사 관통홀이 형성되며, 상기 금속부는 상기 반사 관통홀을 충전하도록 이루어질 수 있다. 상기 반사층에는 상기 관통홀의 외주를 따라 금속층이 형성되며, 상기 솔더는 상기 금속층에 적층될 수 있다.
실시 예에 있어서, 상기 반도체 발광소자는, 도전형 반도체층과, 상기 도전형 반도체층의 일면상에 형성되는 도전형 전극, 및 상기 반도체 발광소자의 적어도 일부를 감싸는 패시베이션층을 포함하며, 상기 관통홀은 상기 도전형 전극보다 작은 크기로 이루어진다. 상기 도전형 전극은 상기 솔더와 접촉하는 환형의 제1영역과, 상기 금속부와 접촉하며 상기 제1영역의 내측에 형성되는 제2영역을 구비할 수 있다.
삭제
삭제
삭제
기존의 자가조립 방식은 본딩 금속(bonding metal)과 도전형 전극 간의 표면장력에 의존하여 확률에 의해 구현이 되었지만, 본 발명에서는 환형의 솔더 및 기판의 관통홀을 통해 유동이 유도되며, 이에 따라 반도체 발광소자가 솔더를 향하여 이동하게 될 수 있다. 이를 통하여 본 발명에서는 자가조립에서 반도체 발광소자의 조립 효율이 향상될 수 있다.
또한, 본 발명에서는 솔더로 반도체 발광소자를 기판에 결합 후에, 추가적인 본딩을 전기도금 방식으로 구현함에 따라, 본딩 신뢰도가 보다 향상될 수 있다. 또한, 이러한 구조에 의하면, 관통홀에 금속에 충전되므로 방열이 보다 용이하게 될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 취한 단면도이다.
도 9는 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 10은 새로운 구조의 반도체 발광소자와 배선기판이 적용된 본 발명의 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이다.
도 11은 도 10의 라인 E-E를 따라 취한 단면도이다/
도 12a는 도 11의 B부분의 확대도이고, 도 12b는 배선기판에서 반도체 발광소자를 분해한 분해 확대도이다.
도 13은 본 발명의 다른 실시예를 나타내는 도 11의 B부분의 확대도이다.
도 14, 도 15 및 도 16은 본 발명에 따른 디스플레이 장치의 제조방법을 나타내는 개념도들이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 취한 단면도이다.
도 9는 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 10은 새로운 구조의 반도체 발광소자와 배선기판이 적용된 본 발명의 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이다.
도 11은 도 10의 라인 E-E를 따라 취한 단면도이다/
도 12a는 도 11의 B부분의 확대도이고, 도 12b는 배선기판에서 반도체 발광소자를 분해한 분해 확대도이다.
도 13은 본 발명의 다른 실시예를 나타내는 도 11의 B부분의 확대도이다.
도 14, 도 15 및 도 16은 본 발명에 따른 디스플레이 장치의 제조방법을 나타내는 개념도들이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시 예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는 외력에 의하여 휘어질 수 있는, 구부러질 수 있는, 비틀어질 수 있는, 접힐 수 있는, 말려질 수 있는 디스플레이를 포함한다. 예를 들어, 플렉서블 디스플레이는 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 구부리거나, 접을 수 있거나 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도시와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
이하, 상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여 도면을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이며, 도 4는 도 3a의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이고, 도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
상기 디스플레이 장치(100)는 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 복수의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도시에 의하면, 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아 홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
본 도면들을 참조하면, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법도 가능하다. 이러한 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 도시에 의하면, 본 예시에서 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
도시에 의하면, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)가 될 수 있다. 보다 구체적으로, 절연성 베이스부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스부재의 바닥부분에 집중적으로 배치되며, 상기 베이스부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 particle 혹은 nano 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도면을 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chip type)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며, 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다.
도시에 의하면, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(151) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(151) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(151)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자는 황색 형광체층이 개별 소자마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(UV) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전영역에 사용가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자(150)는 전도성 접착층(130) 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(150)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다. 따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자의 거리가 상대적으로 충분히 크게 된다. 따라서, 이러한 경우, HD화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
본 도면을 참조하면, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 제1기판(110)에 절연층(160)이 적층되어 하나의 기판(또는 배선기판)을 형성하며, 상기 배선기판에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 제1기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 제2기판(112)을 상기 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 대향하도록 배치한다.
이 경우에, 제2기판(112)은 반도체 발광 소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 제2기판(112)을 열압착한다. 예를 들어, 배선기판과 제2기판(112)은 ACF press head 를 적용하여 열압착될 수 있다. 상기 열압착에 의하여 배선기판과 제2기판(112)은 본딩(bonding)된다. 열압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 제2기판(112)을 제거한다. 예를 들어, 제2기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 제2기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광 소자(150)의 일면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법이나 구조는 여러가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다. 이하, 도 5 및 도 6을 참조하여 수직형 구조에 대하여 설명한다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 복수의 반도체 발광 소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께방향으로 전도성을 가지는 부분(231)과 전도성을 가지지 않는 부분(232)으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광 소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(251) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(251) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(251)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
도시에 의하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
도시에 의하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도시에 의하면, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
상기 설명과 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 따라서, 반도체 발광 소자에 의하여 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이루는 풀 칼라 디스플레이가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치에서는 웨이퍼 상에서 성장되어, 메사 및 아이솔레이션을 통하여 형성된 반도체 발광소자가 개별 화소로 이용된다. 웨이퍼 상에서 성장된 반도체 발광소자를 배선기판으로 전사하는 방식이므로, 웨이퍼의 크기 제약으로 인하여 대화면 디스플레이를 구현하기 어려운 문제가 있다. 이러한 문제를 해결하기 위하여 자가조립 방식으로 반도체 발광소자를 배선기판으로 조립하는 방식이 적용될 수 있다.
자가조립 방식은, 유체가 채워진 챔버에서 반도체 발광소자들을 배선기판이나 어셈블리 기판에 안착시키는 방식이다. 예를 들어, 유체가 채워진 챔버 속에 상기 반도체 발광소자들 및 기판을 넣고 상기 유체를 가열하여 상기 반도체 발광소자들이 상기 기판에 스스로 조립되도록 한다. 이를 위하여, 상기 기판에는 상기 반도체 발광소자들이 끼워지는 홈들이 구비될 수 있다. 구체적으로, 상기 기판에는 상기 반도체 발광소자들이 배선전극에 얼라인되는 위치에 상기 반도체 발광소자들이 안착되는 홈들이 형성된다. 상기 홈들은 반도체 발광소자들의 형상에 대응하는 형상으로 이루어지며, 상기 반도체 발광소자들은 상기 유체 내에서 랜덤하게 이동하다가, 상기 홈들에 조립된다.
또한, 상기 자가조립 방식으로 대화면을 구현하는 경우에, 형광체나 컬러 필터를 이용하지 않고, 적색 반도체 발광소자, 녹색 반도체 발광소자 및 청색 반도체 발광소자의 각각을 자가조립하여 발광효율의 향상시킬 수 있다.
본 발명에서는, 반도체 발광소자들의 조립 효율을 향상하는 구조와 새로운 방열 구조를 제시한다. 다만, 이하 설명하는 디스플레이 장치에서 상기 조립 효율을 향상하는 구조와 새로운 방열 구조는 서로 독립적으로 구현될 수 있다.
도 10은 새로운 구조의 반도체 발광소자와 배선기판이 적용된 본 발명의 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이고, 도 11은 도 10의 라인 E-E를 따라 취한 단면도이며, 도 12a는 도 11의 B부분의 확대도이고, 도 12b는 배선기판에서 반도체 발광소자를 분해한 분해 확대도이다.
도 10, 도 11, 도 12a 및 도 12b의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치(1000)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치(1000)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
디스플레이 장치(1000)는 기판(1010), 제1전극(1020), 절연층(1060), 복수의 반도체 발광 소자(1050) 및 제2전극(1040)을 포함한다. 여기에서, 제1 전극(1020) 및 제2 전극(1040)은 각각 복수의 전극 라인들을 포함할 수 있다.
기판(1010)은 제1전극(1020)이 배치되는 배선기판며, 상기 제1전극(1020)은 기판(1010) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(1020)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
상기 제1전극(1020)은 하부 배선 전극으로서, 전기 배선을 통해 반도체 발광소자의 p형 전극과 접합되며, 전극의 상단의 주원소는 Au,Cu,In,Sn의 단일 성분혹은 2,3,4원계의 혼합 성분이 가능하다. 이 경우에, 전극은 저항을 낮추기 위하여 50 나노미터 이상의 두께를 가질 수 있다.
한편, 본 도면들을 참조하면, 상기 반도체 발광 소자들의 사이에는, 제1전극(1020)의 길이 방향과 교차하는 방향으로 배치되고, 상기 반도체 발광 소자(1050)와 전기적으로 연결된 복수의 제2전극(1040)이 위치한다.
도시에 의하면, 상기 제2전극(1040)은 절연층(1060) 상에 위치될 수 있다. 보다 구체적으로, 상기 반도체 발광소자들의 사이에는 절연물질이 충진되어 절연층(1060)을 형성하고, 상기 절연층(1060)의 일면에는 상부 배선인 제2전극(1040)이 배치된다.
상기 절연층(1060)은 폴리이미드(PI, Polyimide), PET, PEN, PDMS, PMPS 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(1010)과 일체로 이루어져 하나의 배선 기판을 형성할 수 있다.
보다 구체적인 예로서, 상기 절연층(1060)은 투명 Resin 혹은 white material 이 함유된 PDMS & PMPS mixture (0 ≤ PDMS ≤ 100) 가 될 수 있다. 상기 절연층에 의하여, 외부환경에서 칩이 보호되며, 나아가 광추출 효율도 향상될 수 있다.
이 경우에, 상기 제2전극(1040)은 상기 반도체 발광 소자(1050)의 제2도전형 전극(1152)과 접촉에 의하여 전기적으로 연결될 수 있다.
상기에서 설명된 구조에 의하여, 복수의 반도체 발광 소자(1050)는 상기 배선기판(1010)에 결합되며, 제1전극(1020) 및 제2전극(1040)과 전기적으로 연결된다.
도시와 같이, 복수의 반도체 발광소자(1050)는 제1전극(1020)에 구비되는 복수의 전극 라인들과 나란한 방향으로 복수의 열들을 형성할 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 복수의 반도체 발광소자(1050)는 제2전극(1040)을 따라 복수의 열들을 형성할 수 있다.
도시에 의하면, 상기 반도체 발광소자(1050)는 적색 반도체 발광소자(1051), 녹색 반도체 발광소자(1052) 및 청색 반도체 발광소자(1053)를 포함한다.
다만, 본 발명은 상기 구조에 반드시 한정되는 것은 아니다. 예를 들어, 상기 적색 반도체 발광소자(1051)는 녹색 반도체 발광소자(1052) 또는 청색 반도체 발광소자(1053)로 대체될 수 있다. 예를 들어, 반도체 발광소자는 2개의 청색 반도체 발광소자(1053)와 1개의 녹색 반도체 발광소자(1052)가 하나의 화소를 이룰 수 있으며, 이 경우에 청색 반도체 발광 소자(1053) 중 어느 하나는 청색 서브 화소이고, 다른 하나는 적색 서브 화소를 형성할 수 있다.
예를 들어, 청색 반도체 발광 소자(1053)의 상면에는 형광체층(미도시)이 오버랩될 수 있다. 상기 형광체층은 상기 청색 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층은 적색 형광체를 포함하여, 적색의 서브 화소에서, 청색 반도체 발광 소자의 청색 광을 적색 광으로 변환한다. 또한, 상기 형광체층의 상면에는 적색 광에 해당하는 광 이외의 파장 범위를 필터링하는 적색 컬러 필터(미도시)가 오버랩되어 색순도를 향상시킬 수 있다.
또 다른 예로서, 청색의 반도체 발광소자만을 이용하여 디스플레이 장치를 구성하는 것도 가능하다. 이 경우에는 상기 반도체 발광소자(1050)는 청색 반도체 발광소자만을 구비하며, 청색 반도체 발광 소자(1053)의 상면에는 적색 및 녹색 형광체층(미도시)이 오버랩될 수 있다.
이하 설명하는 상기 적색 반도체 발광소자(1051), 녹색 반도체 발광소자(1052) 및 청색 반도체 발광소자(1053)의 구조는 동일하며, 이에 대하여 도 12a을 참조하여 설명한다. 또한, 이하, 설명되는 반도체 발광소자의 구조는, 예를 들어 청색의 반도체 발광소자만을 이용하거나 청색 및 녹색의 반도체 발광소자만을 이용하여 디스플레이 장치를 구성하는 경우에도 적용될 수 있다.
상기 반도체 발광소자는 마이크로 엘이디로 지칭 될 수 있으며, 25 내지 250000 마이크로미터제곱의 면적의 범위를 가지며, 칩의 두께는 약 2 내지 10 마이크로 미터가 될 수 있다,
도 12a를 참조하면, 예를 들어, 상기 반도체 발광 소자(1050)는 제1도전형 전극(1156)과, 제1도전형 전극(1156)이 형성되는 제1도전형 반도체층(1155)과, 제1도전형 반도체층(1155) 상에 형성된 활성층(1154)과, 상기 활성층(1154) 상에 형성된 제2도전형 반도체층(1153) 및 제2도전형 반도체층(1153)에 형성되는 제2도전형 전극(1152)을 포함한다.
상기 제1도전형 반도체층(1155)과 제2도전형 반도체층(1153)은 서로 오버랩되며, 제2도전형 반도체층(1153)의 상면에 제2도전형 전극(1152)이 배치되고, 상기 제1도전형 반도체층(1155)의 하면에 제1도전형 전극(1156)이 배치된다. 이 경우에, 제2도전형 반도체층(1153)의 상면은 상기 제1도전형 반도체층(1155)과 가장 먼 제2도전형 반도체층(1153)의 일면이며, 상기 제1도전형 반도체층(1155)의 하면은 상기 제2도전형 반도체층(1153)과 가장 먼 제1도전형 반도체층(1155)의 일면이 될 수 있다. 이와 같이, 상기 제1도전형 전극(1156) 및 제2도전형 전극(1152)은 상기 제1도전형 반도체층(1155)과 상기 제2도전형 반도체층(1153)을 사이에 두고 상하에 각각 배치된다.
도 12를 도 10 및 도 11과 함께 참조하면, 상기 제1도전형 반도체층(1155)의 하면은 상기 배선기판에 가장 가까운 면이 될 수 있고, 상기 제2도전형 반도체층(1153)의 상면은 상기 배선기판에 가장 먼 면이 될 수 있다.
보다 구체적으로, 상기 제1도전형 전극(1156) 및 제1도전형 반도체층(1155)은 각각 p형 전극 및 p형 반도체층이 될 수 있으며, 상기 제2도전형 전극(1152) 및 제2도전형 반도체층(1153)은 각각 n형 전극 및 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
상기 p형 반도체층은 P-type GaAs 이고, 상기 n형 반도체층은 N-type GaAs 가 될 수 있다. 다만, 녹색 반도체 발광소자와 청색 반도체 발광소자의 경우에는, 상기 p형 반도체층은 P-type GaN 이고, 상기 n형 반도체층은 N-type GaN 이 될 수 있다. 또한, 본 예시에서 p형 반도체층은 p 전극 쪽은 Mg가 도핑된 P-type GaN 이고, n형 반도체층은 n 전극 쪽은 Si가 도핑된 N-type GaN 인 경우가 될 수 있다. 이 경우에, 전술한 반도체 발광소자들은 활성층이 없는 반도체 발광소자가 될 수 있다. 나아가, 이하 설명하는 실시예에서 반도체 발광소자들은 활성층을 구비하는 것으로 예시하였으나, p형 반도체층은 p 전극 쪽은 Mg가 도핑된 P-type GaN 이고, n형 반도체층은 n 전극 쪽은 Si가 도핑된 N-type GaN이 되는 활성층이 없는 구조가 적용될 수 있다.
이 경우에, 상기 도전형 반도체층은 25 내지 250000 마이크로미터제곱의 면적 범위를 가지며, 두께는 약 2 내지 10 마이크로미터이며, 형상은 원형이나, 필요에 따라 오각형 이상의 도형도 가능하다.
이 경우, 하부에 위치한 p형 전극은 제1전극(1020)과 솔더나 금속부에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극은 제2전극(1040)과 전기적으로 연결될 수 있다. 이 때에, 상기 p형 전극은 서로 다른 금속으로 이루어지는 복수의 금속층을 구비할 수 있다. 예를 들어, Ti, Pt, Au, Ti, Cr 등으로 이루어진 복수의 금속층이 적층되어 상기 p형 전극을 형성할 수 있다.
보다 구체적으로, 상기 p형 전극은 Mg도핑된 GaN 위에 접합되어 있으며, Au, Cu 또는 이들의 혼합으로 이루어질 수 있다. 면적은 GaN 에피 30 내지 75% 의 면적이 되며, 전극의 위치는 GaN 에피의 정중앙에 배치될 수 있다. 전극의 모양은 원형이 바람직하나, 필요에 따라서는 사각형 이상의 다각형도 가능하다. 여기서 p형 전극의 면적과 모양은, 패시베이션층에 가려지지 않은 오픈된 p형 전극의 부분만을 지칭한다. 이 경우에, p형 전극의 순수 면적은, 오프된 p형 전극의 부분의 면적에서 GaN 에피의 전체면적의 사이가 된다. 또한, GaN 과 Au 또는 Cu 사이의 접합력 향상을 위하여, 그 계면에 Ti, Cr, Pt 층이 첨가될 수 있다. p형 전극의 전체 두께는 100 나노미터 내지 5 마이크로미터가 될 수 있다.
이 때에, 상기 반도체 발광소자는 상기 제1도전형 반도체층(1155)과 상기 제2도전형 반도체층(1153)의 측면들을 감싸도록 형성되는 패시베이션층(1160)을 포함한다.
상기 패시베이션층(1160)은 상기 반도체 발광소자의 측면을 감싸서, 상기 반도체 발광소자 특성의 안정화를 기하도록 이루어지며, 절연 재질로 형성된다. 이와 같이, 상기 제1도전형 반도체층(1155)과 상기 제2도전형 반도체층(1153)의 사이가 상기 패시베이션층(1160)에 의해 전기적으로 단절되므로, 반도체 발광 소자의 P-type GaN 과 N-type GaN 은 서로 절연될 수 있다.
이 경우에, 상기 패시베이션층(1160)은 상기 제1도전형 전극(1156)이 노출되도록 노출홀(1161)을 구비한다. 상기 노출홀(1161)에 후술하는 솔더(1071) 및 금속부(1080)의 적어도 일부가 삽입되며, 이를 통하여 반도체 발광소자가 배선기판에 결합될 수 있다. 이 때에, 상기 반도체 발광소자의 자가조립시에 상기 솔더(1071)가 용융된 상태로 상기 배선기판이 유체 내에 담기어 진다. 상기 솔더(1071)가 고체화되면서 상기 솔더(1071)와 상기 도전형 전극이 서로 결합되며, 이 후에 금속부(1080)를 도금하여 2차로 금속부와 상기 도전형 전극이 결합된다.
자가조립시에 상기 복수의 반도체 발광소자 중 어느 하나의 도전형 전극이 다른 하나의 도전형 전극과 접촉하는 것을 제한하도록, 상기 패시베이션층(1160)의 하면은 상기 도전형 전극의 하면에서 돌출될 수 있다. 구체적으로, 상기 패시베이션층(1160)은 상기 제1도전형 전극(1156)의 하면(도전형 반도체층에서 가장 먼 면)을 덮고, 상기 제1도전형 전극(1156)은 상기 노출홀(1161)을 관통하지 않는 구조가 될 수 있다. 이러한 구조에 의하면, 상기 제1도전형 전극(1156)은 상기 패시베이션층(1160)에 의하여 음각의 형태로 가려지게 되며, 상기 솔더(1071)가 상기 노출(1161)을 관통하여 상기 제1도전형 전극(1156)과 결합하게 된다.
상기 패시베이션층(1160)의 물질은 SiO2 또는 SiNx 가 될 수 있으며, GaN 에피의 측면을 모두 덮고, 도전형 전극의 중앙 부위가 노출되도록 한다. 하면은 외부로 노출되는 p형 전극의 부분을 제외한, p형 전극 또는 GaN 에피의 모든 부위를 덮도록 형성된다. 페시베이션층의 두께는 50 나노미터 내지 5 마이크로미터이며, 하면의 두께와 측면의 덮는 두께는 서로 달라질 수 있다.
한편, 상기 적색 반도체 발광소자(1051), 녹색 반도체 발광소자(1052) 및 청색 반도체 발광소자(1053)는 자가조립을 통하여 상기 솔더(1071) 및 금속부(1080)와 전기적으로 연결되는 구조를 가진다.
도 10 내지 도 12b를 참조하면, 기판(1010)은 절연물질로 형성되는 베이스 몸체(1011)를 구비한다. 상기 베이스 몸체(1011)는 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
이 경우에, 상기 베이스 몸체(1011)에는 상기 복수의 반도체 발광소자의 각각에 대응하는 복수의 관통홀(1012)이 형성될 수 있다. 상기 관통홀(1012)은 상기 베이스 몸체(1011)의 일면에서 타면으로 이어지는 홀이 될 수 있으며, 이는 반도체 발광소자의 자가조립시에 유체가 유동할 수 있는 통로의 기능을 하게 된다.
상기 베이스 몸체(1011)에는 상기 솔더(1071)가 배치될 수 있다. 상기 솔더(1071)는 환형으로 형성되어 상기 반도체 발광소자와 결합하며, 상기 환형의 중공부분이 상기 관통홀(1012)에 오버랩되도록 상기 베이스 몸체(1011)의 일면에 배치될 수 있다. 이를 통하여, 상기 솔더(1071)는 상기 관통홀(1012)과 함께 유체가 유동할 수 있는 통로를 구현하게 된다. 이 경우에, 상기 베이스 몸체(1011)의 타면에 상기 제1전극(1020)이 배치되어, 상기 반도체 발광소자의 하부 배선을 형성하게 된다. 이 경우에, 상기 관통홀(1012)은 상기 반도체 발광소자의 제1도전형 전극(1156)보다 작은 크기로 이루어질 수 있다.
상기 솔더(1071)는 제1전극(1020)과 반도체 발광 소자(1050)를 전기적으로 연결하는 보조 전극으로서, 상기 관통홀(1012)의 위치에 대응하여 배치된다. 예를 들어, 상기 솔더(1071)는 도우넛의 형상을 가지게 되며, 상기 관통홀(1012)에 채워지는 상기 금속부(1080)에 의하여 제1전극(1020)과 전기적으로 연결될 수 있다.
