Nothing Special   »   [go: up one dir, main page]

KR102214370B1 - 조리개 및 타겟의 회전된 경계선 - Google Patents

조리개 및 타겟의 회전된 경계선 Download PDF

Info

Publication number
KR102214370B1
KR102214370B1 KR1020177000368A KR20177000368A KR102214370B1 KR 102214370 B1 KR102214370 B1 KR 102214370B1 KR 1020177000368 A KR1020177000368 A KR 1020177000368A KR 20177000368 A KR20177000368 A KR 20177000368A KR 102214370 B1 KR102214370 B1 KR 102214370B1
Authority
KR
South Korea
Prior art keywords
target
measurement
sample
field
metrology system
Prior art date
Application number
KR1020177000368A
Other languages
English (en)
Other versions
KR20170020420A (ko
Inventor
차히 그룬츠베이그
알렉산더 스비체르
Original Assignee
케이엘에이 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이엘에이 코포레이션 filed Critical 케이엘에이 코포레이션
Publication of KR20170020420A publication Critical patent/KR20170020420A/ko
Application granted granted Critical
Publication of KR102214370B1 publication Critical patent/KR102214370B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4785Standardising light scatter apparatus; Standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

타겟 회절 신호로부터 에지 회절을 저감 또는 제거하는 스캐터로메트리 계측 시스템, 타겟 및 방법이 제공된다. 시야 조리개 및/또는 타겟의 경계선은 측정 방향에 대해 경사지도록 설계되어, 에지 회절을 비스듬하게 전파시키고 그래서 측정된 타겟 회절 신호에 미치는 영향을 저감 또는 제거할 수 있다.

Description

조리개 및 타겟의 회전된 경계선{ROTATED BOUNDARIES OF STOPS AND TARGETS}
<관련 출원과의 교차 참조>
본원은 2014년 6월 24일에 출원한 미국 특허 가출원번호 62/016,267에 대해 우선권을 주장하며, 이 우선권 출원은 그 전체가 참조로 본 명세서에 포함된다.
<기술 분야>
본 발명은 계측 분야에 관한 것이며, 보다 구체적으로는 스캐터로메트리 계측 광학 시스템 및 타겟에 관한 것이다.
오버레이 오프셋 측정은 4셀 측정 기술 등의 각도 분해된 스캐터로메트리 기술에 의해 구현된다. 이 구성에서는, 조명 방사선이 "그레이팅 온 그레이팅(grating on grating)" 타겟 상에 입사된다. 타겟은 조명 방사선을 산란시켜 산란된 방사선을 형성한다. 산란된 방사선의 일부는 타겟에 의해 회절된다. 그렇게 형성된 산란 방사선 패턴은 회절격자식(grating equation)에 따라 여러 회절 차수들로 구성된다. 이어서 이 산란된 방사선은 집광 및 분석되는데, 여기서 회절광의 공간 및/또는 각도 분포가 "그레이팅 오버 그레이팅" 타겟의 층들 간의 오버레이 오프셋을 추정하는데 이용된다.
본 발명의 일 양태는, 각각의 적어도 하나의 측정 방향을 갖는 적어도 하나의 타겟으로부터 회절 신호를 측정하도록 구성되는 스캐터로메트리 계측 시스템을 제공하며, 이 스캐터로메트리 계측 시스템은 적어도 하나의 측정 방향에 대해 경사진 에지를 갖는 적어도 하나의 시야 조리개(field stop)를 구비한다.
본 발명의 상기한, 추가의, 그리고/또는 기타 양태 및/또는 장점은, 가능하다면 상세한 설명으로부터 추론 가능하고/하거나 본 발명의 실시로 학습 가능하게, 이하의 상세한 설명에서 설명된다.
본 발명의 실시형태에 대한 이해를 높이고 이 실시형태들이 어떻게 달성될 수 있는지를 보여주기 위해, 이하에서는 순전히 예로만 첨부 도면을 참조할 것이며, 도면에 있어서 같은 도면부호는 전체적으로 대응하는 요소 또는 부분을 가리킨다.
첨부 도면에 있어서,
도 1은 본 발명의 일부 실시형태에 따른 스캐터로메트리 계측 시스템의 상위 레벨 도면이다.
도 2a는 종래기술에 따른 조명 시야 조리개(illumination field stop)의 시야 등가면(field equivalent plane)에서 볼 때의 입사 방사선의 개략도이고, 도 2b는 본 발명의 일부 실시형태에 따른 조명 시야 조리개의 시야 등가면에서 볼 때의 입사 방사선의 개략도이다.
도 3a는 종래기술에 따른 시스템의 동공에서 볼 때의 입사 방사선의 개략도이고, 도 3b는 본 발명의 일부 실시형태에 따른 시스템의 동공에서 볼 때의 입사 방사선의 개략도이다.
도 4a는 종래기술에 따른 시스템의 (시야 등가면에서) 타겟에 입사하는 방사선의 개략도이고, 도 4b는 본 발명의 일부 실시형태에 따른 시스템의 (시야 등가면에서) 타겟에 입사하는 방사선의 개략도이다.
도 5a는 종래기술에 따른 시스템의 (동공 등가면에서의) 산란 방사선의 개략도이고, 도 5b는 본 발명의 일부 실시형태에 따른 시스템의 (동공 등가면에서의) 산란 방사선의 개략도이다.
도 6a는 종래기술에 따른 집광 시야 조리개(collection field stop)의 시야 등가면에서 볼 때의 산란 방사선의 개략도이고, 도 6b는 본 발명의 일부 실시형태에 따른 집광 시야 조리개의 시야 등가면에서 볼 때의 산란 방사선의 개략도이다.
도 7a는 종래기술에 따른 시스템의 (동공면에서의) 회절 신호의 개략도이고, 도 7b는 본 발명의 일부 실시형태에 따른 시스템의 (동공면에서의) 회절 신호의 개략도이다.
도 8a는 본 발명의 일부 실시형태에 따른, 시야 조리개의 에지가 중첩된 타겟의 개략도이다. 도 8b는 본 발명의 일부 실시형태에 따른 타겟의 개략도이다.
도 9a와 도 9b는 본 발명의 일부 실시형태에 따른 시야 조리개 구성을 개략적으로 도시하는 도면이다.
도 10은 본 발명의 일부 실시형태에 따른 방법을 설명하는 상위 레벨 개략 흐름도이다.
개시하는 상세한 설명에 앞서, 이하에서 사용하는 소정의 용어들의 정의를 설명하는 것이 도움이 될 수 있다.
본원에서 사용하는 용어 "계측 타겟(metrology target)", "스캐터로메트리 타겟(scatterometry target)", 또는 "타겟"은 스캐터로메트리 오버레이(SCOL) 측정 등의 계측 용도에 이용되는, 웨이퍼 상에 설계 또는 제작된 구조로서 정의된다. 본원에서 사용하는 용어 "계측 측정" 또는 "측정"은 계측 타겟으로부터의 회절 신호 등의 정보를 추출하는데 이용되는 임의의 계측 절차(metrology procedure)로서 정의된다. 본원에서 사용하는 용어 "주기적 구조(periodic structure)"는 적어도 하나의 층에서 일부 주기성을 보이는 임의의 유형의 설계 또는 제작된 구조를 의미한다. 본원에서 사용하는 용어 "측정 방향"은 주기적 구조가 주기성을 보이는 방향을 의미한다. 예를 들어, 주기적 구조인 격자의 측정 방향은 그 격자를 구성하는 타겟 엘리먼트에 수직이다. 타겟은 복수의 측정 방향, 예컨대 2개의 수직 측정 방향을 가질 수 있다.
이제 도면을 상세하게 구체적으로 참조하면, 도시하는 특색들은 예시적이며, 본 발명의 양호한 실시형태의 예시적인 설명을 위한 것이고, 가장 유용하고 본 발명의 원리 및 개념적 양태에 대해 용이하게 이해되는 설명이라고 사료되는 것을 제공하기 위해 제시되는 것임을 강조한다. 이 점에 있어서, 본 발명의 기본적인 이해에 필요한 것보다 더 상세하게 본 발명의 구조적 상세를 보여주려는 시도는 없으며, 당업자에게는 도면을 참조한 설명에 의해, 본 발명의 여러 형태가 실제로 어떻게 구현될 수 있는지가 명백하게 된다.
본 발명의 적어도 하나의 실시형태에 대해 상세하게 설명하기 전에, 본 발명은 이하의 설명 또는 도면에 도시하는 구성요소 세트의 배열 및 구성의 상세에 대한 적용에 한정되지 않는 것이 이해되어야 한다. 본 발명은 다른 실시형태에도 적용 가능하거나 다양하게 실시 또는 수행된다. 또한, 본 명세서에서 채택되는 표현 및 전문용어는 설명을 위한 것이며 제한으로서 간주되어서는 안 되는 것임은 물론이다.
타겟 회절 신호로부터 에지 회절을 저감 또는 제거하는 스캐터로메트리 계측 시스템, 타겟 및 방법이 제공된다. 시야 조리개 및/또는 타겟의 경계선은 측정 방향에 대해 경사지도록 설계되어, 에지 회절을 비스듬하게 전파시키고 그래서 측정된 타겟 회절 신호에 미치는 영향을 저감 또는 제거할 수 있다.
개시하는 발명의 실시형태들은 종래기술의 다음과 같은 한계를 극복한다. 실제 타겟이 유한하기 때문에, 입사 조명은 격자 구조(격자 회절) 및 격자 구조(격자 회절)의 경계선 둘 다에 의해 회절된다. 격자 회절은 격자에 대한 정보를 제공하기 때문에 바람직하지만, 에지 회절은 격자 회절과 간섭하고 유용한 격자 회절 신호를 저하시키기 때문에 바람직하지 않다. 성능 열화의 메커니즘은 다음과 같다. 에지 회절은 그 에지 회절과 연관된 패턴과의 격자 회절의 컨볼루션으로서, 동공면에 나타난다. 광학 시스템에서의 모든 에지 회절의 영향은 시스템의 PSF(Point Spread Function)의 원인이 되며, 구체적으로 PSF를 더욱 공간적으로 연장되게 할 수 있다. 사실상 이것은 격자 회절된 방사선의 일부가 에지 회절에 의해 추가 회절되는 것을 의미하는데, 격자 회절 방사선의 경우에는 아마도 상이한 차수들로 겹치게 한다. 이 현상은 각도 분해된 스캐터로미터의 성능을 열화시킨다.
더욱이, 에지 회절은 격자 회절 패턴의 상이한 차수들로부터의 광을 혼합한다. 이 혼합의 디테일(details)은 특정 파라미터(예컨대, 엘리먼트 위치, 타겟 방위 등)에 강하게 종속된다. 이에, 에지 회절이 존재할 경우에 측정 불안정은 반복성(repeatability)을 더욱 심하게 상실시킨다. 부가적으로, 에지 회절은 타겟 격자에 대해 비대칭적일 수 있다. 예컨대, 비대칭성에 기여하는 스캐터로메트리 오버레이 측정이 타겟과 툴의 대칭성을 이용함에 따라 정확성 오차가 발생할 것이다.
구체적으로 오버레이 측정에 있어서, 에지 회절은 다음과 같은 메커니즘 중 어느 것에 의해 성능 및 정확성의 상실을 야기할 수 있다. (i) 오버레이 알고리즘에서 고려하지 않는 상이한 차수들로부터의 광을 혼합시키는 것, (ii) 오버레이로서 나타날 수 있는, 광을 비대칭적으로 혼합시키는 것, (iii) 위치에 대한 오버레이의 고감도가 포지셔닝 변동(positioning variation)을 통해 반복성 상실을 야기하는 것, 및 (iv) 특히 4셀 스캐터로메트리에 있어서, 회절이 제로차를, 두가지 방식, 즉 제로차(zero order)의 강도에 비례하는 DC 기여도 및 제로차 시야 진폭 및 1차 시야 진폭 둘다에 비례하는 AC 기여도로, 1차 광에 혼합시키는 것이다.
상이한 회절 차수들이 회절에 의해 "크로스토크(cross-talk)"를 일으킴에 따라, 성능 및 정확성 상실의 원인을 제공하고, 회절이 주로 타겟의 에지(예컨대, 타겟 셀의 에지), 툴의 광학 경로에 있는 시야 조리개 및 동공 조리개로부터 유래하기 때문에, 본 발명은 회절 엘리먼트(셀 경계선, 시야 조리개 및 동공 조리개)를 변화시키거나 회전시키고, 그럼으로써 회절을 관심 영역으로부터 멀어지게 하여, 실제 타겟으로부터 발생하는 회절 신호의 정확한 측정에 대한 간섭을 저감시킨다. 실시형태들은 타겟 에지, 시스템 내의 시야 조리개 중 어느 것의 에지, 및 (입사하는 방사선 동공면 및/또는 산란된 방사선 동공면에서의) 동공 조리개의 에지 중 적어도 하나를 변경할 수 있는 것을 강조하며, 후자 중 어느 하나는 대응하는 구경(aperture)을 변경해서 변경할 수 있다.
도 1은 본 발명의 일부 실시형태에 따른 스캐터로메트리 계측 시스템(100)의 상위 레벨 도면이다. 이 도면은 시스템(100)에서 광학부품(optics)과 타겟에 집중하나, 시스템(100)의 다른 부분(예컨대, 광원 및 디텍터)에 대해서도 구체적으로 도시하는 엘리먼트에 대해서도 비제한적이다. 도 1은 시스템의 광학부품의 시야면에서 예시적인 엘리먼트로서 시야 조리개(120, 130) 및 타겟(110)을 도시하지만, 본 발명은 시스템(100)의 시야면에 위치하는 다른 엘리먼트로 확장될 수도 있다. 종래기술의 광학 시스템(70)은 (시야 조리개(120, 130)에 상응하는 광학 위치에 있는) 종래기술의 시야 조리개(72, 73) 및 타겟(71)을 포함하는 것을 특징으로 한다.
도 1은 스캐터로메트리 계측 시스템(100)에 대한 비제한적인 예로서 각도 분해된 스캐터로미터(angle resolved scatterometer)의 광학 헤드의 개략도이다. 시준된 입사 방사선(80)이 렌즈(81)에 의해 조명 시야 조리개(120)로 포커싱된 다음, 렌즈(82)에 의해 시준되고 빔 스플리터(95)에 의해 입사 방사선(80A)으로서, 포커싱 렌즈(87)를 통해 웨이퍼(60) 상의 시야 타겟(110)에 지향된다. 타겟(110)으로부터의 산란된 광은 렌즈(87)에 의해 집광되고, 빔 스플리터(95)에 의해 출사 방사선(90A)으로서 지향되며 렌즈(92)에 의해 집광 시야 조리개(130)로 포커싱된 다음에, 렌즈(91)에 의해 다시 시준되어 (일례로서 스캐터로메트리에 사용되는 동공면 촬상을 위한) 센서에 의해 집광되는 산란된 방사선(90)을 형성한다. 조명 시야 조리개(120), 타겟(110) 및 집광 시야 조리개(130)는 모두 시야면에 있고, 입사 방사선(80) 및 산란 방사선(90)은 각각 대응하는 부분 내의 동공면에 대해 취급될 수 있는 것을 알아야 한다. 구체적으로, 시야 조리개(120, 130)에 의한 그리고 타겟(110)에 의한 회절은 공간적으로 동공면 내의 산란 방사선(90)으로 바뀐다.
본 발명자들은 광학적 시야 조리개가 시야면 내의 방사선의 공간적 범위(spatial extent)를 제한하는 것을 주지하고 있다. 타겟은 그 주변부로부터 자신을 분리시키기에 유한한 범위와 경계선을 갖는다. 광학 시야 조리개와 타겟 양쪽이 바람직하지 못한 에지 회절을 도입한다. 본 발명자들은 시야 조리개 및/또는 타겟 에지의 소정의 구성(arrangement)이 에지 회절에서 기인한 간섭을 저감시키는 것을 발견하였다.
소정의 실시형태에 있어서, 예컨대 정사각형의 방사선 투과 영역을 가진 불투명한 광학 조리개를 구비한 광학 조리개 구성에서, 정사각형의 개구가 격자 방향에 대해 회전할 수도 있다. 일반적으로, 용어 "에지 회절"은 단차형 에지로부터 또는 편평(smooth)하거나 점차적인 에지로부터 유래하는 회절을 지칭하는데 이용된다. 개시하는 실시형태들은 어떤 유형의 에지에도 적용 가능하고 단차형 에지에 대해 주어진 예들은 이런 의미로 제한적이지 않고, 더 나은 명시화를 위해 이용될 뿐이다. 소정의 실시형태들은 광이 더 강하게 제한되는 방향을 따라 더 강하게 회절한다는 개시하는 원리에 따라 대응하는 조리개 에지의 재구성에 고려될 수 있는 좀 더 많은 자유도(예컨대, 에지 경사의 방향 및 경사도(steepness)를 도입하는 소프트 에지에 적용될 수 있다.
소정의 실시형태는 주어진 조리개 면적에 대한 에지 회절의 영향을 줄이는 것과 함께 또는 그 대신에, (시스템 내의 하나 이상의 조리개에 대해) 고정된 에지 회절을 유지하면서 조리개 면적을 저감시키는 것을 포함하는 것을 알아야 한다. 예를 들면, 타겟 그 자체가 조리개로서 기능하고, 집광 시야 조리개는 원치않는 광을 고스트 이미지(ghost image)처럼, 집광되지 못하게 차단하도록 더 작아질 수 있고, 조명 시야 조리개는 원치않는 광을, 고스트 이미지처럼, 타겟으로 지향되지 못하게 제거하도록 더 작아질 수 있다.
비제한적인 방식으로, 예시하기 위해, 소정의 실시형태의 구조 및 기능, 다음의 도면 쌍들은 방사선의 광학 경로를 따라 상이한 위치에 있는 종래기술 시스템(70)과 시스템(100) 간의 비교를 나타낸다.
도 2a는 종래기술에 따른 조명 시야 조리개(72)의 시야 등가면에서 볼 때의 입사 방사선(80)의 개략도이고, 도 2b는 본 발명의 일부 실시형태에 따른 조명 시야 조리개(120)의 시야 등가면에서 볼 때의 입사 방사선(80)의 개략도이다. 비제한적으로, 도 2b는 종래기술의 시야 조리개에 대해 회전하는 정사각형 광학 시야 조리개를 도시하고 있는데, 이것은 에지 회절을 타겟 측정 방향인 동공면의 수평 및 수직 축에 대해 일정 각도로 전파시키는 것이다.
소정의 실시형태는, 각각 적어도 하나의 측정 방향(예컨대, x, y)를 가지는 적어도 하나의 타겟(71 및/또는 110)으로부터 회절 신호(90)을 측정하도록 구성된, 스캐터로메트리 계측 시스템(100)을 포함한다. 종래기술의 시스템(700)에서는, 조명 시야 조리개(72)가 타겟(71)의 측정 방향(x, y)에 수직인 에지(75)를 갖지만, 스캐터로메트리 계측 시스템(100)은 적어도 하나의 측정 방향(x, y)에 대해 (예컨대, x1, y1만큼) 경사진 에지(121, 122)를 갖는 적어도 하나의 시야 조리개(예컨대, 조명 시야 조리개(120))를 구비한다.
도 3a는 종래기술에 따른 시스템(70)의 동공면에서 볼 때의 입사 방사선(80A)(대물렌즈 동공, 로그 강도(log intensity), 시뮬레이션된 방사선 강도 패턴)의 개략도이고, 도 3b는 본 발명의 일부 실시형태에 따른 시스템(100)의 동공면에서 볼 때의 입사 방사선(80A)(대물렌즈 동공, 로그 강도, 시뮬레이션된 방사선 강도 패턴)의 개략도이다. 종래기술 시스템(70)에서는 에지 회절 패턴(83)이 측정 방향(x, y)으로 조리개 에지(75)에 수직으로 형성되고, 시스템(100)에서는 에지 회절 패턴(118)이, 경사진 조리개 에지(121, 122)에 수직이기 때문에 측정 방향(x, y)에 대해 경사지고 따라서 (비제한적인 예로서) 직사각형 조리개(120)에 대한 방향(x1, y1)에 있는 것을 알아야 한다.
도 4a는 종래기술에 따른 시스템(70)의 (시야 등가면에서의) 타겟(71)에 입사하는 방사선(80A)의 개략도이고, 도 4b는 본 발명의 일부 실시형태에 따른 시스템(100)의 (시야 등가면에서의) 타겟(71 또는 110)에 입사하는 방사선(80A)의 개략도이다. 예시하는 비제한적 예에서는, 타겟(71 또는 100)이 대응하는 측정 방향을 가진 한 방향(x)으로 주기적 구조를 포함한다. 조명 조리개(72)의 에지(75)와 조명 조리개(120)의 에지(121, 122)는 입사 조명(80A)의 공간 범위를 결정하고, 타겟 측정 방향(x, y)에 대해 에지 수직부(x1, y1)의 불투명 구성을 강조한다.
도 5a는 종래기술에 따른 시스템(70)의 (동공 등가면에서의) 산란 방사선(90A)의 개략도이고, 도 5b는 본 발명의 일부 실시형태에 따른 시스템(100)의 (동공 등가면에서) 산란 방사선(90A)의 개략도이다. 종래기술 시스템(70)에서는 측정 방향(x)의 에지 회절 패턴(73)이 타겟(71)으로부터의 회절 신호(76)(예컨대, 보이는 것은 회절 차수 0, ±1)와 간섭하지만, 시스템(100)에서는 에지 회절 패턴(113)이 측정 방향(x)에 대해 (방향 x1, y1로) 경사지고, 타겟(71 또는 110)으로부터의 회절 신호(116)(예컨대, 보이는 것은 회절 차수 0, ±1)와 더 약하게 간섭하는 것이 분명하다. 분명하게는, 유사한 고찰이 2개(또는 그 이상의) 측정 방향(x, y)을 가지는 타겟(71, 110)에도 적용 가능하다는 것이다.
도 6a는 종래기술에 따른 집광 시야 조리개(73)의 시야 등가면에서 볼 때의 산란 방사선(90A)의 개략도이고, 도 6b는 본 발명의 일부 실시형태에 따른 집광 시야 조리개(130)의 시야 등가면에서 볼 때의 산란 방사선(90A)의 개략도이다.
소정의 실시형태는, 각각 적어도 하나의 측정 방향(예컨대, x, y)을 가지는 적어도 하나의 타겟(71 및/또는 110)으로부터 회절 신호(90)을 측정하도록 구성된, 스캐터로메트리 계측 시스템(100)을 포함한다. 종래기술의 시스템(70)에서는, 집광 시야 조리개(73)가 타겟(71)의 측정 방향(x, y)에 수직인 에지(74)를 갖지만, 스캐터로메트리 계측 시스템(100)은 적어도 하나의 측정 방향(x, y)에 대해 (예컨대, x2, y2만큼) 경사진 에지(131, 132)를 갖는 적어도 하나의 시야 조리개(예컨대, 집광 시야 조리개(130))를 구비한다. 집광 시야 조리개(130)의 에지(131, 132)는 조명 시야 조리개(120)의 에지(121, 122)에도 마찬가지로 경사질 수도 있고(x1, y1 = x2, y2) 또는 조리개 에지가 다르게 경사질 수도 있다(x1, y1 ≠ x2, y2). 조리개(120, 130) 중 한쪽 또는 양쪽 조리개의 에지들이 경사질 수도 있음을 알아야 한다(도 6b는 비제한적인 예로서 후자의 경우를 도시하고 있다).
도 7a는 종래기술에 따른 시스템(70)의 (동공면에서의) 회절 신호(90)의 개략도이고, 도 7b는 본 발명의 일부 실시형태에 따른 시스템(100)의 (동공면에서의) 회절 신호(90)의 개략도이다. 종래기술 시스템(70)에서는 측정 방향(x)의 에지 회절 패턴(79)이 타겟(71)으로부터의 회절 신호(76)(예컨대, 보이는 것은 회절 차수 0, ±1)와 간섭하지만, 시스템(100)에서는 에지 회절 패턴(119)이 측정 방향(x)에 대해 (도시하는 예에서는 x1, y1 = x2, y2으로, 에지 방향이 상이할 경우는 아마도 다른 패턴으로) 경사지고, 타겟(71 또는 110)으로부터의 회절 신호(116)(예컨대, 보이는 것은 회절 차수 0, ±1)와 더 약하게 간섭한다. 분명하게는, 유사한 고찰이, 도 7b에서 보이는 바와 같이, 회절 신호(116)에 대해 수직 측정 방향(y)으로 2개(또는 그 이상의) 측정 방향(x, y)을 가지는 타겟(71, 110)에도 적용 가능하다는 것이다.
회전식 정사각형 조리개는 측정 디바이스의 조명 경로 및/또는 측정 디바이스의 집광 경로에서 구현될 수 있음을 알아야 한다. 양쪽 구현이 독립적으로 효과적이고, 2개의 회전식 정사각형 조리개(조명 및 집광 시야 조리개)의 조합은 개별 구현의 효과를 결합한다.
시야 조리개 에지(121, 122, 131, 132 중 어느 하나)와 측정 방향(x, y 중 어느 하나) 사이의 각도는 30°∼60° 사이일 수 있으며, 2개의 수직 측정 방향을 가진 타겟을 측정하는 회전식 직사각형 조리개와 같은 소정의 실시형태에서는 45°를 포함할 수도 있다. 조명 반경이 작은 경우 및/또는 차수 간의 거리가 예시하는 것보다 큰 경우, 30°보다 작은 각도 또는 60°보다 큰 각도는, 에지 회절을 비스듬하게 전파시키는 것에 의해, 측정된 타겟 회절 신호에 미치는 에지의 영향을 저감 또는 제거하기에 충분하다. 예를 들어, 20°, 10°, 5°, 또는 어떤 경우에는 심지어 1°만큼 작은 각도뿐만 아니라, 90°에 대한 중간 값과 상보 값(즉, 70°, 80°, 85°, 89°)도 광학 시스템의 에지 엘리먼트에 적용될 수 있다.
도 8a는 본 발명의 일부 실시형태에 따른, 시야 조리개(120 및/또는 130)의 에지가 중첩된 타겟(71)의 개략도이다. 시야 조리개는 타겟(71)의 공간 주기성의 방향, 즉 측정 방향(x)에 대해 경사지거나 회전된다. 도 8b는 본 발명의 일부 실시형태에 따른 타겟(110)의 개략도이다. 타겟(110)의 공간 주기성의 방향, 즉 측정 방향(x)이 도 8b에서는 수평이지만, 타겟 에지(111, 112)는 측정 방향(x)에 대해 (방향 x3, y3을 따라) 경사진다. 적어도 하나의 각각의 측정 방향을 따라 적어도 하나의 주기적 구조를 구비한 스캐터로메트리 계측 타겟(110)의 소정의 실시형태에서는, 타겟(110)의 에지(111, 112)가 적어도 하나의 측정 방향에 대해 경사진다. 예를 들어, 타겟 에지(111, 112)는 적어도 하나의 측정 방향(x 및/또는 y)으로부터 30°∼60°회전한 직사각형을 형성할 수도 있다. 비제한적인 예에 있어서, 타겟 에지(111, 112)는 적어도 하나의 측정 방향으로부터 45°만큼 회전한 직사각형을 형성할 수도 있다. 전술한 바와 같이, 조명 스팟 및 회절 차수의 구성에 따라, 회전은 더 넓은 범위의 각도로, 결국 1°∼89° 사이에서 연장하도록 이루어질 수도 있다.
타겟 에지(111, 112)는 측정 방향에 대해 조명 동공(120)의 에지(121, 122) 및/또는 집광 동공(130)의 에지(131, 132)와 같거나 또는 다른 각도로 경사질 수 있다(x3, y3 = 또는 ≠ x1, y2 및/또는 x2, y2). 타겟 경계선은, 동공면 내의 관심 영역으로 전파되는, 타겟 에지로부터의 회절이 감소하도록, 격자 방향에 대해 배열될 수도 있다. 예를 들어, 타겟 경계선은 격자 측정 방향에 대해 회전할 수도 있다. 에지 회절이 타겟 에지에 수직으로 지향되고 그 방향으로 더욱 연장되기 때문에, 에지가 회전하는 타겟의 경우, 에지 회절은 동공면의 x 및 y 축에 대한 일정한 각도로 전파된다. 이렇게 생성된 효과는 도 3b, 도 5b, 및 도 7b에 도시하는 회전식 시야 조리개의 효과와 같으며, 또한 그럼으로써 강화될 수도 있다. 광학적 시야 조리개인 회전식 정사각형 조리개와 타겟 경계선인 회전식 타겟 경계선은 독립적으로 실현될 수도 있다. 양쪽 구현이 독립적으로 효과적이고, 회전식 정사각형 조리개(각각 조명 및/또는 집광 시야 조리개(120, 130))와 회전식 타겟 경계선의 조합은 개별 구현의 효과를 결합한다.
소정의 실시형태는, 적어도 하나의 타겟(110)의 에지가 적어도 하나의 측정 방향에 대해 경사져 있는 스캐터로메트리 계측 시스템(100)을 포함한다. 소정의 실시형태는 여기에서 설명하는 스캐터로메트리 계측 타겟(110)의 타겟 설계 파일을 포함한다. 소정의 실시형태는 여기에서 설명하는 스캐터로메트리 계측 시스템(100)에 의한 스캐터로메트리 계측 측정 및 여기에서 설명하는 스캐터로메트리 계측 타겟(110)의 스캐터로메트리 계측 측정을 포함한다.
소정의 실시형태에 있어서, 스캐터로메트리 계측 시스템(100)은 적어도 하나의 시야 조리개(120, 130)의 측정된 회절 신호를 이용하여 적어도 하나의 타겟(110)으로부터의 측정된 스캐터로메트리 신호를 보정하도록 구성된 보정 모듈(도시 생략)을 포함할 수 있다.
조리개(120, 130)의 에지(121, 122, 131, 132)는 (각각) 조명(80)을 타겟 경계선(111, 112)으로 제한하도록 구성될 수도 있다. 소정의 실시형태에 있어서, 조리개(120, 130) 및 타겟(110)은 (렌즈(82, 87, 90) 등의 개재형 광학 엘리먼트를 고려할 경우에) 부합하는 에지를 가질 수 있다
도 9a와 도 9b는 본 발명의 일부 실시형태에 따른 시야 조리개 구성을 개략적으로 도시하는 도면이다. 도 9a는 회전식 정사각형 구경(125)을 가진 불투명 디스크를 개략적으로 도시하고 있으며, 각각의 X 및 Y 단면은 측정 방향(x, y)을 따른 구경(125)의 최대 범위를 나타내고 있다. 도 9b는, 회전식 정사각형의 형상을 가지며, 입사 방사선(80)의 일부를 반사시켜 입사 방사선(80A)을, 구경(125)을 통과하고 여기에서 설명한 경계선을 가지는 것과 유사한 성형 빔으로 만들도록 배치될 수 있는 미러(126)를 개략적으로 도시하고 있다. 조리개(120, 130)의 다른, 도시하지 않는 실시형태는, 직선형 에지가 관심 영역의 중심을 향하는 방향에 대해 일정 각도로 지향되도록 배열된 (예컨대, 직사각형의 유효 구경 형상을 가진) 회절 엘리먼트를 포함한다.
도 10은 본 발명의 일부 실시형태에 따른 방법(200)을 설명하는 상위 레벨 개략 흐름도이다.
방법(200)은 스캐터로메트리 계측 방법을 포함할 수 있으며, 이 방법은, 적어도 하나의 각각의 측정 방향을 따라 적어도 하나의 주기적 구조를 구비한 적어도 하나의 스캐터로메트리 계측 타겟을 측정하는 스캐터로메트리 계측 시스템에서, 상기 시스템 내의 적어도 하나의 시야 조리개, 및 적어도 하나의 타겟 중 적어도 하나의 에지를, 상기 적어도 하나의 측정 방향에 대해 경사지도록 설계하는 단계를 포함한다. 방법(200)은 시야 조리개 에지(들)를 측정 방향(들)에 대해 경사지도록 설계하는 단계(스테이지 210) 및/또는 타겟 에지(들)를 측정 방향(들)에 대해 경사지도록 설계하는 단계(스테이지 250)를 포함할 수 있다.
소정의 실시형태에 있어서, 방법(200)은 예컨대 직사각형을 형성하기 위해 시야 조리개(들) 에지를 적어도 하나의 측정 방향으로부터 30°∼60°(예컨대, 45°)로 회전하도록 설계하는 단계(스테이지 220)를 포함한다. 소정의 실시형태에 있어서, 방법(200)은 예컨대 직사각형을 형성하기 위해 타겟 둘레부(target circumference)를 적어도 하나의 측정 방향으로부터 30°∼60°(예컨대, 45°)로 회전하도록 설계하면서(스테이지 260), 특히 타겟의 측정 방향(들)(주기성의 방향)을 유지하는 단계(스테이지 280)를 포함한다. 전술한 바와 같이, 조명 스팟 및 회절 차수의 구성에 따라, 회전은 더 넓은 범위의 각도로, 결국 1°∼89° 사이에서 연장하도록 이루어질 수도 있다.
방법(200)은 스캐터로메트리 계측 시스템에서 시야 조리개(들)를 제작 및/또는 이용하는 단계(스테이지 230) 및/또는 스캐터로메트리 계측 측정을 위해 타겟을 제작 및/또는 이용하는 단계(스테이지 270)를 더 포함할 수 있다.
방법(200)은 스캐터로메트리 계측 시스템에 의해 적어도 하나의 스캐터로메트리 계측 타겟의 스캐터로메트리 신호를 측정하는 단계(스테이지 290) 및/또는 적어도 하나의 시야 조리개의 회절 신호를 측정하고 측정된 스캐터로메트리 신호를 그에 따라 보정하는 단계(스테이지 300)를 더 포함할 수 있다.
본 발명자들은 타겟의 공간 주기성 방향과 그래서 측정 방향을 유지하면서 타겟 경계선을 회전시키는 것은, 실제 타겟 격자를 회전시키고 그에 따른 다수의 실용적 문제를 대두시킨 미국 특허 공개 번호 2011/0194092에 개시되어 있는 종래기술의 제안과는 상이하다. 미국 특허 공개 번호 2011/0194092과는 다르게, 본 발명의 실시형태는 방향 타겟 주기성을 유지하고. 타겟 주기성 자체보다는 시야 조리개 경계선 및/또는 타겟 경계선을 변경한다. 본 발명자들은 제안하는 접근방식이 적어도 그만큼 효과적이며 훨씬 더 실용적임을 발견하였다. 구체적으로, 현대 리소그래피 공정에서는, 격자의 최적 방향이 리소그래피 조명 패턴에 의해 결정된다. 통상, 2중극자 또는 4중극자 조명이 구조의 임계 치수를 최소화하는데 이용되며, 격자 방향은 조명의 선택에 따라 고정된다. 그러므로, 개시하는 발명은 격자 방향을 변경하는 것이 아니라 대신에 타겟 경계선을 변경하기 때문에, 종래기술과는 다르게, 공정 호환적이며(process-compatible), 타겟 및 조리개 에지 회절의 영향을 경감시키면서 더욱 양호하게 제작된 격자 타겟이 되게 된다.
이상의 설명에서, 실시형태는 본 발명의 실시예 또는 구현예이다. "일 실시형태", "한 실시형태", "소정의 실시형태", 또는 "일부 실시형태"의 다양한 양상이 반드시 동일한 실시형태를 언급하지는 않는다.
본 발명의 다양한 특징이 단일 실시형태의 상황에서 설명될 수도 있지만, 그 특징은 별도로 또는 임의의 적절한 조합으로 제공될 수도 있다. 반대로, 본 발명이 명확성을 위해 별개의 실시형태의 상황에서 본 명세서에 설명될 수도 있으나, 본 방법은 단일 실시형태로 실시될 수도 있다.
본 발명의 소정의 실시형태는 앞에 개시한 상이한 실시형태와는 상이한 실시형태로부터의 특징을 포함할 수 있고, 소정의 실시형태는 앞에 개시한 다른 실시형태와는 다른 요소를 포함할 수도 있다. 특정 실시형태의 상황에서의 본 발명의 요소의 개시는 특정 실시형태에서만 이용되는 것들을 제한하는 것으로 의도되지 않는다.
또한, 본 발명은 다양하게 수행되거나 실시될 수 있고, 본 발명은 이상의 설명에서 개설한 것과 다른 소정의 실시형태로 구현될 수도 있음은 물론이다.
본 발명은 해당 도면에 또는 대응하는 설명에 제한되지 않는다. 예를 들어, 흐름은 각각의 도시하는 박스 또는 상태를 거치거나, 도시하고 설명한 바와 정확히 동일한 순서로 이동할 필요가 없다.
본 명세서에서 이용되는 기술적 그리고 과학적 용어의 의미는, 다른 식으로 정의하지 않는 한, 본 발명이 속하는 기술 분야에 속하는 사람들이 일반적으로 이해하는 것이다.
본 발명을 제한된 수의 실시형태에 대해서 설명하였지만, 이들은 본 발명의 범위에 대한 제한으로서 해석되는 것이 아니라 양호한 실시형태의 일부의 예시로서 해석되어야 한다. 다른 가능한 변화, 변형 및 적용도 본 발명의 범위 내에 있다. 따라서, 본 발명의 범위는 지금까지 설명한 것에 제한되는 것이 아니라, 첨부하는 청구범위 및 이것의 법적 균등물에 의해 제한된다.

Claims (21)

  1. 스캐터로메트리 계측 시스템에 있어서,
    광원과,
    상기 광원으로부터의 조명을 샘플 상에 배치된 타겟으로 지향시키도록 위치 결정된 하나 이상의 광학 엘리먼트로서, 상기 타겟은 상기 샘플의 표면에 평행한 하나 이상의 측정 방향을 따라 분포된 엘리먼트들을 포함한 적어도 하나의 주기적 구조를 포함하는 것인, 상기 하나 이상의 광학 엘리먼트와,
    동공면에 위치한 디텍터와,
    상기 광원으로부터의 조명에 응답하여 상기 타겟으로부터 회절된 방사선을 상기 디텍터에 지향시켜, 상기 하나 이상의 측정 방향을 따른 하나 이상의 계측 측정을 위해 상기 타겟으로부터 회절된 방사선의 동공면 이미지를 생성하도록 위치 결정된 하나 이상의 광학 엘리먼트와,
    상기 샘플에 결합된(conjugate) 하나 이상의 평면에 위치하는 하나 이상의 시야 조리개(field stop)
    를 포함하고,
    상기 하나 이상의 시야 조리개는, 상기 하나 이상의 측정 방향을 따른 하나 이상의 계측 측정을 위해 상기 동공면에서 상기 타겟으로부터 회절된 방사선에 미치는 하나 이상의 직선 에지와 연관된 회절의 영향을 적어도 부분적으로 완화시키기 위해, 상기 하나 이상의 측정 방향 중 적어도 하나에 대해 경사진 방향을 따라 상기 샘플 상에 상기 하나 이상의 직선 에지의 결합체(conjugate)를 제공하도록 배향된 하나 이상의 직선 에지를 포함하고,
    상기 타겟은 상기 타겟의 공간 범위를 규정하는 하나 이상의 타겟 에지를 포함하고, 상기 하나 이상의 타겟 에지 중 적어도 하나는 상기 하나 이상의 측정 방향 중 적어도 하나에 대해 경사각으로 배열되는, 스캐터로메트리 계측 시스템.
  2. 제1항에 있어서, 상기 하나 이상의 직선 에지 중 적어도 하나는, 상기 하나 이상의 측정 방향 중 적어도 하나에 대해 30 °내지 60 °의 범위 내의 각도로 배향되는 상기 샘플 상에 결합체를 제공하기 위해 배향되는, 스캐터로메트리 계측 시스템.
  3. 제2항에 있어서, 상기 하나 이상의 직선 에지 중 적어도 하나는, 상기 하나 이상의 측정 방향 중 적어도 하나에 대해 45 °의 각도로 배향되는 상기 샘플 상에 결합체를 제공하기 위해 배향되는, 스캐터로메트리 계측 시스템.
  4. 제1항에 있어서, 상기 하나 이상의 시야 조리개의 측정된 회절 신호를 사용하여 상기 타겟으로부터 측정된 스캐터로메트리 신호를 보정하도록 또한 구성되는 스캐터로메트리 계측 시스템.
  5. 제1항에 있어서, 상기 하나 이상의 시야 조리개 중 적어도 하나는,
    조명 시야 조리개(illumination field stop)를 포함하고, 상기 조명 시야 조리개는 상기 하나 이상의 직선 에지 중 적어도 하나를 포함하는, 스캐터로메트리 계측 시스템.
  6. 제5항에 있어서, 상기 하나 이상의 시야 조리개 중 적어도 하나는,
    집광 시야 조리개(collection field stop)를 포함하고, 상기 집광 시야 조리개는 상기 하나 이상의 직선 에지 중 적어도 하나를 포함하는, 스캐터로메트리 계측 시스템.
  7. 제6항에 있어서, 상기 조명 시야 조리개는 상기 하나 이상의 직선 에지 중 적어도 일부로부터 형성된 제1 구경(aperture)을 포함하고, 상기 샘플 상의 상기 제1 구경의 결합체가 상기 샘플의 조명된 부분을 규정하고, 상기 집광 시야 조리개는 상기 하나 이상의 직선 에지 중 적어도 일부로부터 형성된 제2 구경을 포함하며, 상기 샘플 상의 상기 제2 구경의 결합체가 상기 샘플의 검출된 부분을 규정하는, 스캐터로메트리 계측 시스템.
  8. 제7항에 있어서, 상기 타겟의 조명된 부분과 상기 타겟의 검출된 부분은 일치하는, 스캐터로메트리 계측 시스템.
  9. 제7항에 있어서, 상기 샘플의 조명된 부분 및 상기 샘플의 검출된 부분 중 적어도 하나는 상기 타겟보다 작은, 스캐터로메트리 계측 시스템.
  10. 삭제
  11. 제1항에 있어서, 상기 경사는 상기 적어도 하나의 측정 방향에 대해 1 °내지 89 °의 범위 내인, 스캐터로메트리 계측 시스템.
  12. 제1항에 있어서, 상기 하나 이상의 시야 조리개 중 적어도 하나는,
    상기 하나 이상의 직선 에지 중 적어도 일부로부터 형성된 구경을 포함하는, 스캐터로메트리 계측 시스템.
  13. 제12항에 있어서, 상기 구경은,
    직사각형 구경을 포함하는, 스캐터로메트리 계측 시스템.
  14. 제12항에 있어서, 상기 하나 이상의 직선 에지는,
    불투명 디스크 내의 개구의 경계 및 미러의 경계 중 적어도 하나를 포함하는, 스캐터로메트리 계측 시스템.
  15. 계측 측정에서 에지 회절 효과를 완화시키는 방법에 있어서,
    샘플 상에 배치된 타겟을 수용하는 단계로서, 상기 타겟은 계측 시스템에서 상기 샘플의 표면에 평행한 하나 이상의 측정 방향을 따라 분포된 엘리먼트들을 포함한 적어도 하나의 주기적 구조를 포함하고, 상기 계측 시스템은 광원으로부터의 조명을 상기 타겟에 지향시키도록 위치 결정된 하나 이상의 광학 엘리먼트를 포함하고, 상기 계측 시스템은, 상기 광원으로부터의 조명에 응답하여 상기 타겟으로부터 회절된 방사선을 동공면에 위치한 디텍터에 지향시켜, 상기 하나 이상의 측정 방향을 따른 하나 이상의 계측 측정을 위해 상기 타겟으로부터 회절된 방사선의 동공면 이미지를 생성하도록 위치 결정된 하나 이상의 광학 엘리먼트를 더 포함하는 것인, 상기 타겟 수용 단계와,
    상기 샘플에 결합된 상기 계측 시스템의 하나 이상의 평면에 위치한 하나 이상의 시야 조리개를 제공하는 단계
    를 포함하고,
    상기 하나 이상의 시야 조리개는, 상기 하나 이상의 측정 방향을 따른 하나 이상의 계측 측정을 위해 상기 동공면에서 상기 타겟으로부터 회절된 방사선에 미치는 하나 이상의 직선 에지와 연관된 회절의 영향을 적어도 부분적으로 완화시키기 위해, 상기 하나 이상의 측정 방향 중 적어도 하나에 대해 경사진 방향을 따라 상기 샘플 상에 상기 하나 이상의 직선 에지의 결합체를 제공하도록 배향된 하나 이상의 직선 에지를 포함하고,
    상기 타겟은 상기 타겟의 공간 범위를 규정하는 하나 이상의 타겟 에지를 포함하고, 상기 하나 이상의 타겟 에지 중 적어도 하나는 상기 하나 이상의 측정 방향 중 적어도 하나에 대해 경사각으로 배열되는, 방법.
  16. 제15항에 있어서, 상기 샘플에 결합된 상기 계측 시스템의 하나 이상의 평면에 위치한 하나 이상의 시야 조리개를 제공하는 단계는,
    상기 하나 이상의 측정 방향 중 적어도 하나에 대해 1 °내지 89 °의 범위 내의 각도로 배향되는 상기 샘플 상에 결합체를 제공하기 위해 상기 하나 이상의 직선 에지 중 적어도 하나를 배향시키는 단계를 포함하는, 방법.
  17. 제15항에 있어서, 상기 샘플에 결합된 상기 계측 시스템의 하나 이상의 평면에 위치한 하나 이상의 시야 조리개를 제공하는 단계는,
    상기 하나 이상의 측정 방향 중 적어도 하나에 대해 45 °의 각도로 배향되는 상기 샘플 상에 결합체를 제공하기 위해 상기 하나 이상의 직선 에지 중 적어도 하나를 배향시키는 단계를 포함하는, 방법.
  18. 제15항에 있어서, 상기 하나 이상의 시야 조리개 중 적어도 하나는,
    상기 하나 이상의 직선 에지 중 적어도 일부로부터 형성되는 조명 시야 조리개 및 집광 시야 조리개 중 적어도 하나를 포함하는, 방법.
  19. 계측 측정에서 에지 회절 효과를 완화시키는 방법에 있어서,
    샘플의 표면에 평행한 하나 이상의 분포 방향을 따라 분포된 피처들을 포함한 적어도 하나의 주기적 구조를 포함하도록 샘플 상에 타겟을 제조하는 단계로서, 상기 타겟은 상기 하나 이상의 분포 방향 중 적어도 하나에 대해 경사지게 배열된 상기 타겟의 경계를 규정하는 적어도 하나의 직선 에지를 포함하는 것인, 상기 타겟 제조 단계와,
    계측 시스템 내에 상기 샘플 상의 타겟을 수용하는 단계로서, 상기 계측 시스템은 광원으로부터의 조명을 상기 타겟에 지향시키도록 위치 결정된 하나 이상의 광학 엘리먼트를 포함하고, 상기 계측 시스템은 상기 광원으로부터의 조명에 응답하여 상기 타겟으로부터 회절된 방사선을 동공면에 위치한 디텍터에 지향시켜, 하나 이상의 측정 방향을 따른 하나 이상의 계측 측정을 위해 상기 타겟으로부터 회절된 방사선의 동공면 이미지를 생성하도록 위치 결정된 하나 이상의 광학 엘리먼트를 더 포함하는 것인, 상기 타겟 수용 단계와,
    상기 하나 이상의 측정 방향을 따른 하나 이상의 계측 측정을 위해 상기 동공면 이미지에서 상기 타겟으로부터 회절된 방사선에 미치는 상기 타겟의 하나 이상의 직선 에지와 연관된 회절의 영향을 적어도 부분적으로 완화시키기 위해, 상기 타겟의 하나 이상의 분포 방향 중 적어도 하나를 상기 계측 시스템의 하나 이상의 측정 방향 중 적어도 하나와 정렬시키는 단계
    를 포함하는, 방법.
  20. 제19항에 있어서,
    상기 샘플에 결합된 상기 계측 시스템의 하나 이상의 평면에 위치한 하나 이상의 시야 조리개를 제공하는 단계를 더 포함하고,
    상기 하나 이상의 시야 조리개는, 상기 하나 이상의 측정 방향을 따른 하나 이상의 계측 측정을 위해 상기 동공면 이미지에 미치는 상기 하나 이상의 시야 조리개의 하나 이상의 직선 에지와 연관된 회절의 영향을 적어도 부분적으로 완화시키기 위해, 상기 하나 이상의 측정 방향 중 적어도 하나에 대해 경사진 방향을 따라 상기 샘플 상에 상기 하나 이상의 직선 에지의 결합체를 제공하도록 배향된 하나 이상의 직선 에지를 포함하는, 방법.
  21. 제19항에 있어서, 상기 하나 이상의 시야 조리개 중 적어도 하나는,
    상기 하나 이상의 직선 에지 중 적어도 일부로부터 형성되는 조명 시야 조리개 및 집광 시야 조리개 중 적어도 하나를 포함하는, 방법.
KR1020177000368A 2014-06-24 2015-06-23 조리개 및 타겟의 회전된 경계선 KR102214370B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462016267P 2014-06-24 2014-06-24
US62/016,267 2014-06-24
PCT/US2015/037167 WO2015200315A1 (en) 2014-06-24 2015-06-23 Rotated boundaries of stops and targets

Publications (2)

Publication Number Publication Date
KR20170020420A KR20170020420A (ko) 2017-02-22
KR102214370B1 true KR102214370B1 (ko) 2021-02-09

Family

ID=54938734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177000368A KR102214370B1 (ko) 2014-06-24 2015-06-23 조리개 및 타겟의 회전된 경계선

Country Status (5)

Country Link
US (1) US10761022B2 (ko)
KR (1) KR102214370B1 (ko)
CN (1) CN106471613B (ko)
TW (1) TWI653696B (ko)
WO (1) WO2015200315A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336495B1 (en) * 2016-12-16 2024-02-14 F. Hoffmann-La Roche AG Characterizing the emission properties of samples
JP7365510B2 (ja) * 2020-01-29 2023-10-19 エーエスエムエル ネザーランズ ビー.ブイ. 基板上の周期構造を測定するための計測方法およびデバイス
US11512948B2 (en) * 2020-05-26 2022-11-29 Kla Corporation Imaging system for buried metrology targets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237644A1 (en) 2003-02-19 2006-10-26 Yoshinori Nakayama Standard member for length measurement, method for producing the same, and electron beam length measuring device using the same
US20080231846A1 (en) * 2007-03-19 2008-09-25 Advanced Mask Inspection Technology, Inc. Level detection apparatus
US20110194092A1 (en) * 2008-09-08 2011-08-11 Asml Netherlands B.V. Substrate, an Inspection Apparatus, and a Lithographic Apparatus

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240986A (ja) * 1985-08-20 1987-02-21 Fuji Electric Corp Res & Dev Ltd レ−ザ−加工方法
US5171999A (en) * 1989-02-28 1992-12-15 Nikon Corporation Adjustable beam and interference fringe position
US5267012A (en) * 1989-04-27 1993-11-30 Coherent, Inc. Apparatus for measuring the mode quality of a laser beam
KR970072024A (ko) * 1996-04-09 1997-11-07 오노 시게오 투영노광장치
JP4613357B2 (ja) * 2000-11-22 2011-01-19 株式会社ニコン 光学的位置ずれ測定装置の調整装置および方法
TW563178B (en) * 2001-05-07 2003-11-21 Nikon Corp Optical properties measurement method, exposure method, and device manufacturing method
US20030184856A1 (en) * 2002-04-02 2003-10-02 Nikon Corporation Focus point detection device and microscope using the same
DE60319462T2 (de) * 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
JP4525067B2 (ja) * 2003-12-12 2010-08-18 株式会社ニコン 位置ずれ検出用マーク
US7791727B2 (en) * 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US8908175B1 (en) * 2006-03-31 2014-12-09 Kla-Tencor Corporation Flexible scatterometry metrology system and method
US7580131B2 (en) * 2007-04-17 2009-08-25 Asml Netherlands B.V. Angularly resolved scatterometer and inspection method
US8248617B2 (en) * 2008-04-22 2012-08-21 Zygo Corporation Interferometer for overlay measurements
US8004679B2 (en) * 2008-05-09 2011-08-23 Kla-Tencor Corporation Target design and methods for scatterometry overlay determination
NL2004365A (en) * 2009-04-10 2010-10-12 Asml Holding Nv Method and system for increasing alignment target contrast.
US8441639B2 (en) * 2009-09-03 2013-05-14 Kla-Tencor Corp. Metrology systems and methods
NL2006229A (en) * 2010-03-18 2011-09-20 Asml Netherlands Bv Inspection method and apparatus, and associated computer readable product.
US9140998B2 (en) * 2010-11-12 2015-09-22 Asml Netherlands B.V. Metrology method and inspection apparatus, lithographic system and device manufacturing method
US9228943B2 (en) * 2011-10-27 2016-01-05 Kla-Tencor Corporation Dynamically adjustable semiconductor metrology system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237644A1 (en) 2003-02-19 2006-10-26 Yoshinori Nakayama Standard member for length measurement, method for producing the same, and electron beam length measuring device using the same
US20080231846A1 (en) * 2007-03-19 2008-09-25 Advanced Mask Inspection Technology, Inc. Level detection apparatus
US20110194092A1 (en) * 2008-09-08 2011-08-11 Asml Netherlands B.V. Substrate, an Inspection Apparatus, and a Lithographic Apparatus

Also Published As

Publication number Publication date
WO2015200315A1 (en) 2015-12-30
CN106471613A (zh) 2017-03-01
CN106471613B (zh) 2020-12-29
TWI653696B (zh) 2019-03-11
KR20170020420A (ko) 2017-02-22
TW201614750A (en) 2016-04-16
US20160209327A1 (en) 2016-07-21
US10761022B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP7093429B2 (ja) 拡張赤外分光エリプソメトリシステム
JP5568444B2 (ja) 欠陥検査方法、微弱光検出方法および微弱光検出器
JP5773939B2 (ja) 欠陥検査装置および欠陥検査方法
CN114341593A (zh) 使用云纹元件及旋转对称布置以成像叠加目标
KR102198743B1 (ko) 동시 다중-각도 분광법
US7528953B2 (en) Target acquisition and overlay metrology based on two diffracted orders imaging
RU2659967C2 (ru) Способ определения положения подложки в системе литографии, подложка для использования в таком способе и система литографии для выполнения такого способа
KR101966572B1 (ko) 오버레이 에러를 검출하는 방법 및 디바이스
JP6758309B2 (ja) フォーカスエラー感応性が減少した光学的計測
JP2018515782A5 (ko)
KR20180008704A (ko) 초점 감응성 오버레이 타겟을 이용한 초점 결정용 시스템 및 방법
US9030661B1 (en) Alignment measurement system
TWI829504B (zh) 粒子偵測系統及設備
JP5815798B2 (ja) 欠陥検査方法および欠陥検査装置
KR102214370B1 (ko) 조리개 및 타겟의 회전된 경계선
TWI627513B (zh) 用於感測或判定一工件之對準及高度之器件及方法、對準感測器及電子束微影之裝置
JP6117305B2 (ja) 欠陥検査方法、微弱光検出方法および微弱光検出器
US8456641B1 (en) Optical system
US20080116402A1 (en) Method and a device for measurement of scattered radiation at an optical system
JP6073080B2 (ja) 電磁波計測システム
JP2008077741A (ja) 回折格子の測定装置及び回折格子の測定方法
JP2008185528A (ja) 光束平行度測定装置
JP2006058038A (ja) Euv用シアリング干渉計の回折格子の回折方向測定方法

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20170105

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20200619

Comment text: Request for Examination of Application

PA0302 Request for accelerated examination

Patent event date: 20200619

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200807

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20201104

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210203

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210203

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20240123

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20250121

Start annual number: 5

End annual number: 5