KR102409862B1 - Method, server and program for providing real-time robot monitoring service - Google Patents
Method, server and program for providing real-time robot monitoring service Download PDFInfo
- Publication number
- KR102409862B1 KR102409862B1 KR1020170081366A KR20170081366A KR102409862B1 KR 102409862 B1 KR102409862 B1 KR 102409862B1 KR 1020170081366 A KR1020170081366 A KR 1020170081366A KR 20170081366 A KR20170081366 A KR 20170081366A KR 102409862 B1 KR102409862 B1 KR 102409862B1
- Authority
- KR
- South Korea
- Prior art keywords
- information
- robot
- axis
- state
- status
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000012544 monitoring process Methods 0.000 title claims abstract description 55
- 230000008859 change Effects 0.000 claims abstract description 42
- 230000008569 process Effects 0.000 claims abstract description 34
- 230000009471 action Effects 0.000 claims abstract description 26
- 230000003449 preventive effect Effects 0.000 claims abstract description 23
- 238000003745 diagnosis Methods 0.000 claims description 32
- 239000003638 chemical reducing agent Substances 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 3
- 239000003086 colorant Substances 0.000 claims 2
- 238000007619 statistical method Methods 0.000 claims 2
- 238000004891 communication Methods 0.000 description 13
- 238000012423 maintenance Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000005856 abnormality Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0066—Means or methods for maintaining or repairing manipulators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Theoretical Computer Science (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Operations Research (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Automation & Control Theory (AREA)
- General Factory Administration (AREA)
- Manipulator (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
본 발명의 일 실시예에 따르면, 서비스 제공 서버가 공장 내 로봇들을 실시간으로 모니터링하는 방법에 있어서, (a) 로봇 제어기로부터 상기 로봇들 각각의 각 축별 상태 정보를 수신하는 단계; (b) 상기 각 축별 상태 정보를 분석하여 상기 로봇의 관리상태와 관련된 예방조치 정보 및 상기 로봇의 공정능력 및 상태 변화 패턴과 관련된 예지조치 정보를 상기 각 축별로 생성하는 단계; 및 (c) 상기 각 축별 예방조치 정보 및 예지조치 정보를 상기 공장 관리자의 단말기로 전송하는 단계를 포함하는, 실시간 로봇 모니터링 서비스 제공 방법이 제공된다.According to an embodiment of the present invention, there is provided a method for a service providing server to monitor robots in a factory in real time, the method comprising: (a) receiving status information for each axis of each of the robots from a robot controller; (b) analyzing the status information for each axis to generate preventive action information related to the management status of the robot and predictive action information related to the process capability and status change pattern of the robot for each axis; and (c) transmitting the preventive action information and predictive action information for each axis to the terminal of the factory manager, a real-time robot monitoring service providing method is provided.
Description
본 발명은 실시간 로봇 모니터링 서비스 제공 방법, 서버 및 프로그램에 관한 것으로, 보다 상세하게는, 서비스 제공 서버가 다양한 공장들이 보유한 다수의 로봇들을 실시간으로 모니터링하여, 각 로봇들의 결함이나 시스템 이상을 조기에 감지하고 미래에 발생할 고장을 미리 예측정비함으로써, 공장들의 로봇 유지보수 비용을 절감시키고, 시스템의 안정성 및 신뢰성을 향상시키고자 하는 방법, 서버 및 프로그램에 관한 것이다.The present invention relates to a method, server and program for providing a real-time robot monitoring service, and more particularly, a service providing server monitors in real time a number of robots owned by various factories, and detects defects or system abnormalities of each robot early. And it relates to a method, a server and a program for reducing the robot maintenance cost of factories and improving the stability and reliability of the system by predicting and repairing failures that may occur in the future.
오늘날 공장 현장에서는 품질 향상 및 생산성 확보를 위하여 고속화 및 다품종 대량 생산을 지원하는 산업용 로봇을 다수 활용하고 있으며, 이에 따라 로봇들을 유지관리 하기 위하여 많은 비용을 소모하고 있는 실정이다.Today, many industrial robots that support high-speed and multi-variety mass production are used in factory sites to improve quality and secure productivity.
또한, 미처 예측하지 못한 고장이 발생할 시, 제품의 생산이 급작스럽게 중단됨에 따라 공장의 생산성 및 제품 품질이 저하되는 악영향이 발생하게 되며, 이로 인해 천문학적인 액수의 손실비용이 발생하게 되는 곤란을 겪고 있다.In addition, when an unexpected failure occurs, the production of the product is abruptly stopped, resulting in adverse effects such as lowering the productivity and product quality of the factory, which causes astronomical loss costs have.
특히, 자동화 제조업 공장의 경우, 로봇의 갑작스러운 고장으로 인한 경제적 손실이 더욱 크게 나타나므로, 이러한 문제를 해결하기 위한 적절한 정비 전략을 확보하여 로봇의 상태를 실시간으로 진단하고, 고장을 예지하는 기술의 필요성이 점차 증대되고 있다.In particular, in the case of automated manufacturing plants, economic losses due to sudden robot failures appear larger. Therefore, it is necessary to secure an appropriate maintenance strategy to solve these problems, diagnose the robot status in real time, and predict failures. The need is gradually increasing.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 서비스 제공 서버가 IoT 센서를 통해 수집된 복수의 로봇들의 개별 상태 정보를 실시간으로 분석하여, 각 로봇들에 대한 결함 및 시스템 이상을 조기에 감지하고, 미래에 발생할 고장을 미리 예측정비 함으로써, 공장의 손실비용을 절감시키고, 시스템의 안정성 및 신뢰성을 향상시키는 것을 목적으로 한다.The present invention is to solve the problems of the prior art described above, in which a service providing server analyzes individual status information of a plurality of robots collected through an IoT sensor in real time, and defects and system abnormalities for each robot are detected at an early stage. It aims to reduce plant loss costs and improve system stability and reliability by detecting and predicting future failures in advance.
또한, 서비스 제공 서버가 각 로봇의 상태 분석 시, 해당 로봇의 상태 변화 패턴을 자동으로 학습하도록 함으로써, 서비스의 정확도를 향상시키는 것을 목적으로 한다.In addition, by allowing the service providing server to automatically learn the state change pattern of the corresponding robot when analyzing the state of each robot, the purpose of the service is to improve the accuracy of the service.
뿐만 아니라, 서비스 제공 서버가 복수의 공장들이 보유한 다수의 로봇들을 일괄적으로 모니터링하고, 그 현황을 확인 가능한 프로그램을 각 공장들에게 제공함으로써, 공장들이 로봇을 관리하기 위해 소모하는 비용을 절감시키고, 그 편의성 또한 증진시키는 것을 목적으로 한다.In addition, the service providing server collectively monitors a number of robots owned by a plurality of factories, and provides a program that can check the status to each factory, thereby reducing the cost consumed by factories to manage robots, It also aims to improve its convenience.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.Objects of the present invention are not limited to the objects mentioned above, and other objects not mentioned will be clearly understood from the description below.
상술한 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 서비스 제공 서버가 공장 내 로봇들을 실시간으로 모니터링하는 방법에 있어서, (a) 로봇 제어기로부터 상기 로봇들 각각의 각 축별 상태 정보를 수신하는 단계; (b) 상기 각 축별 상태 정보를 분석하여 상기 로봇의 관리상태와 관련된 예방조치 정보 및 상기 로봇의 공정능력 및 상태 변화 패턴과 관련된 예지조치 정보를 상기 각 축별로 생성하는 단계; 및 (c) 상기 각 축별 예방조치 정보 및 예지조치 정보를 상기 공장 관리자의 단말기로 전송하는 단계를 포함하는, 실시간 로봇 모니터링 서비스 제공 방법이 제공된다.According to an embodiment of the present invention for achieving the above object, in a method for a service providing server to monitor robots in a factory in real time, (a) receiving status information for each axis of each of the robots from a robot controller step; (b) analyzing the status information for each axis to generate preventive action information related to the management status of the robot and predictive action information related to the process capability and status change pattern of the robot for each axis; and (c) transmitting the preventive action information and predictive action information for each axis to the terminal of the factory manager, a real-time robot monitoring service providing method is provided.
상기 예방조치 정보는, 상기 각 축별 관리상태 정보, 교체권장주기 정보, 최근 부품 교체일 정보 및 수명 잔여일 정보 중 일 이상을 포함할 수 있다.The preventive measure information may include one or more of the management status information for each axis, replacement recommended cycle information, recent parts replacement date information, and remaining life information information.
상기 예지조치 정보는, 상기 각 축별 상태 변화 추이 정보, 공정능력 등급 정보, 잔여수명 정보 및 상태 변화 패턴 정보 중 일 이상을 포함할 수 있다.The predictive action information may include one or more of status change trend information for each axis, process capability grade information, remaining life information, and status change pattern information.
상기 (b) 단계는, 상기 로봇의 각 축별 상태 정보를 분석하여 상기 각 축별 모터 부하율, 엔코더 온도, 감속기 잔여 수명, 연속 부하율 및 감속기 토크 중 일 이상을 산정하는 단계를 더 포함할 수 있다.The step (b) may further include analyzing the state information for each axis of the robot and calculating one or more of a motor load factor for each axis, an encoder temperature, a reduction gear remaining life, a continuous load factor, and a reducer torque.
상기 (b) 단계는, 상기 상태 변화 패턴이 기존 패턴 정보와 상이하게 나타날 경우, 새로운 상기 상태 변화 패턴을 학습하여 향후 상기 각 축별 상태 정보 분석 시 적용되도록 하는 단계를 더 포함할 수 있다.The step (b) may further include, when the state change pattern appears different from the existing pattern information, learning the new state change pattern to be applied when analyzing the state information for each axis in the future.
상기 (b) 단계는, 상기 로봇 제어기로부터 수신된 알람 신호에 대응되는 원인 및 대처방안을 분석하는 단계를 더 포함하고, 상기 (c) 단계는, 상기 로봇 제어기 알람 신호의 원인 정보 및 대처방안 정보를 상기 공장 관리자의 단말기로 전송하는 단계를 더 포함할 수 있다.The step (b) further includes analyzing a cause and a countermeasure corresponding to the alarm signal received from the robot controller, and the step (c) includes cause information and countermeasure information of the robot controller alarm signal. It may further include the step of transmitting to the terminal of the factory manager.
상기 (c) 단계는, 상기 각 축별 예방조치 정보 및 예지조치 정보를 그래프 및 엑셀 데이터 중 일 이상의 형태로 가공하는 단계를 더 포함할 수 있다.The step (c) may further include processing the preventive action information and predictive action information for each axis into one or more of graphs and Excel data.
상술한 목적을 달성하기 위한 본 발명의 다른 실시예에 따르면, 공장 내 로봇들을 실시간으로 모니터링하는 서비스 제공 서버에 있어서, 로봇 제어기로부터 상기 로봇들 각각의 각 축별 상태 정보를 수신하는 로봇 관련 정보 수집부; 상기 각 축별 상태 정보를 분석하여 상기 로봇의 관리상태와 관련된 예방조치 정보 및 상기 로봇의 공정능력 및 상태 변화 패턴과 관련된 예지조치 정보를 상기 각 축별로 생성하는 로봇 상태 진단부; 및 상기 각 축별 예방조치 정보 및 예지조치 정보를 상기 공장 관리자의 단말기로 전송하는 모니터링 정보 제공부를 포함하는, 서비스 제공 서버가 제공된다.According to another embodiment of the present invention for achieving the above object, in a service providing server for monitoring robots in a factory in real time, a robot-related information collecting unit for receiving status information for each axis of each of the robots from a robot controller ; a robot state diagnosis unit that analyzes the state information for each axis to generate preventive action information related to the management state of the robot and predictive action information related to the process capability and state change pattern of the robot for each axis; and a monitoring information providing unit for transmitting the preventive action information and predictive action information for each axis to the terminal of the factory manager, a service providing server is provided.
상기 예방조치 정보는, 상기 각 축별 관리상태 정보, 교체권장주기 정보, 최근 부품 교체일 정보 및 수명 잔여일 정보 중 일 이상을 포함할 수 있다.The preventive measure information may include one or more of the management status information for each axis, replacement recommended cycle information, recent parts replacement date information, and remaining life information information.
상기 예지조치 정보는, 상기 각 축별 상태 변화 추이 정보, 공정능력 등급 정보, 잔여수명 정보 및 상태 변화 패턴 정보 중 일 이상을 포함할 수 있다.The predictive action information may include one or more of status change trend information for each axis, process capability grade information, remaining life information, and status change pattern information.
상기 로봇 상태 진단부는, 상기 로봇의 각 축별 상태 정보를 분석하여 상기 각 축별 모터 부하율, 엔코더 온도, 감속기 잔여 수명, 연속 부하율 및 감속기 토크 중 일 이상을 산정할 수 있다.The robot state diagnosis unit may analyze the state information for each axis of the robot to calculate one or more of a motor load factor for each axis, an encoder temperature, a reduction gear remaining life, a continuous load factor, and a reducer torque.
상기 로봇 상태 진단부는, 상기 상태 변화 패턴이 기존 패턴 정보와 상이하게 나타날 경우, 새로운 상기 상태 변화 패턴을 학습하여 향후 상기 각 축별 상태 정보 분석 시 적용되도록 할 수 있다.When the state change pattern appears to be different from the existing pattern information, the robot state diagnosis unit may learn the new state change pattern to be applied when analyzing the state information for each axis in the future.
상기 로봇 상태 진단부는, 상기 로봇 제어기로부터 수신된 알람 신호에 대응되는 원인 및 대처방안을 분석하고, 상기 모니터링 정보 제공부는, 상기 로봇 제어기 알람 신호의 원인 정보 및 대처방안 정보를 상기 공장 관리자의 단말기로 전송할 수 있다.The robot state diagnosis unit analyzes causes and countermeasures corresponding to the alarm signal received from the robot controller, and the monitoring information providing unit transmits cause information and countermeasure information of the robot controller alarm signal to the terminal of the factory manager. can be transmitted
상기 모니터링 정보 제공부는, 상기 각 축별 예방조치 정보 및 예지조치 정보를 그래프 및 엑셀 데이터 중 일 이상의 형태로 가공할 수 있다.The monitoring information providing unit may process the preventive measure information and predictive measure information for each axis in one or more forms of graph and Excel data.
상술한 목적을 달성하기 위한 본 발명의 또 다른 실시예에 따르면, 로봇사용사 단말기 및 로봇제조사 단말기와 통신하는 서비스 제공 서버와 결합되어, 로봇 제어기로부터 상기 로봇들 각각의 각 축별 상태 정보를 수신하는 단계; 상기 각 축별 상태 정보를 분석하여 상기 로봇의 관리상태와 관련된 예방조치 정보 및 상기 로봇의 공정능력 및 상태 변화 패턴과 관련된 예지조치 정보를 상기 각 축별로 생성하는 단계; 및 상기 각 축별 예방조치 정보 및 예지조치 정보를 상기 로봇사용사 단말기 및 상기 로봇제조사 단말기로 전송하는 단계를 수행하기 위해 기록 매체에 저장된 컴퓨터 프로그램이 제공된다.According to another embodiment of the present invention for achieving the above object, it is combined with a service providing server that communicates with the robot user terminal and the robot manufacturer terminal to receive the status information for each axis of each of the robots from the robot controller. step; generating, for each axis, preventive action information related to the management status of the robot and predictive action information related to the process capability and status change pattern of the robot by analyzing the status information for each axis; And a computer program stored in a recording medium is provided to perform the step of transmitting the preventive action information and predictive action information for each axis to the robot user terminal and the robot manufacturer terminal.
본 발명의 일 실시예에 따르면, 서비스 제공 서버가 IoT 센서를 통해 수집된 복수의 로봇들의 개별 상태 정보를 실시간으로 분석하여, 각 로봇들에 대한 결함 및 시스템 이상을 조기에 감지하고, 미래에 발생할 고장을 미리 예측정비 함으로써, 공장의 손실비용을 절감시키고, 시스템의 안정성 및 신뢰성을 향상시킬 수 있다.According to an embodiment of the present invention, the service providing server analyzes the individual status information of a plurality of robots collected through the IoT sensor in real time, and detects defects and system abnormalities for each robot early, and may occur in the future. By predicting and repairing failures in advance, it is possible to reduce the loss cost of the plant and improve the stability and reliability of the system.
또한, 본 발명의 일 실시예에 따르면, 서비스 제공 서버가 각 로봇의 상태 분석 시, 해당 로봇의 상태 변화 패턴을 자동으로 학습하도록 함으로써, 서비스의 정확도를 향상시킬 수 있다.Further, according to an embodiment of the present invention, when the service providing server analyzes the state of each robot, it is possible to improve the accuracy of the service by automatically learning the state change pattern of the corresponding robot.
뿐만 아니라, 본 발명의 일 실시예에 따르면, 서비스 제공 서버가 복수의 공장들이 보유한 다수의 로봇들을 일괄적으로 모니터링하고, 그 현황을 확인 가능한 프로그램을 각 공장들에게 제공함으로써, 공장들이 로봇을 관리하기 위해 소모하는 비용을 절감시키고, 그 편의성 또한 증진시킬 수도 있다.In addition, according to an embodiment of the present invention, the service providing server collectively monitors a plurality of robots owned by a plurality of factories, and provides a program that can check the status to each factory, whereby factories manage robots It can reduce the cost consumed to do so, and also enhance its convenience.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일 실시예에 따른 실시간 로봇 모니터링 서비스 제공 시스템의 구성을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 서비스 제공 서버의 구성을 도시한 블록도이다.
도 3은 본 발명의 일 실시예에 따라 실시간 로봇 모니터링 서비스가 제공되는 과정을 도시한 흐름도이다.
도 4는 본 발명의 일 실시예에 따라 각 타입별 알람신호 및 개별 로봇의 정보를 확인할 수 있는 실시간 로봇 모니터링 프로그램 화면의 예시를 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따라 로봇의 각 축별 상태를 확인할 수 있는 실시간 로봇 모니터링 프로그램 화면의 예시를 도시한 도면이다.1 is a diagram schematically illustrating the configuration of a system for providing a real-time robot monitoring service according to an embodiment of the present invention.
2 is a block diagram illustrating the configuration of a service providing server according to an embodiment of the present invention.
3 is a flowchart illustrating a process in which a real-time robot monitoring service is provided according to an embodiment of the present invention.
4 is a diagram illustrating an example of a real-time robot monitoring program screen that can check alarm signals for each type and information of individual robots according to an embodiment of the present invention.
5 is a diagram illustrating an example of a real-time robot monitoring program screen that can check the state of each axis of the robot according to an embodiment of the present invention.
이하에서 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in several different forms, and thus is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 “간접적으로 연결”되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is “connected” with another part, it includes not only the case where it is “directly connected” but also the case where it is “indirectly connected” with another member in between. . In addition, when a part "includes" a certain component, this means that other components may be further provided without excluding other components unless otherwise stated.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 실시간 로봇 모니터링 서비스 제공 시스템의 구성을 개략적으로 도시한 도면이다.1 is a diagram schematically illustrating the configuration of a system for providing a real-time robot monitoring service according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 실시간 로봇 모니터링 서비스 제공 시스템은 로봇(100), 로봇 제어기(200), 서비스 제공 서버(300), 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)를 포함할 수 있다.Referring to FIG. 1 , a system for providing a real-time robot monitoring service according to an embodiment of the present invention includes a
이때, 서비스 제공 서버(300), 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)는 본 명세서에서 설명되는 기능을 실현시키기 위한 컴퓨터 프로그램을 통해 동작하는 기록 매체로 구현될 수 있다.At this time, the
이하에서는 로봇(100), 로봇 제어기(200), 서비스 제공 서버(300), 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)가 각각 하나씩 존재하는 실시예에 대하여 서술하나 이에 한정되는 것은 아니며, 이들 각각이 복수 개씩 존재하여 실시간 로봇 모니터링 서비스 제공 시스템을 구성할 수도 있음은 물론이다.Hereinafter, an embodiment in which the
먼저, 로봇(100), 로봇 제어기(200), 서비스 제공 서버(300), 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)는 각각 통신망으로 연결되어 있을 수 있으며, 여기서, 통신망은 유선 및 무선 등과 같은 그 통신 양태를 가리지 않고 구성될 수 있다. 근거리 통신망(LAN : Local Area Network), 도시권 통신망(MAN : Metropolitan Area Network), 광역 통신망(WAN : Wide Area Network) 등 다양한 통신망으로 구성될 수 있다.First, the
로봇(100)은 공장 내에 설치되어 로봇 제어기(200)를 통해 지정된 특정 작업 프로그램을 수행하는 장치일 수 있다.The
일 실시예에 따른 로봇(100)은 다양한 부품으로 이루어진 복수 개의 축으로 구성될 수 있으며, 각 축의 온도, 진동, 소음 등을 측정하는 센서 장치를 구비하고 있을 수도 있다.The
로봇 제어기(200)는 로봇(100)과 통신함에 따라, 로봇(100)의 동작을 제어하며, 로봇(100)의 상태 정보를 주기적으로 수집하는 장치일 수 있다.The
상기 로봇(100)의 상태 정보는 로봇 제어기(200)와 연결된 로봇(100)의 각 축별로 측정된 모터 동작 정보, 감속기 동작 정보, 엔코더 동작 정보, 온도 정보, 진동 정보, 소음 정보 등을 일 이상 포함할 수 있다.The state information of the
또한, 로봇 제어기(200)는 자신과 연결된 로봇(100)의 고유 정보로서, 모델 정보, 시리얼넘버 정보, 제조일 정보, 설치일 정보, 설치된 서브라인 정보, IP 주소 정보, 수행작업 정보 등을 해당 로봇(100)으로부터 수집할 수도 있다.In addition, the
일 실시예에 따른 로봇 제어기(200)는 상기 수집한 로봇(100)의 고유 정보 및 상태 정보를 서비스 제공 서버(300)로 전송할 수 있으며, 자체적으로 설정된 기준에 따라 발생시킨 다양한 알람 신호를 전송할 수도 있다.The
본 발명의 다른 실시예에 따르면, 로봇(100)은 외부 서버와 통신 가능한 데이터 수집 보드 장치를 포함할 수 있으며, 자신의 고유 정보 및 상태 정보를 아날로그 형태로 수집한 후, 상기 데이터 수집 보드를 통해 디지털 형태의 정보로 변환하여 서비스 제공 서버(300)로 전송할 수도 있다.According to another embodiment of the present invention, the
서비스 제공 서버(300)는 내부 데이터베이스에 실시간 로봇 모니터링 서비스를 제공하고자 하는 공장의 정보를 등록하고, 수신된 로봇(100) 관련 정보를 분석 및 가공함으로써, 실시간 로봇 모니터링 서비스를 운용하는 서버일 수 있다.The
일 실시예에 따르면, 서비스 제공 서버(300)는 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)를 통해 각각의 관리자로부터 각 공장과 관련된 다양한 정보를 입력받을 수 있으며, 이를 통해 해당 공장을 서비스 대상으로 등록할 수 있다.According to one embodiment, the
또한, 서비스 제공 서버(300)는 상기 등록된 공장 정보를 토대로 해당 공장의 스페어 부품 현황을 관리할 수도 있다.In addition, the
본 발명의 일 실시예에 따른 서비스 제공 서버(300)는 로봇사용사 단말기(400) 또는 로봇제조사 단말기(500)로부터 시스템을 이용하게 될 관리자의 정보를 수신할 수 있으며, 이를 토대로 해당 관리자를 내부 데이터베이스에 등록하고, 이를 관리할 수 있다.The
서비스 제공 서버(300)는 로봇 제어기(200)로부터 수신한 로봇(100)의 고유 정보 및 상태 정보를 토대로 로봇(100)을 상기 공장과 매칭하여 내부 데이터베이스에 등록할 수 있다.The
일 실시예에 따른 서비스 제공 서버(300)는 로봇(100)의 상태 정보를 분석하기 위한 기준 정보를 설정할 수 있으며, 이에 따라 상기 로봇(100) 상태 정보를 분석 및 가공함으로써, 로봇(100)에 대한 예방조치 정보 및 예지조치 정보를 생성하여 이와 관련된 알람을 로봇사용사 단말기(400) 또는 로봇제조사 단말기(500)로 전송할 수 있다. 이와 관련된 내용은 추후 도2를 참조하여 상세히 서술하기로 한다.The
본 발명의 일 실시예에 따르면, 서비스 제공 서버(300)는 로봇 제어기(200)로부터 알람 신호가 수신되면, 이에 대한 원인 및 대책방안을 분석할 수 있다.According to an embodiment of the present invention, when an alarm signal is received from the
뿐만 아니라, 서비스 제공 서버(300)는 로봇 제어기(200)로부터 로봇(100)의 수행작업 정보가 수신될 시, 이를 내부 데이터베이스에 백업하고, 상기 백업된 정보들을 토대로 해당 로봇(100)의 수행작업 에러 이력을 관리할 수도 있다.In addition, when the
서비스 제공 서버(300)는 실시간 로봇 모니터링 프로그램을 통해 로봇사용사 단말기(400) 또는 로봇제조사 단말기(500)에 표시되는 정보 및 인터페이스 그래픽 등을 관리할 수 있으며, 변경사항이 있을 시 웹 서버(미도시)를 통해 해당 프로그램을 업데이트할 수도 있다.The
로봇사용사 단말기(400)는 각각 로봇사용사, 즉 로봇(100)을 이용해 제품을 생산하는 공장을 관리하는 관리자가 사용하는 단말기일 수 있으며, 로봇제조사 단말기(500)는 로봇사용사가 사용하는 로봇(100)을 제작하는 로봇제조사를 관리하는 관리자가 사용하는 단말기일 수 있다.The
로봇사용사 단말기(400) 또는 로봇제조사 단말기(500)는 각각의 관리자의 조작에 따라, 별도의 웹 서버(미도시)를 통해 서비스 제공 서버(300)로부터 실시간 로봇 모니터링 서비스를 제공받을 수 있는 실시간 로봇 모니터링 프로그램을 다운로드하여 내부 메모리에 설치할 수 있다.The
상기 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)는 휴대폰, 스마트폰, PDA(Personal Digital Assistant), PMP(Portable Multimedia Player), 태블릿 PC 등과 같이 네트워크를 통하여 서비스 제공 서버(300) 등의 외부 서버와 연결될 수 있고, 모든 종류의 핸드헬드(Handheld) 기반의 무선 통신 장치를 포함할 수 있으며, 이 외에도 데스크탑 PC, 태블릿 PC, 랩탑 PC, 셋탑 박스를 포함하는 IPTV와 같이, 네트워크를 통하여 서비스 제공 서버(300) 등의 외부 서버와 연결될 수 있는 통신 장치도 포함할 수 있다.The
도 2는 본 발명의 일 실시예에 따른 서비스 제공 서버(300)의 구성을 도시한 블록도이다.2 is a block diagram illustrating the configuration of a
도 2를 참조하면, 서비스 제공 서버(300)는 데이터베이스(310), 서비스 정보 설정부(320), 로봇 관련 정보 수집부(330), 로봇 상태 진단부(340), 모니터링 정보 제공부(350), 시스템 감시부(360), 제어부(370) 및 통신부(380)를 포함할 수 있다.Referring to FIG. 2 , the
데이터베이스(310)는 본 발명의 실시간 로봇 모니터링 서비스와 관련된 다양한 정보들을 저장할 수 있다.The
본 발명의 일 실시예에 따르면, 데이터베이스(310)에는 실시간 로봇 모니터링 서비스 제공 대상인 로봇사용사 및 로봇제조사의 공장 정보(공장의 이름, 식별코드, 스페어 부품 보유 현황 등), 해당 공장의 생산라인 정보(생산라인의 이름, 식별코드 등), 각 서브라인별 정보(서브라인의 이름, 식별코드, 순번 등), 관리자 정보(관리자의 ID 정보, 패스워드 정보, 이름 정보, 부서 정보, 직위 정보 등)가 저장될 수 있다.According to an embodiment of the present invention, the
또한, 일 실시예에 따르면, 데이터베이스(310)에는 로봇 제어기(200)로부터 수신된 로봇(100)의 고유 정보(로봇(100)의 모델 정보, 시리얼넘버 정보, 제조일 정보, 설치일 정보, 설치된 서브라인 정보, IP 주소 정보, 수행작업 정보 등) 및 상태 정보(로봇(100)의 각 축별 모터 동작 정보, 감속기 동작 정보, 엔코더 동작 정보, 온도 정보, 진동 정보, 소음 정보 등)가 저장될 수 있으며, 상기 로봇(100)의 상태 정보를 분석하기 위한 기준 정보와 상기 분석이 완료된 결과 정보가 저장될 수도 있다.In addition, according to one embodiment, in the
서비스 정보 설정부(320)는 실시간 로봇 모니터링 서비스 제공 대상인 공장과 관련된 정보를 등록하고, 로봇(100)의 상태 정보를 분석하기 위한 기준을 설정할 수 있다.The service
구체적으로, 서비스 정보 설정부(320)는 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로부터 해당 로봇사용사 및 로봇제조사 각각의 공장 정보, 해당 공장의 생산라인 정보, 각 서브라인별 정보, 관리자 정보 등을 포함하는 서비스 등록 요청을 수신할 수 있다.Specifically, the service
이에 따라, 서비스 정보 설정부(320)는 상기 서비스 등록 요청을 토대로 상기 로봇사용사 및 로봇제조사를 실시간 로봇 모니터링 서비스 제공 대상으로서 데이터베이스(310)에 등록할 수 있다.Accordingly, the service
또한, 추후 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로부터 로봇사용사 및 로봇제조사 각각에 대한 정보 갱신 요청이 수신될 시, 해당 정보들을 수정할 수도 있다.In addition, when a request for updating information on each of the robot user and the robot manufacturer is received from the
일 실시예에 따르면, 서비스 정보 설정부(320)는 로봇 제어기(200)로부터 로봇(100)의 고유 정보를 수신할 수 있다.According to an embodiment, the service
이에 따라, 서비스 정보 설정부(320)는 로봇(100)을 로봇(100)이 설치된 서브라인과 매칭하고, 로봇(100)의 모델에 대응되는 사양 항목을 생성하는 등 상기 고유 정보에 따른 로봇(100)을 데이터베이스(310)에 등록할 수 있다.Accordingly, the service
본 발명의 일 실시예에 따른 서비스 정보 설정부(320)는 추후 로봇 상태 진단부(340)에서 로봇(100)의 각 축별 공정능력 등급을 산정하거나, 관리상태를 판정할 수 있는 기준을 설정할 수 있다. 예를 들면, 각 축의 모터 부하율, 엔코더 온도, 연속 부하율, 감속기 토크, 진동·소음·감속기 수명의 상한값과 하한값 등에 대한 기준을 설정할 수 있으며, 로봇(100) 상태 진단 주기, 로봇(100) 상태 정보 수집 주기 등을 설정할 수도 있다.The service
이때, 일 실시예에 따르면, 상기 로봇(100)의 상태를 진단하는 기준은 서비스 제공 서버(300)를 관리하는 관리자로부터 입력될 수 있으며, 로봇사용사 단말기(400) 또는 로봇제조사 단말기(500)로부터 수신되는 정보에 따라 설정될 수도 있다.At this time, according to one embodiment, the criterion for diagnosing the state of the
로봇 관련 정보 수집부(330)는 로봇(100)과 관련된 정보로서, 로봇(100)의 상태 정보, 로봇(100)의 정비 수행 정보, 스페어 부품의 재고 현황 정보 등을 수집할 수 있다.The robot-related
구체적으로, 로봇 관련 정보 수집부(330)는 로봇 제어기(200)로부터 로봇(100)의 각 축별 상태 정보를 수신할 수 있으며, 이를 수신된 시간별로 데이터베이스(310)에 저장할 수도 있다.Specifically, the robot-related
또한, 본 발명의 일 실시예에 따르면, 로봇 제어기(200)는 공장 현장의 상태 또는 로봇(100)의 상태와 관련하여 자체적으로 알람 신호를 발생시킬 수 있으며, 로봇 관련 정보 수집부(330)는 로봇 제어기(200)로부터 상기 로봇 제어기(200)의 알람 신호를 수신할 수 있다.In addition, according to an embodiment of the present invention, the
일 실시예에 따른 로봇 관련 정보 수집부(330)는 로봇사용사 단말기(400) 또는 로봇제조사 단말기(500)로부터 각각에 대응되는 공장이 보유한 스페어 부품의 현황 정보 및 실제 공장 현장에서 로봇(100)에 대한 정비가 수행된 정보를 수신하여 데이터베이스(310)에 저장할 수 있으며, 변동사항이 발생할 시 이를 갱신할 수도 있다.The robot-related
로봇 상태 진단부(340)는 로봇 관련 정보 수집부(330)를 통해 수집된 정보들을 서비스 정보 설정부(320)를 통해 설정된 분석 기준에 따라 분석하고, 그 결과를 데이터베이스(310)에 저장할 수 있다.The robot
구체적으로, 로봇 상태 진단부(340)는 로봇(100)의 상태 정보를 참조하여 로봇(100)의 각 축에 대하여 공정능력 등급을 산정하거나, 관리상태를 판정할 수 있다.Specifically, the robot
일 실시예에 따르면, 로봇 상태 진단부(340)는 로봇(100)의 각 축별 모터 동작 정보, 감속기 동작 정보, 엔코더 동작 정보, 온도 정보, 진동 정보, 소음 정보 등을 토대로 상기 각 축별로 모터 부하율, 엔코더 온도, 감속기 잔여 수명, 연속 부하율, 감속기 토크 등을 일 이상 산정할 수 있다.According to an embodiment, the robot
또한, 로봇 상태 진단부(340)는 상기 산정된 결과에 따라 로봇(100)의 각 축별로 공정능력 등급을 책정하거나, 또는 관리상태를 양호 상태, 교체권장 상태 및 경과 상태 중 어느 하나로 판정할 수도 있다.In addition, the robot
예를 들면, 서비스 정보 설정부(320)를 통해 설정된 감속기 수명의 상한값 및 하한값이 각각 6개월 및 3개월일 수 있다. 이때, 로봇 상태 진단부(340)가 로봇(100)의 상태 정보를 분석한 결과, 로봇(100)의 제1축의 감속기 잔여 수명은 2개월일 수 있으며, 제2축의 감속기 잔여 수명은 4개월일 수 있다. 이 경우, 로봇 상태 진단부(340)는 상기 제1축의 공정능력 등급을 5등급으로, 상기 제2축의 공정능력 등급을 제1축보다 높은 3등급으로 책정하거나, 상기 제1축의 관리상태를 부품 교체 시기가 지났음을 의미하는 경과 상태로, 상기 제2축의 관리상태를 부품 교체가 권장됨을 의미하는 교체권장 상태로 판정할 수 있다.For example, the upper limit value and the lower limit value of the lifespan of the reducer set through the service
이때, 일 실시예에 따르면, 로봇 상태 진단부(340)는 로봇(100)의 각 축별 등급 또는 관리상태별로 필요한 조치 방법을 판단할 수도 있다.In this case, according to an embodiment, the robot
예를 들면, 로봇(100)의 제1축의 등급이 3등급일 경우, 해당 축에 대한 부품 교체 및 정비 권장 신호가 해당 공장의 관리자 단말기로 전송되도록 할 수 있으며, 5등급일 경우, 해당 축에 대하여 고장 위험이 존재하는 것으로 판단하는 바, 즉시 부품 교체 및 정비를 수행하도록 요청하는 신호가 해당 공장의 관리자 단말기로 전송되도록 할 수도 있다.For example, when the grade of the first axis of the
뿐만 아니라, 본 발명의 일 실시예에 따르면, 로봇 상태 진단부(340)는 상기 로봇(100) 상태 정보의 분석 결과에 따라 해당 로봇의 각 축별 부품 교체권장주기를 산정할 수 있으며, 데이터베이스(310)에 저장된 로봇(100)의 정비 수행 정보를 토대로 교체일까지 남은 잔여일수 또한 산정할 수도 있다.In addition, according to an embodiment of the present invention, the robot
일 실시예에 따른 로봇 상태 진단부(340)는 로봇(100)의 상태 정보를 분석하여 해당 로봇(100)의 각 축별 상태 변화 추이를 통계함으로써 각 축의 잔여수명을 산정할 수 있으며, 각 축의 품질인자를 추출하여 상태 변화 패턴을 도출할 수도 있다.The robot
이때, 본 발명의 일 실시예에 따르면, 상기 도출된 상태 변화 패턴이 기존의 패턴 정보와 상이하게 나타날 경우, 로봇 상태 진단부(340)는 상기 새롭게 도출된 상태 변화 패턴을 학습할 수 있으며, 향후 로봇(100)의 상태 분석 시 상기 학습한 상태 변화 패턴 정보를 적용함으로써 실시간 로봇 모니터링 서비스의 품질 및 정확도를 향상시킬 수 있다.At this time, according to an embodiment of the present invention, when the derived state change pattern appears to be different from the existing pattern information, the robot
본 발명의 일 실시예에 따른 로봇 상태 진단부(340)는 로봇 관련 정보 수집부(330)를 통해 로봇 제어기(200)의 알람 신호를 수신할 경우, 해당 로봇 제어기(200) 알람 신호의 원인 및 이에 대한 대책을 판단할 수 있다.When the robot
예를 들면, 로봇 관련 정보 수집부(330)는 로봇 제어기(200)로부터 제1 로봇의 동작이 중단되었다는 알람 신호를 수신할 수 있으며, 이 경우 로봇 상태 진단부(340)는 상기 제1 로봇의 상태 정보를 확인하여 해당 문제의 원인을 파악하고, 이에 적합한 대책을 판단하여 해당 공장의 관리자 단말기에 안내되도록 할 수 있다.For example, the robot-related
이때, 일 실시예에 따르면, 상기 대책은 서비스 제공 서버(300)를 관리하는 관리자로부터 입력될 수 있으며, 로봇사용사 단말기(400) 또는 로봇제조사 단말기(500)로부터 수신되는 정보에 따라 설정될 수도 있다.At this time, according to one embodiment, the countermeasure may be input from an administrator who manages the
이후, 로봇 상태 진단부(340)는 상기 발생한 로봇 제어기(200) 알람 신호의 이력을 데이터베이스(310)에 저장할 수 있다.Thereafter, the robot
모니터링 정보 제공부(350)는 서비스 제공 서버(300)가 공장 관련 정보를 모니터링한 결과 정보 및 로봇 상태 진단부(340)를 통해 로봇(100) 상태 정보를 분석한 결과 정보 등을 실시간 로봇 모니터링 프로그램을 통해 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)에 제공할 수 있다.Monitoring
즉, 서비스 제공 서버(300)가 공장들이 보유한 다수의 로봇들을 일괄적으로 모니터링하고, 그 현황을 실시간 로봇 모니터링 프로그램을 통해 각 공장들에게 제공함으로써, 공장들이 로봇을 관리하기 위해 소모하는 비용을 절감시키고, 그 편의성 또한 증진시킬 수 있다.That is, the
구체적으로, 모니터링 정보 제공부(350)는 공장 내 전체라인 및 서브라인별로 로봇(100)이 배치된 정보 및 로봇(100)의 상태 정보를 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로 전송함으로써, 각각의 단말기에 디스플레이되도록 할 수 있다.Specifically, the monitoring
또한, 모니터링 정보 제공부(350)는 로봇 관련 정보 수집부(330)를 통해 수집된 로봇(100)의 상태 정보 및 로봇 상태 진단부(340)를 통해 산정된 로봇(100)의 각 축별 모터 부하율, 엔코더 온도, 감속기 잔여 수명, 연속 부하율, 감속기 토크 등을 통계하여 그래프, 엑셀 데이터 등으로 가공할 수 있다.In addition, the monitoring
이에 따라, 모니터링 정보 제공부(350)는 상기 그래프 및 엑셀 데이터를 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로 전송함으로써, 각각의 단말기 화면에 디스플레이되도록 할 수도 있다.Accordingly, the monitoring
뿐만 아니라, 모니터링 정보 제공부(350)는 로봇 상태 진단부(340)를 통해 진단된 로봇(100)의 현재 상태에 대응되는 알람 신호를 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로 전송할 수도 있다. 예를 들면, 로봇(100)의 제1축의 현재 등급이 3등급일 경우, 해당 축에 대한 부품 교체 및 정비 권장 신호를 해당 공장의 관리자 단말기로 전송할 수 있다.In addition, the monitoring
일 실시예에 따르면, 모니터링 정보 제공부(350)는 데이터베이스(310)에 저장된 로봇(100)의 수행작업 정보를 참조하여 로봇(100)의 스케줄 정보 및 스케줄 에러 이력을 생성할 수 있으며, 이를 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로 전송함으로써, 각각의 단말기에 디스플레이되거나, 메모장 등의 워드 프로그램을 통해 표시되도록 할 수 있다.According to an embodiment, the monitoring
본 발명의 일 실시예에 따르면, 모니터링 정보 제공부(350)는 데이터베이스(310)에 저장된 공장이 보유한 스페어 부품의 현황 정보 및 실제 공장 현장에서 로봇(100)에 대한 정비가 수행된 정보를 참조하여, 해당 공장의 스페어 부품 보유 현황을 주기적으로 모니터링할 수 있으며, 각 스페어 부품들의 최종 입고일 정보, 잔여 수량 정보 등을 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로 제공할 수도 있다.According to an embodiment of the present invention, the monitoring
즉, 서비스 제공 서버(300)는 상술한 로봇 상태 진단부(340) 및 모니터링 정보 제공부(350)가 수행하는 프로세스를 통하여, 로봇들의 개별 상태 정보를 실시간으로 분석함으로써, 각 로봇들에 대한 결함 및 시스템 이상을 조기에 감지하고 미래에 발생할 고장을 미리 예측하여, 각 공장 현장에서 정비가 이루어지도록 함에 따라 공장의 손실비용을 절감시킬 수 있다.That is, the
시스템 감시부(360)는 서비스 제공 서버(300)의 동작과 실시간 로봇 모니터링 프로그램의 디스플레이 현황, 오류 발생 여부 등을 실시간으로 감시할 수 있다.The
이에 따라, 서비스 제공 서버(300)의 동작 중 이상이 발생하는 경우, 또는 실시간 로봇 모니터링 프로그램에 오류가 발생하는 경우, 해당 원인을 분석하여 서버 업데이트 또는 프로그램 업데이트 등을 통해 해당 문제를 해결함으로써 시스템의 안정성 및 신뢰성을 향상시킬 수 있다.Accordingly, when an abnormality occurs during the operation of the
일 실시예에 따른 제어부(370)는 데이터베이스(310), 서비스 정보 설정부(320), 로봇 관련 정보 수집부(330), 로봇 상태 진단부(340), 모니터링 정보 제공부(350), 시스템 감시부(360) 및 통신부(380) 간의 데이터의 흐름을 제어하는 기능을 수행할 수 있다. 즉, 본 발명에 따른 제어부(370)는 데이터베이스(310), 서비스 정보 설정부(320), 로봇 관련 정보 수집부(330), 로봇 상태 진단부(340), 모니터링 정보 제공부(350), 시스템 감시부(360) 및 통신부(380)에서 각각 고유한 기능을 수행하도록 제어할 수 있다.The
일 실시예에 따른 통신부(380)는 서비스 제공 서버(300)와 외부 서버 및 외부 장치 간 통신이 가능하도록 한다. 구체적으로 서비스 제공 서버(300)가 로봇 제어기(200), 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)와의 통신을 가능하게 한다.The
도 3은 본 발명의 일 실시예에 따라 실시간 로봇 모니터링 서비스가 제공되는 과정을 도시한 흐름도이다.3 is a flowchart illustrating a process in which a real-time robot monitoring service is provided according to an embodiment of the present invention.
먼저, 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)에는 실시간 로봇 모니터링 프로그램이 설치되어있을 수 있으며, 서비스 제공 서버(300)는 로봇 제어기(200), 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로부터 수신한 정보를 토대로 실시간 로봇 모니터링 서비스 제공 대상인 공장 관련 정보 및 로봇(100) 관련 정보를 내부 데이터베이스에 등록 완료하였을 수 있다.First, a real-time robot monitoring program may be installed in the
이때, 상기 공장 관련 정보는 로봇사용사 및 로봇제조사의 공장 정보(공장의 이름, 식별코드, 스페어 부품 보유 현황 등), 해당 공장의 생산라인 정보(생산라인의 이름, 식별코드 등), 각 서브라인별 정보(서브라인의 이름, 식별코드, 순번 등), 관리자 정보(관리자의 ID 정보, 패스워드 정보, 이름 정보, 부서 정보, 직위 정보 등) 중 일 이상을 포함할 수 있다.At this time, the factory-related information includes factory information (name of factory, identification code, spare parts holding status, etc.) of the robot user and robot manufacturer, production line information of the corresponding factory (name of the production line, identification code, etc.), each sub It may include one or more of line-specific information (name of sub-line, identification code, sequence number, etc.) and manager information (administrator's ID information, password information, name information, department information, position information, etc.).
또한, 상기 로봇(100) 관련 정보는 로봇(100)의 고유 정보(로봇(100)의 모델 정보, 시리얼넘버 정보, 제조일 정보, 설치일 정보, 설치된 서브라인 정보, IP 주소 정보, 수행작업 정보 등) 및 상태 정보(로봇(100)의 각 축별 모터 동작 정보, 감속기 동작 정보, 엔코더 동작 정보, 온도 정보, 진동 정보, 소음 정보 등) 중 일 이상을 포함할 수 있다.In addition, the robot 100-related information includes unique information of the robot 100 (model information of the
도 3을 참조하면, 서비스 제공 서버(300)는 추후 로봇(100)의 상태를 분석할 시 적용하게 될 기준을 설정할 수 있다(S301).Referring to FIG. 3 , the
상기 기준은 로봇(100)의 각 축별 공정능력 등급을 산정하거나, 관리상태를 판정할 수 있는 기준일 수 있으며, 예를 들어, 각 축의 모터 부하율, 엔코더 온도, 연속 부하율, 감속기 토크, 진동·소음·감속기 수명의 상한값과 하한값 중 일 이상에 대한 기준일 수 있다.The criterion may be a criterion for calculating the process capability grade for each axis of the
이때, 일 실시예에 따르면, 상기 로봇(100)의 상태를 분석하는 기준은 서비스 제공 서버(300)를 관리하는 관리자로부터 입력될 수 있으며, 로봇사용사 단말기(400) 또는 로봇제조사 단말기(500)로부터 수신되는 정보에 따라 설정될 수도 있다.At this time, according to one embodiment, the criterion for analyzing the state of the
이후, 로봇 제어기(200)는 자신과 연결된 로봇(100)의 각 축별로 상태 정보(모터 동작 정보, 감속기 동작 정보, 엔코더 동작 정보, 온도 정보, 진동 정보, 소음 정보 등)를 수집할 수 있으며(S302), 이를 서비스 제공 서버(300)로 전송할 수 있다(S303).Thereafter, the
서비스 제공 서버(300)는 상기 S303 단계를 통해 수신한 로봇(100)의 각 축별 상태 정보를 내부 데이터베이스에 저장할 수 있으며, 이를 토대로 상기 각 축별 모터 부하율, 엔코더 온도, 감속기 잔여 수명, 연속 부하율, 감속기 토크 등을 일 이상 분석할 수 있다(S304).The
또한, 서비스 제공 서버(300)는 상기 S304 단계를 통해 분석된 결과를 참조하여 상기 각 축별로 공정능력 등급을 책정하거나, 또는 관리상태를 양호 상태, 교체권장 상태 및 경과 상태 중 일 이상으로 판정할 수도 있으며(S305), 부품 교체권장주기, 잔여수명을 산정하거나 각 축의 품질인자를 추출하여 상태 변화 패턴을 도출할 수도 있다(S306).In addition, the
이때, 본 발명의 일 실시예에 따르면, 상기 도출된 상태 변화 패턴이 기존의 패턴 정보와 상이하게 나타날 경우, 서비스 제공 서버(300)는 상기 새롭게 도출된 상태 변화 패턴을 학습할 수 있으며, 향후 로봇(100)의 상태 분석 시 상기 학습한 상태 변화 패턴 정보를 적용함으로써 실시간 로봇 모니터링 서비스의 품질 및 정확도를 향상시킬 수 있다.At this time, according to an embodiment of the present invention, when the derived state change pattern appears to be different from the existing pattern information, the
뿐만 아니라, 일 실시예에 따른 서비스 제공 서버(300)는 내부 데이터베이스에 기 저장된 공장이 보유한 스페어 부품의 현황 정보 및 실제 공장 현장에서 로봇(100)에 대한 정비가 수행된 정보를 참조하여, 해당 공장의 각 스페어 부품들의 최종 입고일 정보, 잔여 수량 정보 등을 주기적으로 모니터링할 수도 있다(S307).In addition, the
본 발명의 일 실시예에 따르면, 로봇 제어기(200)는 공장 현장의 상태 또는 로봇(100)의 상태와 관련하여 자체적으로 알람 신호를 발생시킬 수 있으며, 상기 알람 신호를 서비스 제공 서버(300)로 전송할 수 있다(S308).According to an embodiment of the present invention, the
서비스 제공 서버(300)는 상기 S304 내지 S306 단계를 통해 분석된 로봇(100)의 각 축별 현재 상태, S307 단계를 통해 모니터링한 공장의 스페어 부품 현황 및 상기 S308 단계를 통해 수신된 로봇 제어기(200) 알람 신호에 따라 현재 로봇(100)에 대하여 필요한 조치 방안을 판단할 수 있다(S309).The
구체적으로, 서비스 제공 서버(300)는 로봇(100)의 각 축별 등급 또는 관리상태별로 필요한 조치 방법을 판단할 수 있으며, 상기 스페어 부품 현황에 따라 재고 보충이 필요한지 여부 등을 판단할 수도 있고, 상기 로봇 제어기(200) 알람 신호의 원인 및 이에 대응되는 대책을 판단할 수도 있다.Specifically, the
일 실시예에 따른 서비스 제공 서버(300)는 상기 S304 내지 S307 단계를 통해 이루어진 실시간 로봇 모니터링 수행 결과들을 그래프, 엑셀 데이터 등과 같이 각 결과들에 적합한 그래픽 데이터로 가공할 수 있다(S310).The
이후, 서비스 제공 서버(300)는 상기 S310 단계를 통해 가공된 데이터와 상기 S309 단계를 통해 판단된 필요 조치를 안내하는 알람 신호를 실시간 로봇 모니터링 결과로서 로봇사용사 단말기(400) 및 로봇제조사 단말기(500)로 제공할 수 있다(S311).Thereafter, the
이에 따라, 서비스 제공 서버(300)는 로봇(100)들의 개별 상태 정보를 실시간으로 분석함으로써, 각 로봇(100)들에 대한 결함 및 시스템 이상을 조기에 감지하고 미래에 발생할 고장을 미리 예측 가능하므로, 각 공장 현장에서 정비가 이루어지도록 함에 따라 공장의 손실비용을 절감시킬 수 있다.Accordingly, the
도 4는 본 발명의 일 실시예에 따라 각 타입별 알람신호 및 개별 로봇(100)의 정보를 확인할 수 있는 실시간 로봇 모니터링 프로그램 화면의 예시를 도시한 도면이다.4 is a view showing an example of a real-time robot monitoring program screen that can check the alarm signal for each type and information of the
도 4를 참조하면, 실시간 로봇 모니터링 프로그램은 ①과 같이 서비스 제공 서버(300)로부터 제공되는 알람 신호의 타입별 수량 집계를 확인 가능한 메뉴를 제공한다.Referring to FIG. 4 , the real-time robot monitoring program provides a menu capable of confirming the counting of the quantity of each type of alarm signal provided from the
여기서, Robot Alarm 메뉴는 서비스 제공 서버(300)가 로봇 제어기(200) 알람 신호의 원인 및 그 대응 방안을 파악한 정보를 제공할 수 있다. 이때, 일 실시예에 따르면, 알람 신호의 종류별로 그 정보가 제공될 수 있으며, 개별 로봇(100)별로 로봇 제어기(200) 알람 신호가 발생 및 해지된 이력 데이터가 제공될 수도 있다.Here, the Robot Alarm menu may provide information that the
Prevention Measures 메뉴는 예방조치 정보로서, 로봇(100)의 각 축별 관리상태 정보, 교체권장주기 정보, 최근 부품 교체일 정보, 수명 잔여일 정보 등을 제공할 수 있다. 이때, 일 실시예에 따르면, 관리상태 종류별로 그 정보가 제공될 수 있으며, 개별 로봇(100)별 예방조치 이력 정보가 제공될 수도 있다.The Prevention Measures menu may provide information on preventive measures, such as management status information for each axis of the
Prediction Measures 메뉴는 예측조치 정보로서, 로봇(100)의 각 축별 상태 변화 추이 정보, 공정능력 등급 정보, 잔여수명 정보, 상태 변화 패턴 정보 등을 제공할 수 있으며, 일 실시예에 따라 공정능력 등급별로 그 정보가 제공될 수도 있다.The Prediction Measures menu is predictive action information, and may provide status change trend information for each axis of the
Application Alarm 메뉴는 프로그램 업데이트 정보, 프로그램 오류 발생 정보 등과 같이 실시간 로봇 모니터링 프로그램과 관련된 알람 정보를 제공할 수 있다.The Application Alarm menu may provide alarm information related to the real-time robot monitoring program, such as program update information and program error occurrence information.
또한, 일 실시예에 따른 실시간 로봇 모니터링 프로그램은 ②와 같이 공장의 전체 레이아웃 및 로봇(100)들의 상태 정보를 그래픽으로 확인할 수 있는 화면을 제공한다. In addition, the real-time robot monitoring program according to an embodiment provides a screen for graphically checking the overall layout of the factory and status information of the
해당 화면에는 로봇(100)을 나타내는 그래픽 아이콘들이 실제 로봇(100)들이 공장 현장에 배치된 모양과 같은 배열로 배치될 수 있으며, 각 그래픽 아이콘별로 ③에 나타나는 각 로봇 상태별 색상이 표시됨으로써, 관리자로 하여금 로봇(100)들의 현재 상태를 직관적으로 확인할 수 있도록 할 수 있다.On the screen, graphic icons representing the
뿐만 아니라, 해당 화면의 로봇(100) 그래픽 아이콘을 클릭할 시, 이에 대응되는 로봇(100)의 상태를 개별적으로 확인 가능한 팝업창이 ④와 같이 제공될 수도 있다.In addition, when clicking on the graphic icon of the
도 5는 본 발명의 일 실시예에 따라 로봇(100)의 각 축별 상태를 확인할 수 있는 실시간 로봇 모니터링 프로그램 화면의 예시를 도시한 도면이다.5 is a diagram illustrating an example of a real-time robot monitoring program screen that can check the state of each axis of the
도 5를 참조하면, ①과 같은 Robot Explore 메뉴를 통해 공장 내에 배치된 개별 로봇(100)을 선택할 수 있으며, 선택한 로봇(100)의 각 축별 상태 정보가 ②와 같이 표시될 수 있다. Referring to FIG. 5 ,
일 실시예에 따르면, 로봇(100)의 각 축은 AXn(n>0)으로 표시될 수 있으며, ②에 표시되는 바와 같이 각 축별 공정능력 등급, 모터 부하율, 엔코더 온도, 감속기 잔여 수명, 연속 부하율, 감속기 토크 등이 다양한 형식의 그래프로 표시될 수 있다.According to one embodiment, each axis of the
이와 같이, 본 발명의 일 실시예에 따르면, 서비스 제공 서버(300)가 IoT 센서를 통해 수집된 복수의 로봇(100)들의 개별 상태 정보를 실시간으로 분석하여, 각 로봇(100)들에 대한 결함 및 시스템 이상을 조기에 감지하고, 미래에 발생할 고장을 미리 예측정비 함으로써, 공장의 손실비용을 절감시키고, 시스템의 안정성 및 신뢰성을 향상시킬 수 있다.As described above, according to an embodiment of the present invention, the
또한, 본 발명의 일 실시예에 따르면, 서비스 제공 서버(300)가 각 로봇(100)의 상태 분석 시, 해당 로봇(100)의 상태 변화 패턴을 자동으로 학습하도록 함으로써, 서비스의 정확도를 향상시킬 수 있다.In addition, according to an embodiment of the present invention, when the
뿐만 아니라, 본 발명의 일 실시예에 따르면, 서비스 제공 서버(300)가 복수의 공장들이 보유한 다수의 로봇(100)들을 일괄적으로 모니터링하고, 그 현황을 확인 가능한 프로그램을 각 공장들에게 제공함으로써, 공장들이 로봇(100)을 관리하기 위해 소모하는 비용을 절감시키고, 그 편의성 또한 증진시킬 수도 있다.In addition, according to an embodiment of the present invention, the
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, and it should be understood to include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present invention described above is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a dispersed form, and likewise components described as distributed may also be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.
100 : 로봇
200 : 로봇 제어기
300 : 서비스 제공 서버
310 : 데이터베이스
320 : 서비스 정보 설정부
330 : 로봇 관련 정보 수집부
340 : 로봇 상태 진단부
350 : 모니터링 정보 제공부
360 : 시스템 감시부
370 : 제어부
380 : 통신부
400 : 로봇사용사 단말기
500 : 로봇제조사 단말기100: robot
200: robot controller
300: service providing server
310: database
320: service information setting unit
330: robot-related information collection unit
340: robot state diagnosis unit
350: monitoring information providing unit
360: system monitoring unit
370: control unit
380: communication department
400: robot user terminal
500: robot manufacturer terminal
Claims (15)
(a) 로봇 제어기로부터 상기 로봇들이 포함된 각각의 각 축별 상태 정보를 수신하는 단계;
(b) 상기 각 축별 상태 정보를 분석하여 상기 로봇의 관리 상태와 관련된 예방조치 정보 및 상기 로봇의 공정 능력 및 상태 변화 패턴과 관련된 예지조치 정보를 각 축별로 생성하는 단계; 및
(c) 각 축별 상기 예방조치 정보 및 상기 예지조치 정보를 공장 관리자 단말기로 전송하는 단계를 포함하고,
상기 (b) 단계는 기설정된 상한값과 하한값에 기초하여 상기 각 축별 상태 정보에 포함된 복수개의 축 각각의 잔여 수명에 따라 상기 복수개의 축 각각에 대한 공정 능력 등급을 결정하는 단계를 포함하고,
상기 복수개의 축 중 제1축과 제2축 간의 잔여 수명 차이가 기설정값 이상인 경우, 상기 제1축의 공정능력 등급과 상기 제2축의 공정능력 등급은 상이하게 결정되는, 실시간 로봇 모니터링 서비스 제공 방법.In a method for a service providing server to monitor robots in a factory in real time,
(a) receiving status information for each axis including the robots from the robot controller;
(b) analyzing the status information for each axis to generate preventive action information related to the management status of the robot and predictive action information related to the process capability and status change pattern of the robot for each axis; and
(c) transmitting the preventive measure information and the predictive measure information for each axis to a factory manager terminal,
The step (b) includes determining the processing capability grade for each of the plurality of axes according to the remaining lifespan of each of the plurality of axes included in the state information for each axis based on a preset upper limit value and a lower limit value,
When the difference between the remaining life span between the first axis and the second axis among the plurality of axes is equal to or greater than a preset value, the process capability class of the first axis and the process capability class of the second axis are determined differently, a method of providing a real-time robot monitoring service .
상기 예방조치 정보는,
상기 각 축별 관리상태 정보, 교체권장주기 정보, 최근 부품 교체일 정보 및 수명 잔여일 정보 중 일 이상을 포함하는, 실시간 로봇 모니터링 서비스 제공 방법.
The method of claim 1,
The precautions information
A method of providing a real-time robot monitoring service, including one or more of the management status information for each axis, replacement recommended cycle information, recent parts replacement date information, and remaining life information information.
상기 예지조치 정보는,
각 축별 상태 변화 추이 정보, 공정능력 등급 정보, 잔여수명 정보 및 상태 변화 패턴 정보 중 일 이상을 포함하고,
상기 잔여수명 정보는 상기 각 축별 상태 변화 추이 정보에 대한 통계 분석을 통해 결정되고,
상기 상태 변화 패턴 정보는 각 축의 품질인자로부터 결정되는, 실시간 로봇 모니터링 서비스 제공 방법.
The method of claim 1,
The predictive action information is
Includes one or more of status change trend information for each axis, process capability grade information, remaining life information, and status change pattern information,
The remaining life information is determined through statistical analysis of the state change trend information for each axis,
The state change pattern information is determined from the quality factor of each axis, a real-time robot monitoring service providing method.
상기 (b) 단계는,
상기 로봇의 각 축별 상태 정보를 분석하여 각 축별 모터 부하율, 엔코더 온도, 감속기 잔여 수명, 연속 부하율 및 감속기 토크 중 일 이상을 산정하는 단계를 더 포함하고,
상기 감속기 잔여 수명에 기초하여 각 축별 관리 상태를 판정하는 단계를 더 포함하고,
상기 각 축별 관리 상태는,
상기 감속기 잔여 수명이 기설정된 상한값과 하한값을 기준으로 상기 감속기 잔여 수명이 상기 기설정된 상한값 이상일 경우 양호 상태, 상기 기설정된 하한값 이하일 경우 경과 상태, 상기 기설정된 상한값과 하한값 사이일 경우 교체 권장 상태로 결정되고,
상기 각 축별 상태 정보의 분석 결과에 기초하여 공장의 전체 레이아웃 및 로봇들의 상태 정보를 나타내는 그래픽 UI(user interface)를 제공하는 단계를 더 포함하고,
상기 그래픽 UI는
상기 공장에 배치된 형태에 대응하도록 배열된 각 축별 로봇들의 아이콘들을 포함하고,
상기 로봇의 각 축별 상태 정보의 분석 결과에 대응하는 기설정된 색상으로 상기 각 축별 로봇들의 아이콘의 색상이 상이하게 표시되는, 실시간 로봇 모니터링 서비스 제공 방법.
The method of claim 1,
The step (b) is,
Further comprising the step of analyzing the state information for each axis of the robot to calculate one or more of the motor load factor for each axis, the encoder temperature, the remaining life of the reducer, the continuous load rate, and the reducer torque,
Further comprising the step of determining a management state for each axis based on the remaining life of the reducer,
The management status of each axis is,
Based on the preset upper and lower limit values, it is determined as a good state when the remaining life of the reducer is greater than or equal to the preset upper limit, in an elapsed state when it is below the preset lower limit, and in a replacement recommended state when it is between the preset upper and lower limits become,
Further comprising the step of providing a graphical user interface (UI) indicating the overall layout of the factory and the state information of the robots based on the analysis result of the state information for each axis,
The graphic UI is
Including icons of robots for each axis arranged to correspond to the shape arranged in the factory,
A method for providing a real-time robot monitoring service, in which the colors of icons of the robots for each axis are displayed differently with a preset color corresponding to the analysis result of the state information for each axis of the robot.
상기 (b) 단계는,
상기 상태 변화 패턴이 기존 패턴 정보와 상이하게 나타날 경우, 새로운 상기 상태 변화 패턴을 학습하여 향후 상기 각 축별 상태 정보 분석 시 적용되도록 하는 단계를 더 포함하는, 실시간 로봇 모니터링 서비스 제공 방법.
The method of claim 1,
The step (b) is,
When the state change pattern appears different from the existing pattern information, learning the new state change pattern and further comprising the step of applying the state information analysis for each axis in the future, the real-time robot monitoring service providing method.
상기 (b) 단계는,
상기 로봇 제어기로부터 수신된 알람 신호에 대응되는 원인 및 대처방안을 분석하는 단계를 더 포함하고,
상기 (c) 단계는,
상기 로봇 제어기로부터 수신된 알람 신호의 원인 정보 및 대처방안 정보를 상기 공장 관리자의 단말기로 전송하는 단계를 더 포함하는, 실시간 로봇 모니터링 서비스 제공 방법.
The method of claim 1,
The step (b) is,
Further comprising the step of analyzing the cause and countermeasures corresponding to the alarm signal received from the robot controller,
Step (c) is,
Further comprising the step of transmitting cause information and countermeasure information of the alarm signal received from the robot controller to the terminal of the factory manager, real-time robot monitoring service providing method.
상기 (c) 단계는,
각 축별 상기 예방조치 정보 및 상기 예지조치 정보를 그래프 및 엑셀 데이터 중 일 이상의 형태로 가공하는 단계를 더 포함하는, 실시간 로봇 모니터링 서비스 제공 방법.
The method of claim 1,
Step (c) is,
The method of providing a real-time robot monitoring service, further comprising the step of processing the preventive action information and the predictive action information for each axis into one or more forms of graph and Excel data.
로봇 제어기로부터 상기 로봇들이 포함된 각각의 각 축별 상태 정보를 수신하는 로봇 관련 정보 수집부;
상기 각 축별 상태 정보를 분석하여 상기 로봇의 관리상태와 관련된 예방조치 정보 및 상기 로봇의 공정능력 및 상태 변화 패턴과 관련된 예지조치 정보를 각 축별로 생성하는 로봇 상태 진단부; 및
각 축별 상기 예방조치 정보 및 상기 예지조치 정보를 공장 관리자 단말기로 전송하는 모니터링 정보 제공부를 포함하고,
상기 로봇 상태 진단부는 기설정된 상한값과 하한값에 기초하여 상기 각 축별 상태 정보에 포함된 복수개의 축 각각의 잔여 수명에 따라 상기 복수개의 축 각각에 대한 공정능력 등급을 결정하고,
상기 복수개의 축 중 제1축과 제2축 간의 잔여 수명 차이가 기설정값 이상인 경우, 상기 제1축의 공정능력 등급과 상기 제2축의 공정능력 등급은 상이하게 결정되는, 서비스 제공 서버.
A service providing server that monitors robots in a factory in real time,
a robot-related information collecting unit that receives status information for each axis including the robots from the robot controller;
a robot status diagnosis unit that analyzes the status information for each axis to generate preventive action information related to the management status of the robot and predictive action information related to the process capability and status change pattern of the robot for each axis; and
A monitoring information providing unit for transmitting the preventive action information and the predictive action information for each axis to a factory manager terminal,
The robot state diagnosis unit determines the processing capability grade for each of the plurality of axes according to the remaining lifespan of each of the plurality of axes included in the state information for each axis based on a preset upper limit value and a lower limit value,
When the difference in the remaining life between the first axis and the second axis among the plurality of axes is equal to or greater than a preset value, the process capability grade of the first axis and the process capability grade of the second axis are determined differently.
상기 예방조치 정보는,
각 축별 관리상태 정보, 교체권장주기 정보, 최근 부품 교체일 정보 및 수명 잔여일 정보 중 일 이상을 포함하는, 서비스 제공 서버.
9. The method of claim 8,
The precautions information
A service providing server that includes one or more days of management status information for each axis, replacement recommended cycle information, latest parts replacement date information, and remaining life information information.
상기 예지조치 정보는,
각 축별 상태 변화 추이 정보, 공정능력 등급 정보, 잔여수명 정보 및 상태 변화 패턴 정보 중 일 이상을 포함하고,
상기 잔여수명 정보는 상기 각 축별 상태 변화 추이 정보에 대한 통계 분석을 통해 결정되고,
상기 상태 변화 패턴 정보는 각 축의 품질인자로부터 결정되는, 서비스 제공 서버.
9. The method of claim 8,
The predictive action information is
Includes one or more of status change trend information for each axis, process capability grade information, remaining life information, and status change pattern information,
The remaining life information is determined through statistical analysis of the state change trend information for each axis,
The state change pattern information is determined from the quality factor of each axis, a service providing server.
상기 로봇 상태 진단부는,
상기 로봇의 각 축별 상태 정보를 분석하여 각 축별 모터 부하율, 엔코더 온도, 감속기 잔여 수명, 연속 부하율 및 감속기 토크 중 일 이상을 산정하고,
상기 감속기 잔여 수명에 기초하여 각 축별 관리 상태를 판정하고,
상기 각 축별 관리 상태는,
상기 감속기 잔여 수명이 기설정된 상한값과 하한값을 기준으로 상기 감속기 잔여 수명이 상기 기설정된 상한값 이상일 경우 양호 상태, 상기 기설정된 하한값 이하일 경우 경과 상태, 상기 기설정된 상한값과 하한값 사이일 경우 교체 권장 상태로 결정되고,
상기 모니터링 정보 제공부는
상기 각 축별 상태 정보의 분석 결과에 기초하여 공장의 전체 레이아웃 및 로봇들의 상태 정보를 나타내는 그래픽 UI(user interface)를 상기 공장 관리자의 단말기에 제공하고,
상기 그래픽 UI는
상기 공장에 배치된 형태에 대응하는 배열 된 각 축별 로봇들의 아이콘들을 포함하고,
상기 로봇의 각 축별 상태 정보의 분석 결과에 대응하는 기설정된 색상으로 상기 각 축별 로봇들의 아이콘의 색상이 상이하게 표시되는, 서비스 제공 서버.
9. The method of claim 8,
The robot state diagnosis unit,
Analyze the state information for each axis of the robot to calculate one or more of the motor load factor, encoder temperature, reducer remaining life, continuous load factor, and reducer torque for each axis,
Determine the management status for each axis based on the remaining life of the reducer,
The management status of each axis is,
Based on the preset upper and lower limit values, it is determined as a good state when the remaining life of the reducer is greater than or equal to the preset upper limit, in an elapsed state when it is below the preset lower limit, and in a replacement recommended state when it is between the preset upper and lower limits become,
The monitoring information providing unit
Based on the analysis result of the state information for each axis, a graphical user interface (UI) indicating the overall layout of the factory and state information of the robots is provided to the terminal of the factory manager,
The graphic UI is
Including icons of robots for each axis arranged corresponding to the form arranged in the factory,
The service providing server, wherein the colors of the icons of the robots for each axis are displayed differently with a preset color corresponding to the analysis result of the state information for each axis of the robot.
상기 로봇 상태 진단부는,
상기 상태 변화 패턴이 기존 패턴 정보와 상이하게 나타날 경우, 새로운 상기 상태 변화 패턴을 학습하여 향후 상기 각 축별 상태 정보에 대한 분석 시 적용되도록 하는, 서비스 제공 서버.
9. The method of claim 8,
The robot state diagnosis unit,
When the state change pattern appears to be different from the existing pattern information, the new state change pattern is learned and applied to the analysis of the state information for each axis in the future, a service providing server.
상기 로봇 상태 진단부는,
상기 로봇 제어기로부터 수신된 알람 신호에 대응되는 원인 및 대처방안을 분석하고,
상기 모니터링 정보 제공부는,
상기 로봇 제어기로부터 수신된 알람 신호의 원인 정보 및 대처방안 정보를 상기 공장 관리자의 단말기로 전송하는, 서비스 제공 서버.
9. The method of claim 8,
The robot state diagnosis unit,
Analyze the cause and countermeasures corresponding to the alarm signal received from the robot controller,
The monitoring information providing unit,
A service providing server for transmitting the cause information and countermeasure information of the alarm signal received from the robot controller to the terminal of the factory manager.
상기 모니터링 정보 제공부는,
각 축별 상기 예방조치 정보 및 상기 예지조치 정보를 그래프 및 엑셀 데이터 중 일 이상의 형태로 가공하는, 서비스 제공 서버.
9. The method of claim 8,
The monitoring information providing unit,
A service providing server that processes the preventive action information and the predictive action information for each axis into one or more of graph and Excel data.
로봇 제어기로부터 로봇들이 포함된 각각의 각 축별 상태 정보를 수신하는 단계;
상기 각 축별 상태 정보를 분석하여 상기 로봇의 관리상태와 관련된 예방조치 정보 및 상기 로봇의 공정능력 및 상태 변화 패턴과 관련된 예지조치 정보를 각 축별로 생성하는 단계; 및
각 축별 상기 예방조치 정보 및 상기 예지조치 정보를 상기 로봇 사용자 단말기 및 상기 로봇제조사 단말기로 전송하는 단계를 수행하고,
상기 예지조치 정보를 상기 각 축별로 생성하는 단계는 기설정된 상한값과 하한값에 기초하여 상기 각 축별 상태 정보에 포함된 복수개의 축 각각의 잔여 수명에 따라 상기 복수개의 축 각각에 대한 공정능력 등급을 결정하는 단계를 포함하고,
상기 복수개의 축 중 제1축과 제2축 간의 잔여 수명 차이가 기설정값 이상인 경우, 상기 제1축의 공정능력 등급과 상기 제2축의 공정능력 등급은 상이하게 결정되는, 기록 매체에 저장된 컴퓨터 프로그램.Combined with a service providing server that communicates with a robot user terminal and a robot manufacturer terminal using a robot,
receiving status information for each axis including robots from a robot controller;
generating, for each axis, preventive action information related to the management status of the robot and predictive action information related to the process capability and status change pattern of the robot by analyzing the status information for each axis; and
Transmitting the preventive measure information and the predictive measure information for each axis to the robot user terminal and the robot manufacturer terminal,
In the generating of the predictive action information for each axis, the process capability level for each of the plurality of axes is determined according to the remaining lifespan of each of the plurality of axes included in the state information for each axis based on preset upper and lower limit values. comprising the steps of
a computer program stored in a recording medium, wherein the process capability grade of the first axis and the process capability grade of the second axis are determined differently when the difference in remaining life between the first axis and the second axis among the plurality of axes is equal to or greater than a preset value .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170081366A KR102409862B1 (en) | 2017-06-27 | 2017-06-27 | Method, server and program for providing real-time robot monitoring service |
US15/821,819 US20180164779A1 (en) | 2016-12-13 | 2017-11-23 | Method, server, and program for providing real-time robot monitoring service |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170081366A KR102409862B1 (en) | 2017-06-27 | 2017-06-27 | Method, server and program for providing real-time robot monitoring service |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190001414A KR20190001414A (en) | 2019-01-04 |
KR102409862B1 true KR102409862B1 (en) | 2022-06-17 |
Family
ID=65017799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170081366A KR102409862B1 (en) | 2016-12-13 | 2017-06-27 | Method, server and program for providing real-time robot monitoring service |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102409862B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102129480B1 (en) * | 2020-04-23 | 2020-07-02 | 호서대학교 산학협력단 | The predictive maintenance apparatus of automatic guided vehicle and predictive maintenance method of thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140336791A1 (en) * | 2013-05-09 | 2014-11-13 | Rockwell Automation Technologies, Inc. | Predictive maintenance for industrial products using big data |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3379988B2 (en) * | 1993-04-27 | 2003-02-24 | 株式会社ダイヘン | Robot control state display method and display control device |
KR100750902B1 (en) * | 2005-07-29 | 2007-08-22 | 삼성중공업 주식회사 | System and Method for controlling motion of robot by using the smart digital encoder sensor |
KR100853167B1 (en) * | 2006-10-24 | 2008-08-21 | 삼성중공업 주식회사 | System for Controlling a Robot of Network Based Embedded |
US8560106B2 (en) * | 2010-11-30 | 2013-10-15 | Applied Materials, Inc. | Predictive maintenance for third party support equipment |
KR20140028163A (en) * | 2011-10-26 | 2014-03-10 | 현대중공업 주식회사 | Management system for industrial robot |
-
2017
- 2017-06-27 KR KR1020170081366A patent/KR102409862B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140336791A1 (en) * | 2013-05-09 | 2014-11-13 | Rockwell Automation Technologies, Inc. | Predictive maintenance for industrial products using big data |
Also Published As
Publication number | Publication date |
---|---|
KR20190001414A (en) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8005647B2 (en) | Method and apparatus for monitoring and performing corrective measures in a process plant using monitoring data with corrective measures data | |
US9201420B2 (en) | Method and apparatus for performing a function in a process plant using monitoring data with criticality evaluation data | |
JP5264828B2 (en) | How to generate integrated warnings in process plants | |
US6813532B2 (en) | Creation and display of indices within a process plant | |
US8620618B2 (en) | Asset optimization reporting in a process plant | |
JP5186956B2 (en) | Factor estimation support device, control method therefor, and factor estimation support program | |
US20040158474A1 (en) | Service facility for providing remote diagnostic and maintenance services to a process plant | |
JP2003177815A (en) | Maintenance system for industrial machine | |
JP2010287227A (en) | Method and apparatus to predict process quality in process control system | |
US20180164779A1 (en) | Method, server, and program for providing real-time robot monitoring service | |
KR20180068102A (en) | Method and server for providing robot fault monitoring prognostic service | |
KR102409863B1 (en) | Method, server and program for providing robot prevention and prediction measure service | |
KR102409862B1 (en) | Method, server and program for providing real-time robot monitoring service | |
KR20180068101A (en) | Method and server for providing robot prognostic maintenance service | |
KR20200072069A (en) | Robot state information providing system based on motor information | |
KR20200072068A (en) | Robot state information providing system based on mixed reality technology | |
KR20200069937A (en) | Method for detecting failure of robot | |
KR102573254B1 (en) | System for predicting and analyzing trouble of mechanical equipment using federated learning | |
KIM et al. | A Study on the Equipment Data Collection and Developing Next Generation Integrated PHM System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |