Nothing Special   »   [go: up one dir, main page]

KR102140116B1 - Fluidized membrane reactor for water purification possessing ability of decomposing organics - Google Patents

Fluidized membrane reactor for water purification possessing ability of decomposing organics Download PDF

Info

Publication number
KR102140116B1
KR102140116B1 KR1020180125960A KR20180125960A KR102140116B1 KR 102140116 B1 KR102140116 B1 KR 102140116B1 KR 1020180125960 A KR1020180125960 A KR 1020180125960A KR 20180125960 A KR20180125960 A KR 20180125960A KR 102140116 B1 KR102140116 B1 KR 102140116B1
Authority
KR
South Korea
Prior art keywords
membrane
pvdf
reactor
photocatalyst
ceramic support
Prior art date
Application number
KR1020180125960A
Other languages
Korean (ko)
Other versions
KR20200045207A (en
Inventor
김현국
서봉국
임충선
이주은
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020180125960A priority Critical patent/KR102140116B1/en
Publication of KR20200045207A publication Critical patent/KR20200045207A/en
Application granted granted Critical
Publication of KR102140116B1 publication Critical patent/KR102140116B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2611Irradiation
    • B01D2311/2619UV-irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 평균 직경 0.1 내지 5 ㎛ 크기의 기공을 갖는 세라믹 지지체, 및 상기 지지체의 일면에, 광촉매로서 ZIF-8 또는 TiO2@ZIF-8을 포함하는 고분자 용액으로부터 비용매 유도 상분리법으로 형성한, 폴리비닐리덴플루오라이드(polyvinylidene fluoride; PVDF) 나노여과막을 포함하는 복합 분리막 및 상기 복합 분리막의 길이방향과 평행하게 나노여과막의 벽면 쪽에 이와 이격하여 위치시킨 UV 램프를 구비한, 유기물 분해능을 구비한 수처리용 유동층 분리막 반응기, 및 이를 이용한 수처리하는 방법에 관한 것이다.The present invention is formed by a non-solvent-induced phase separation method from a polymer solution containing ZIF-8 or TiO 2 @ZIF-8 as a photocatalyst on a ceramic support having pores having an average diameter of 0.1 to 5 μm in size and one surface of the support. , A polyvinylidene fluoride (PVDF) composite separation membrane comprising a nanofiltration membrane, and a UV lamp positioned at a distance from the side of the nanofiltration membrane parallel to the length of the composite separation membrane and having a UV resolution A fluidized bed separation membrane reactor for water treatment, and a method for treating water using the same.

Description

유기물 분해능을 구비한 수처리용 유동층 분리막 반응기{Fluidized membrane reactor for water purification possessing ability of decomposing organics}Fluidized membrane reactor for water purification possessing ability of decomposing organics

본 발명은 평균 직경 0.1 내지 5 ㎛ 크기의 기공을 갖는 세라믹 지지체, 및 상기 지지체의 일면에, 광촉매로서 ZIF-8 또는 TiO2@ZIF-8을 포함하는 고분자 용액으로부터 비용매 유도 상분리법으로 형성한, 폴리비닐리덴플루오라이드(polyvinylidene fluoride; PVDF) 나노여과막을 포함하는 복합 분리막 및 상기 복합 분리막의 길이방향과 평행하게 나노여과막의 벽면 쪽에 이와 이격하여 위치시킨 UV 램프를 구비한, 유기물 분해능을 구비한 수처리용 유동층 분리막 반응기, 및 이를 이용한 수처리하는 방법에 관한 것이다.The present invention is formed by a non-solvent-induced phase separation method from a polymer solution containing ZIF-8 or TiO 2 @ZIF-8 as a photocatalyst on a ceramic support having pores having an average diameter of 0.1 to 5 μm in size and one surface of the support. , A polyvinylidene fluoride (PVDF) composite separation membrane comprising a nanofiltration membrane, and a UV lamp positioned at a distance from the side of the nanofiltration membrane parallel to the length of the composite separation membrane and having a UV resolution A fluidized bed separation membrane reactor for water treatment, and a method for treating water using the same.

산업분야의 다양화로 인해 자연유기물(natural organic matters), 내분비계 장애물질, 약리활성 물질, 탄소나노 유기물질 등 수중 난분해성 미세 유기오염물질이 증가하고 다양화되고 있다.Due to the diversification of the industrial field, micro-organic pollutants that are difficult to decompose in water, such as natural organic matters, endocrine disruptors, pharmacologically active substances, and carbon nano-organic substances, are increasing and diversifying.

일반적으로 폐수를 처리하는 방법은 생물학적 처리 및 물리화학적 처리 방법으로 대별되는데, 생물학적 처리는 생분해 가능한 유기물질의 산화에 사용되고, 물리화학적 처리는 부유물질 및 유기물질의 제거 및 산화에 사용된다. 소정의 크기를 갖는 물질은 여과 등의 방법으로 비교적 쉽게 제거할 수 있으나, 소분자 화합물 예컨대, C6 이하의 저급 탄소 화합물 등은 제거하기 어렵다. 이들 소분자 유기 화합물은 산화 또는 환원시켜 분해함으로써 제거할 수 있다. 이를 위하여 생물학적 분해 방법인 효소 등을 사용할 수 있으나, 이는 높은 비용을 요구하며, 반응 환경에 의한 제약이 크고, 장기간 반복하여 사용하기 어렵다.Generally, wastewater treatment methods are classified into biological treatment and physicochemical treatment methods. Biological treatment is used for oxidation of biodegradable organic substances, and physicochemical treatment is used for removal and oxidation of suspended solids and organic substances. Substances having a predetermined size can be removed relatively easily by a method such as filtration, but it is difficult to remove small molecule compounds such as lower carbon compounds of C6 or less. These small molecule organic compounds can be removed by oxidation or reduction to decomposition. To this end, enzymes such as biological decomposition methods can be used, but this requires a high cost, has a large restriction by the reaction environment, and is difficult to use repeatedly over a long period of time.

고도산화기술(AOT/AOP: Advanced Oxidation Technology/Process)은 일반적으로 사용하는 화학적 산화제보다 훨씬 강력한 산화력을 갖는 OH 라디칼을 생성시켜 유기물질의 산화 효율과 산화 속도를 증가시키는 수처리 기술을 의미한다. 강력한 산화력을 발휘하는 OH 라디칼은 수중에 존재하는 생분해 가능한 물질뿐만 아니라, 독성 및 난분해성 유기물질도 CO2 와 H2O로 완전 산화가 가능한 공정이란 점에서 수처리 기술로 각광받고 있다.Advanced oxidation technology (AOT/AOP: Advanced Oxidation Technology/Process) refers to a water treatment technology that increases oxidative efficiency and oxidation rate of organic materials by generating OH radicals with much stronger oxidizing power than chemical oxidizing agents. OH radical, which exerts strong oxidizing power, has been spotlighted as a water treatment technology in that it is a process capable of completely oxidizing not only biodegradable substances present in water, but also toxic and hardly decomposable organic substances with CO 2 and H 2 O.

이러한 고도산화기술은 OH기를 생성시키는 방법에 따라서 여러 가지로 나누어질 수 있는데, 상기 고도산화기술에는 광촉매, 자외선, 오존, H2O2 등과 이들의 가능한 조합의 구성으로, 기존의 화학적·생물학적·물리학적 흡착·촉매이용방법 등이 다량의 산화제에 따른 부담감과 미생물의 적용 가능 여부 및 2차 처리가 필요한 점 그리고 고가의 귀금속 촉매 사용에 따른 경제적인 이유 등으로 다양한 문제점이 지적되어 온 이후, 경제적이면서도 환경친화적인 방법을 모색하는 방향으로 발전하고 기술이 개발되고 있다.This advanced oxidation technology can be divided into various types depending on the method of generating OH groups. The advanced oxidation technology consists of a photocatalyst, ultraviolet light, ozone, H 2 O 2, etc., and possible combinations thereof, and the existing chemical, biological, Since various problems have been pointed out, such as the physical adsorption and catalyst use method, etc., due to the burden of a large amount of oxidizing agent, the availability of microorganisms, and the need for secondary treatment, and the economical reasons for using expensive precious metal catalysts, it is economical. In the meantime, it is developing in the direction of seeking environmentally friendly methods and technologies are being developed.

일반적으로 광촉매(Photocatalyst)는 빛(Photo)과 촉매(catalyst)의 합성어로 빛을 이용한 촉매 혹은 광반응을 가속시키는 촉매의 의미로, 빛을 에너지원으로 하여 촉매 반응을 진행시키는 물질을 말하는데, 반응에 직접 참여하여 소모되지 않으면서도 기존의 광반응과는 다른 메커니즘을 제공하여 반응속도를 가속시킬 수 있는 일반적인 촉매로의 기본 조건을 만족함은 물론, 발현하고자 하는 물질에 빛을 조사하였을 때 자외선을 흡수하여 강한 환원력과 산화력을 가질 수 있는 반도체성 금속 산화물이나 황화합물이 주로 이용된다. 그러나, 미세 광촉매 입자를 그 자체로서 이용하는 경우, 이를 제거하기 위한 막 반응기를 이용하는 후속 공정을 필요로 한다. 한편, 이 공정에서 막의 오염으로 인한 광촉매의 전량 회수는 어려우며, 처리 장치 밖으로 유출되는 광촉매의 손실로 인한 처리비용이 증가하는 문제가 있다. 또한, 분해하고자 하는 유기물과 광촉매의 원활한 접촉이 어려워 상기 광촉매를 이용한 유기물의 분해효율은 그다지 높지는 않다.In general, photocatalyst (Photocatalyst) is a compound of light (Photo) and catalyst (catalyst), which means a catalyst that accelerates a photoreaction or a catalyst using light, and refers to a substance that proceeds a catalytic reaction using light as an energy source. It not only consumes directly by participating in it, but also provides a mechanism different from the existing photoreaction, which satisfies the basic conditions as a general catalyst that can accelerate the reaction rate, and absorbs ultraviolet light when irradiated with light to the material to be expressed. Therefore, semiconducting metal oxides or sulfur compounds that can have strong reducing power and oxidizing power are mainly used. However, when fine photocatalytic particles are used as such, there is a need for a subsequent process using a membrane reactor to remove them. On the other hand, in this process, it is difficult to recover the total amount of photocatalyst due to the contamination of the film, and there is a problem that the treatment cost increases due to the loss of the photocatalyst flowing out of the processing apparatus. In addition, it is difficult to smoothly contact the organic material to be decomposed with the photocatalyst, so the decomposition efficiency of the organic material using the photocatalyst is not very high.

본 발명자들은, 막 반응기를 이용한 수처리 공정에 있어서, 광촉매 반응을 이용하여, 소분자 유기 화합물을 효율적으로 제거하기 위한 장치를 고안하기 위하여 예의 연구 노력한 결과, 마이크로 크기의 기공을 갖는 세라믹 지지체 상에 광촉매로서 TiO2를 담지 또는 미담지한 ZIF-8을 포함하는 고분자 용액으로부터 비용매 유도 상분리법에 의해 형성한 PVDF 나노여과막을 구비한 유동층 반응기를 구성하고 나노여과막의 기공을 향하는 유체 흐름을 유도함으로써 나노여과막에 분해하고자 하는 유기물들을 정치시켜 광촉매와의 접촉을 증가시킴으로써 자외선 조사에 의한 분해율을 향상시킬 수 있음을 확인하고 본 발명을 완성하였다.The present inventors, in a water treatment process using a membrane reactor, using photocatalytic reactions, as a result of earnest research to devise an apparatus for efficiently removing small molecule organic compounds, as a photocatalyst on a ceramic support having micro-sized pores Nanofiltration membrane by constructing a fluidized bed reactor having a PVDF nanofiltration membrane formed by a non-solvent-induced phase separation method from a polymer solution containing ZIF-8 carrying or without TiO 2 and inducing a fluid flow toward the pores of the nanofiltration membrane The present invention was completed by confirming that the decomposition rate by ultraviolet irradiation can be improved by increasing the contact with the photocatalyst by standing the organic substances to be decomposed.

상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 평균 직경 0.1 내지 5 ㎛ 크기의 기공을 갖는 세라믹 지지체, 및 상기 지지체의 일면에, 광촉매로서 평균 직경 100 내지 300 nm 크기의 ZIF-8 또는 TiO2@ZIF-8을 0.01 내지 5중량%로 포함하는 고분자 용액으로부터 비용매 유도 상분리법(nonsolvent induced phase separation)으로 형성한, 20 내지 200 nm 크기의 평균 직경을 갖는 기공을 포함하며, 10 내지 100 ㎛ 두께의 폴리비닐리덴플루오라이드(polyvinylidene fluoride; PVDF) 나노여과막을 포함하는 복합 분리막, 및 상기 복합 분리막의 길이방향과 평행하게 나노여과막의 벽면 쪽에 이와 이격하여 위치시킨 UV 램프를 구비한, 유기물 분해능을 구비한 수처리용 유동층 분리막 반응기로서, 수처리 대상인 유입수는 광촉매를 포함하는 PVDF 나노여과막으로부터 세라믹 지지체 방향으로 흐르며, 분해하고자 하는 유기물을 PVDF 나노여과막에 보유 및 광촉매에 의해 분해할 수 있는 것인, 수처리용 유동층 분리막 반응기를 제공한다.As one aspect for achieving the above object, the present invention is a ceramic support having pores having an average diameter of 0.1 to 5 μm, and on one side of the support, ZIF-8 or TiO having an average diameter of 100 to 300 nm as a photocatalyst 2 containing pores having an average diameter of 20 to 200 nm, formed by nonsolvent induced phase separation from a polymer solution containing @ZIF-8 at 0.01 to 5% by weight, 10 to 100 A composite separation membrane comprising a polyvinylidene fluoride (PVDF) nanofiltration membrane, and a UV lamp positioned at a distance from the side of the nanofiltration membrane parallel to the longitudinal direction of the composite separation membrane, and decomposing organic matter As a fluidized-bed separation membrane reactor for water treatment, the influent to be treated with water flows from the PVDF nanofiltration membrane containing a photocatalyst to the ceramic support, and the organic material to be decomposed is retained in the PVDF nanofiltration membrane and can be decomposed by photocatalyst. It provides a fluidized bed separator reactor.

본 발명은 고분자 분리막을 이용하는 수처리용 반응기를 이용함에 있어서 광촉매를 이용한 유기물 분해 반응 효율을 극대화하여 소분자 유기 오염물질을 제거함과 동시에 이들 유기물 침적에 의한 분리막의 오염을 방지할 수 있는 장치를 제공하기 위하여 고안된 것이다.The present invention is to maximize the efficiency of decomposition of organic matter using a photocatalyst by using a water separation reactor using a polymer membrane to remove small molecule organic pollutants and to provide an apparatus that can prevent contamination of the membrane by deposition of these organic matter. It is designed.

이에, 본 발명자들은 PVDF 나노여과막의 소수성에 의한 유기물을 흡착시키는 특성을 이용하여 나노여과막의 기공을 미세반응기로 활용하여 PVDF 박막에 포함된 광촉매와의 접촉을 향상시키고, 상기 소수성으로 인한 수투과율의 감소는 반응기 내에 인공적인 유체의 흐름을 유발함으로써 극복하고자 한다.Accordingly, the present inventors utilize the pores of the nanofiltration membrane as a microreactor by using the property of adsorbing the organic matter due to the hydrophobicity of the PVDF nanofiltration membrane, thereby improving the contact with the photocatalyst contained in the PVDF thin film, and of the water permeability due to the hydrophobicity. The reduction is to be overcome by causing an artificial flow of fluid in the reactor.

본 발명의 반응기는 PVDF 소재의 나노여과막을 기반으로 하는 복합 분리막을 기반으로 구성될 수 있다. 이때, PVDF 나노여과막은 비용매 유도 상분리법에 의해 형성할 수 있다. 한편, 전술한 바와 같이, 본 발명의 반응기에 있어서, 상기 PVDF 나노여과막은 그 기공을 미세반응기와 같이 사용하는 것인 바, 상기 미세반응기 내로 분해하고자 하는 유기물이 유입될 수 있고 표면적을 넓혀 제한된 공간 내에서 보다 효율적인 반응이 가능하도록 증가된 표면적을 제공하고 유체가 기공을 통해 흐를 수 있는 마이크로 수준의 기공을 갖는 세라믹 지지체 상에 형성할 수 있다. 이와 같은 기공을 형성하기 위하여, 지지체로 사용된 세라믹 튜브의 아랫면을 막은 후, PVDF 용액이 담긴 딥코터(dip-coater)에 담그고 윗면으로부터 진공으로 뽑아 세라믹 튜브의 표면 및 내부 깊숙이까지 박막이 균일하게 코팅되도록 하였다. 이때 형성되는 PVDF의 기공은 분해하고자 하는 유기물은 체류시키되 이를 이동시키는 물은 투과할 수 있도록 분해하고자 하는 유기물의 크기를 고려하여 결정할 수 있다.The reactor of the present invention may be configured based on a composite separation membrane based on a nanofiltration membrane of PVDF material. At this time, the PVDF nanofiltration membrane can be formed by a non-solvent-induced phase separation method. On the other hand, as described above, in the reactor of the present invention, the PVDF nanofiltration membrane is to use its pores as a microreactor, organic matter to be decomposed into the microreactor can be introduced and the surface area is widened to limit the space It can provide an increased surface area to enable a more efficient reaction within and can be formed on a ceramic support having micro-level pores through which fluid can flow through the pores. In order to form such pores, after blocking the lower surface of the ceramic tube used as a support, dipping it in a dip-coater containing the PVDF solution and pulling it out of the vacuum from the top surface to make the thin film uniformly to the surface and inner depth of the ceramic tube To be coated. At this time, the pores of the PVDF to be formed can be determined by considering the size of the organic material to be decomposed so that the organic material to be decomposed stays but the water to move it is permeable.