예를 들어, 상기 솔더(1071)는 저융점의 재질로 형성되어, 상기 기판에 닷(dot) 형태로 도포될 수 있다. 보다 구체적으로, 상기 반도체 발광소자(1050)는 상기 솔더(1071)를 이용한 솔더링(soldering)을 통해 상기 기판에 전기적 및 물리적으로 연결된다. 솔더링은, 땜납, 플럭스(溶劑) 및 열을 사용하여 금속끼리 붙이는 것을 의미한다. 상기 솔더 물질은 예를 들어, Sn, Ag, Cu, Pb, Al, Bi, Cd, Fe, In, Ni, Sb, Zn, Co 및 Au 중 적어도 하나가 될 수 있다.
한편, 도시에 의하면 상기 베이스 몸체(1011)의 일면에는 반사층(1013)이 형성될 수 있다. 상기 반사층(1013)은 리플렉터 역할을 할 수 있도록, 상기 베이스 몸체(1011)의 일면에 고반사 물질(high reflective materials)을 증착함에 의하여 형성될 수 있다.
이 경우에, 상기 반사층(1013)에는 상기 관통홀(1012)에 대응하는 반사 관통홀(1014)이 형성되어 유체가 유동할 통로를 형성하게 된다. 또한, 상기 반사층(1013)에는 상기 관통홀(1012)의 외주를 따라 금속층(1072)이 형성되며, 상기 솔더(1071)는 상기 금속층(1072)의 상부에 적층될 수 있다.
상기 금속층(1072)은 반도체 발광소자의 제1도전형 전극(1156)보다 작거나 같은 크기의 UBM(Under Bump Metallurgy) 레이어로서, 환형으로 형성된다. 상기 UBM 레이어는 솔더가 위치할 곳으로 향후 반도체 발광소자의 조립 및 구동시 외력에 대한 버퍼역할을 한다. 이를 통하여 디스플레이 장치의 내구성 및 신뢰성이 향상될 수 있다.
또한, 상기 솔더(1071)의 중공 부분, 상기 금속층(1072)의 중공 부분, 상기 반사 관통홀(1014) 및 상기 관통홀(1012)이 차례로 오버랩되며, 이를 통하여 자가조립시에 유체의 유동 통로가 형성될 수 있다.
한편, 상기 금속부(1080)은 상기 관통홀(1012)을 충전하도록 이루어진다. 나아가, 상기 금속부(1080)는 상기 관통홀(1012)의 입구에서 상기 반도체 발광소자를 향하여 돌출되며, 상기 돌출을 통하여 상기 반사 관통홀(1014)을 충전하고 상기 금속층(1072)의 중공 부분과 상기 솔더(1071)의 중공 부분을 통과하여 상기 반도체 발광소자의 도전형 전극으로 이어진다.
상기 반도체 발광소자의 제1도전형 전극(1156)은 상기 솔더(1071)와 금속부(1080)에 각각 접촉하므로, 제1영역(1156a)과 제2영역(1156b)으로 구획될 수 있다. 도시에 의하면, 상기 제1영역(1156a)은 상기 솔더(1071)와 접촉하는 환형의 영역이 되고, 상기 제2영역(1156b)은 상기 금속부(1080)와 접촉하며 상기 제1영역(1156a)의 내측에 형성되는 영역이 될 수 있다.
보다 구체적으로, 상기 금속부(1080)는 적어도 일부가 도금가능한 금속재질로 이루어지며, 도금을 통하여 상기 관통홀(1012) 및 상기 반사 관통홀(1014)을 충전하게 된다. 예를 들어, 상기 금속부(1080)는 상기 관통홀(1012)의 내측벽에 도포되는 제1금속재질(1081)과, 상기 관통홀(1012)을 채우도록 상기 제1금속재질(1081)에 도금되는 제2금속재질(1082)을 구비할 수 있다.
상기 제1금속재질(1081)은 전기도금 공정을 위한 시드층(Seed layer)이 되며, 예를 들어 구리 등이 스퍼터링 방식으로 상기 관통홀(1012)과 상기 반도체 발광소자의 일부분에 형성될 수 있다. 예를 들어, 상기 제1금속재질(1081)은 상기 반도체 발광소자의 도전형 전극을 덮는 제1부분(1081a)과, 상기 제1부분(1081a)과 수직한 방향으로 형성되어 상기 관통홀(1012)의 내측벽에 형성되는 제2부분(1081b)을 구비할 수 있다. 보다 구체적으로, 제1부분(1081a)은 상기 반도체 발광소자의 제1도전형 전극에서 상기 솔더에 의하여 둘러쌓인 부분을 덮게 된다. 상기 제2부분(1081b)은 상기 제1부분(1081a)의 가장자리에서 상기 기판을 향하여 연장되며, 솔더의 중공 부분, 금속층의 중공 부분, 반사 관통홀 및 관통홀의 내측벽을 덮게 된다.
제2금속재질(1082)은 도금가능한 재질로서 형성되며, 전기 도금을 통해 반도체 발광소자의 도전형 전극 영역을 구리와 같은 열 및 전기 전도성이 높은 물질로 덮게 된다. 이 경우에, 제1금속재질(1081)과 제2금속재질(1082)이 동일한 재질인 경우에는, 제1금속재질(1081)과 제2금속재질(1082)은 서로 일체화되며, 상기 제1부분(1081a)과 상기 제2부분(1081b)의 구별이 없어질 수 있다.
이와 같이, 환형의 솔더와 관통홀을 이용하여 유체의 통로를 만들고, 이를 통해 자가조립 방식으로 접합공정을 진행한 다음, 전기 도금 방식을 통해 2차 메탈본딩을 하며, 이를 통하여 방열 효과가 향상될 수 있다.
한편, 이상에서 설명한 솔더 및 금속부는 여러가지 형태로 변형될 수 있다. 이하, 이러한 변형예의 일예에 대하여 설명한다.
도 13은 본 발명의 다른 실시예를 나타내는 도 11의 B부분의 확대도이다.
도 13의 예시에서는, 앞서 도 10 내지 도 12를 참조하여 설명한 예시의 각 구성과 동일한 구성에 대해서는 동일한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다. 구체적으로, 솔더 및 금속부를 제외한 나머지 구성은 도 10 내지 도 12에서 설명한 예시의 구성과 동일하다.
본 도면을 참조하면, 상기 솔더(2071)의 상면은 중공부분이 없는 닫힌 면이 될 수 있다. 즉, 상기 솔더(2071)는 상기 반도체 발광소자의 도전형 전극(2156)을 덮는 베이스부(2071a)와, 상기 베이스부(2071a)에서 돌출되는 환형의 돌출부(2071b)를 구비한다.
상기 베이스부(2071a)에는 개구가 없으며, 따라서 상기 솔더(2071)는 상기 도전형 전극(2156)을 완전히 덮게 된다. 이 때에, 상기 솔더(2071)의 베이스부(2071a)이 있는 상측은 상기 반도체 발광소자의 페시베이션층(2160)의 노출홀(2161)에 끼워지게 된다.
이러한 구조에 의하면, 상기 금속부(2080)는 상기 환형의 돌출부(2071b)의 내부를 채워서 상기 베이스부(2071a)의 하면을 덮게 된다. 따라서, 1차 본딩 메탈이 상기 도전형 전극의 전체와 접합되고, 2차 본딩 메탈이 상기 1차 본딩 메탈과 결합되는 구조가 형성될 수 있다.
상기 솔더(2071)는 반도체 발광소자의 자가조립시에는 환형으로 도포되며, 상기 반도체 발광소자의 도전형 전극이 안착될 때에 상기 솔더(2071)가 상기 도전형 전극에 의하여 가압되며, 이를 통하여 상기 솔더(2071)는 베이스부을 가질 수 있다.
또한, 상기 기판(2010)의 베이스 몸체(2011)의 타면에는 상기 금속부(2080)를 덮는 산화방지층(2090)이 형성될 수 있다. 상기 산화방지층(2090)은 다양한 방식으로 상기 베이스 몸체(2011)에 증착될 수 있다. 이 경우에, 전술한 제1전극이 기판에 형성되지 않으며, 다른 방식으로 하부 배선이 구현될 수 있다.
상기에서 설명된 구조에 의하면, 솔더로 반도체 발광소자를 기판에 결합 후에, 추가적인 본딩을 전기도금 방식으로 구현함에 따라, 본딩 신뢰도가 보다 향상될 수 있다. 또한, 이러한 구조에 의하면, 관통홀에 금속에 충전되므로 방열이 보다 용이하게 될 수 있다.
이하에서는, 이상에서 살펴본 구조를 갖는 반도체 발광소자를 이용한 디스플레이 장치를 제조하는 방법에 대하여 첨부된 도면과 함께 보다 구체적으로 살펴본다. 도 14, 도 15 및 도 16은 본 발명에 따른 디스플레이 장치의 제조방법을 나타내는 개념도들이다.
먼저, 제조방법에 의하면, 성장기판(1200, 웨이퍼)에 제2도전형 반도체층(1153), 활성층(1154), 제1도전형 반도체층(1155)을 각각 성장시킨다(도 14의 (a)).
제2도전형 반도체층(1153)이 성장하면, 다음은, 상기 제2도전형 반도체층(1153) 상에 활성층(1154)을 성장시키고, 다음으로 상기 활성층(1154) 상에 제1도전형 반도체층(1155)을 성장시킨다.
이와 같이, 제2도전형 반도체층(1153), 활성층(1154), 제1도전형 반도체층(1155)을 순차적으로 성장시키면, 도 14의 (a)에 도시된 것과 같이, 마이크로 반도체 발광소자의 적층 구조가 형성된다. 이 경우에, 상기 제2도전형 반도체층(1153)과 성장기판의 사이에는 언도프된(Undoped) 반도체층(1153a)이 형성될 수 있다.
성장기판(1200)은 광 투과적 성질을 가지는 재질, 예를 들어 사파이어(Al2O3), GaN, ZnO, AlO 중 어느 하나를 포함하여 형성될 수 있으나, 이에 한정하지는 않는다. 또한, 성장기판(1200)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있다.
다음으로, 상기 성장기판(1200) 상에서 복수의 발광소자들이 발광 소자 어레이를 형성하도록, 아이솔레이션(isolation)을 수행한다. 즉, 제1도전형 반도체층(1155), 활성층(1154) 및 제2도전형 반도체층(1153)을 식각하여 복수의 반도체 발광소자를 형성한다(도 14의 (b)).
다음으로, 도 14의 (c)에 도시된 것과 같이, 외부로 노출된 제1도전형 반도체층(1155) 상에 제1도전형 전극(1156)이 형성되며, 도 14의 (d)에 도시된 것과 같이, 반도체 발광소자를 감싸도록 형성되는 패시베이션층(1160)을 형성한다.
이 경우에, 녹색 반도체 발광소자 및 청색 반도체 발광소자의 발광 구조물이 성장되도록 녹색 반도체 발광소자 및 청색 반도체 발광소자를 별도로 성장기판에서 성장될 수 있다. 또한, 적색 반도체 발광소자의 발광 구조물이 성장되도록 적색 반도체 발광소자가 별도의 성장기판에서 성장될 수 있다.
다음으로, 도 15에 도시된 것과 같이, 상기 반도체 발광소자(1050)를 상기 성장기판으로부터 분리하며, 순차적으로 유체가 채워진 챔버에서 자가조립을 통하여 기판(1010)에 결합한다.
도 15의 (a)를 참조하면, 먼저 유체가 채워진 챔버 속에 반도체 발광소자들(1050)과 기판(1010)을 넣고 상기 유체를 가열하여 상기 반도체 발광소자들(1050)이 상기 기판(1010)에 스스로 조립되도록 한다.
이 경우에, 전술한 바와 같이, 상기 기판(1010)은 절연물질로 형성되는 베이스 몸체(1011)를 구비하고, 상기 베이스 몸체의 일면에는 반사층(1013)이 형성될 수 있다. 상기 베이스 몸체(1011)에는 관통홀(1012)이 형성되고, 상기 반사층(1013)에는 반사 관통홀(1014)이 형성될 수 있다. 또한, 상기 반사층(1013)에는 상기 관통홀(1012)의 외주를 따라 금속층(1072)이 형성되며, 솔더(1071)가 상기 금속층(1072, 이상, 도 15의 (b) 참조)의 상부에 적층될 수 있다. 상기 금속층과 솔더는 각각 환형으로 형성될 수 있다.
이 경우에, 상기 솔더(1071)의 중공 부분, 상기 금속층(1072)의 중공 부분, 상기 반사 관통홀(1014) 및 상기 관통홀(1012)이 차례로 오버랩되며, 이를 통하여 자가조립시에 유체의 유동 통로가 형성될 수 있다. 또한, 칩이 분산된 용기 하부에 균일하게 유동이 형성될 수 있도록 배수장치를 마련하고 기판에는 그 반대 방향으로 들어오리고 내리는 움직임을 가해준다. 나아가, 유체 내 칩의 이동을 위해 sonication 과 같은 외부 운동이 가해질 수 있다. 다만, 유체에 칩을 분산시키는 방법 이외에도 기판에 미리 칩을 분산시켜 놓아도 본 방식을 구현할 수 있다.
이와 같이, 비아홀 및 1차 본딩 메탈이 형성된 기판을 반도체 발광소자가 분산된 유체 내에 넣고 유동을 일으키면, 반도체 발광소자의 움직임이 유도되어 자가조립이 이루어진다. 상기 챔버내의 유체는 상기 관통홀(1012)을 통하여 유동하여 상기 반도체 발광소자를 상기 솔더(1071)로 유도하게 되므로, 이하 유체의 유동 유도(Liquid Flow Induced) 방식이라 지칭한다. 이 때에, 상기 유체에는 솔더(1071)의 산화막을 깨고, 액체를 유지시키도록 산과 열이 가해질 수 있다.
도 15의 (b)를 참조하면, 유동 유도 방식을 통해 1차 본딩 메탈인 솔더(1071)에 반도체 발광소자가 1차로 조립된다. 이 경우에, 상기 솔더(1071)는 반도체 발광소자의 도전형 전극의 일부 또는 전면에 걸쳐서 칩과 접합될 수 있다.
도 15의 (c)를 참조하면, 유동 유도 방식을 통해 반도체 발광소자가 조립된 기판의 상부에는 투명 Resin 혹은 white material 이 함유된 PDMS & PMPS mixture (0 ≤ PDMS ≤ 100) 가 코팅될 수 있다. 이는 향후 2차 본딩 메탈의 도금 공정 및 외부환경에서 칩을 보호 할 뿐만 아니라 광추출 효율도 향상시키는 목적이다. 코팅된 PDMS & PMPS mixture 에 의하여 전술한 절연층(1060)이 형성될 수 있다.
다음으로, 방열 및 하부 배선 공정이 진행될 수 있다. 도 16의 (a)와 (b)를 참조하면, 상기 금속부(1080)를 충전하는 단계는, 상기 관통홀(1012)의 내측벽에 제1금속재질(1081)을 스퍼터링하는 단계와, 상기 제1금속재질(1081)에 제2금속재질(1082)을 도금하여 상기 관통홀(1012)을 채우는 단계를 구비할 수 있다.
먼저, 도 16의 (a)와 같이 전기 도금을 위한 시드층을 형성하며, 상기 시드층은 구리 등의 제1금속재질(1081)을 상기 솔더(1071)의 중공 부분, 금속층(1072)의 중공 부분, 반사 관통홀(1013) 및 관통홀(1012)의 내측벽과 상기 반도체 발광소자의 일부분에 스퍼터링함에 따라 형성될 수 있다.
다음으로, 전기 도금을 통해 반도체 발광소자의 전극부 영역을 제2금속재질(1082), 예를 들어 구리와 같은 열 및 전기 전도성이 높은 물질로 충전한다(도 16의 (b) 참조). 이러한 도금을 통하여, 전술한 금속부(1080)가 구현될 수 있다.
상기 제1금속재질(1081)에 제2금속재질(1082)이 동일 재질인 경우에는 상기 금속부(1080)는 제1금속재질(1081)에 제2금속재질(1082)의 경계가 없는 단일의 금속부가 될 수 있다.
이후에, 제1전극(1020)을 상기 금속부(1080)와 연결되도록 상기 베이스 몸체의 하면에 형성한다(도 16의 (c) 참조). 이를 통하여 하부배선이 구현된다.
마지막으로, 도 16의 (d)와 같이, 상부 배선을 형성하기 위해 언도프된(Undoped) 반도체층(1153a)을 제거하여 제2도전형 반도체층을 외부로 노출시키며, 이후에 제2도전형 전극(1152)을 형성하고, 상부배선인 제2전극(1040)을 증착한다.
상기 제2전극(1040)은 빛의 흡수도가 낮고 투과도가 높은 물질로서, 예를 들어 ITO, Ag nanowire, Conductive polymer 등을 구비할 수 있다. 이 후 광추출효율 개선 및 반도체 발광소자의 보호를 위하여, 실리콘 등의 Encapsulation Resin이 도포될 수 있다.
상기에서 설명된 제조방법에 의하면, 본딩 신뢰도가 보다 향상되고, 방열이 보다 용이한 구조가 반도체 발광소자를 이용한 디스플레이 장치에 적용될 수 있다.
이상에서 설명한 반도체 발광 소자를 이용한 디스플레이 장치는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
Claims (15)
- 기판에 결합되는 적어도 하나의 반도체 발광소자를 구비하는 디스플레이 장치에 있어서,
상기 기판은,
관통홀을 구비하며, 절연물질로 형성되는 베이스 몸체;
환형으로 형성되어 상기 반도체 발광소자와 결합하며, 상기 환형의 중공부분이 상기 관통홀에 오버랩되도록 상기 베이스 몸체의 일면에 배치되는 솔더; 및
상기 관통홀을 충전하도록 이루어지는 금속부를 포함하고,
상기 금속부는 상기 관통홀의 입구에서 상기 반도체 발광소자를 향하여 돌출되는 것을 특징으로 하는 디스플레이 장치. - 삭제
- 제1항에 있어서,
상기 금속부는 상기 돌출을 통하여 상기 중공부분을 통과하여 상기 반도체 발광소자의 도전형 전극으로 이어지는 것을 특징으로 하는 디스플레이 장치. - 삭제
- 제1항에 있어서,
상기 금속부는 상기 관통홀의 내측벽에 도포되는 제1금속재질과, 상기 관통홀을 채우도록 상기 제1금속재질에 도금되는 제2금속재질을 구비하는 것을 특징으로 하는 디스플레이 장치. - 제5항에 있어서,
상기 제1금속재질은 상기 반도체 발광소자의 도전형 전극을 덮는 제1부분과, 상기 제1부분과 수직한 방향으로 형성되어 상기 관통홀의 내측벽에 형성되는 제2부분을 구비하는 것을 특징으로 하는 디스플레이 장치. - 삭제
- 제1항에 있어서,
상기 베이스 몸체의 일면에는 반사층이 형성되는 것을 특징으로 하는 디스플레이 장치. - 제8항에 있어서,
상기 반사층에는 상기 관통홀에 대응하는 반사 관통홀이 형성되며, 상기 금속부는 상기 반사 관통홀을 충전하도록 이루어지는 것을 특징으로 하는 디스플레이 장치. - 제8항에 있어서,
상기 반사층에는 상기 관통홀의 외주를 따라 금속층이 형성되며, 상기 솔더는 상기 금속층에 적층되는 것을 특징으로 하는 디스플레이 장치. - 제1항에 있어서,
상기 반도체 발광소자는,
도전형 반도체층;
상기 도전형 반도체층의 일면상에 형성되는 도전형 전극; 및
상기 반도체 발광소자의 적어도 일부를 감싸는 패시베이션층을 포함하며,
상기 관통홀은 상기 도전형 전극보다 작은 크기로 이루어지는 것을 특징으로 하는 디스플레이 장치. - 제11항에 있어서,
상기 도전형 전극은 상기 솔더와 접촉하는 환형의 제1영역과, 상기 금속부와 접촉하며 상기 제1영역의 내측에 형성되는 제2영역을 구비하는 것을 특징으로 하는 디스플레이 장치. - 삭제
- 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170094893A KR102439186B1 (ko) | 2017-07-26 | 2017-07-26 | 반도체 발광 소자를 이용한 디스플레이 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170094893A KR102439186B1 (ko) | 2017-07-26 | 2017-07-26 | 반도체 발광 소자를 이용한 디스플레이 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190012030A KR20190012030A (ko) | 2019-02-08 |
KR102439186B1 true KR102439186B1 (ko) | 2022-09-02 |
Family
ID=65365020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170094893A KR102439186B1 (ko) | 2017-07-26 | 2017-07-26 | 반도체 발광 소자를 이용한 디스플레이 장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102439186B1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210004029A (ko) * | 2019-07-03 | 2021-01-13 | 삼성전자주식회사 | 엘이디 패널의 제조 방법 및 제조 장치 |
KR102681185B1 (ko) * | 2021-09-24 | 2024-07-04 | 한국기계연구원 | 마이크로 엘이디 표시모듈 및 이의 제조방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101491138B1 (ko) * | 2007-12-12 | 2015-02-09 | 엘지이노텍 주식회사 | 다층 기판 및 이를 구비한 발광 다이오드 모듈 |
US9178123B2 (en) * | 2012-12-10 | 2015-11-03 | LuxVue Technology Corporation | Light emitting device reflective bank structure |
KR101771461B1 (ko) * | 2015-04-24 | 2017-08-25 | 엘지전자 주식회사 | 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 |
-
2017
- 2017-07-26 KR KR1020170094893A patent/KR102439186B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20190012030A (ko) | 2019-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102060471B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법 | |
US11605757B2 (en) | Display device using semiconductor light emitting diode | |
KR102458007B1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치의 제조방법 | |
KR102700205B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
KR102413330B1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
US9627363B2 (en) | Display device using semiconductor light emitting devices | |
US11949047B2 (en) | Display device using semiconductor light emitting element | |
US11387396B2 (en) | Display apparatus using semiconductor light emitting device | |
KR102205693B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
KR102435409B1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
KR102347927B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
KR102557154B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
KR102357645B1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
KR102115189B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
KR101987698B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
KR102456740B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
KR102439186B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
KR102115188B1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
KR102105466B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
US20230216004A1 (en) | Semiconductor light-emitting element and display device using same | |
US20220246593A1 (en) | Display device using micro-led, and manufacturing method therefor | |
KR102456888B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
KR102459573B1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |