Nothing Special   »   [go: up one dir, main page]

KR102222618B1 - Photoelectric device and method for manufacturing photoelectric device - Google Patents

Photoelectric device and method for manufacturing photoelectric device Download PDF

Info

Publication number
KR102222618B1
KR102222618B1 KR1020190052299A KR20190052299A KR102222618B1 KR 102222618 B1 KR102222618 B1 KR 102222618B1 KR 1020190052299 A KR1020190052299 A KR 1020190052299A KR 20190052299 A KR20190052299 A KR 20190052299A KR 102222618 B1 KR102222618 B1 KR 102222618B1
Authority
KR
South Korea
Prior art keywords
layer
electrode
photoelectric device
low
based material
Prior art date
Application number
KR1020190052299A
Other languages
Korean (ko)
Other versions
KR20200127684A (en
Inventor
최경진
송명훈
정의대
김찬울
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020190052299A priority Critical patent/KR102222618B1/en
Publication of KR20200127684A publication Critical patent/KR20200127684A/en
Application granted granted Critical
Publication of KR102222618B1 publication Critical patent/KR102222618B1/en

Links

Images

Classifications

    • H01L31/032
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H01L31/022425
    • H01L31/022466
    • H01L31/0392
    • H01L31/18
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/244Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은, 스퍼터링 보호층을 갖는 광전 소자 및 이의 제조방법에 관한 것으로, 보다 구체적으로, 제1 전극; 제2 전극; 및 상기 제1 전극 및 상기 제2 전극 사이에 페로브스카이트 화합물을 포함하는 광흡수층; 및 상기 광흡수층 상에 형성된 열증착에 의한 저차원 탄소계 물질층;을 포함하는, 광전 소자 및 이의 제조방법에 관한 것이다. The present invention relates to a photoelectric device having a sputtering protective layer and a method of manufacturing the same, and more specifically, to a first electrode; A second electrode; And a light absorption layer comprising a perovskite compound between the first electrode and the second electrode. And a low-dimensional carbon-based material layer formed on the light absorption layer by thermal evaporation.

Description

스퍼터링 손상 완화층을 포함하는 광전 소자 및 이의 제조방법{PHOTOELECTRIC DEVICE AND METHOD FOR MANUFACTURING PHOTOELECTRIC DEVICE}A photoelectric device including a sputtering damage mitigating layer and a manufacturing method thereof TECHNICAL FIELD [PHOTOELECTRIC DEVICE AND METHOD FOR MANUFACTURING PHOTOELECTRIC DEVICE]

본 발명은, 스퍼터링 손상 완화층을 포함하는 광전 소자 및 이의 제조방법에 관한 것이다. The present invention relates to a photoelectric device including a sputtering damage mitigating layer and a method of manufacturing the same.

태양전지의 제조방법에서 스퍼터링 손상완화를 위한 다양한 공정이 적용되고 있다. 예를 들어, P-type 금속산화물 증착을 통한 스퍼터링 손상 완화층 형성 기술, N-type 금속산화물 나노입자 용액공정을 통한 스퍼터링 손상 완화층 형성 기술 등이 보고되었다. In the solar cell manufacturing method, various processes are applied to alleviate sputtering damage. For example, a technique of forming a sputtering damage mitigating layer through deposition of a P-type metal oxide, a technique of forming a sputtering damage mitigating layer through a solution process of an N-type metal oxide nanoparticle, and the like have been reported.

하지만, P-type 금속산화물 증착을 통한 스퍼터링 손상 완화층 형성 기술은, 상부 투명전극 스퍼터링에 따라 손상 발생을 완화하기 위해서, P-type 금속산화물인 MoOx를 증착하는 것이지만, 금속 산화물의 경우 열증착이 가능한 p-type 금속산화물(MoOx, Wox)은 박막 형태로 에너지 준위가 달라져 유기물을 도핑하는 역할로 자체적으로 정공수송층으로 역할을 못하고, 금속에 따라 열증착이 제한된다. However, the technique of forming a sputtering damage mitigating layer through deposition of a P-type metal oxide is to deposit MoO x , a P-type metal oxide, in order to mitigate the occurrence of damage due to sputtering of the upper transparent electrode. This possible p-type metal oxide (MoO x , Wo x ) has a different energy level in the form of a thin film, so it does not play a role as a hole transport layer by itself, and does not function as a hole transport layer by itself, and thermal deposition is limited depending on the metal.

N-type 금속산화물 나노입자 용액공정을 통한 스퍼터링 손상 완화층 형성 기술은, N-type 금속산화물 나노입자 용액을 스핀코팅하여 스퍼터링 손상 완화층을 형성하고 상부 투명전극을 스퍼터링하여 반투명 태양전지를 구현하는 것으로, 이러한 금속산화물 용액공정의 경우 박막 균일성이 떨어지며 페로브스카이트가 손상을 입을 수 있는 친수성 용액(IPA)기반이지만, N-type 금속산화물(ZnO, TiO2, SnO2)의 경우 자체적으로 전자수송층으로 역할 가능하나 녹는점이 높아 열증착이 어려운 문제점이 있다. The sputtering damage mitigating layer formation technology through the N-type metal oxide nanoparticle solution process is to form a sputtering damage mitigation layer by spin coating an N-type metal oxide nanoparticle solution and sputtering the upper transparent electrode to realize a semi-transparent solar cell. In the case of such a metal oxide solution process, the thin film uniformity is poor and the perovskite is based on a hydrophilic solution (IPA), but N-type metal oxides (ZnO, TiO 2 , SnO 2 ) are self-contained. Although it can serve as an electron transport layer, it has a high melting point, making it difficult to thermally evaporate.

본 발명은, 페로브스카이트 상부에 저차원 탄소계 무기물을 열증착하여 스퍼터링 손상 완화층을 갖는, 광전 소자를 제공하는 것이다.The present invention provides a photoelectric device having a sputtering damage mitigating layer by thermally depositing a low-dimensional carbon-based inorganic material on an upper portion of a perovskite.

본 발명은, 열증착 공정에 의한 스퍼터링 손상 완화층을 형성할 수 있는, 광전 소자의 제조방법을 제공하는 것이다. The present invention provides a method of manufacturing a photoelectric device capable of forming a sputtering damage mitigating layer by a thermal evaporation process.

그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to those mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명의 일 실시예에 따라, 제1 전극; 제2 전극; 및 제1 전극 및 제2 전극 사이에 페로브스카이트 화합물을 포함하는 광흡수층; 및 상기 광흡수층 상에 형성된 열증착에 의한 저차원 탄소계 물질층; 을 포함하는, 광전 소자에 관한 것이다. According to an embodiment of the present invention, a first electrode; A second electrode; And a light absorption layer comprising a perovskite compound between the first electrode and the second electrode. And a low-dimensional carbon-based material layer formed on the light absorption layer by thermal evaporation. It relates to a photoelectric device comprising a.

본 발명의 일 실시예에 따라, 상기 저차원 탄소계 물질층은, 10 nm 내지 100 nm 두께를 갖고, 상기 광흡수층의 표면 형태에 따라 둘러싸는 컴포멀한 층인 것일 수 있다. According to an embodiment of the present invention, the low-dimensional carbon-based material layer may have a thickness of 10 nm to 100 nm, and may be a conformal layer surrounding the light absorbing layer according to a surface shape.

본 발명의 일 실시예에 따라, 상기 저차원 탄소계 물질층은, 스퍼터링 손상 완화층, 전자수송층 또는 이둘의 기능을 갖는 것일 수 있다. According to an embodiment of the present invention, the low-dimensional carbon-based material layer may have a function of a sputtering damage mitigation layer, an electron transport layer, or both.

본 발명의 일 실시예에 따라, 상기 저차원 탄소계 물질층은, C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, PC71BM, ICBA, BCP, PC70BM, IC70BA, PC84BM, 인덴 C60, 인덴 C70, 엔도히드럴 풀러렌, 페릴렌, PTCDA, PTCBI, BCP(bathocuproine), Bphen(4, 7-diphenyl-1,10-phenanthroline), TpPyPB 및 DPPS으로 이루어진 군에서 선택된 적어도 어느 하나를 포함하는 것일 수 있다. According to an embodiment of the present invention, the low-dimensional carbon-based material layer is C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, PC 71 BM, ICBA, BCP, PC70BM, IC70BA , PC84BM, indene C60, indene C70, endohydral fullerene, perylene, PTCDA, PTCBI, bathocuproine (BCP), Bphen (4, 7-diphenyl-1,10-phenanthroline), at least selected from the group consisting of TpPyPB and DPPS It may include any one.

본 발명의 일 실시예에 따라, 상기 제2 전극은, 상기 저차원 탄소계 물질층 상에 형성되고, 상기 제2 전극은, 스퍼터링에 의해 형성된 금속, 금속산화물 또는 이둘을 포함하는 투명전극층인 것일 수 있다. According to an embodiment of the present invention, the second electrode is formed on the low-dimensional carbon-based material layer, and the second electrode is a transparent electrode layer including a metal, a metal oxide, or both formed by sputtering. I can.

본 발명의 일 실시예에 따라, 상기 제2 전극은, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu), 백금(Pt), 텅스텐(W), 니켈(Ni), 아연(Zn), 인듐(In), 주석(Sn), 티타늄(Ti) 및 이들의 산화물로 이루어진 군에서 선택된 적어도 어느 하나를 포함하는 것일 수 있다. According to an embodiment of the present invention, the second electrode is aluminum (Al), gold (Au), silver (Ag), copper (Cu), platinum (Pt), tungsten (W), nickel (Ni), It may include at least one selected from the group consisting of zinc (Zn), indium (In), tin (Sn), titanium (Ti), and oxides thereof.

본 발명의 일 실시예에 따라, 상기 제1 전극 및 상기 광흡수층 사이에 전공수송층을 포함하는 것일 수 있다. According to an embodiment of the present invention, a hole transport layer may be included between the first electrode and the light absorbing layer.

본 발명의 일 실시예에 따라, 상기 광전 소자는, 상부 투명 태양전지 또는 텐덤 태양전지인 것일 수 있다. According to an embodiment of the present invention, the photoelectric device may be an upper transparent solar cell or a tandem solar cell.

본 발명의 일 실시예에 따라, 페로브스카이트 화합물을 포함하는 광흡수층을 형성하는 단계; 및 상기 광흡수층 상에 저차원 탄소계 물질층을 형성하는 단계; 를 포함하고, 상기 저차원 탄소계 물질층을 형성하는 단계는, 상기 광흡수층 상에 저차원 탄소계 물질을 열증착하는 것인, 광전 소자의 제조방법에 관한 것이다. According to an embodiment of the present invention, forming a light absorption layer containing a perovskite compound; And forming a low-dimensional carbon-based material layer on the light absorption layer. Including, the step of forming the low-dimensional carbon-based material layer, to thermally deposit a low-dimensional carbon-based material on the light absorption layer, relates to a method of manufacturing a photoelectric device.

본 발명의 일 실시예에 따라, 상기 저차원 탄소계 물질층을 형성하는 단계는, 0.1 Å/s 내지 1 Å/s의 증착속도 및 20 ℃ 내지 60 ℃ 온도에서 열증착하는 것일 수 있다. According to an embodiment of the present invention, the step of forming the low-dimensional carbon-based material layer may be thermal evaporation at a deposition rate of 0.1 Å/s to 1 Å/s and a temperature of 20° C. to 60° C.

본 발명의 일 실시예에 따라, 상기 저차원 탄소계 물질층 상에 스퍼터링에 의한 투명전극층을 형성하는 단계; 를 포함하는 것일 수 있다. According to an embodiment of the present invention, forming a transparent electrode layer by sputtering on the low-dimensional carbon-based material layer; It may be to include.

본 발명의 일 실시예에 따라, 상기 투명전극층을 형성하는 단계는, 10 W 내지 200 W, 25 ℃ 내지 100 ℃ 온도 및 0 내지 100 sccm 산소유량 중 적어도 어느 하나의 공정 조건에서 스퍼터링하는 것일 수 있다. According to an embodiment of the present invention, the step of forming the transparent electrode layer may be sputtering under at least one process condition of 10 W to 200 W, 25 to 100 C temperature, and 0 to 100 sccm oxygen flow rate. .

본 발명은, 페로브스카이트 광흡수층 상부에 자체적으로 전자수송층으로 역할 가능한 저차원 탄소계 무기물을 열증착하여 스퍼터링 손상 완화층을 형성하여 광전 소자의 성능을 향상시키고, 스퍼터링 손상 완화층에 적용되는 금속산화물 형성 공정 없이 광전 소자를 제공할 수 있으므로, 광전 소자의 제조공정을 단순화시킬 수 있다. The present invention provides a sputtering damage mitigation layer by thermally depositing a low-dimensional carbon-based inorganic material that can serve as an electron transport layer on top of the perovskite light absorption layer to improve the performance of the photoelectric device, and is applied to the sputtering damage mitigation layer. Since the photoelectric device can be provided without a metal oxide forming process, the manufacturing process of the photoelectric device can be simplified.

본 발명에 의한 광전 소자 및 이의 제조방법은, 반투명 태양전지, 텐덤 태양전지 등의 다양한 광전 소자에 응용할 수 있다.The photoelectric device and its manufacturing method according to the present invention can be applied to various photoelectric devices such as a translucent solar cell and a tandem solar cell.

도 1은, 본 발명의 일 실시예에 따른, 본 발명에 의한 광전 소자의 구성 및 저차원 물질층을 예시적으로 나타낸 것이다.
도 2는, 본 발명의 일 실시예에 따른, 본 발명에 의한 광전 소자의 저차원 탄소 물질층의 형성 공정 및 저차원 물질층을 예시적으로 나타낸 것이다.
도 3는, 본 발명의 일 실시예에 따른, 본 발명의 실시예 및 비교예에 의한 태양전지의 구성 및 광전특성의 측정 결과를 나타낸 것이다.
1 is a diagram illustrating a configuration and a low-dimensional material layer of a photoelectric device according to the present invention according to an embodiment of the present invention.
2 is a diagram illustrating a process of forming a low-dimensional carbon material layer and a low-dimensional material layer of the photoelectric device according to the present invention according to an embodiment of the present invention.
3 shows a configuration of a solar cell according to an embodiment of the present invention and a comparative example of the present invention and measurement results of photoelectric characteristics according to an embodiment of the present invention.

이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms used in the present specification are terms used to properly express a preferred embodiment of the present invention, which may vary depending on the intention of users or operators, or customs in the field to which the present invention belongs. Therefore, definitions of these terms should be made based on the contents throughout the present specification. The same reference numerals shown in each drawing indicate the same members.

명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is said to be positioned "on" another member, this includes not only the case where a member is in contact with the other member, but also the case where another member exists between the two members.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components.

본 발명은, 광전 소자에 관한 것으로, 본 발명의 일 실시예에 따라, 상기 광전 소자는, 광흡수층 상에 저차원 탄소계 물질층을 형성하여, 스퍼터링 공정에 의한 광흡수층의 손상을 방지할 수 있다. The present invention relates to a photoelectric device, and according to an embodiment of the present invention, the photoelectric device may prevent damage to the light absorption layer by a sputtering process by forming a low-dimensional carbon-based material layer on the light absorption layer. have.

본 발명의 일 실시예에 따라, 상기 광전 소자는 도 1을 참조하며 설명하며, 도 1은 본 발명의 일 실시예에 따른, 본 발명에 의한 광전 소자의 구성을 예시적으로 나타낸 것이다. 도 1에서 상기 광전 소자는, 제1 전극(110); 전공 수송층 또는 정공 수송층(120); 광흡수층(130); 저차원 탄소계 물질층(140); 및 제2 전극층(150)을 포함할 수 있다.According to an embodiment of the present invention, the photoelectric device is described with reference to FIG. 1, and FIG. 1 exemplarily shows the configuration of the photoelectric device according to the present invention according to an embodiment of the present invention. In FIG. 1, the photoelectric device includes: a first electrode 110; A major transport layer or a hole transport layer 120; A light absorption layer 130; A low-dimensional carbon-based material layer 140; And a second electrode layer 150.

본 발명의 일 예로, 제1 전극(110)은, 기판 상에 형성된 전극층을 포함하고, 상기 기판은, 광전 소자에 적용 가능한 기판 이라면 제한 없이 적용될 수 있고, 예를 들어, 유리, 석영(quartz), 웨이퍼, 사파이어, SiC, PET(polyethylene terephthalate), PEN(polyethylenenaphthelate), PP(polypropylene), PI(polyamide), TAC(tri acetyl cellulose), PES(polyethersulfone) 등의 투명 폴리머 등일 수 있다. As an example of the present invention, the first electrode 110 includes an electrode layer formed on a substrate, and the substrate may be applied without limitation as long as it is a substrate applicable to a photoelectric device. For example, glass, quartz , Wafer, sapphire, SiC, PET (polyethylene terephthalate), PEN (polyethylenenaphthelate), PP (polypropylene), PI (polyamide), TAC (tri acetyl cellulose), PES (polyethersulfone), and the like.

제1 전극(110)은 캐소드 또는 애노드 전극일 수 있고, 예를 들어, 투명 전도성, 반투명 전도성 물질 등을 포함할 수 있고, 예를 들어, Co, Ir, Ta, Cr, Mn, Mo, Tc, W, Re, Fe, Sc, Ti, Ge, Sb, Al, Pt, Ni, Cu, Rh, Au, V, Nb, Ag, Pd, Zn, Ni, Si, Sn 및 Ru; 이들의 합금; 및 이들의 산화물;로 이루어진 군에서 선택된 적어도 어느 하나를 포함하고, 상기 산화물은, ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO 등의 투명성 전도성 산화물(TCO) 중 적어도 하나를 포함할 수 있다. 또한, 탄소나노튜브(CNT), 그래핀, 흑연 등의 탄소동소체, 및 폴리아세틸렌(polyacetylene), 폴리아닐린(polyaniline), 폴리티오펜(polythiophene), 폴리피롤(polypyrrole) 등과 같은 전도성 고분자 물질을 더 포함할 수 있다.The first electrode 110 may be a cathode or an anode electrode, and may include, for example, a transparent conductive, translucent conductive material, and the like, for example, Co, Ir, Ta, Cr, Mn, Mo, Tc, W, Re, Fe, Sc, Ti, Ge, Sb, Al, Pt, Ni, Cu, Rh, Au, V, Nb, Ag, Pd, Zn, Ni, Si, Sn and Ru; Alloys thereof; And oxides thereof; and at least one selected from the group consisting of, wherein the oxide includes at least one of transparent conductive oxides (TCO) such as ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, etc. I can. In addition, carbon nanotubes (CNT), graphene, carbon allotropes such as graphite, and conductive polymer materials such as polyacetylene, polyaniline, polythiophene, polypyrrole, etc. I can.

본 발명의 일 예로, 전공 수송층(120)은, 제1 전극(110)과 광흡수층(130) 사이에 형성되고, 본 발명의 기술 분야에서 적용되는 전자 및 정공 전달 물질이라면 제한 없이 적용될 수 있으며, 예를 들어, PEDOT:PSS(폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌설포네이트)), PTAA(폴리[비스(4-페닐)(2,4,6-트리메틸페닐),  P30T(폴리(3-옥틸티오펜)), P3DT(폴리(3-데실티오펜)), TPD (N, N'-비스(3-메틸페닐)-N,N'-디페닐-[1,1'-비페닐]-4,4'-디아민), P3DDT(폴리 (3-도데실티오펜), 폴리티오페닐렌비닐렌(polyhiophenylenevinylene), 폴리비닐카바졸(polyvinylcarbazole), 폴리파라페닐렌비닐렌(poly-p-phenylenevinylene) 및 이들의 유도체, 스피로(Spiro) 물질, spiro-OMeTAD(spiro-MeOTAD[2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluoren]), 스피로-DPVBi(Spiro-4,4'-bis(2,2-diphenylethenyl)-1,1'-biphenyl), 몰리브덴 옥사이드(MoOx), 니켈 옥사이드(NiOx), 바나듐 옥사이드(예를 들어, V2O5), 텅스텐 옥사이드(WOx) 등의 금속산화물 반도체 등일 수 있으나, 이에 제한되지 않는다. As an example of the present invention, the hole transport layer 120 is formed between the first electrode 110 and the light absorbing layer 130, and any electron and hole transport material applied in the technical field of the present invention may be applied without limitation, For example, PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), PTAA(poly[bis(4-phenyl)(2,4,6-trimethylphenyl), P30T (Poly(3-octylthiophene)), P3DT(poly(3-decylthiophene)), TPD (N, N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-Biphenyl]-4,4'-diamine), P3DDT (poly (3-dodecylthiophene), polyhiophenylenevinylene, polyvinylcarbazole), polyparaphenylene vinylene (poly -p-phenylenevinylene) and derivatives thereof, spiro substances, spiro-OMeTAD (spiro-MeOTAD[2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)- 9,9'-spirobifluoren]), Spiro-DPVBi (Spiro-4,4'-bis(2,2-diphenylethenyl)-1,1'-biphenyl), molybdenum oxide (MoOx), nickel oxide (NiOx), vanadium It may be an oxide (eg, V 2 O 5 ), a metal oxide semiconductor such as tungsten oxide (WOx), etc., but is not limited thereto.

전공 수송층(120)은, 10 nm 내지 100 nm 두께로 형성될 수 있다. The hole transport layer 120 may be formed to have a thickness of 10 nm to 100 nm.

본 발명의 일 예로, 광흡수층(130)은, 제1 전극(110)과 제2 전극(140) 사이에 형성되고, 예를 들어, 정공 수송층(120) 상에 형성된다. 광흡수층(130)은, 페로브스카이트 화합물을 포함하고, 상기 페로브스카이트 화합물은, 무기금속할라이드 페로브스카이트, 유무기 하이브리드 페로브스카이트 등일 수 있고, 예를 들어, ABX3, A2BX4, ABX4 , APbX3 , An-1PbnI3n+1(n은 2 내지 6사이의 정수) 등의 화학식으로 표시되는 구조일 수 있다. 상기 화학식에서 A는 알칼리금속, 유기 양이온(예를 들어, 유기암모늄) 및/또는 무기 양이온이며,  B는 금속물질, X는 할로겐 음이온, 칼코게니드 음이온 및 SCN-(thiocyanate) 에서 선택된다. 예를 들어, A는 A는 Na, K, Rb, Cs 또는 Fr의 알칼리금속; (CH3NH3)n, ((CxH2x+1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n+1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x+1)nNH3)2  또는 (CnF2n+1NH3)2(n은 1이상인 정수, x는 1이상인 정수)이고, B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po 등이고, X는 P , Cl , Br, I 등일 수 있다. 구체적으로, CH3NH3PbI3, CH3NH3PbBr3, CH3NH3PbI2Cl, CH3NH3PbI2Br 등일 수 있다. As an example of the present invention, the light absorption layer 130 is formed between the first electrode 110 and the second electrode 140, and is formed, for example, on the hole transport layer 120. The light absorption layer 130 includes a perovskite compound, and the perovskite compound may be an inorganic metal halide perovskite, an organic-inorganic hybrid perovskite, or the like, for example, ABX 3 , A 2 BX 4 , ABX 4 , APbX 3, A n-1 Pb n I 3n+1 (n is an integer between 2 and 6) may be a structure represented by a formula. In the above formula, A is an alkali metal, an organic cation (eg, organic ammonium) and/or an inorganic cation, B is a metal material, X is selected from halogen anion, chalcogenide anion and SCN-(thiocyanate). For example, A is an alkali metal of Na, K, Rb, Cs or Fr; (CH 3 NH 3 ) n , ((C x H 2x+1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n+1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 or (C n F 2n+1 NH 3 ) 2 (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1), and B is a divalent transition metal, rare earth metal, alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, etc., and X is It may be P, Cl, Br, I, and the like. Specifically, it may be CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbI 2 Cl, CH 3 NH 3 PbI 2 Br, and the like.

광흡수층(130)은, 100 nm 내지 1000 nm 두께로 형성되고, 상기 페로브스카이트 화합물의 입자 크기는, 1 nm 내지 900 nm일 수 있다. The light absorption layer 130 is formed to have a thickness of 100 nm to 1000 nm, and the particle size of the perovskite compound may be 1 nm to 900 nm.

저차원 탄소계 물질층(140)은, 광흡수층(130) 상에 형성되고, 예를 들어, 열증착에 의한 증착층이다. 예를 들어, 도 1 및 2를 참조하면, 도 2는 저차원 탄소계 물질층(140)의 형성 공정 및 저차원 탄소계 물질층(140)을 예시적으로 나타낸 것으로, 저차원 탄소계 물질층(140)은, 광흡수층(130)의 표면의 형태, 예를 들어, 페로브스카이트 화합물의 입자(또는, 결정)에 의한 광흡수층(130)의 표면 형태에 따라 이들을 둘러싸는 얇고 컴포멀한 박막이며, 광흡수층(130) 상에 형성된 얇은 박막이지만, 스퍼터링 손상 완화층, 전자수송층 또는 이둘의 기능을 나타낼 수 있다. The low-dimensional carbon-based material layer 140 is formed on the light absorbing layer 130 and is, for example, a vapor deposition layer by thermal evaporation. For example, referring to FIGS. 1 and 2, FIG. 2 exemplarily shows a process of forming a low-dimensional carbon-based material layer 140 and a low-dimensional carbon-based material layer 140, and 140, according to the shape of the surface of the light-absorbing layer 130, for example, the surface shape of the light-absorbing layer 130 by particles (or crystals) of a perovskite compound. Although it is a thin film and is a thin film formed on the light absorbing layer 130, it may exhibit a function of a sputtering damage mitigating layer, an electron transport layer, or both.

저차원 탄소계 물질층(140)은, 열증착에 의해서 광흡수층(130)의 평탄도에 관계없이 치밀하고 균일한 박막을 형성함으로써, 소자 제조 공정 중 스퍼터링에 의한 광흡수층(130)의 손상을 효과적으로 완화시키고, 전자수송층으로 기능을 나타낼 수 있다. The low-dimensional carbon-based material layer 140 forms a dense and uniform thin film regardless of the flatness of the light absorbing layer 130 by thermal evaporation, thereby preventing damage to the light absorbing layer 130 due to sputtering during the device manufacturing process. It can effectively relax and function as an electron transport layer.

저차원 탄소계 물질층(140)은, 저타원 탄소계 유기물, 무기물 또는 이 둘을 포함하고, 예를 들어, C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, PC71BM, ICBA, BCP, PC70BM, IC70BA, PC84BM, 인덴 C60, 인덴 C70, 엔도히드럴 풀러렌 등의  플러렌계 화합물; 페릴렌, PTCDA, PTCBI, BCP(bathocuproine), Bphen(4, 7-diphenyl-1,10-phenanthroline), TpPyPB 및 DPPS으로 이루어진 군에서 선택된 적어도 어느 하나를 포함할 수 있다. The low-dimensional carbon-based material layer 140 includes a low elliptical carbon-based organic material, an inorganic material, or both, and, for example, C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, Fullerene compounds such as PC 71 BM, ICBA, BCP, PC70BM, IC70BA, PC84BM, inden C60, inden C70, and endohydral fullerene; It may include at least one selected from the group consisting of perylene, PTCDA, PTCBI, bathocuproine (BCP), Bphen (4, 7-diphenyl-1,10-phenanthroline), TpPyPB, and DPPS.

저차원 탄소계 물질층(140)은, 10 nm 내지 100 nm; 10 nm 내지 50 nm; 또는 10 nm 내지 20 nm 두께를 갖고, 상기 범위 내에 포함될 경우에, 광흡수층의 손상 방지를 위한 스퍼터링 보호층 기능뿐만 아니라, 전자 수송층으로의 기능을 수행할 수 있다. The low-dimensional carbon-based material layer 140 may include 10 nm to 100 nm; 10 nm to 50 nm; Alternatively, it has a thickness of 10 nm to 20 nm, and when included within the above range, it may perform a function as an electron transport layer as well as a sputtering protective layer function for preventing damage to the light absorbing layer.

제2 전극층(150)은, 캐소드 또는 애노드 전극일 수 있고, 예를 들어, 투명 전도성, 반투명 전도성 물질 등을 포함할 수 있고, 예를 들어, Co, Ir, Ta, Cr, Mn, Mo, Tc, W, Re, Fe, Sc, Ti, Ge, Sb, Al, Pt, Ni, Cu, Rh, Au, V, Nb, Ag, Pd, Zn, Ni, Si, Sn 및 Ru; 이들의 합금; 및 이들의 산화물;로 이루어진 군에서 선택된 적어도 어느 하나를 포함하고, 상기 산화물은, SnO2, SnO2:F, ZnO, AgO, ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO 등의 투명성 전도성 산화물(TCO)일 수 있다. 또한, 탄소나노튜브(CNT), 그래핀, 흑연 등의 탄소동소체; 및 폴리아세틸렌(polyacetylene), 폴리아닐린(polyaniline), 폴리티오펜(polythiophene), 폴리피롤(polypyrrole) 등과 같은 전도성 고분자 물질;을 더 포함할 수 있다. The second electrode layer 150 may be a cathode or an anode electrode, and may include, for example, a transparent conductive, translucent conductive material, and the like, for example, Co, Ir, Ta, Cr, Mn, Mo, Tc , W, Re, Fe, Sc, Ti, Ge, Sb, Al, Pt, Ni, Cu, Rh, Au, V, Nb, Ag, Pd, Zn, Ni, Si, Sn and Ru; Alloys thereof; And oxides thereof; including at least one selected from the group consisting of, and the oxide is, SnO 2 , SnO 2 :F, ZnO, AgO, ITO, ZITO, ZIO, GIO, ZTO, FTO, AZO, GZO, etc. It may be a transparent conductive oxide (TCO). In addition, carbon allotropes such as carbon nanotubes (CNT), graphene, and graphite; And a conductive polymer material such as polyacetylene, polyaniline, polythiophene, and polypyrrole.

제2 전극층(150)은, 스퍼터링 공정에 의해 저차원 탄소계 물질층(140) 상에 형성되고, 이러한 스퍼터링 공정에서 광흡수층(130)의 손상이 완화될 수 있다. The second electrode layer 150 is formed on the low-dimensional carbon-based material layer 140 by a sputtering process, and damage to the light absorption layer 130 may be alleviated in the sputtering process.

제2 전극층(150)은, 10 nm 내지 200 nm; 50 nm 내지 200 nm; 또는 100 nm 내지 150 nm 두께를 갖는, 스퍼터링 증착층이다. The second electrode layer 150 may be 10 nm to 200 nm; 50 nm to 200 nm; Alternatively, it is a sputtering deposition layer having a thickness of 100 nm to 150 nm.

본 발명의 일 실시예에 따라, 상기 광전 소자는, 태양전지일 수 있고, 예를 들어, 상부 투명 태양전지 또는 텐덤 태양전지일 수 있다. According to an embodiment of the present invention, the photoelectric device may be a solar cell, for example, an upper transparent solar cell or a tandem solar cell.

상기 태양전지는, Jsc, Voc 등과 같은 우수한 전기적 특성을 가지며, 예를 들어, Jsc 값이 16 mA/cm2 이상; 16.5 mA/cm2 이상; 16.6 mA/cm2 이상; 17 mA/cm2 이상의 전류밀도 및 Voc 값은 1 V 이상; 1.02 V 이상; 1.03 V이상; 또는 1.1 V이상일 수 있다. 또한, 10.00% 이상, 12.00 % 이상 또는 13.00% 이상의 광전변환효율을 나타낼 수 있다. The solar cell has excellent electrical properties such as Jsc and Voc, and has a Jsc value of 16 mA/cm 2 or more; At least 16.5 mA/cm 2 ; At least 16.6 mA/cm 2 ; The current density and Voc value of 17 mA/cm 2 or more are 1 V or more; 1.02 V or higher; 1.03 V or more; Or it can be more than 1.1 V. In addition, photoelectric conversion efficiency of 10.00% or more, 12.00% or more, or 13.00% or more may be exhibited.

본 발명은, 본 발명에 의한 광전 소자의 제조방법에 관한 것으로, 본 발명의 일 실시예에 따라, 제1 전극을 준비하는 단계; 정공 수송층을 형성하는 단계; 광흡수층을 형성하는 단계; 저차원 탄소계 물질층을 형성하는 단계; 및 제2 전극을 형성하는 단계;를 포함할 수 있다.The present invention relates to a method of manufacturing a photoelectric device according to the present invention, comprising: preparing a first electrode; Forming a hole transport layer; Forming a light absorption layer; Forming a low-dimensional carbon-based material layer; And forming a second electrode.

상기 제1 전극을 준비하는 단계는, 상기 광전 소자에서 언급한 제1 전극을 준비하고, 예를 들어, 기판 상에 전도성 물질층이 코팅된 기판 또는 기판 상에 스퍼터링, CVD, 증착, 코팅, 프린팅 등을 이용하여 전도성 물질층을 형성할 수 있다. Preparing the first electrode may include preparing the first electrode mentioned in the photoelectric device, and for example, sputtering, CVD, deposition, coating, printing on a substrate or a substrate coated with a conductive material layer on the substrate. A conductive material layer may be formed by using or the like.

상기 전공 수송층을 형성하는 단계는, 상기 광전 소자에서 언급한 바와 같은, 전자 및 정공 수송 물질을 상기 제1 전극층 상에 스퍼터링, CVD, 증착, 코팅, 프린팅 등을 이용하여 전공 수송층을 형성할 수 있다. In the forming of the hole transport layer, as mentioned in the photoelectric device, a hole transport layer may be formed by sputtering, CVD, evaporation, coating, printing, etc. with an electron and hole transport material on the first electrode layer. .

상기 광흡수층을 형성하는 단계는, 상기 광전 소자에서 언급한 바와 같이, 스퍼터링, CVD 등의 증착, 코팅, 프린팅 등을 이용하여 페로브스카이트 화합물을 포함하는 광흡수층을 형성하는 단계이며, 예를 들어, 상기 전공 수송층 상에 페로브스카이트 화합물 또는 페로브스카이트 화합물 형성을 위한 전구체를 스핀 코팅할 수 있다. 상기 전구체 코팅 이후에 60 ℃ 이상; 또는 60 ℃ 내지 200 ℃의 온도에서 가열하여 페로브스카이트 화합물을 포함하는 막을 형성할 수 있다.Forming the light absorbing layer is a step of forming a light absorbing layer containing a perovskite compound using sputtering, deposition such as CVD, coating, printing, etc., as mentioned in the photoelectric device, for example For example, a perovskite compound or a precursor for forming a perovskite compound may be spin-coated on the hole transport layer. 60° C. or higher after the precursor coating; Alternatively, a film including a perovskite compound may be formed by heating at a temperature of 60°C to 200°C.

상기 언급한 스퍼터링은, 이온-빔 스퍼터링(Ion-beam sputtering), 반응성 스퍼터링(Reactive sputtering), 이온 보조 증착(Ion-assisted deposition), HiTUS(High-target-utilization sputtering), HiPIMS(High-power impulse magnetron sputtering), 가스-흐름 스퍼터링(Gas flow sputtering), 플라즈마 스퍼터링(plasma sputtering) 등을 이용하고, 상기 증착은, CVD, 열증착(thermal evaporation), 플라즈마 증착(plasma sputtering), 전자빔 증착(e-beam evaporation), 원자층 증착 등을 이용하고, 상기 코팅은, 디핑법(dipping), 스핀코팅법(spin coating), 분사코팅법(spray coating) 등을 이용할 수 있다. The aforementioned sputtering is ion-beam sputtering, reactive sputtering, ion-assisted deposition, HiTUS (High-target-utilization sputtering), HiPIMS (High-power impulse). Magnetron sputtering), gas flow sputtering, plasma sputtering, etc. are used, and the deposition is CVD, thermal evaporation, plasma sputtering, electron beam deposition (e- Beam evaporation), atomic layer deposition, etc. are used, and the coating may be performed by dipping, spin coating, spray coating, or the like.

상기 저차원 탄소계 물질층을 형성하는 단계는, 상기 광흡수층 상에 0.1 Å/s 내지 1 Å/s의 증착속도 및 20 ℃ 내지 60 ℃ 온도 조건에서 열증착하여 저차원 탄소계 물질층을 형성할 수 있다. In the forming of the low-dimensional carbon-based material layer, the low-dimensional carbon-based material layer is formed by thermal evaporation at a deposition rate of 0.1 Å/s to 1 Å/s and a temperature condition of 20° C. to 60° C. can do.

상기 제2 전극을 형성하는 단계는, 고온 공정에 의해서 제2 전극층을 형성하는 것으로, 예를 들어, 10 W 내지 200 W, 25 ℃ 내지 100 ℃ 온도 및 0 내지 100 sccm 산소유량 중 적어도 어느 하나의 공정 조건에서 스퍼터링 공정으로 상기 저차원 탄소계 물질층 상에 전극층을 형성하는 단계이다. The forming of the second electrode is to form a second electrode layer by a high-temperature process, for example, at least one of 10 W to 200 W, 25 to 100 °C temperature, and 0 to 100 sccm oxygen flow rate. This is a step of forming an electrode layer on the low-dimensional carbon-based material layer by a sputtering process under process conditions.

상기 스퍼터링 공정은, 이온-빔 스퍼터링(Ion-beam sputtering), 반응성 스퍼터링(Reactive sputtering), 이온 보조 증착(Ion-assisted deposition), HiTUS(High-target-utilization sputtering), HiPIMS(High-power impulse magnetron sputtering), 가스-흐름 스퍼터링(Gas flow sputtering), 플라즈마 스퍼터링(plasma sputtering) 등일 수 있다. The sputtering process includes ion-beam sputtering, reactive sputtering, ion-assisted deposition, HiTUS (High-target-utilization sputtering), and HiPIMS (High-power impulse magnetron). sputtering), gas-flow sputtering, plasma sputtering, and the like.

실시예 1Example 1

ITO층이 형성된 유리 기판 상에 스핀코팅 방법으로 PTAA 전공 수송층 (두께:15 nm) 및 스핀코팅으로 페로브스카이트 광흡수층(두께:310 nm)을 순서대로 형성하였다. 다음으로, C60 탄소계 물질을 25 ℃ 온도에서 0.1 Å/s 내지 1 Å/s 증착 속도로 열증착하여 15 nm 두께의 보호층을 형성하였다. 다음으로, 80 W 및 25 ℃ 온도에서 IZO층(두께:150 nm)을 스퍼터링하여 페로브스카이트 반투명 태양전지를 제조하였다.On the glass substrate on which the ITO layer was formed, a PTAA major transport layer (thickness: 15 nm) and a perovskite light absorption layer (thickness: 310 nm) were sequentially formed by spin coating. Next, a C60 carbon-based material was thermally evaporated at a deposition rate of 0.1 Å/s to 1 Å/s at 25° C. to form a 15 nm-thick protective layer. Next, a perovskite translucent solar cell was manufactured by sputtering an IZO layer (thickness: 150 nm) at 80 W and 25° C. temperature.

비교예 1Comparative Example 1

스핀 코팅으로 PC60BM 층 30 nm로 형성한 것외에는 실시예 1과 동일한 방법으로 태양전지를 제조하였다. A solar cell was manufactured in the same manner as in Example 1 except that the PC60BM layer was formed of 30 nm by spin coating.

실시예 1 및 비교예 1의 태양전지의 성능을 평가하여 도 3 및 표 1에 나타내었다.The performance of the solar cells of Example 1 and Comparative Example 1 was evaluated and shown in FIGS. 3 and 1.

Devices configurationDevices configuration J sc
(mA/cm2)
J sc
(mA/cm 2 )
V oc
(V)
V oc
(V)
FFFF
(%)(%)
η
(%)
η
(%)
Spin-coated PC60BM_BSSpin-coated PC 60 BM_BS 16.2116.21 0.970.97 50.8350.83 7.997.99 Spin-coated PC60BM_FSSpin-coated PC 60 BM_FS 16.1716.17 0.970.97 52.3352.33 8.218.21 Thermal evaporated C60 15nm_BSThermal evaporated C 60 15nm_BS 16.6116.61 1.041.04 75.1875.18 12.9812.98 Thermal evaporated C60 15nm_FSThermal evaporated C 60 15nm_FS 16.7316.73 1.031.03 74.0274.02 12.7612.76

*인가되는 전압(0 V ~ 1.21 V)의 방향으로 BS(backward sweep), FS(forward sweep)이다. * It is BS (backward sweep) and FS (forward sweep) in the direction of applied voltage (0 V ~ 1.21 V).

표 1 및 도 3을 살펴보면, 본 발명에 의한 열증착으로 C60 탄소계 물질층을 형성한 경우에, 얇은 박막층으로 형성되었으나, 스퍼터링 공정에 의한 전극층 형성에 따른 광흡수층의 손상을 방지하여, Voc, Jsc, FF 및 PCE 값에 비교예 1에 비하여 월등하게 개선된 것을 확인할 수 있다. Looking at Tables 1 and 3, when the C60 carbon-based material layer is formed by thermal evaporation according to the present invention, it is formed as a thin thin film layer, but by preventing damage to the light absorbing layer due to the electrode layer formation by the sputtering process, Voc, It can be seen that the Jsc, FF, and PCE values are significantly improved compared to Comparative Example 1.

본 발명은, 탄소계 무기물층을 열증착 공정을 이용하여 페로브스카이트층 손상을 최소화하고, 페로브스카이트 상부에 자체적으로 전자수송층의 역할 가능한 저차원 탄소계 무기물을 열증착하여 스퍼터링 손상 완화층을 형성하여, 균일한 막의 형성과 스퍼터링 손상을 완화할 수 있는, 광전 소자 및 광전 소자의 제조방법을 제공할 수 있다. The present invention minimizes damage to the perovskite layer by using a thermal evaporation process for a carbon-based inorganic material layer, and heat-deposits a low-dimensional carbon-based inorganic material capable of itself as an electron transport layer on the top of the perovskite to reduce sputtering damage. By forming a uniform film, it is possible to provide a photoelectric device and a method of manufacturing a photoelectric device capable of alleviating sputtering damage.

이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Although the embodiments have been described by the limited embodiments and drawings as described above, various modifications and variations can be made from the above description to those of ordinary skill in the art. For example, even if the described techniques are performed in a different order from the described method, and/or the described components are combined or combined in a form different from the described method, or are replaced or substituted by other components or equivalents. Appropriate results can be achieved. Therefore, other implementations, other embodiments, and those equivalent to the claims also fall within the scope of the claims to be described later.

Claims (12)

제1 전극;
제2 전극; 및
제1 전극 및 제2 전극 사이에 페로브스카이트 화합물을 포함하는 광흡수층; 및
상기 광흡수층 상에 형성된 열증착에 의한 저차원 탄소계 물질층;
을 포함하고,
상기 저차원 탄소계 물질층은, 10 nm 내지 50 nm의 두께를 갖는 것인,
광전 소자.
A first electrode;
A second electrode; And
A light absorbing layer comprising a perovskite compound between the first electrode and the second electrode; And
A low-dimensional carbon-based material layer formed on the light absorbing layer by thermal evaporation;
Including,
The low-dimensional carbon-based material layer, which has a thickness of 10 nm to 50 nm,
Photoelectric device.
제1항에 있어서,
상기 저차원 탄소계 물질층은, 10 nm 이상 및 30 nm 미만의 두께를 갖고,
상기 광흡수층의 표면 형태에 따라 둘러싸는 컴포멀한 층인 것인,
광전 소자.
The method of claim 1,
The low-dimensional carbon-based material layer has a thickness of 10 nm or more and less than 30 nm,
It is a conformal layer surrounding according to the surface shape of the light absorbing layer,
Photoelectric device.
제1항에 있어서,
상기 저차원 탄소계 물질층은, 스퍼터링 손상 완화층, 전자수송층 또는 이둘의 기능을 갖는 것인,
광전 소자.
The method of claim 1,
The low-dimensional carbon-based material layer has a function of a sputtering damage mitigation layer, an electron transport layer, or both,
Photoelectric device.
제1 전극;
제2 전극; 및
제1 전극 및 제2 전극 사이에 페로브스카이트 화합물을 포함하는 광흡수층; 및
상기 광흡수층 상에 형성된 열증착에 의한 저차원 탄소계 물질층;
을 포함하고,
상기 저차원 탄소계 물질층은, C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, PC71BM, ICBA, BCP, PC70BM, IC70BA, PC84BM, 인덴 C60, 인덴 C70, 엔도히드럴 풀러렌, 페릴렌, PTCDA, PTCBI, BCP(bathocuproine), Bphen(4, 7-diphenyl-1,10-phenanthroline), TpPyPB 및 DPPS으로 이루어진 군에서 선택된 적어도 어느 하나를 포함하고,
상기 제2 전극은, 상기 저차원 탄소계 물질층 상에 형성되는 것인,
광전 소자.
A first electrode;
A second electrode; And
A light absorbing layer comprising a perovskite compound between the first electrode and the second electrode; And
A low-dimensional carbon-based material layer formed on the light absorbing layer by thermal evaporation;
Including,
The low-dimensional carbon-based material layer is C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, PC 71 BM, ICBA, BCP, PC70BM, IC70BA, PC84BM, Inden C60, Inden C70, Including at least one selected from the group consisting of endohydral fullerene, perylene, PTCDA, PTCBI, BCP (bathocuproine), Bphen (4, 7-diphenyl-1,10-phenanthroline), TpPyPB and DPPS,
The second electrode is formed on the low-dimensional carbon-based material layer,
Photoelectric device.
제1항에 있어서,
상기 제2 전극은, 상기 저차원 탄소계 물질층 상에 형성되고,
상기 제2 전극은, 스퍼터링에 의해 형성된 금속, 금속산화물 또는 이둘을 포함하는 투명전극층인 것인,
광전 소자.
The method of claim 1,
The second electrode is formed on the low-dimensional carbon-based material layer,
The second electrode is a transparent electrode layer comprising a metal, a metal oxide, or both formed by sputtering,
Photoelectric device.
제1항에 있어서,
상기 제2 전극은, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu), 백금(Pt), 텅스텐(W), 니켈(Ni), 아연(Zn), 인듐(In), 주석(Sn), 티타늄(Ti) 및 이들의 산화물로 이루어진 군에서 선택된 적어도 어느 하나를 포함하는 것인,
광전 소자.
The method of claim 1,
The second electrode is aluminum (Al), gold (Au), silver (Ag), copper (Cu), platinum (Pt), tungsten (W), nickel (Ni), zinc (Zn), indium (In) , Tin (Sn), titanium (Ti) and those containing at least one selected from the group consisting of oxides thereof,
Photoelectric device.
제1항에 있어서,
상기 제1 전극 및 상기 광흡수층 사이에 전공수송층을 포함하는 것인,
광전 소자.
The method of claim 1,
Comprising a major transport layer between the first electrode and the light absorbing layer,
Photoelectric device.
제1항에 있어서,
상기 광전 소자는, 상부 투명 태양전지 또는 텐덤 태양전지인 것인,
광전 소자.
The method of claim 1,
The photoelectric device is an upper transparent solar cell or a tandem solar cell,
Photoelectric device.
페로브스카이트 화합물을 포함하는 광흡수층을 형성하는 단계; 및
상기 광흡수층 상에 저차원 탄소계 물질층을 형성하는 단계;
를 포함하고,
상기 저차원 탄소계 물질층을 형성하는 단계는, 상기 광흡수층 상에 저차원 탄소계 물질을 열증착하고,
상기 저차원 탄소계 물질층을 형성하는 단계는 0.1 Å/s 내지 1 Å/s의 증착속도 및 20 ℃ 내지 60 ℃ 온도에서 열증착하는 것인,
광전 소자의 제조방법.
Forming a light absorbing layer comprising a perovskite compound; And
Forming a low-dimensional carbon-based material layer on the light absorption layer;
Including,
The forming of the low-dimensional carbon-based material layer may include thermally depositing a low-dimensional carbon-based material on the light absorbing layer,
The step of forming the low-dimensional carbon-based material layer is thermal evaporation at a deposition rate of 0.1 Å/s to 1 Å/s and a temperature of 20° C. to 60° C.,
Method of manufacturing a photoelectric device.
삭제delete 제9항에 있어서,
상기 저차원 탄소계 물질층 상에 스퍼터링에 의한 제2 전극층을 형성하는 단계; 를 포함하는 것인,
광전 소자의 제조방법.
The method of claim 9,
Forming a second electrode layer by sputtering on the low-dimensional carbon-based material layer; It includes,
Method of manufacturing a photoelectric device.
제11항에 있어서,
상기 제2 전극층을 형성하는 단계는, 10 W 내지 200 W, 25 ℃ 내지 100 ℃ 온도 및 0 초과 내지 100 sccm 산소유량 중 적어도 어느 하나의 공정 조건에서 스퍼터링하는 것인,
광전 소자의 제조방법.
The method of claim 11,
The step of forming the second electrode layer is sputtering under at least one process condition of 10 W to 200 W, 25 to 100 C temperature, and an oxygen flow rate greater than 0 to 100 sccm,
Method of manufacturing a photoelectric device.
KR1020190052299A 2019-05-03 2019-05-03 Photoelectric device and method for manufacturing photoelectric device KR102222618B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190052299A KR102222618B1 (en) 2019-05-03 2019-05-03 Photoelectric device and method for manufacturing photoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190052299A KR102222618B1 (en) 2019-05-03 2019-05-03 Photoelectric device and method for manufacturing photoelectric device

Publications (2)

Publication Number Publication Date
KR20200127684A KR20200127684A (en) 2020-11-11
KR102222618B1 true KR102222618B1 (en) 2021-03-05

Family

ID=73451561

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190052299A KR102222618B1 (en) 2019-05-03 2019-05-03 Photoelectric device and method for manufacturing photoelectric device

Country Status (1)

Country Link
KR (1) KR102222618B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101717430B1 (en) * 2015-06-30 2017-03-27 광주과학기술원 Perovskite-based solar cell
KR102068871B1 (en) * 2016-07-14 2020-01-21 주식회사 엘지화학 Organic-inorganic complex solar cell
KR102416108B1 (en) * 2017-12-26 2022-07-01 주식회사 엘지화학 Organic-inorganic complex solar cell and method for manufacturing same
KR20180083823A (en) * 2018-04-19 2018-07-23 포항공과대학교 산학협력단 Perovskite based solar cell and method of manufacturing the same

Also Published As

Publication number Publication date
KR20200127684A (en) 2020-11-11

Similar Documents

Publication Publication Date Title
KR102145211B1 (en) Method for manufacturing photoelectric device and photoelectric device
Xu et al. Recent progress of electrode materials for flexible perovskite solar cells
Hussain et al. Functional materials, device architecture, and flexibility of perovskite solar cell
Zuo et al. Advances in perovskite solar cells
Wang et al. Energy level alignment at interfaces in metal halide perovskite solar cells
Luo et al. Progress in perovskite solar cells based on ZnO nanostructures
KR101717430B1 (en) Perovskite-based solar cell
Yang et al. Recent progress in electron transport layers for efficient perovskite solar cells
Han et al. Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze
Ihn et al. ITO-free inverted polymer solar cells using a GZO cathode modified by ZnO
CN102456753B (en) Photoelectric conversion element and manufacturing method thereof
Ahmadpour et al. Crystalline molybdenum oxide layers as efficient and stable hole contacts in organic photovoltaic devices
KR102729439B1 (en) Perovskite solar cell and tandem solar cell including the same
Eze et al. Optimum silver contact sputtering parameters for efficient perovskite solar cell fabrication
KR102541127B1 (en) Tandem solar cell and manufacturing method the same
KR20110051821A (en) NiO conductive film used as P type conductive film of organic solar cell, manufacturing method thereof and organic photovoltaic cell with improved photoelectric conversion efficiency
Subbiah et al. Stable p–i–n FAPbBr3 devices with improved efficiency using sputtered ZnO as electron transport layer
KR20180081338A (en) Perovskite based solar cells comprising flexible transparent conductive electrodes
KR102093431B1 (en) Perovskite solar cell and method of preparing the Perovskite solar cell
Guo et al. Efficiency enhancement in inverted planar perovskite solar cells by synergetic effect of sulfated graphene oxide (sGO) and PEDOT: PSS as hole transporting layer
Cai et al. Toward efficient and stable operation of perovskite solar cells: Impact of sputtered metal oxide interlayers
Ren et al. Recent progress in flexible perovskite solar cell development
CN116347908B (en) Perovskite solar cell, preparation method thereof and photovoltaic module
Guo et al. Sn‐Pb binary perovskite films with high crystalline quality for high performance solar cells
Omprakash et al. a review of 2D Perovskites and carbon-based nanomaterials for applications in solar cells and photodetectors

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20190503

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200820

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210219

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210225

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210226

End annual number: 3

Start annual number: 1

PG1601 Publication of registration