상기 PVDF 나노여과막의 제조에 사용되는 방법인 비용매 유도 상분리법은 고분자 기반의 다공성 분리막 제조에 가장 보편적으로 사용되는 방법으로, 용매-비용매 교환에 의한 고분자 용액의 침전을 이용하는 방법이다. 구체적으로, 용매-비용매 교환법은 고분자 소재를 적정용매에 상온 부근에서 용해시켜 균일용액을 만든 후 이를 필름형, 튜브형, 중공사형 등의 원하는 형태로 성형한 후 이를 고분자에 대해 비용매인 응고조에 침지한다. 이후 비용매조 속에서 용매와 비용매의 확산에 의한 상호교환이 이루어지며 고분자 용액의 조성이 변하게 되고 결국은 용해도 한계를 나타내는 이절(binodal) 또는 첨점(spinodal) 곡선을 넘어서 액-액 상분리에 의한 고분자의 침전이 일어나면서 용매와 비용매가 차지하고 있던 부분이 기공으로 형성된다. 이때, 용매와 비용매의 선택, 제막시 온도 및/또는 습도에 따라 형성되는 기공의 크기를 조절할 수 있다. 이는 용매-비용매 교환 속도와 연관되는 것으로, 용매와 비용매의 교환이 매우 느린 지연상 분리를 이용하면 거대기공이 없는 스폰지 형태의 균일한 기공을 갖는 대칭막이 형성되며, 빠른 상분리를 이용하는 경우, 스킨층 및 막의 단면 구조의 기공 분포가 구배를 갖는 비대칭막을 얻을 수도 있다.The non-solvent-induced phase separation method, which is a method used for manufacturing the PVDF nanofiltration membrane, is the most commonly used method for preparing a polymer-based porous membrane, and is a method using precipitation of a polymer solution by solvent-non-solvent exchange. Specifically, in the solvent-non-solvent exchange method, a polymer material is dissolved in an appropriate solvent at around room temperature to form a homogeneous solution, molded into a desired shape such as a film type, a tube type, or a hollow fiber type, and then immersed in a non-solvent solidification tank for the polymer. do. Subsequently, in the non-solvent, an exchange is made by diffusion of the solvent and the non-solvent, the composition of the polymer solution changes, and eventually the polymer is separated by liquid-liquid phase separation beyond the binodal or spinodal curve indicating the solubility limit. As precipitation occurs, the portion occupied by the solvent and non-solvent is formed into pores. At this time, the size of the pores formed according to the selection of the solvent and non-solvent, and the temperature and/or humidity during film formation can be controlled. This is related to the solvent-non-solvent exchange rate. When using a delayed phase separation in which solvent and non-solvent exchange is very slow, a symmetric membrane having uniform pores in the form of a sponge without macropores is formed, and when using fast phase separation, It is also possible to obtain an asymmetric membrane having a gradient in pore distribution of the cross-sectional structure of the skin layer and the membrane.

상기 PVDF 나노여과막은 수처리에 널리 사용되는 분리막이기는 하나, 소재 자체인 폴리비닐리덴플루오라이드는 탄화수소 주쇄에 불소를 포함하여 소수성을 나타내므로 비처리 PVDF 나노여과막의 투수도는 좋지 못하므로 수처리 분리막으로서의 성능을 향상시키기 위해서는 친수성으로 표면을 개질하기도 한다. 그러나, 본 발명에서는 PVDF 나노여과막의 수처리막으로서의 기능 이외에 각각의 기공을 이에 함유된 광촉매를 이용한 유기물의 반응을 위한 미세반응기로 사용하고자 하는 목적상 물을 투과시키는 능력을 보유하는 것은 물론 분해하고자 하는 유기물과의 흡착력을 유지하는 것 또한 필요하다. 이에 개질되지 않은 PVDF 박막을 그대로 사용하여 유기물의 흡착을 도모하되 감소된 수투과성을 지지체 및 여과막의 다공성과 외부 자극에 의한 유체의 흐름을 이용한다.The PVDF nanofiltration membrane is a widely used separation membrane for water treatment, but the material itself, polyvinylidene fluoride, contains fluorine in the hydrocarbon main chain, and thus exhibits hydrophobicity. In order to improve the hydrophilicity, the surface may be modified. However, in the present invention, in addition to the function of the PVDF nanofiltration membrane as a water treatment membrane, each pore has the ability to permeate water for the purpose of being used as a microreactor for the reaction of organic substances using the photocatalyst contained therein, as well as to decompose. It is also necessary to maintain the adsorption power with organic matter. In this way, the unmodified PVDF thin film is used as it is to promote the adsorption of organic matter, but the reduced water permeability uses the porosity of the support and the filtration membrane and the fluid flow due to external stimuli.

나아가, 본 발명의 수처리용 유동층 분리막 반응기는, 수처리 과정 동안 여과된 처리수를 배출하고, 유입수를 첨가하면서 계속 반응시키는 방식으로 연속적으로 구동 가능하도록, 상기 튜브형의 세라믹 지지체의 외부 벽면과 소정의 간격으로 이격되어 이와 평행하게 위치한 격벽, 상기 격벽의 상부와 세라믹 지지체의 상부를 연결하는 상판 및 상기 격벽의 하부와 세라믹 지지체의 하부를 연결하는 하판으로 구성되며, 상기 격벽, 상판 및 하판은 액체의 흐름을 차단하여 유입수의 출입을 차단하고, PVDF 나노여과막을 통해 투과된 처리수를 저장할 수 있는 공간 및 이의 하단에 형성되어 상기 저장된 처리수를 외부로 배출할 수 있는 출수구(outlet)를 추가로 구비할 수 있다. 구체적인 반응기의 구조의 예를 도 2에 도식화하여 나타내었다.Furthermore, the fluidized-bed separation membrane reactor for water treatment of the present invention discharges filtered water during the water treatment process and continuously operates in a manner of continuously reacting while adding influent water, so that a predetermined distance from the outer wall surface of the tubular ceramic support It is composed of a partition wall spaced apart and parallel to it, an upper plate connecting the upper portion of the partition wall and the upper portion of the ceramic support body, and a lower plate connecting the lower portion of the partition wall and the lower portion of the ceramic support body. By blocking the entry and exit of the influent, it is further provided with a space for storing the treated water transmitted through the PVDF nanofiltration membrane and an outlet formed at the bottom thereof to discharge the stored treated water to the outside. Can. An example of the structure of a specific reactor is schematically illustrated in FIG. 2.

TiO2는 광분해 반응을 이용하는 수처리에 촉매로서 사용되는 가장 대표적인 물질이다. 특히 TiO2는 매우 다양한 유기화학물질을 분해하여 궁극적으로 CO2와 H2O로 분해할 수 있는, 오존보다도 강한 산화력을 갖는 것으로 알려져 더욱 주목받고 있다. 그러나, 벤치를 떠나 파일럿 규모의 반응기에 적용하는 경우 몇가지 한계를 드러낸다. 먼저, 자외선을 이용하는 특성상 자외선 램프로부터 빛을 받는 영역에서만 광촉매 반응이 가능하다. 예컨대, 오존이나 펜톤 방법과 같은 화학적 처리방법을 사용하는 경우 오존이나 화학약품은 처리하고자 하는 용액 전체에 고르게 퍼져 반응을 일으킬 수 있는 반면, TiO2는 불투명한 분말의 형태이므로 이를 분산시킨 용액에 자외선을 조사하는 경우 이를 분산시키므로 매우 얕은 깊이에서만 반응이 가능하며 이는 낮은 반응 효율로 직결된다. 또한, 광촉매 반응 후 수처리에 사용한 TiO2 분말을 다시 분리하는 공정을 필요로 한다. 이들 단점을 해소하기 위한 방법으로, TiO2를 특정 지지체에 고정시켜(immobilization) 제조한 박막을 사용할 수 있으나, 분말 자체에 비해 박막으로 제조시 효율이 다소 떨어지며, 일정 부피의 용액에 삽입할 수 있는 박막의 양 및 상기 개별 박막에 함유될 수 있는 TiO2의 함량은 여전히 제한적이다.TiO 2 is the most representative material used as a catalyst in water treatment using a photolysis reaction. In particular, TiO 2 has been attracting more attention because it has a stronger oxidizing power than ozone, which can decompose a wide variety of organic chemicals and ultimately decompose CO 2 and H 2 O. However, leaving the bench and applying it to a pilot-scale reactor reveals some limitations. First, due to the nature of using ultraviolet light, a photocatalytic reaction is possible only in a region that receives light from an ultraviolet lamp. For example, when a chemical treatment method such as ozone or a Fenton method is used, ozone or chemicals may spread evenly over the entire solution to be treated, while TiO 2 is in the form of an opaque powder. In the case of scattering it, the reaction is possible only at a very shallow depth, which leads directly to low reaction efficiency. In addition, a process of separating the TiO 2 powder used for water treatment again after the photocatalytic reaction is required. As a method for resolving these drawbacks, a thin film prepared by immobilizing TiO 2 on a specific support can be used, but the efficiency is somewhat lower when manufacturing a thin film compared to the powder itself, and can be inserted into a certain volume of solution. The amount of the thin film and the content of TiO 2 that can be contained in the individual thin film are still limited.

이에, i) TiO2에 비해 광분해 효율이 높은 촉매를 발굴하고, ii) 높은 함량으로 고정화하고, iii) 분해하고자 하는 유기물과 광촉매의 접촉을 증가시키고, iv) 효율적인 광조사를 달성하기 위한 반응기의 형태를 고안함으로써 반응을 향상시키고자 한다.Thus, i) a catalyst with a higher photodecomposition efficiency than TiO 2 was discovered, ii) immobilized to a high content, iii) increased contact of the organic material to be decomposed with the photocatalyst, and iv) of a reactor to achieve efficient light irradiation We want to improve the reaction by devising a form.

종래 광분해 반응 촉매로 사용되는 TiO2를 대신하여, 본 발명의 수처리용 반응기에는 광촉매로서 ZIF-8 또는 상기 ZIF-8에 TiO2를 담지시킨 TiO2@ZIF-8을 사용한다. ZIF-8, 특히 TiO2@ZIF-8은 그 자체로서 TiO2에 비해 유기물의 광분해율을 나타내는 것이 보고된 바 있다(ChemistrySelect, 2017, 2: 7711-7722). 나아가, 본 발명의 구체적인 실시예에서는 세라믹 지지체 상에 이들 광촉매를 포함하여 형성한 PVDF 막으로 된 복합 분리막을 이용한 메탄올 및 에탄올 분해반응에서 모두 ZIF-8 및 TiO2@ZIF-8가 더 우수한 분해능을 나타내는 것을 확인하였다. 구체적으로, 상대적으로 짧은 시간에서는 TiO2@ZIF-8의 분해율이 높았으며, 장시간에 걸친 분해 후 최종 분해율은 ZIF-8에서 가장 높았다.Conventionally in place of the TiO 2 used as the photolysis reaction catalyst, in a water treatment reactor according to the present invention uses a ZIF-8 or in which TiO 2 carrying a @ ZIF-8 TiO 2 on the ZIF-8 as a photocatalyst. It has been reported that ZIF-8, in particular TiO 2 @ZIF-8, by itself exhibits a photodegradation rate of organics compared to TiO 2 (ChemistrySelect, 2017, 2: 7711-7722). Furthermore, in a specific embodiment of the present invention, both ZIF-8 and TiO 2 @ZIF-8 have better resolution in methanol and ethanol decomposition reactions using a composite separator made of PVDF membrane formed by including these photocatalysts on a ceramic support. It confirmed that it showed. Specifically, in a relatively short time, the decomposition rate of TiO 2 @ZIF-8 was high, and the final decomposition rate after long-term decomposition was the highest in ZIF-8.

본 발명에서 사용된 ZIF(zeolitic imidazolate framework)-8은, 제올라이트와 위상적으로 동일 구조(topologically isomorphic)인 금속-유기 골격체(metal-organic framework; MOF)의 일종으로, 리간드로서 이미다졸레이트(imidazolate)에 의해 연결된 4면체로 배위된(tetrahedrally coordinated) Fe, Co, Cu, Zn 등의 전이금속으로 구성되며, 금속-이미다졸-금속이 이루는 각은 제올라이트에서 Si-O-Si의 각인 145°와 비슷하다. 이에 ZIF-8은 MOF 고유의 미세기공을 가지며, 그 내부에 촉매 입자, 예컨대 본 발명에서는 TiO2 입자를 담지할 수 있다.The zeolitic imidazolate framework (ZIF)-8 used in the present invention is a type of metal-organic framework (MOF) that is topologically isomorphic with zeolite, and imidazolate as a ligand ( imidazolate) is composed of transition metals such as Fe, Co, Cu, and Zn that are tetrahedrally coordinated, and the angle formed by the metal-imidazole-metal is 145° of Si-O-Si in zeolite Is similar to Accordingly, ZIF-8 has MOF-specific micropores, and catalyst particles, such as TiO 2 particles in the present invention, may be supported therein.

또한, 본 발명은 유기 분자인 이미다졸을 리간드로 포함하는 점을 이용한다. 구체적으로, 본 발명에서는 광촉매를 넓은 표면적을 제공하기 위한 수단으로 고분자 PVDF 나노여과막에 분산시켜 고정한다. 이때 TiO2와 같은 무기물은 유기 고분자인 PVDF와 혼화성이 불량하여 고르게 분산되지 못하고 서로 응집되거나, 상분리되어 PVDF 박막의 표면에만 부착되어 유체의 흐름에 의해 쉽게 탈착될 수 있으나, 본 발명에서 광촉매로 사용한 ZIF-8 및 TiO2@ZIF-8은 그 골격에 유기 리간드인 이미다졸을 포함하는 바, PVDF 용액에서 고르게 분산될 수 있는 장점이 있다. 또한, 외부 자극 예컨대, 유체의 흐름에도 탈착되지 않고 PVDF 나노여과막 상에 부착된 상태를 유지할 수 있다.In addition, the present invention uses the point of including the organic molecule imidazole as a ligand. Specifically, in the present invention, the photocatalyst is fixed by dispersing it in a polymer PVDF nanofiltration membrane as a means for providing a large surface area. At this time, inorganic materials such as TiO 2 are poorly miscible with the organic polymer PVDF and are not evenly dispersed and aggregated with each other or phase-separated and attached only to the surface of the PVDF thin film, which can be easily desorbed by the flow of the fluid. The used ZIF-8 and TiO 2 @ZIF-8 include an imidazole which is an organic ligand in the skeleton, and thus has an advantage of being evenly dispersed in the PVDF solution. In addition, it is possible to remain attached to the PVDF nanofiltration membrane without being detached from external stimuli such as fluid flow.

다음으로, 박막으로 구현시 궁극적으로 사용 가능한 촉매의 양이 감소하는 것을 최소화하기 위하여, 지지체로 마이크로미터 수준의 기공을 갖는 세라믹 지지체에 광촉매 입자 및 PVDF를 함유하는 용액을 적용한 후 비용매 유도 상분리법에 의해 광촉매를 함유하는 PVDF 나노여과막을 형성하여 복합 분리막을 제조한다. 이와 같이 마이크로미터 수준의 기공을 갖는 세라믹 지지체를 이용함으로써 기공의 내부 표면을 따라, 편평한 지지체 상에 형성하는 것에 비해, 일차적으로 현저히 증가된 표면적으로 PVDF 나노여과막을 형성할 수 있다. 나아가, PVDF 나노여과막 역시 나노미터 수준의 기공을 포함하는 바, PVDF 박막의 표면 및/또는 기공 내부의 증가된 면적에 광촉매를 함유할 수 있다.Next, in order to minimize the decrease in the amount of catalyst that can be ultimately used when implemented as a thin film, a solution containing photocatalytic particles and PVDF is applied to a ceramic support having micrometer-level pores as a support, and then a non-solvent-induced phase separation method is applied. By forming a PVDF nanofiltration membrane containing a photocatalyst by to prepare a composite separator. By using the ceramic support having micrometer-level pores as described above, it is possible to form a PVDF nanofiltration film with a significantly increased surface area, as compared to forming on a flat support along the inner surface of the pores. Furthermore, since the PVDF nanofiltration membrane also includes nanometer-level pores, the photocatalyst may be contained on the increased surface of the PVDF thin film and/or inside the pores.

나아가, 마이크로미터 수준의 기공을 갖는 세라믹 지지체로 지지된 광촉매를 포함하는 PVDF 나노여과막의 사용은 분해하고자 하고자 하는 처리수 내 유기물과 광촉매의 접촉을 증가시킬 수 있다. 상기 세라믹 지지체의 기공은 이를 관통하는 유체의 흐름을 가능하게 하며, 이는 유체에 함유된 분해대상 유기물을 광촉매에 연속적으로 인접하게 하는 효과를 줄 수 있다. 한편, PVDF의 소수성은 이에 인접한 유기물을 흡착 및/또는 기공 내에 포집을 유도하여 광촉매에 인접하여 머무르는 시간을 증가시키는 효과를 제공할 수 있다.Furthermore, the use of a PVDF nanofiltration membrane comprising a photocatalyst supported by a ceramic support with micrometer-level pores can increase the contact of the photocatalyst with organics in the treated water to be decomposed. The pores of the ceramic support enable the flow of fluid through it, which can have the effect of continuously adjacent the decomposition organic substance contained in the fluid to the photocatalyst. On the other hand, the hydrophobicity of PVDF can provide the effect of increasing the residence time adjacent to the photocatalyst by inducing adsorption and/or trapping within the pores.

한편, 제한된 공간 내에서 효율적인 광조사를 달성하기 위하여, 상기 세라믹 지지체는 튜브형인 것을 사용할 수 있다. 이때, 광촉매를 포함하는 PVDF 나노여과막을 튜브형 지지체의 내부면에 형성할 수 있다(도 1).On the other hand, in order to achieve efficient light irradiation in a limited space, the ceramic support may be used in the form of a tube. At this time, a PVDF nanofiltration membrane containing a photocatalyst can be formed on the inner surface of the tubular support (FIG. 1).

나아가, 전술한 바와 같이, 광촉매가 내부면을 향하도록 제조된 튜브형의 복합 분리막의 중심에 광촉매 반응을 유도하기 위한 UV 램프를 위치시킬 수 있다. 이상과 같은 구조로 반응기를 구성함으로써, 하나의 램프로 복합 분리막 전체 면을 조사하여 반응을 유도할 수 있다. 바람직하게는 UV가 미치지 않는 곳이 발생하지 않도록 UV 램프는 튜브형의 지지체 내부에 광촉매를 포함하는 PVDF 나노여과막이 형성된 길이를 모두 커버하도록 충분히 길게 형성할 수 있다. 이는 충분한 길이의 램프를 단독으로 사용하거나 소정의 길이를 갖는 램프 수개를 직렬로 연결하여 구성할 수 있다. 단, 램프의 전원이 유체와 접촉하지 않으면서 전면을 비출 수 있도록 램프를 위치시킬 자리에 UV를 투과시킬 수 있는 투명한 관을 도입할 수 있으나, 이에 제한되지 않는다.Furthermore, as described above, a UV lamp for inducing a photocatalytic reaction can be positioned at the center of the tubular composite separator manufactured such that the photocatalyst faces the inner surface. By configuring the reactor with the above structure, it is possible to induce the reaction by irradiating the entire surface of the composite membrane with one lamp. Preferably, the UV lamp can be formed long enough to cover all the lengths of the PVDF nanofiltration membrane including the photocatalyst inside the tubular support so that no place where UV does not reach occurs. This can be configured by using a lamp of sufficient length alone or by connecting several lamps of a predetermined length in series. However, it is possible to introduce a transparent tube capable of transmitting UV at a position where the lamp is positioned so that the power of the lamp can illuminate the front surface without contacting the fluid, but is not limited thereto.

또는, 튜브형 지지체의 양면 즉, 내부 및 외부 표면에 광촉매를 포함하는 PVDF 나노여과막을 형성하여 제조한 복합 분리막을 구비한 반응기 역시 본 발명의 범주에 포함된다. 이때, 반응기는 반응기의 외부 벽면에 하나 이상의 UV 램프를 추가로 포함하거나, UV를 투과시킬 수 있는 투명한 소재로 반응기를 구성하고 외부에 구비된 UV 램프를 추가로 구비할 할 수 있으나, 이에 제한되지 않는다.Alternatively, reactors having a composite separator prepared by forming PVDF nanofiltration membranes including photocatalysts on both surfaces of the tubular support, that is, inside and outside surfaces, are also included in the scope of the present invention. At this time, the reactor may further include one or more UV lamps on the outer wall surface of the reactor, or the reactor may be made of a transparent material capable of transmitting UV and may further include a UV lamp provided outside, but is not limited thereto. Does not.

아울러 광촉매와 분해하고자 하는 유기물과의 접촉면을 최대화하고, 효율적으로 UV를 조사하기 위하여, 상기 복합 분리막 및 UV 램프의 길이방향은 반응기의 바닥면과 수직하게 배열될 수 있다.In addition, in order to maximize the contact surface of the photocatalyst and the organic material to be decomposed, and to efficiently irradiate UV, the longitudinal direction of the composite separator and the UV lamp may be vertically arranged with the bottom surface of the reactor.

나아가, 본 발명의 수처리용 유동층 분리막 반응기는 이에 구비된 램프 하단에 위치한 공기 주입기(air blower)를 추가로 포함할 수 있다. 상기 공기 주입기를 이용하여, 공기주입기가 위치한 반응기의 하부로부터 상승하여, 반응기의 내벽을 타고 하강하는 방향으로 진행하는 와류를 형성함으로써, 유기물을 함유하는 유체와 광촉매와의 접촉을 증가시킬 수 있다. 보다 구체적으로, 전술한 바와 같이, 다공성 세라믹 지지체의 사용으로 본 발명의 복합 분리막은 이를 관통하는, 그리고 벽면을 타고 이동하는 유체 흐름을 제공할 수 있다. 다만, 반응기의 하단으로 부터 주입되는 공기에 의해 상승하는 유체는 중력의 영향으로 점차 하강하고자 하며, 아래로부터의 지속적인 흐름은 이와 충돌하여 반응기의 외부로 유체 흐름을 분산시킨다. 즉, 이러한 과정을 통해 반응기의 중심으로부터 광촉매를 포함하는 PVDF 나노여과막 방향으로의 흐름이 발생한다. 상기 공기주입기에 의해 유도되는 반응기 내부에서 주가 되는 유체의 흐름은 도 2에 화살표로 나타낸 바와 같이, 반응기의 중심부로부터 상승하며, 반응기의 외벽을 타고 하강하는 패턴을 갖는다. 다만, 상기 도면에 표시되지 않은 상승하는 반응기 중심으로부터의 흐름에서 파생되는 복합 분리막을 향하는 측면으로의 흐름이 발생하며, 이것이 광촉매와 분해하고자 하는 유기물의 증가된 접촉을 유발하는 인자가 된다.Furthermore, the fluidized-bed separation membrane reactor for water treatment of the present invention may further include an air blower located at the bottom of the lamp provided therein. By using the air injector, it is possible to increase the contact between the fluid containing the organic material and the photocatalyst by rising from the bottom of the reactor where the air injector is located, and forming a vortex that goes down the inner wall of the reactor. More specifically, as described above, the use of a porous ceramic support allows the composite separator of the present invention to provide a fluid flow therethrough and through the wall. However, the fluid rising by the air injected from the bottom of the reactor is intended to gradually descend under the influence of gravity, and the continuous flow from below collides with this to distribute the fluid flow to the outside of the reactor. That is, through this process, a flow in the direction of the PVDF nanofiltration membrane containing the photocatalyst occurs from the center of the reactor. The flow of the main fluid inside the reactor induced by the air injector has a pattern of rising from the center of the reactor and descending on the outer wall of the reactor, as indicated by arrows in FIG. 2. However, the flow to the side toward the composite membrane, which is derived from the flow from the rising reactor center, which is not shown in the figure, occurs, which is a factor that causes an increased contact between the photocatalyst and the organic material to be decomposed.

본 발명의 수처리용 유동층 분리막 반응기는 MOF계 광촉매를 안정되게 고정하면서 폐수 중 유기물의 분해능을 최대화할 수 있는 소재 및/또는 형태를 조합하여 구성한 복합 분리막을 포함하는 것으로, 튜브형의 다공성 세라믹 지지체 내면에 광촉매로서 ZIF-8 또는 TiO2@ZIF-8를 포함하는 PVDF 나노여과막을 형성함으로써 광촉매 함량을 증가시킨 복합 분리막을 사용하고, 이의 중심에는 UV 램프를, 반응기 하단에는 공기주입기를 구비하여 적절한 유체 흐름을 형성함으로써, 광 조사 효율 및 분해대상 유기물과의 접촉을 증가시켜 향상된 광분해율을 나타낼 수 있다.The fluidized-bed separation membrane reactor for water treatment of the present invention includes a composite membrane composed of a combination of materials and/or shapes capable of maximizing the resolution of organic substances in wastewater while stably fixing the MOF-based photocatalyst, and is provided on the inner surface of the tubular porous ceramic support. As a photocatalyst, a composite separation membrane having an increased photocatalyst content is formed by forming a PVDF nanofiltration membrane containing ZIF-8 or TiO 2 @ZIF-8, a UV lamp at the center thereof, and an air injector at the bottom of the reactor to provide proper fluid flow. By forming, it is possible to increase the light irradiation efficiency and the contact with the organic material to be decomposed, thereby exhibiting an improved photodecomposition rate.

도 1은 본 발명의 구체적인 실시예에 사용되는 광촉매, TiO2, ZIF-8 및 TiO2@ZIF-8에 대한 XRD 결과를 나타낸 도이다.
도 2는 본 발명의 구체적인 실시예에 따른 분리막 반응기의 구성을 나타낸 개략도이다.
도 3은 본 발명의 구체적인 실시예에 따른 분리막 반응기의 실물 사진을 나타낸 도이다.
1 is a view showing the XRD results for the photocatalyst, TiO 2 , ZIF-8 and TiO 2 @ZIF-8 used in a specific embodiment of the present invention.
2 is a schematic view showing the configuration of a membrane reactor according to a specific embodiment of the present invention.
3 is a view showing an actual photograph of a membrane reactor according to a specific embodiment of the present invention.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited by these examples.

제조예Manufacturing example 1: One: TiOTiO 22 제조 Produce

상온에서 티타늄 이소프로폭사이드(titanium isopropoxide; TTIP)를 아세트산(acetic acid; AA)에 넣어 용액을 격렬하게 혼합시킨 상태에서, TTIP:AA:물=1:10:350의 몰비율이 되도록 물을 1시간에 걸쳐 적가하였다. 상기와 같이 준비한 용액을 30분 동안 초음파로 처리하여 반응시키고, TiO2 나노결정이 형성되어 투명해질 때까지 5시간 동안 교반하였다. 상기 용액은 오븐에서 70℃로 24시간 동안 숙성(aging)시키고, 100℃에서 건조한 후, 잘게 부숴 파우더로 만들어 400℃에서 5시간 동안 소성하였다.Titanium isopropoxide (TTIP) was added to acetic acid (AA) at room temperature, and the solution was vigorously mixed, and water was added at a molar ratio of TTIP:AA:water=1:10:350. It was added dropwise over 1 hour. The prepared solution was reacted by ultrasonic treatment for 30 minutes, and stirred for 5 hours until TiO 2 nanocrystals formed and became transparent. The solution was aged in an oven at 70° C. for 24 hours, dried at 100° C., crushed into powder, and fired at 400° C. for 5 hours.

제조예Manufacturing example 2: 2: ZIFZIF -8 제조-8 Manufacturing

질산아연(zinc nitrate) 1.1 g을 20 mL 물에 녹여 제1용액을 준비하고, 2-메틸이미자졸 10.54 g을 50 mL 물에 녹여 제2용액을 준비하였다. 상기 두 용액을 혼합하여 우윳빛의 현탁액(suspension)을 수득하였다. 상기 용액을 18시간 동안 오븐에 두고 8000 rpm으로 2시간 동안 원심분리하였다. 분리한 시료는 물로 3회 세척하고, 100℃에서 12시간 동안 건조하였다.1.1 g of zinc nitrate was dissolved in 20 mL water to prepare a first solution, and 10.54 g of 2-methylimiziazole was dissolved in 50 mL water to prepare a second solution. The two solutions were mixed to obtain a milky suspension. The solution was placed in an oven for 18 hours and centrifuged at 8000 rpm for 2 hours. The separated sample was washed 3 times with water and dried at 100° C. for 12 hours.

제조예Manufacturing example 3: TiO 3: TiO 22 @ZIF-8 제조@ZIF-8 manufacture

질산아연 1.3595 g과 TiO2 0.036 g을 70 mL 메탄올에 투입하고 초음파로 처리하여 혼합하였다. 2-메틸이미다졸 3 g을 용해시킨 70 mL 메탄올 용액을 미리 준비한 질산아연 및 TiO2 함유 용액에 혼합하여 우윳빛 현탁액을 수득하였다. 6시간 동안 혼합한 후 8000 rpm에서 20분 동안 원심분리하여 생성물을 회수하고, 최종 수득한 시료는 메탄올로 3회 세척한 후 70℃에서 6시간 동안 진공건조하였다.1.3595 g of zinc nitrate and 0.036 g of TiO 2 were added to 70 mL methanol and mixed by ultrasonic treatment. A 70 mL methanol solution in which 3 g of 2-methylimidazole was dissolved was mixed with a solution containing zinc nitrate and TiO 2 prepared in advance to obtain a milky suspension. After mixing for 6 hours, the product was recovered by centrifugation at 8000 rpm for 20 minutes, and the final sample was washed three times with methanol and then vacuum dried at 70°C for 6 hours.

상기 remind 제조예Manufacturing example 1 내지 3에 따라 제조된 촉매 입자들은 평균 Catalyst particles prepared according to 1 to 3 are average 직경diameter 50 내지 50 to 200 nm의200 nm 크기를 나타내었다. The size is shown.

제조예Manufacturing example 4: 4: 광촉매를Photocatalyst 함유하는 분리막의 제조 Preparation of containing membrane

다공성 분리막은 비용매 유도 상분리법(nonsolvent induced phase separation; NIPS)을 이용하여 제조하였다. 구체적으로, 주재료인 50 g의 폴리비닐리덴플루오라이드(polyvinylidene fluoride; PVDF)를 80℃로 가열된 용매인 디메틸아세트아미드(dimethylacetamide; DMAc) 250 g에 용해시키고, 기공형성제인 폴리비닐피롤리돈(polyvinylpyrrolidone; PVP) K15 0.5 g을 첨가하였다. 이때 온도 및 상대습도는 각각 25℃ 및 60% 이상으로 유지하였다. 상기 용액에 광촉매로서, P25(비교예 1), TiO2(비교예 2), ZIF-8(실시예 1) 및 TiO2@ZIF-8(실시예 2)을 PVDF 대비 각각 1.0중량%씩 투입하여 분산시키고, 세라믹 예컨대, 알루미나 또는 실리카로 된 지지체에 상기 광촉매를 분산시킨 고분자 용액을 딥 코팅(dip coating)하여 분리막을 제조하였다. 비용매로는 물을 사용하여, 코팅 후 물에 의한 응고(coagulation)가 유도되었다.Porous separators were prepared using nonsolvent induced phase separation (NIPS). Specifically, 50 g of polyvinylidene fluoride (PVDF), the main material, is dissolved in 250 g of dimethylacetamide (DMAc), a solvent heated to 80° C., and polyvinylpyrrolidone, a pore-forming agent ( 0.5 g of polyvinylpyrrolidone (PVP) K15 was added. At this time, the temperature and relative humidity were maintained at 25°C and 60% or more, respectively. As the photocatalyst, P25 (Comparative Example 1), TiO 2 (Comparative Example 2), ZIF-8 (Example 1), and TiO 2 @ZIF-8 (Example 2) were respectively added to the solution by 1.0 wt% compared to PVDF. To prepare a separator by dip coating a polymer solution in which the photocatalyst is dispersed on a support made of ceramic, eg, alumina or silica. Water was used as a non-solvent, and coagulation with water was induced after coating.

이와 같이 제조된 분리막에서 광촉매 입자는 상기 NIPS에 의해 PVDF에 균일하게 분산되어 혼합되어 있고, 진공펌프를 사용하여 상기 PVDF 박막이 세라믹의 기공 내부까지 균일하게 형성되도록 하였다.In the thus prepared separator, photocatalyst particles are uniformly dispersed and mixed in PVDF by the NIPS, and the PVDF thin film is uniformly formed even inside the pores of the ceramic by using a vacuum pump.

실험예Experimental Example 1: One: 광촉매의Photocatalytic XRDXRD 분석 analysis

상기 제조예 1 내지 3에 따라 합성된 3종의 광촉매, TiO2, ZIF-8 및 TiO2@ZIF-8의 결정 구조를 확인하기 위하여 XRD를 측정하고 그 결과를 도 1에 나타내었다. 도 1에 나타난 바와 같이, TiO2@ZIF-8는 TiO2와 ZIF-8에서 각각 나타나는 특성피크들을 모두 포함하는 것으로 나타났으며, 이는 TiO2@ZIF-8가 ZIF-8의 결정구조를 유지하면서, 그 기공 내에 TiO2를 함유함을 나타내는 것이다.XRD was measured to confirm the crystal structures of three types of photocatalysts synthesized according to Preparation Examples 1 to 3, TiO 2 , ZIF-8 and TiO 2 @ZIF-8, and the results are shown in FIG. 1. As shown in FIG. 1, TiO 2 @ZIF-8 was found to include both characteristic peaks appearing in TiO 2 and ZIF-8, which TiO 2 @ZIF-8 retained the crystal structure of ZIF-8. while, it indicates that contain TiO 2 in the pores.

실험예Experimental Example 2: 2: 광촉매를Photocatalyst 함유하는 분리막을 구비한 막 반응기에 의한 수중 유기물의 제거 Removal of organic matter in water by a membrane reactor equipped with a containing membrane

물 2.5 kg에 제거 대상 유기물로서 메탄올 및 에탄올을 각각 0.444 kg 및 0.639 kg 혼합하여 몰비가 10:1:1인 폐수를 준비하였다. 이와 같이 준비한 폐수를 상기 제조예 4에 따라 준비한, 비교예 1 및 2, 그리고 실시예 1 및 2의 분리막을 구비한 반응기에 연속적으로 투입하여 투과액(permeate)은 회수하고, 농축액(concentrate)으로 분리하여 순환하였다. 이중 투과액의 메탄올 및 에탄올 농도를 측정하여 각각의 제거 수율을 산출하였다. 사용된 반응기의 구체적인 구조는 도 2에 개략적으로 나타내었으며, 실제 구현된 반응기의 실물 사진을 도 3에 나타내었다. 도 2에 나타난 바와 같이, 이중벽 구조의 튜브형 분리막을 반응기 내에 수직으로 위치시키고 그 중심에는 자외선을 조사할 수 있는 램프를 구비하였다. 또한, 반응기 하단에는 air blower를 두어 폐액이 수직방향으로 순환할 수 있도록 하였다.Methanol and ethanol as an organic material to be removed in 2.5 kg of water were mixed with 0.444 kg and 0.639 kg, respectively, to prepare wastewater having a molar ratio of 10:1:1. The thus prepared wastewater was continuously introduced into the reactors having separation membranes of Comparative Examples 1 and 2, and Examples 1 and 2 prepared according to Preparation Example 4 to recover the permeate and concentrate as a concentrate. Separated and circulated. The methanol and ethanol concentrations of the double permeate were measured to calculate respective removal yields. The specific structure of the used reactor is schematically illustrated in FIG. 2, and a real picture of the actual implemented reactor is illustrated in FIG. 3. As shown in FIG. 2, a double-walled tubular separator was vertically placed in the reactor, and a lamp capable of irradiating ultraviolet rays was provided at the center thereof. In addition, an air blower was placed at the bottom of the reactor so that the waste liquid could circulate in the vertical direction.

5시간5 hours 20시간20 hours 비교예 1(P25)Comparative Example 1 (P25) 4.7%4.7% 16.7%16.7% 비교예 2(TiO2)Comparative Example 2 (TiO 2 ) 4.5%4.5% 14.1%14.1% 실시예 1(ZIF-8)Example 1 (ZIF-8) 10.1%10.1% 50.5%50.5% 실시예 2(TiO2@ZIF-8)Example 2 (TiO 2 @ZIF-8) 15.3%15.3% 39.1%39.1%

5시간5 hours 20시간20 hours 비교예 1(P25)Comparative Example 1 (P25) 8.1%8.1% 17.9%17.9% 비교예 2(TiO2)Comparative Example 2 (TiO 2 ) 9.2%9.2% 18.6%18.6% 실시예 1(ZIF-8)Example 1 (ZIF-8) 8.6%8.6% 47.9%47.9% 실시예 2(TiO2@ZIF-8)Example 2 (TiO 2 @ZIF-8) 14.3%14.3% 37.2%37.2%

Claims (9)

평균 직경 0.1 내지 5 ㎛ 크기의 기공을 갖는 세라믹 지지체, 및 상기 지지체의 일면에, 광촉매로서 평균 직경 100 내지 300 nm 크기의 ZIF-8을 0.01 내지 5중량%로 포함하는 고분자 용액으로부터 비용매 유도 상분리법(nonsolvent induced phase separation)으로 형성한, 20 내지 200 nm 크기의 평균 직경을 갖는 기공을 포함하며, 10 내지 100 ㎛ 두께의 폴리비닐리덴플루오라이드(polyvinylidene fluoride; PVDF) 나노여과막을 포함하는 복합 분리막 및
상기 복합 분리막의 길이방향과 평행하게 나노여과막의 벽면 쪽에 이와 이격하여 위치시킨 UV 램프를 구비한, 유기물 분해능을 구비한 수처리용 유동층 분리막 반응기로서,
수처리 대상인 유입수는 광촉매를 포함하는 PVDF 나노여과막으로부터 세라믹 지지체 방향으로 흐르며, 분해하고자 하는 유기물을 PVDF 나노여과막에 보유 및 광촉매에 의해 분해할 수 있는 것인, 수처리용 유동층 분리막 반응기.
A non-solvent-derived phase from a ceramic support having pores having an average diameter of 0.1 to 5 μm in size, and a polymer solution containing ZIF-8 having an average diameter of 100 to 300 nm as a photocatalyst in an amount of 0.01 to 5% by weight on one side of the support. Composite membrane comprising a polyvinylidene fluoride (PVDF) nanofiltration membrane having pores having an average diameter of 20 to 200 nm and formed by nonsolvent induced phase separation. And
A fluidized-bed separation membrane reactor for water treatment with organic matter resolution, having a UV lamp positioned at a distance from it on the wall surface of the nanofiltration membrane parallel to the longitudinal direction of the composite membrane,
The influent to be treated with water flows from the PVDF nanofiltration membrane containing a photocatalyst to the ceramic support, and the organic material to be decomposed is retained in the PVDF nanofiltration membrane and can be decomposed by a photocatalyst, a fluidized bed separation membrane reactor for water treatment.
제1항에 있어서,
상기 세라믹 지지체는 튜브형인 것인 수처리용 유동층 분리막 반응기.
According to claim 1,
The ceramic support is a fluidized-bed separation membrane reactor for water treatment.
제2항에 있어서,
상기 UV 램프는 튜브형인 복합 분리막의 내부에 위치하는 것인 수처리용 유동층 분리막 반응기.
According to claim 2,
The UV lamp is a fluidized bed membrane reactor for water treatment, which is located inside the tubular composite membrane.
제2항에 있어서,
상기 PVDF 나노여과막은 튜브형의 세라믹 지지체의 아랫면을 막고 PVDF 용액이 담긴 코팅기에 담그고 윗면으로부터 진공으로 뽑아내어 세라믹 지지체의 표면 및 기공 내부에 균일하게 코팅되어 형성된 것인 수처리용 유동층 분리막 반응기.
According to claim 2,
The PVDF nanofiltration membrane is formed by blocking the lower surface of a tubular ceramic support, dipping it in a coating container containing a PVDF solution, and extracting it by vacuum from the upper surface to form a uniform coating on the surface and pores of the ceramic support.
제4항에 있어서,
상기 튜브형의 세라믹 지지체의 외부 벽면과 소정의 간격으로 이격되어 이와 평행하게 위치한 격벽, 상기 격벽의 상부와 세라믹 지지체의 상부를 연결하는 상판 및 상기 격벽의 하부와 세라믹 지지체의 하부를 연결하는 하판으로 구성되며, 상기 격벽, 상판 및 하판은 액체의 흐름을 차단하여 유입수의 출입을 차단하고, PVDF 나노여과막을 통해 투과된 처리수를 저장할 수 있는 공간 및 이의 하단에 형성되어 상기 저장된 처리수를 외부로 배출할 수 있는 출수구(outlet)를 추가로 구비하여 연속적으로 구동 가능한 것인 수처리용 유동층 분리막 반응기.
According to claim 4,
Consists of a partition wall spaced apart from the outer wall surface of the tubular ceramic support and spaced at a predetermined distance, the upper plate connecting the upper portion of the partition wall and the upper portion of the ceramic support body, and a lower plate connecting the lower portion of the partition wall to the lower portion of the ceramic support body. The partition wall, the upper plate and the lower plate block the flow of liquid to block the inflow and out of the inflow water, and are formed at the bottom of the space to store the treated water transmitted through the PVDF nanofiltration membrane and at the bottom thereof to discharge the stored treated water to the outside. A fluidized-bed separation membrane reactor for water treatment, which is further provided with an outlet capable of being continuously driven.
제1항에 있어서,
상기 복합 분리막 및 UV 램프의 길이방향은 반응기의 바닥면과 수직하게 배열된 것인 수처리용 유동층 분리막 반응기.
According to claim 1,
Longitudinal direction of the composite membrane and the UV lamp is a fluidized bed membrane reactor for water treatment that is arranged perpendicular to the bottom surface of the reactor.
제1항에 있어서,
상기 램프 하단에 위치한 공기 주입기(air blower)를 추가로 포함하는 것인 수처리용 유동층 분리막 반응기.
According to claim 1,
A fluidized bed separation membrane reactor for water treatment, further comprising an air blower located at the bottom of the lamp.
제1항 내지 제7항 중 어느 한 항에 기재된 반응기를 이용한 수처리하는 방법.
A method for water treatment using the reactor according to any one of claims 1 to 7.
평균 직경 0.1 내지 5 ㎛ 크기의 기공을 갖는 세라믹 지지체, 및 상기 지지체의 일면에, 광촉매로서 평균 직경 100 내지 300 nm 크기의 TiO2@ZIF-8을 0.01 내지 5중량%로 포함하는 고분자 용액으로부터 비용매 유도 상분리법(nonsolvent induced phase separation)으로 형성한, 20 내지 200 nm 크기의 평균 직경을 갖는 기공을 포함하며, 10 내지 100 ㎛ 두께의 폴리비닐리덴플루오라이드(polyvinylidene fluoride; PVDF) 나노여과막을 포함하는 복합 분리막; 및
상기 복합 분리막의 길이방향과 평행하게 나노여과막의 벽면 쪽에 이와 이격하여 위치시킨 UV 램프를 구비한, 유기물 분해능을 구비한 수처리용 유동층 분리막 반응기로서,
수처리 대상인 유입수는 광촉매를 포함하는 PVDF 나노여과막으로부터 세라믹 지지체 방향으로 흐르며, 분해하고자 하는 유기물을 PVDF 나노여과막에 보유 및 광촉매에 의해 분해할 수 있고,
상기 PVDF 나노여과막은 튜브형의 세라믹 지지체의 아랫면을 막고 PVDF 용액이 담긴 코팅기에 담그고 윗면으로부터 진공으로 뽑아내어 세라믹 지지체의 표면 및 기공 내부에 균일하게 코팅되어 형성된, 수처리용 유동층 분리막 반응기.
A ceramic support having pores having an average diameter of 0.1 to 5 μm, and one surface of the support, cost from a polymer solution containing 0.01 to 5% by weight of TiO 2 @ZIF-8 having an average diameter of 100 to 300 nm as a photocatalyst Contains pores having an average diameter of 20 to 200 nm, formed by nonsolvent induced phase separation, and includes 10 to 100 μm thick polyvinylidene fluoride (PVDF) nanofiltration membrane A composite separator; And
A fluidized-bed separation membrane reactor for water treatment with organic matter resolution, having a UV lamp positioned at a distance from it on the wall surface of the nanofiltration membrane parallel to the longitudinal direction of the composite membrane,
The influent that is the water treatment object flows from the PVDF nanofiltration membrane containing the photocatalyst to the ceramic support, and the organic material to be decomposed is retained in the PVDF nanofiltration membrane and can be decomposed by a photocatalyst,
The PVDF nanofiltration membrane is formed by blocking the lower surface of the tubular ceramic support, dipping it in a coating container containing the PVDF solution, and extracting it by vacuum from the upper surface to form a uniform coating on the surface of the ceramic support and inside the pores.
KR1020180125960A 2018-10-22 2018-10-22 Fluidized membrane reactor for water purification possessing ability of decomposing organics KR102140116B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180125960A KR102140116B1 (en) 2018-10-22 2018-10-22 Fluidized membrane reactor for water purification possessing ability of decomposing organics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180125960A KR102140116B1 (en) 2018-10-22 2018-10-22 Fluidized membrane reactor for water purification possessing ability of decomposing organics

Publications (2)

Publication Number Publication Date
KR20200045207A KR20200045207A (en) 2020-05-04
KR102140116B1 true KR102140116B1 (en) 2020-07-31

Family

ID=70732797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180125960A KR102140116B1 (en) 2018-10-22 2018-10-22 Fluidized membrane reactor for water purification possessing ability of decomposing organics

Country Status (1)

Country Link
KR (1) KR102140116B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452957A (en) * 2022-03-02 2022-05-10 西南石油大学 Preparation method of micro-membrane adsorber for quickly and efficiently adsorbing heavy metal ions
CN116059981B (en) * 2023-01-13 2023-07-14 北京理工大学唐山研究院 Multistage Kong Shuixiang adsorption film and preparation method and application thereof based on template method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042382A (en) * 1998-08-04 2000-02-15 Nikkiso Co Ltd Separation membrane and filter
KR200307163Y1 (en) * 2002-12-04 2003-03-15 박영식 Water Treatment Apparatus of Fluidized Bed using Photocatalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150063801A (en) * 2013-12-02 2015-06-10 주식회사 대미 A water treatment apparatus using the floating media containing photo catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042382A (en) * 1998-08-04 2000-02-15 Nikkiso Co Ltd Separation membrane and filter
KR200307163Y1 (en) * 2002-12-04 2003-03-15 박영식 Water Treatment Apparatus of Fluidized Bed using Photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Qi Liu et al. "Integration of nanosized ZIF-8 particles onto mesoporous TiO2 nanobeads for enhanced photocatalytic activity". RSC Advances. Vol.7, pp. 8004-8010 (2017.01.25.) 1부.*

Also Published As

Publication number Publication date
KR20200045207A (en) 2020-05-04

Similar Documents

Publication Publication Date Title
Riaz et al. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments
Iglesias et al. Membrane-based photocatalytic systems for process intensification
Papageorgiou et al. Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes
Bet-Moushoul et al. TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes
Molinari et al. Study on a photocatalytic membrane reactor for water purification
Mozia Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review
Augugliaro et al. The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance
CN106039998B (en) Load the photocatalysis composite nanometer filtering film and preparation method thereof of β-FeOOH nanocrystal
Xiao et al. Progress of applied research on TiO 2 photocatalysis-membrane separation coupling technology in water and wastewater treatments
KR20140134990A (en) A water treatment system including porous alumina membranes immobilized photocatalysts, operating method thereof, and purifying method of wastewater using thereby
EP2409954A1 (en) Photocatalytic purification device
KR100623326B1 (en) Method for treating waste water
Bhat et al. Nanocomposite membrane for environmental remediation
KR102140116B1 (en) Fluidized membrane reactor for water purification possessing ability of decomposing organics
KR102597770B1 (en) Catalytic composite for catalytic ozone oxidation process and preparation method thereof
CN109351167B (en) A kind of air cleaning unit
Katzenberg et al. Photocatalytic hydrogels for removal of organic contaminants from aqueous solution in continuous flow reactors
CN108579821B (en) Porous adsorption supported photocatalytic reaction membrane and preparation method and application thereof
US11433375B2 (en) Photocatalytic carbon filter
Kallawar et al. Nanomaterial-based photocatalytic membrane for organic pollutants removal
Loddo et al. Membranes for photocatalysis in water and wastewater treatment
KR20210142047A (en) A METHOD FOR PROCESSING WASTE WATER USING CERAMIC SEPARATION MEMBRANE COATED WITH Ti2O AND A SYSTEM FOR PROCESSING WASTE WATER
Alaoui et al. Dye and bacteria photodegradations with anatase-loaded microporous poly (vinylidene fluoride) membranes
CN108698020B (en) Solid photocatalytic material comprising solid matter composed only of titanium dioxide having photocatalytic function, method for producing same, and processing apparatus
JP5604614B2 (en) Photocatalyst fluidized bed type water purification module and highly efficient water purification system

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant