Nothing Special   »   [go: up one dir, main page]

KR102132554B1 - Phamaceutical composition comprising raloxifene for preventing or treating systemic sclerosis - Google Patents

Phamaceutical composition comprising raloxifene for preventing or treating systemic sclerosis Download PDF

Info

Publication number
KR102132554B1
KR102132554B1 KR1020190021901A KR20190021901A KR102132554B1 KR 102132554 B1 KR102132554 B1 KR 102132554B1 KR 1020190021901 A KR1020190021901 A KR 1020190021901A KR 20190021901 A KR20190021901 A KR 20190021901A KR 102132554 B1 KR102132554 B1 KR 102132554B1
Authority
KR
South Korea
Prior art keywords
systemic sclerosis
expression
raloxifene
ipsc
skin
Prior art date
Application number
KR1020190021901A
Other languages
Korean (ko)
Inventor
주지현
김예나
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Priority to KR1020190021901A priority Critical patent/KR102132554B1/en
Application granted granted Critical
Publication of KR102132554B1 publication Critical patent/KR102132554B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4535Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom, e.g. pizotifen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/324Foods, ingredients or supplements having a functional effect on health having an effect on the immune system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nutrition Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a composition for preventing, alleviating or treating systemic sclerosis (SSc) containing raloxifene or an acceptable salt thereof as an active component. The composition of the present invention has effects of reducing the expression of fibrosis factors (α-SMA), reducing the degree of cell proliferation induced by TNF-β1, reducing the thickness of a fibroblast layer, and reducing the thickness of skin tissues, thereby being able to be usefully used as the composition for preventing or treating SSc.

Description

랄록시펜을 유효성분으로 함유하는 전신경화증의 예방 또는 치료용 약학적 조성물{PHAMACEUTICAL COMPOSITION COMPRISING RALOXIFENE FOR PREVENTING OR TREATING SYSTEMIC SCLEROSIS}Pharmaceutical composition for the prevention or treatment of systemic sclerosis containing raloxifene as an active ingredient {PHAMACEUTICAL COMPOSITION COMPRISING RALOXIFENE FOR PREVENTING OR TREATING SYSTEMIC SCLEROSIS}

본 발명은 랄록시펜(raloxifene) 또는 이의 허용 가능한 염을 유효성분으로 함유하는 전신경화증(Systemic sclerosis; SSc) 예방, 개선 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing, improving or treating systemic sclerosis (SSc) containing raloxifene or an acceptable salt thereof as an active ingredient.

전신경화증(Systemic sclerosis; SSc)은 활성화된 섬유아세포(fibroblast)가 콜라겐(collagen) 등의 결합조직 구성물질을 과도하게 생성하는데 기인하며, 경피증으로도 지칭되는 희귀한 자가면역성 질환이다. SSc는 피부를 비롯하여 혈관, 위장관 계통, 폐, 신장 및 근육 관절 등의 결합 조직에 변화를 일으켜 그 기능의 결함을 초래하는 복합적이고 이질적인 질환이다. 피부 관여 패턴을 기반으로 SSc는 발병 부위에 따라, 피부 경화가 팔꿈지 이하의 손, 무릎 이하의 발, 얼굴에서만 발생되는 제한성(limited) 타입(lcSSc)과, 이보다 더 많은 부위, 즉 팔꿈치 이상, 무릎 이상의 피부와 몸통에서도 피부가 딱딱해지는 변화가 나타나면서 신장, 폐 등의 내부 장기 침범이 동반되는 미만성(diffuse) 타입(dcSSc)으로 크게 분류된다. 현재까지 전신경화증에 효능이 입증된 치료는 모두 합병증의 치료법들이고, 정작 피부 증상에는 아직까지 뚜렷하게 입증된 치료법이 없는 실정이다. 예를 들어, 전신경화증에서 많이 합병되는 레이노현상에 대해서는 칼슘채널길항제를 사용하기도 하지만 증상완화 정도 외에는 질환의 경과에 영향을 주지는 못한다. 폐동맥고혈압도 주요한 합병증으로 폐동맥의 고혈압을 낮추기 위한 적극적인 치료를 시행하지만, 이 역시 경화증 자체의 경과에는 관련이 없다. 전신경화증 환자에서 폐섬유화도 흔하게 합병되는 질환이고, 피부의 섬유화와 연관성이 있을 것으로 생각되지만, 아직 정립된 치료방법은 없고, 빠르게 진행하는 일부 간질성 폐렴에 대해 시클로포스파미드(cyclophosphamide)와 같은 강력한 면역억제제를 사용하기도 한다. 그러나 다른 면역억제제와 마찬가지로 전신경화증의 진행에 대한 효과는 뚜렷하지 않다.Systemic sclerosis (SSc) is a rare autoimmune disease, also referred to as scleroderma, due to the fact that activated fibroblasts excessively produce connective tissue components such as collagen. SSc is a complex and heterogeneous disease that causes defects in the function of skin and connective tissues such as blood vessels, gastrointestinal system, lungs, kidneys, and muscle joints. Based on the skin involvement pattern, SSc is a limited type (lcSSc) that occurs only in the hands below the elbow, the feet below the knee, and the face, depending on the site of the disease, and more areas, i.e. above the elbow, It is largely classified as a diffuse type (dcSSc) accompanied by internal organ involvement such as kidneys and lungs, with changes in skin over the knee and torso appearing as the skin hardens. Until now, all treatments that have been proven to be effective for systemic sclerosis are treatments for complications, and there are no clearly proven treatments for skin symptoms. For example, a calcium channel antagonist may be used for Raynaud's phenomenon, which is often combined in systemic sclerosis, but it does not affect the course of the disease other than the degree of symptom relief. Pulmonary arterial hypertension is also a major complication, and aggressive treatments for lowering pulmonary arterial hypertension are performed, but this is not related to the course of sclerosis itself. Pulmonary fibrosis is a common complication in patients with systemic sclerosis, and is thought to be associated with fibrosis of the skin, but there is no established treatment method, such as cyclophosphamide, for some rapidly progressing interstitial pneumonia. Some powerful immunosuppressants are also used. However, like other immunosuppressants, the effect on the progression of systemic sclerosis is not clear.

랄록시펜(raloxifene)은 뼈에 대하여 에스트로겐과 같은 작용을 가지며, 자궁과 유방에 대하여 항-에스트로겐 활성을 갖는 경구 투여용 선택적 에스트로겐 수용체 조절제(selective estrogen receptor modulator; SERM)이다. 랄록시펜은 폐경기 여성에서 골다공증 예방에 사용되고 있다. 또한 랄록시펜은 여성들에게 발생하는 유방암의 발병 감소 측면에서도 타목시펜(tamoxifen) 정도로 유효하다고 발표되었고, 미국 FDA에서 폐경기 여성에 있어 골다공증과 더불어 침윤성 유방암의 위험을 감소시키는 용도로 승인되었다. 또한, 랄록시펜은 전립선암의 치료와 전립선의 섬유낭포성 질환의 치료에 유용한 것으로 알려져 있다. 그러나 랄록시펜의 전신 경화증 예방 및 치료에 대한 연구는 이루어지지 않았다.Raloxifene is a selective estrogen receptor modulator (SERM) for oral administration that has estrogen-like action on bone and anti-estrogen activity on the uterus and breast. Raloxifene is used to prevent osteoporosis in postmenopausal women. In addition, raloxifene has been reported to be as effective as tamoxifen in terms of reducing the incidence of breast cancer in women, and has been approved by the US FDA for reducing the risk of invasive breast cancer along with osteoporosis in postmenopausal women. In addition, raloxifene is known to be useful in the treatment of prostate cancer and the treatment of fibrocystic diseases of the prostate. However, studies on the prevention and treatment of systemic sclerosis of raloxifene have not been conducted.

본 발명자들은 인간 역분화 줄기세포를 이용하여 인간의 면역계가 구현된 전신경화증 질환 모델을 제조하고 이를 이용하여 FDA 승인된 약물 약 800가지를 스크리닝하여 전신경화증 치료제를 개발하고자 예의 연구 노력하였다.The present inventors have made extensive efforts to develop a therapeutic agent for systemic sclerosis by preparing a model of a systemic sclerosis disease in which the human immune system is implemented using human dedifferentiated stem cells and screening about 800 drugs approved by the FDA.

[선행기술문헌]
Delle et al.,Antifibrotic effect of tamoxifen in a model of progressive renal disease.; J Am Soc Nephrol. 2012 Jan;23(1):37-48
Chang et al., Effects of raloxifene on portal hypertension and hepatic encephalopathy in cirrhotic rats; European Journal of Pharmacology 802 36-43 (2017.02.24.)
[Advanced technical literature]
Delle et al., Antifibrotic effect of tamoxifen in a model of progressive renal disease.; J Am Soc Nephrol. 2012 Jan;23(1):37-48
Chang et al., Effects of raloxifene on portal hypertension and hepatic encephalopathy in cirrhotic rats; European Journal of Pharmacology 802 36-43 (2017.02.24.)

본 발명자들은 랄록시펜이 전신경화증 모델에서 섬유화 인자(α-SMA)의 발현을 감소시키고, TNF-β1에 의해 유도된 세포 증식도 감소, 섬유아세포층 두께 감소 및 피부조직의 두께의 감소를 유발하여 전신경화증을 예방 또는 치료할 수 있음을 확인함으로써 본 발명을 완성하게 되었다.The present inventors show that raloxifene decreases the expression of fibrosis factor (α-SMA) in the systemic sclerosis model, induces a decrease in cell proliferation induced by TNF-β1, a decrease in fibroblast layer thickness and a decrease in skin tissue thickness. The present invention has been completed by confirming that sclerosis can be prevented or treated.

이에, 본 발명은 전신경화증(Systemic sclerosis; SSc)을 예방 또는 치료할 수 있는 조성물을 제공하고자 한다.Accordingly, the present invention is to provide a composition capable of preventing or treating systemic sclerosis (SSc).

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

상기 목적을 달성하기 위하여 본 발명은 랄록시펜(raloxifene) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 전신경화증(Systemic sclerosis; SSc) 예방 또는 치료용 약학적 조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for preventing or treating systemic sclerosis (SSc) containing raloxifene or a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명의 일실시예에 있어서, 상기 조성물은 TGF-β1에 의해 유도된 세포 증식도를 감소시키고, 섬유아세포층 두께 또는 피부조직의 두께를 감소시킬 수 있다.In one embodiment of the present invention, the composition can reduce the cell proliferation induced by TGF-β1 and reduce the thickness of the fibroblast layer or the skin tissue.

본 발명의 일실시예에 있어서, 상기 조성물은 TGF-β1에 의해 유도되는 섬유화 인자 마커의 발현을 억제 또는 감소시킬 수 있다.In one embodiment of the present invention, the composition can inhibit or reduce the expression of the fibrosis factor marker induced by TGF-β1.

본 발명의 일실시예에 있어서, 상기 섬유화 인자 마커는 COL1A1, COL3A1, ACTA2일 수 있다.In one embodiment of the present invention, the fibrosis factor marker may be COL1A1, COL3A1, ACTA2.

본 발명의 일실시예에 있어서, 상기 전신경화증은 폐, 간, 신장, 심혈관계 또는 피부의 전신경화증을 포함할 수 있다.In one embodiment of the present invention, the systemic sclerosis may include systemic sclerosis of the lung, liver, kidney, cardiovascular system or skin.

본 발명의 일실시예에 있어서, 상기 전신경화증은 미만성 피부 전신경화증(dcSSc) 또는 제한성 피부 전신경화증(IcSSc)일 수 있다.In one embodiment of the present invention, the systemic sclerosis may be diffuse skin systemic sclerosis (dcSSc) or limited skin systemic sclerosis (IcSSc).

본 발명의 일실시예에 있어서, 상기 조성물은 유효성분으로 닥티노마이신(Dactinomycin)을 추가로 포함할 수 있다.In one embodiment of the present invention, the composition may further include dactinomycin as an active ingredient.

본 발명은 또한, 랄록시펜(raloxifene) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 전신경화증(Systemic sclerosis; SSc) 예방 또는 개선을 위한 건강기능식품을 제공한다.The present invention also provides a health functional food for preventing or improving systemic sclerosis (SSc) containing raloxifene or a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명에 따른 조성물은 섬유화 인자(α-SMA)의 발현을 감소시키고, TNF-β1에 의해 유도된 세포 증식도를 감소시키며, 섬유아세포층 두께 감소 및 피부조직의 두께를 감소시키는 효과가 있어 전신경화증을 예방 또는 치료용 조성물로서 유용하게 사용될 수 있다.The composition according to the present invention has the effect of reducing the expression of fibrosis factor (α-SMA), reducing cell proliferation induced by TNF-β1, reducing fibroblast layer thickness and skin tissue thickness. Sclerosis can be usefully used as a composition for prevention or treatment.

도 1A는 전체 실험 개요를 나타낸 도면이다.
도 1B는 전신경화증 환자의 혈액에서 PBMC를 분리하여 iPSC를 제조한 후 형태를 확인한 것이다.
도 1C는 Alkaline phosphatase staining으로 iPSC의 전분화능을 확인한 결과이다.
도 1D는 iPSC 마커인 SSEA4, OCT4, TRA-1-60, SOX2, TRA-1-81, KLF4의 발현을 IFA로 확인한 결과이다.
도 1E는 iPSC marker인 OCT4, SOX2, Nanog, LIN28의 발현을 qRT-PCR을 통해서 유전자 레벨에서 확인한 결과이다.
도 1F는 테라토마 형성을 이용하여 iPSC가 내배엽, 중배엽, 외배엽 분화 가능함을 확인한 결과이다.
도 2은 전신경화증 특이적 iPSC의 케라틴세포(Keratinocyte)로의 분화를 확인한 결과로서,
도 2A는 케라틴세포 분화 프로토콜을 나타낸 것이고,
도 2B는 케라틴세포의 형태와 케라틴세포 마커인 KRT14 및 Np63을 IFA로 확인한 결과이고,
도 2C는 iPSC 마커인 OCT4와 신경외배엽 마커인 PAX6 및 SOX1의 발현을 확인한 결과로서, iPSC에서 발현하던 OCT4의 발현이 분화 후에 감소하고, 케라틴세포 분화 시 발현 되지 않는 신경외배엽 마커의 발현이 감소함을 확인한 것이고,
도 2D는 케라틴세포 마커인 Np63, KRT5, KRT14의 발현을 qRT-PCR을 통하여 확인한 결과로서, iPSC 마커는 발현이 감소되며, 케라틴세포 마커의 발현은 증가함을 확인한 것이다.
도 3은 전신경화증 특이적 iPSC의 섬유아세포(Fibroblast)로의 분화를 확인한 결과로서,
도 3A는 섬유아세포 분화 프로토콜을 나타낸 것이고,
도 3B는 섬유아세포 형태 및 섬유아세포 마커인 Fibronectin과 vimentin을 IFA로 확인한 결과이고,
도 3C는 iPSC 마커인 OCT4와 섬유아세포 마커(ECM marker)인 COL1A1, COL1A2, COL3A1, ACTA2, Vimentin의 발현을 확인한 결과로, iPSC에서 발현하던 OCT4의 발현이 분화 후에 감소하고, 섬유아세포 마커의 발현은 증가함을 확인한 결과이며, 이때, 정상인에 비해 전신경화증환자의 iPSC-fibroblast에서 ECM marker의 발현이 모두 증가 되어있음을 확인한 결과이다.
도 4는 3D 피부 오가노이드(organoid) 및 인간화 마우스 모델의 제조방법을 나타낸 것으로, (A)는 3D 피부 오가노이드 제작 프로토콜을 나타낸 것이고, (B)는 인간화 마우스 모델(Humanized mice model) 제작 모식도를 나타낸 것이고, (C) 내지 (J)는 3D 피부이식 프로토콜을 나타낸 것이다.
도 5는 시험관 내 및 생체 내에서의 전신경화증 모델링 결과를 나타낸 것으로,
도 5A는 iPSC의 증식도로서, 정상인 iPSC와 전신경화증환자 iPSC사이의 세포증식도의 차이가 없음을 나타낸 것이고,
도 5B는 iPSC-derived fibroblast(iPSC-F)의 세포증식도로서, 정상인 iPSC-fibroblast에 비해 전신경화증 iPSC-fibroblast의 세포증식이 증가되어있음을 확인한 것이고,
도 5C는 섬유화 마커인 α-SMA의 발현을 웨스턴 블랏으로 확인한 결과로서, 정상인 iPSC-fibroblast에 비해 전신경화증 환자의 iPSC-fibroblast에서 α-SMA의 발현이 높음을 확인한 것이고,
도 5D는 웨스턴 블랏을 정량화 한 결과로서, 정상인에 비해 전신경화증의 α-SMA의 발현이 높음을 나타낸 것이고(통계적으로 유의함),
도 5E는 세포 내의 총 콜라겐을 정량화 하였을 때, 정상인 iPSC-F에 비해 전신경화증 환자의 iPSC-F에서 콜라겐의 발현이 높음을 나타낸 것이고,
도 5F는 iPSC를 이용한 3D fibroblast layer 모식도를 나타낸 것이고,
도 5G는 3D fibroblast layer를 형성하였을 때, 정상인에 비해 전신경화증 환자의 3D fibroblast layer 의 두께가 증가된 것을 확인한 결과이고,
도 5H는 섬유아세포 마커인 α-SMA의 발현을 IFA을 통해 확인하였을 때 정상인의 iPSC-F에 비해 전신경화증 환자의 iPSC-F의 α-SMA의 발현이 높음을 확인한 결과이고,
도 5I는 iPSC로부터 분화한 케라틴세포와 섬유아세포를 이용하여 3D skin organoid(iSO)를 제작하여 마우스에 이식하였을 때 정상인 iSO를 이식한 마우스에 비해 전신경화증환자의 ISO를 이식한 마우스의 피부조직의 두께가 증가되어 있으며, Collagen 3와 α-SMA 의 발현이 증가된 것을 확인한 결과이다.
도 6은 iPSC로부터 유도된 전신경화증 모델을 이용한 항섬유화 약제 스크리닝을 나타낸 것으로,
도 6A는 FDA 승인 약물 스크리닝 모식도를 나타낸 것이고,
도 6B는 FDA 승인된 800개의 약물을 iPSC-F에 처리 후 세포 증식도를 측정하여 iPSC-F의 활성화된 세포 증식도를 감소시키는 약물을 1차 스크리닝한 결과를 나타낸 것이고,
도 6C는 선별된 약물을 이용하여 총 콜라겐을 측정하였을 때 닥티노마이신과 랄록시펜에서 총 콜라겐의 감소를 확인한 결과이고,
도 6D-6F는 정상인의 iPSC-F와 전신경화증 환자의 iPSC-F에 섬유화를 유도하는 TGF-β1b 자극을 준 뒤 두 가지 약물을 처리하였을 때, 총 콜라겐 발현이 감소됨을 확인한 결과이고,
도 6G는 전신경화증 환자의 iPSC-F에 두 가지 약물을 처리한 뒤, α-SMA의 발현의 감소를 확인한 결과이고,
도 6H-6I는 α-SMA의 발현을 정량화하여 나타낸 것이다.
도 7은 iPSC로부터 유도된 전신경화증 모델을 이용한 랄록시펜의 시험관 내 효능 검증 결과로서,
도 7A는 iPSC-F에 랄록시펜 처리 후 wound healing assay 진행하였을 때, 세포 증식이 감소하고, TGF-β1b에 의해 증가한 wound healing이 감소됨을 확인한 결과이고,
도 7B-7C는 Wound length를 정량화한 것이고,
도 7D는 Incubation 시간에 따른 wound length의 변화 그래프로서, 랄록시펜을 처리하였을 때, wound length 의 감소폭이 줄어든 것을 확인한 결과이고,
도 7E는 3D fibroblast layer을 형성한 뒤, 랄록시펜을 처리하였을 때, TGF-β1b에 의해 증가한 layer의 두께가 감소됨을 확인한 결과이고,
도 7F-7G는 3D fibroblast layer의 두께와 area을 정량화한 것이고,
도 7H는 랄록시펜을 농도별로 처리하였을 때, α-SMA의 발현이 농도에 따라 감소되는 것을 웨스턴 블랏을 이용하여 확인한 것이고,
도 7I는 랄록시펜을 농도별로 처리하였을 때, α-SMA의 발현을 정량화하여 나타낸 것이고,
도 7J는 랄록시펜을 농도별로 처리하였을 때, 총 콜라겐의 발현이 농도에 따라 감소됨을 확인한 것이다.
도 8은 전신경화증 동물 모델인 Bleomycin 모델에서의 랄록시펜의 효능 검증 결과로서,
도 8A는 Bleomycin 마우스 모델 제작 및 약물 투여 프로토콜을 나타낸 것이고,
도 8B는 Bleomycin 마우스 모델의 조직학적 분석 결과로서, Bleomycin 유도에 의해 증가된 피부 두께가 약물 처리에 의해 감소됨을 확인한 것이고,
도 8C-E는 섬유화 관련 유전자의 발현을 qRT-PCR을 이용하여 확인하였을 때 COL1A1, COL3A1, ACTA2의 발현이 약물 처리 군에서 감소됨을 확인한 것이고,
도 8F는 Bleomycin 유도에 의해 증가된 피부 두께가 약물 처리에 의해 감소된 것을 정량화하여 나타낸 것이고,
도 8G는 Bleomycin 마우스 모델 폐 조직의 조직학적 분석 결과로서, 폐 조직의 항섬유화 효과를 관찰한 것이다.
1A is a diagram showing the overall experiment outline.
Figure 1B confirms the morphology after preparing iPSC by separating PBMC from the blood of patients with systemic sclerosis.
1C is a result of confirming the starch ability of iPSC by Alkaline phosphatase staining.
1D is a result of confirming the expression of iPSC markers SSEA4, OCT4, TRA-1-60, SOX2, TRA-1-81, and KLF4 with IFA.
1E is a result of confirming the expression of iPSC markers OCT4, SOX2, Nanog, and LIN28 at the gene level through qRT-PCR.
1F is a result confirming that iPSC can differentiate into endoderm, mesoderm, and ectoderm using teratoma formation.
Figure 2 is a result confirming the differentiation of systemic sclerosis specific iPSC into keratinocytes (Keratinocyte),
Figure 2A shows the keratinocyte differentiation protocol,
Figure 2B is the result of confirming the morphology of keratinocytes and keratinocyte markers KRT14 and Np63 with IFA,
Figure 2C is a result of confirming the expression of the iPSC marker OCT4 and the neuroectodermal markers PAX6 and SOX1, the expression of OCT4 expressed in iPSC decreases after differentiation, and the expression of the neuroectoderm marker which is not expressed during keratinocyte differentiation decreases Is confirmed,
2D is a result of confirming the expression of the keratinocyte markers Np63, KRT5, and KRT14 through qRT-PCR, confirming that the expression of the iPSC marker is decreased and the expression of the keratinocyte marker is increased.
3 is a result confirming the differentiation of systemic sclerosis specific iPSC into fibroblasts,
Figure 3A shows the fibroblast differentiation protocol,
Figure 3B is the result of fibroblast morphology and fibroblast markers Fibronectin and vimentin confirmed by IFA,
3C shows the expression of iPSC markers OCT4 and fibroblast markers (ECM markers) COL1A1, COL1A2, COL3A1, ACTA2, and Vimentin. Expression of OCT4 expressed in iPSC decreases after differentiation and expression of fibroblast marker Is a result of confirming an increase, and at this time, it is a result of confirming that the expression of all ECM markers is increased in iPSC-fibroblast of systemic sclerosis patients compared to normal people.
Figure 4 shows a method of manufacturing a 3D skin organoid and a humanized mouse model, (A) shows a 3D skin organoid production protocol, and (B) a schematic diagram of a humanized mouse model production (C) to (J) show the 3D skin transplant protocol.
Figure 5 shows the results of modeling systemic sclerosis in vitro and in vivo,
Figure 5A is a proliferation of iPSC, showing that there is no difference in cell proliferation between normal iPSC and systemic sclerosis iPSC,
5B is a cell proliferation diagram of iPSC-derived fibroblast (iPSC-F), confirming that cell proliferation of systemic sclerosis iPSC-fibroblast is increased compared to normal iPSC-fibroblast,
5C is a result of confirming the expression of the fibrosis marker α-SMA by Western blot, and confirming that the expression of α-SMA is higher in iPSC-fibroblast in patients with systemic sclerosis than normal iPSC-fibroblast,
5D shows that Western blot was quantified, indicating that the expression of α-SMA in systemic sclerosis is higher than that of normal persons (statistically significant),
5E shows that when the total collagen in the cells is quantified, the expression of collagen in iPSC-F of patients with systemic sclerosis is higher than that of normal iPSC-F,
5F is a schematic diagram of a 3D fibroblast layer using iPSC,
5G is a result of confirming that when the 3D fibroblast layer is formed, the thickness of the 3D fibroblast layer of the systemic sclerosis patient is increased compared to the normal person,
5H is a result of confirming the expression of α-SMA in iPSC-F of patients with systemic sclerosis compared to iPSC-F in normal people when expression of the fibroblast marker α-SMA is confirmed through IFA,
FIG. 5I shows the skin tissue of mice transplanted with ISO of systemic sclerosis compared to mice implanted with normal iSO when 3D skin organoid (iSO) was prepared and transplanted into mice using keratinocytes and fibroblasts differentiated from iPSC. It is the result confirming that the thickness is increased and the expression of Collagen 3 and α-SMA is increased.
Figure 6 shows an anti-fibrotic drug screening using a systemic sclerosis model derived from iPSC,
6A shows a schematic diagram of FDA approved drug screening,
Figure 6B shows the results of the primary screening of drugs that reduce the activated cell proliferation of iPSC-F by measuring the cell proliferation after treatment of the FDA approved 800 drugs in iPSC-F,
6C is a result of confirming a decrease in total collagen in dactinomycin and raloxifene when total collagen is measured using the selected drug,
6D-6F is a result of confirming that total collagen expression is reduced when two drugs are treated after giving TGF-β1b stimulation to induce fibrosis to iPSC-F of normal people and iPSC-F of patients with systemic sclerosis,
6G is a result of confirming a decrease in the expression of α-SMA after treating two drugs in iPSC-F of a systemic sclerosis patient,
6H-6I shows the expression of α-SMA quantified.
7 is an in vitro efficacy verification result of raloxifene using a systemic sclerosis model derived from iPSC,
7A is a result of confirming that cell proliferation decreases and wound healing increased by TGF-β1b decreases when a wound healing assay is performed after treatment with raloxifene on iPSC-F,
Figures 7B-7C are quantified Wound length,
7D is a graph showing the change in wound length according to the incubation time, and is a result of confirming that the reduction width of the wound length is reduced when treated with raloxifene,
7E is a result of confirming that the thickness of the layer increased by TGF-β1b is reduced when the 3D fibroblast layer is formed and then treated with raloxifene.
7F-7G is a quantification of the thickness and area of the 3D fibroblast layer,
7H shows that when treated with raloxifene by concentration, the expression of α-SMA decreases with concentration, using Western blot,
7I is a quantitative expression of α-SMA when treated with concentrations of raloxifene,
Figure 7J confirms that when treated with raloxifene by concentration, the expression of total collagen decreases with concentration.
8 is a result of verifying the efficacy of raloxifene in the Bleomycin model, an animal model of systemic sclerosis,
Figure 8A shows a Bleomycin mouse model construction and drug administration protocol,
8B is a histological analysis result of the Bleomycin mouse model, confirming that the skin thickness increased by Bleomycin induction is reduced by drug treatment,
8C-E confirms that expression of COL1A1, COL3A1, and ACTA2 is reduced in the drug treatment group when expression of the fibrosis related gene is confirmed using qRT-PCR,
Figure 8F is a quantitative representation of the skin thickness increased by Bleomycin induction decreased by drug treatment,
8G is a histological analysis result of the Bleomycin mouse model lung tissue, and observes the antifibrotic effect of the lung tissue.

본 발명의 하나의 양태는 전신경화증(Systemic sclerosis) 환자 유래 유도만능줄기세포(induced pluripotent stem cell; iPSC)를 케라틴세포(keratinocyte) 또는 섬유아세포(fibroblast)로 분화시키는 단계; 및 상기 케라틴세포 및 섬유아세포를 3차원 배양하여 3D 피부 오가노이드(organoid)를 형성시키는 단계를 포함하는, 전신경화증 질환 모델의 제조방법에 관한 것이다. One aspect of the present invention comprises the steps of differentiating induced pluripotent stem cells (iPSCs) derived from patients with systemic sclerosis into keratinocytes or fibroblasts; And forming a 3D skin organoid by three-dimensional culture of the keratinocytes and fibroblasts.

또한, 본 발명은 전신경화증(Systemic sclerosis) 환자 유래 유도만능줄기세포(induced pluripotent stem cell; iPSC)를 케라틴세포(keratinocyte) 또는 섬유아세포(fibroblast)로 분화시키는 단계; 상기 케라틴세포 및 섬유아세포를 3차원 배양하여 3D 피부 오가노이드(organoid)를 형성시키는 단계; 및 상기 3D 피부 오가노이드를 마우스의 피부조직에 이식하는 단계;를 포함하는, 전신경화증 질환 모델의 제조방법에 관한 것이다.In addition, the present invention comprises the steps of differentiating induced pluripotent stem cells (iPSCs) derived from patients with systemic sclerosis into keratinocytes or fibroblasts; 3D culture of the keratinocytes and fibroblasts to form a 3D skin organoid; And implanting the 3D skin organoid into the skin tissue of the mouse.

본 발명에서 용어, “전신경화증 환자 유래 유도만능줄기세포(induced pluripotent stem cell; iPSC)”는 전신경화증 환자의 말초혈액 세포(Peripheral Blood Cell, PBMC)로부터 인의적인 리프로그래밍(reprogramming) 과정을 통해 전분화능(pluripotency)을 가지도록 유도된 세포를 의미한다. In the present invention, the term, “induced pluripotent stem cells (iPSCs) derived from patients with pre-systemic sclerosis” refers to the entire process through an artificial reprogramming process from peripheral blood cells (PBMCs) of patients with systemic sclerosis. Refers to cells induced to have pluripotency.

본 발명에서 상기, “리프로그래밍(reprogramming)”은 분화능이 없는 세포 또는 일정부분 분화능이 있는 세포 등 서로 다른 양태로 존재하는 분화된 세포로부터 최종적으로 새로운 유형의 분화잠재력을 갖는 상태로 복원 또는 전환될 수 있는 프로세스를 의미한다. 또한, 본 발명에서 상기 리프로그래밍은 역분화 (dedifferentiation)와 동일한 의미로 사용될 수 있다. 이러한 세포의 리프로그래밍 기작은 핵 내의 후생유전학 (뉴클레오타이드 서열에서의 변화없이 기능에서의 유전적 변화를 일으키는 것과 관련된 DNA 상태)적 마크가 삭제된 후, 상이한 세트의 후생유전학적 마크를 수립하는 것을 의미하는데, 다세포 생물이 분화 및 성장하는 동안, 상이한 세포 및 조직은 상이한 유전자 발현 프로그램을 획득하게 된다.In the present invention, the "reprogramming (reprogramming)" is a differentiation cell that is present in different aspects, such as a cell with no differentiation capacity or a cell with a certain differentiation capacity, and finally is restored or converted to a state having a different type of differentiation potential. Means a process that can. In addition, in the present invention, the reprogramming may be used in the same sense as dedifferentiation. The reprogramming mechanism of these cells means establishing a different set of epigenetic marks after the epigenetic marks in the nucleus (the DNA state associated with causing genetic changes in function without changes in the nucleotide sequence) are deleted. However, while multicellular organisms differentiate and grow, different cells and tissues acquire different gene expression programs.

상기 리프로그래밍은 전신경화증 환자 PBMC로부터 유도만능줄기세포를 만들 수 있는 한 제한이 없으며, 당업계의 공지 방법을 이용할 수 있다.The reprogramming is not limited as long as it is possible to make induced pluripotent stem cells from PBMCs of systemic sclerosis patients, and methods known in the art can be used.

구체적으로, 본 발명에서 상기 인위적인 리프로그래밍 과정은 비삽입형 바이러스를 이용한 바이러스-매개 또는 비삽입형 비바이러스성 벡터 이용, 단백질 및 세포 추출물 등을 이용하는 비바이러스-매개 리프로그래밍 인자의 도입에 의해 수행되거나, 줄기세포 추출물, 화합물 등에 의한 리프로그래밍 과정을 포함할 수 있다. 유도만능줄기세포는 배아줄기세포와 거의 같은 특성을 가진다. 구체적으로는 비슷한 세포 모양을 보여주며, 유전자 및 단백질 발현 패턴이 유사하고, 인 비트로 (in vitro) 및 인 비보 (in vivo)에서 전분화능을 가지며, 테라토마(teratoma)를 형성하고, 생쥐의 배반포 (blastocyst)에 삽입시켰을 때, 키메라 (chimera) 생쥐를 형성할 수 있으며, 유전자의 생식선 전이 (germline transmission)가 가능하다. 본 발명의 유도만능줄기세포는 인간, 원숭이, 돼지, 말, 소, 양, 개, 고양이, 생쥐 또는 토끼 등의 모든 유래일 수 있으며, 구체적으로 인간 유래일 수 있다.Specifically, in the present invention, the artificial reprogramming process is performed by the introduction of a virus-mediated or non-insertable non-viral vector using a non-insertable virus, a non-virus-mediated reprogramming factor using a protein and cell extract, or the like, It may include a reprogramming process using stem cell extracts, compounds, and the like. Induced pluripotent stem cells have almost the same characteristics as embryonic stem cells. Specifically, it shows a similar cell shape, has similar gene and protein expression patterns, has starch differentiation ability in vitro and in vivo , forms teratomas, and blastocysts of mice ( blastocyst), chimera mice can form, and germline transmission of the gene is possible. Induced pluripotent stem cells of the present invention may be all derived from humans, monkeys, pigs, horses, cows, sheep, dogs, cats, mice or rabbits, and specifically humans.

본 발명에서 상기, "리프로그래밍 인자"란 최종적으로 분화된 세포가 새로운 유형의 분화되는 잠재력을 갖는 전분화능 줄기세포 (Pluripotent stem cell)로 리프로그래밍 되도록 유도하는 물질이다. 상기 리프로그래밍 인자는 최종적으로 분화된 세포의 리프로그래밍을 유도하는 물질이면 제한 없이 포함할 수 있으며, 분화시키려는 세포의 종류에 따라 선택할 수 있다. 구체적으로, 리프로그래밍 인자는 Oct4, Sox2, Klf4, c-Myc, Nanog, Lin-28 및 Rex1로 이루어진 군으로부터 선택되는 하나 이상의 단백질 또는 상기 단백질을 코딩하는 핵산분자일 수 있으나, 이에 제한되지 않는다.In the present invention, the "reprogramming factor" is a substance that induces finally differentiated cells to be reprogrammed into Pluripotent stem cells having a new type of differentiation potential. The reprogramming factor may include, without limitation, any substance that induces reprogramming of the finally differentiated cell, and may be selected according to the type of cells to be differentiated. Specifically, the reprogramming factor may be at least one protein selected from the group consisting of Oct4, Sox2, Klf4, c-Myc, Nanog, Lin-28, and Rex1, or a nucleic acid molecule encoding the protein, but is not limited thereto.

본 발명에서 상기 "단백질을 코딩하는 핵산분자"는 세포 내에 전달되면 그 자체로 해당 단백질을 발현할 수 있도록 프로모터 등에 작동 가능하게 연결된 형태일 수 있다.In the present invention, the "nucleic acid molecule encoding a protein" may be in a form operably linked to a promoter or the like so as to express the protein itself when delivered into a cell.

본 발명에서 용어, "분화"는 세포가 분열하여 증식하며 전체 개체가 성장하는 동안에 세포의 구조나 기능이 특수화되는 현상을 의미한다. 즉, 생물의 세포, 조직 등이 각각에게 주어지는 역할을 수행하기 위해 적합한 형태 및 기능으로 변하는 과정을 말하며, 예를 들어, 배아줄기세포와 같은 전분화능 줄기세포가 외배엽, 중배엽 및 내배엽 세포로 변하는 과정뿐 아니라 조혈모세포가 적혈구, 백혈구, 혈소판 등으로 변하는 과정, 즉 전구세포가 특정 분화형질을 발현하게 되는 것도 모두 분화에 포함될 수 있다.In the present invention, the term "differentiation" refers to a phenomenon in which cells divide and proliferate and the structure or function of cells is specialized while the entire individual is growing. That is, it refers to a process in which cells, tissues, etc. of an organism are transformed into a suitable form and function in order to perform a role given to each, for example, a process in which starch-potential stem cells such as embryonic stem cells are transformed into ectodermal, mesodermal and endoderm cells. In addition, differentiation of hematopoietic stem cells into red blood cells, white blood cells, platelets, etc., that is, progenitor cells expressing a specific differentiation trait may be included in differentiation.

본 발명의 구체적인 일 실시예에서는 전신경화증 환자 혈액의 PBMC로부터 리프로그래밍을 통하여 유도만능줄기세포(iPSC)를 제조하였다(도 1).In a specific embodiment of the present invention, induced pluripotent stem cells (iPSC) were prepared through reprogramming from PBMC of the blood of patients with systemic sclerosis (FIG. 1).

또한, 본 발명의 구체적인 일 실시예에서는 전신경화증 특이적 질병의 표현형을 재현할 잠재력을 가지는 케라틴세포 및 섬유아세포를 제조하기 위하여, 전신경화증 환자 유래 iPSC를 케라틴세포 또는 섬유아세포로 각각 분화시켰다. 케라틴세포 또는 섬유아세포의 마커, 단백질 및 세포 표면 마커 등의 발현을 확인함으로써 iPSC로부터 유래된 케라틴세포 및 섬유아세포가 제조되었음을 알 수 있었다(도 2 및 도 3).In addition, in a specific embodiment of the present invention, in order to prepare keratinocytes and fibroblasts having the potential to reproduce the phenotype of systemic sclerosis-specific disease, iPSCs derived from patients with systemic sclerosis were differentiated into keratinocytes or fibroblasts, respectively. It was found that keratinocytes and fibroblasts derived from iPSC were prepared by confirming expression of keratinocytes or fibroblast markers, proteins and cell surface markers (FIGS. 2 and 3 ).

구체적으로 본 발명의 제조방법은 전신경화증 환자 유래 유도만능줄기세포를 케라틴세포 또는 섬유아세포로 분화시키는 단계 및 상기 케라틴세포 및 섬유아세포를 3차원 배양하여 3D 피부 오가노이드를 제조하는 단계를 포함할 수 있다.Specifically, the manufacturing method of the present invention may include the step of differentiating induced pluripotent stem cells derived from patients with systemic sclerosis into keratinocytes or fibroblasts, and producing 3D skin organoids by culturing the keratinocytes and fibroblasts in three dimensions. have.

본 발명의 용어, “3D 오가노이드”는 3D 입체구조를 가지는 세포덩어리를 의미하며, 동물 등에서 수집, 취득하지 않은 인공적인 배양 과정을 통하여 제조한 축소되고 단순화된 버전의 기관을 의미한다. 이를 구성하는 세포의 유래는 제한되지 않는다. 오가노이드는 조직, 배아줄기세포 또는 유도만능줄기세포에서 파생될 수 있으며, 자가재생 및 분화능력으로 인해 3차원으로 배양될 수 있다. 상기 오가노이드는 세포의 성장 과정에서 주변 환경과 상호 작용하도록 허용되는 환경을 가질 수 있다. 이에 따라 본 발명에서 “3D 피부 오가노이드”는 실제로 in vivo에서 상호 작용을 하고 있는 피부층을 거의 모사하여, 질병의 치료제 개발 및 치료과정 등을 관찰할 수 있는 훌륭한 모델이 될 수 있다.The term “3D organoid” of the present invention means a cell mass having a 3D conformation, and means a reduced and simplified version of an organ manufactured through an artificial culture process that is not collected and obtained from animals or the like. The origin of the cells constituting it is not limited. Organoids can be derived from tissue, embryonic stem cells or induced pluripotent stem cells, and can be cultured in three dimensions due to their ability to regenerate and differentiate themselves. The organoid may have an environment that is allowed to interact with the surrounding environment during the cell growth process. Accordingly, in the present invention, "3D skin organoid" can be an excellent model for observing the development and treatment process of a therapeutic agent for a disease by almost simulating a skin layer that actually interacts in vivo.

본 발명에서는 전신경화증 환자 iPSC 유래 케라틴세포와 섬유아세포를 3차원 배양하여 제조한 3D 피부 오가노이드는 기존의 2D 세포 배양 시스템을 이용할 경우 발생하는 전신경화증 관련 콜라겐의 축적과 분해과정을 밝히는데 공간적, 시간적 제한을 극복할 수 있다. 콜라겐 축적 여부 등을 염색으로 확인하기 쉬우며, 나아가 이를 마우스 피부에 추가 이식하여 인간화 마우스 모델을 제작함으로써 전신경화증 질환 모델로서 인체 내 환경과 유사하고, 정교하게 재현할 수 있는 장점이 있다.In the present invention, 3D skin organoids prepared by three-dimensional culture of keratinocytes and fibroblasts derived from iPSC in patients with systemic sclerosis are spatial and temporal in revealing the accumulation and decomposition of collagen related to systemic sclerosis that occurs when using the existing 2D cell culture system. Limitations can be overcome. It is easy to check whether collagen accumulation or the like is stained, and further, it is further transplanted into the mouse skin to produce a humanized mouse model, which is a systemic sclerosis disease model, similar to the environment in the human body, and is capable of accurately reproducing.

따라서, 본 발명의 3D 피부 오가노이드 또는 3D 피부 오가노이드가 이식된 인간화 동물 모델은 전신경화증 질환 모델로서 이용될 수 있다.Therefore, the humanized animal model in which the 3D skin organoid or 3D skin organoid of the present invention is implanted can be used as a model of systemic sclerosis disease.

본 발명의 구체적인 일 실시예에서는, 상기 과정을 통해 제작된 3D 피부 오가노이드에서 정상인 iPSC 유래 섬유아세포에 비해 섬유화 마커인 α-SMA 및 콜라겐 발현율이 높고, 정상에 비해 3D 섬유아세포층의 두께가 증가된 것을 확인하였다. 나아가, 본 발명의 3D 피부 오가노이드(3D skin organoid; iSO)를 마우스에 이식하였을 때 정상인 iSO를 이식한 마우스 대비 피부조직의 두께가 증가되어 있고, 콜라겐과 α-SMA의 발현이 증가된 것을 확인할 수 있었다(도 5). 이를 통해, 본 발명의 3D 피부 오가노이드 또는 이를 이식한 인간화 동물 모델이 질환 메커니즘 및 새로운 치료제 개발을 위한 새로운 질환 모델로 이용될 수 있음을 알 수 있었다.In a specific embodiment of the present invention, in the 3D skin organoid produced through the above process, the expression rate of α-SMA and collagen, which is a fibrosis marker, is higher than that of normal iPSC-derived fibroblasts, and the thickness of the 3D fibroblast layer is increased compared to normal. Was confirmed. Furthermore, when the 3D skin organoid (iSO) of the present invention was transplanted into a mouse, it was confirmed that the thickness of the skin tissue was increased and the expression of collagen and α-SMA was increased compared to a mouse implanted with normal iSO. Could (Fig. 5). Through this, it was found that the 3D skin organoid of the present invention or a humanized animal model implanted with the same can be used as a new disease model for developing disease mechanisms and new therapeutic agents.

본 발명의 다른 하나의 양태는, (a) 전신경화증(Systemic sclerosis; SSc) 환자 유래 유도만능줄기세포(induced pluripotent stem cell; iPSC)를 케라틴세포 및 섬유아세포로 분화시킨 후 상기 케라틴세포 및 섬유아세포를 3차원 배양하여 3D 피부 오가노이드(3D skin organoid)를 제조하는 단계; (b) 상기 3D 피부 오가노이드에 콜라겐 축적을 억제하는 후보 물질을 처리하는 단계; (c) 상기 후보 물질이 처리된 3D 피부 오가노이드에서 콜라겐 축적 수준을 측정하는 단계; 및 (d) 상기 (c) 단계에서 측정된 콜라겐 축적 수준이 후보 물질이 처리되지 않은 3D 피부 오가노이드에 비해 감소된 경우, 상기 후보물질을 전신경화증 치료제로 판정하는 단계를 포함하는, 전신경화증 치료제의 스크리닝 방법에 관한 것이다.Another aspect of the present invention, (a) systemic sclerosis (Systemic sclerosis; SSc) patient induced induced pluripotent stem cells (iPSC) after differentiation into keratinocytes and fibroblasts, the keratinocytes and fibroblasts 3D culture to prepare a 3D skin organoid; (b) treating the 3D skin organoid with a candidate substance that inhibits collagen accumulation; (c) measuring collagen accumulation level in the 3D skin organoid treated with the candidate substance; And (d) when the level of collagen accumulation measured in step (c) is reduced compared to 3D skin organoids in which the candidate substance is not treated, determining the candidate substance as a therapeutic agent for systemic sclerosis. It relates to a screening method.

본 발명의 용어 "콜라겐 축적"은 다양한 조직의 구조 및 기능을 변화시키는 손상 (injury) 또는 염증에 따른 콜라겐 매트릭스의 비정상적인 축적을 말한다. 이는 정상 환경하에 기관 및 조직에서 자연적으로 발생되는 것이지만 과도하게 발생될 수 있고, 질병을 수반하거나 질병의 원인이 될 수 있다. 전신경화증의 대부분의 병인학은 정상 조직을 대체하는 콜라겐 매트릭스의 과도한 축적을 포함한다.The term "collagen accumulation" of the present invention refers to abnormal accumulation of collagen matrix due to injury or inflammation that changes the structure and function of various tissues. It is naturally occurring in organs and tissues under normal circumstances, but it can occur excessively, and may be accompanied by disease or cause disease. Most etiology of systemic sclerosis involves excessive accumulation of collagen matrix replacing normal tissue.

본 발명에서 사용된 용어 "후보 물질(test agent)"은 임의의 물질(substance), 분자(molecule), 원소(element), 화합물(compound), 실재물(entity) 또는 이들의 조합을 포함한다. 예를 들어, 이들로 한정되지는 않으나, 단백질, 폴리펩티드, 소 유기분자(small organic molecule), 다당류(polysaccharide), 폴리뉴클레오티드 등을 포함한다. 또한, 천연 산물(natural product), 합성 화합물 또는 2개 이상의 물질의 조합일 수도 있다.The term "test agent" as used herein includes any substance, molecule, element, compound, entity or combinations thereof. For example, but not limited to, proteins, polypeptides, small organic molecules, polysaccharides, polynucleotides, and the like. It may also be a natural product, a synthetic compound, or a combination of two or more substances.

본 발명의 전신경화증 질환 모델인 섬유아세포, 케라틴세포, 또는 3D 피부 오가노이드에서 α-SMA의 발현 또는 활성이 감소되며 콜라겐 축적이 감소할 경우 섬유화가 억제된다. 따라서 본 발명의 섬유아세포, 케라틴세포 또는 3D 피부 오가노이드에서 α-SMA의 발현 또는 이의 유전자의 mRNA의 발현 수준을 감소시키고 콜라겐 축적을 억제하는 제제는 전신경화증의 예방 또는 치료용 제제로서 사용될 수 있다.In the systemic sclerosis disease model of the present invention, the expression or activity of α-SMA is reduced in fibroblasts, keratinocytes, or 3D skin organoids, and fibrosis is inhibited when collagen accumulation decreases. Therefore, an agent that reduces the expression level of mRNA of α-SMA or mRNA of its gene in fibroblasts, keratinocytes or 3D skin organoids of the present invention and inhibits collagen accumulation can be used as an agent for the prevention or treatment of systemic sclerosis. .

본 발명에 사용된 용어 "단백질 발현 수준 측정"이란 섬유증 질환의 콜라겐 축적에 영향을 미치는 α-SMA의 발현 정도를 확인하는 과정으로 단백질의 양을 측정한다. 구체적으로 α-SMA 유전자로부터 발현되는 단백질에 특이적으로 결합하는 항체 또는 앱타머 등일 수 있으나, 이에 제한되지 않는다. 이러한 항체는 다클론 항체, 단일클론 항체 또는 항원 결합성을 갖는 것이면 상기 항체의 단편들도 본 발명의 항체에 포함된다. 나아가, 본 발명의 항체에는 인간화 항체 등의 특수 항체 및 인간 항체 등도 포함하며, 신규한 항체 외에 이미 당해 기술분야에서 공지된 항체들도 포함될 수 있다. 상기 항체는 α-SMA 유전자로부터 발현되는 단백질을 특이적으로 인식하는 결합의 특성을 갖는 한, 2개의 중쇄와 2개의 경쇄의 전체 길이를 가지는 완전한 형태뿐만 아니라, 항체 분자의 기능적인 단편을 포함한다. 항체의 분자의 기능적인 단편이란, 적어도 항원 결합 기능을 보유하고 있는 단편을 뜻하며, Fab, F (ab'), F (ab')2 및 Fv 등이 있으나, 이에 제한되는 것은 아니다.As used in the present invention, the term "measurement of protein expression level" refers to the process of determining the expression level of α-SMA that affects the accumulation of collagen in fibrotic diseases and measures the amount of protein. Specifically α-SMA It may be an antibody or aptamer that specifically binds to a protein expressed from a gene, but is not limited thereto. Such antibodies are polyclonal antibodies, monoclonal antibodies, or fragments of the antibodies, as long as they have antigen binding properties, are also included in the antibodies of the present invention. Furthermore, the antibodies of the present invention include special antibodies such as humanized antibodies, human antibodies, and the like, and in addition to novel antibodies, antibodies already known in the art may also be included. The antibody is α-SMA As long as it has the properties of binding specifically recognizing a protein expressed from a gene, it includes functional fragments of antibody molecules, as well as a complete form with the full length of two heavy and two light chains. The functional fragment of the molecule of the antibody means a fragment having at least an antigen-binding function, and includes, but is not limited to, Fab, F (ab'), F (ab')2, and Fv.

본 발명의 목적상, 상기 단백질 발현 수준 측정으로는 단백질 칩 분석, 면역측정법, 리간드 바인딩 어세이, MALDI-TOF(Matrix Desorption/Ionization Time of Flight Mass Spectrometry)분석, SELDI-TOF(Surface Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry)분석, 방사선 면역분석, 방사 면역 확산법, 오우크테로니 면역 확산법, 로케트 면역전기영동, 조직면역 염색, 보체 고정 분석법, 2차원 전기영동 분석, 액상 크로마토그래피-질량분석(liquid chromatography-Mass Spectrometry, LCMS), LC-MS/MS(liquid chromatography-Mass Spectrometry/ Mass Spectrometry), 웨스턴 블랏, 및 ELISA(enzyme linked immunosorbentassay) 등이 있으나 이에 제한되는 것은 아니다.For the purpose of the present invention, the protein expression level measurement includes protein chip analysis, immunoassay, ligand binding assay, MALDI-TOF (Matrix Desorption/Ionization Time of Flight Mass Spectrometry) analysis, SELDI-TOF (Surface Enhanced Laser Desorption/ Ionization Time of Flight Mass Spectrometry), radioimmunoassay, radioimmunoassay, Oukteroni immunodiffusion, rocket immunoelectrophoresis, tissue immunostaining, complement fixation, two-dimensional electrophoresis, liquid chromatography-mass spectrometry ( liquid chromatography-Mass Spectrometry (LCMS), liquid chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS), western blot, and enzyme linked immunosorbentassay (ELISA), but are not limited thereto.

본 발명에 사용된 용어 "mRNA 발현 수준 측정"이란 전신경화증의 콜라겐 축적에 영향을 미치는 α-SMA의 유전자들의 발현 정도를 확인하는 과정으로 mRNA의 양을 측정한다. 이를 위한 분석 방법으로는 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응 (Competitive RT-PCR), 실시간 역전사 중합효소반응 (Real-time RTPCR), RNase 보호 분석법 (RPA; RNase protection assay), 노던 블랏팅 (Northern blotting), DNA 칩 등이 있으나 이에 제한되는 것은 아니다.The term "measurement of mRNA expression level" used in the present invention is a process of determining the expression level of the genes of α-SMA affecting collagen accumulation in systemic sclerosis and measuring the amount of mRNA. Analysis methods for this include reverse transcriptase reaction (RT-PCR), competitive reverse transcriptase reaction (Competitive RT-PCR), real-time reverse transcriptase reaction (Real-time RTPCR), and RNase protection assay (RPA). , Northern blotting, DNA chips, etc., but are not limited thereto.

상기 유전자의 mRNA 수준을 측정하는 제제는 구체적으로 α-SMA유전자에 특이적으로 결합하는 프라이머 쌍, 프로브 또는 안티센스 뉴클레오티드를 포함할 수 있으며, 상기 유전자들의 핵산 정보가 GeneBank 등에 알려져 있으므로 당업자는 상기 서열을 바탕으로 이들 유전자의 특정 영역을 특이적으로 증폭하는 프라이머 또는 안티센스뉴클레오티드를 디자인할 수 있다.The agent for measuring the mRNA level of the gene may specifically include a primer pair, a probe or an antisense nucleotide that specifically binds to the α-SMA gene, and the nucleic acid information of the genes is known to GeneBank, etc. Based on this, primers or antisense nucleotides that specifically amplify specific regions of these genes can be designed.

본 발명의 또 다른 양태는 랄록시펜(raloxifene) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 전신경화증(Systemic sclerosis; SSc) 예방, 개선 또는 치료용 조성물에 관한 것이다.Another aspect of the present invention relates to a composition for preventing, improving or treating systemic sclerosis (SSc) containing raloxifene or a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명에서, "예방"은 조성물의 투여로 발병을 억제하거나 발병을 지연시키는 모든 행위를 의미한다.In the present invention, "prophylaxis" refers to all actions that inhibit or delay the onset of the administration of the composition.

본 발명에서 "개선" 또는 "치료"는 조성물의 투여로 상기 질환의 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.In the present invention, "improvement" or "treatment" refers to all actions in which symptoms of the disease are improved or beneficially changed by administration of the composition.

본 발명의 구체적인 일 실시예에서는 본 발명에서 새롭게 확립한 전신경화증 피부 모델을 이용하여 전신경화증 치료제를 발굴하고자 하였으며, 먼저 콜라겐 축적을 감소시키는지 확인하기 위하여 FDA 승인된 800개의 약물을 iPSC-F에 처리 후 세포 증식도를 감소시키는 약물을 1차 스크리닝하였고, 1차 선별된 약물을 이용하여 총 콜라겐의 발현 감소 및 α-SMA 발현이 감소됨을 추가 확인하였다(도 6). 이를 통해, α-SMA 발현을 억제하는 닥티노마이신과 랄록시펜이 콜라겐 축적을 매우 우수하게 억제하는바, 섬유증 질환의 예방 또는 치료 효과를 가짐을 알 수 있었다.In a specific embodiment of the present invention, an attempt was made to discover a therapeutic agent for systemic sclerosis using a newly established systemic sclerosis skin model in the present invention. First, 800 drugs approved by the FDA were identified in iPSC-F to confirm that collagen accumulation was reduced. After treatment, the drug for reducing cell proliferation was first screened, and it was further confirmed that the expression of total collagen and the expression of α-SMA were reduced by using the first selected drug (FIG. 6 ). Through this, it was found that dactinomycin and raloxifene, which inhibit α-SMA expression, inhibit collagen accumulation very well, and thus have a prophylactic or therapeutic effect on fibrosis disease.

또한, 랄록시펜의 전신경화증 치료 효과를 검증하기 위하여 랄록시펜을 TGF-β1에 의해 세포 증식도가 증가된 섬유아세포에 처리하였을 때 세포 증식도가 감소하고, 3D 섬유아세포층의 두께가 감소되며 α-SMA 발현 및 콜라겐 발현이 감소함을 확인하였다(도 7). 나아가, 전신경화증 동물 모델인 Bleomycin 모델에서 랄록시펜 처리에 의해 섬유화 인자 마커인 COL1A1, COL3A1, ACTA2의 발현이 감소하고, 증가되었던 피부조직의 두께가 감소하며 폐섬유화가 감소됨을 확인하였다(도 8).In addition, in order to verify the effect of Raloxifen on the treatment of systemic sclerosis, cell proliferation decreases when treated with fibroblasts having increased cell proliferation by TGF-β1, the thickness of the 3D fibroblast layer decreases, and α-SMA It was confirmed that expression and collagen expression decreased (FIG. 7 ). Furthermore, it was confirmed that the expression of the fibrosis factor markers COL1A1, COL3A1, and ACTA2 was reduced by treatment with raloxifene in the Bleomycin model, which is an animal model of systemic sclerosis, and the increased thickness of skin tissue was reduced and lung fibrosis was reduced (FIG. 8 ).

이에, 본 발명은 랄록시펜(raloxifene) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 전신경화증(Systemic sclerosis; SSc) 예방 또는 치료용 약학적 조성물을 제공할 수 있다.Accordingly, the present invention can provide a pharmaceutical composition for preventing or treating systemic sclerosis (SSc) containing raloxifene or a pharmaceutically acceptable salt thereof as an active ingredient.

구체적으로, 본 발명의 전신경화증 치료용 조성물의 유효성분인 랄록시펜(raloxifene)은 랄록시펜의 약학적으로 허용 가능한 염을 포함하는 개념으로 사용되며, 하기 화학식 1로 표시되는 화합물일 수 있다.Specifically, the active ingredient of the composition for the treatment of systemic sclerosis of the present invention, raloxifene (raloxifene) is used as a concept containing a pharmaceutically acceptable salt of raloxifene, it may be a compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112019019585631-pat00001
Figure 112019019585631-pat00001

상기 R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬기로 인접한 질소원자와 함께 질소함유 헤테로사이클기를 형성할 수 있다.Each of R1 and R2 may independently form a nitrogen-containing heterocycle group with a nitrogen atom adjacent to an alkyl group having 1 to 5 carbon atoms.

본 발명의 랄록시펜은 랄록시펜과 동일한 효능을 갖는 범위 내에서 랄록시펜의 수화물, 랄록시펜 유도체 등을 포함할 수 있고, 이의 용매 화합물이나 입체 이성질체 또한 포함할 수 있다.The raloxifene of the present invention may include hydrates of raloxifene, raloxifene derivatives, and the like within a range having the same efficacy as raloxifene, and may also include solvent compounds or stereoisomers thereof.

상기 랄록시펜의 수득방법은 특별히 한정되지 않으며, 천연으로부터 분리되거나 당업계에 공지된 화학적 합성법으로 제조하거나 시판되는 것을 사용할 수 있다.The method for obtaining the raloxifene is not particularly limited, and may be used that is isolated from nature or manufactured or commercially available by a chemical synthesis method known in the art.

본 발명에서, 용어 "약학적으로 허용 가능한 염" 또는 "이의 염"은 유리산(free acid)에 의해 형성된 산 부가염일 수 있다. 산 부가염은 통상의 방법, 예를 들어 화합물을 과량의 산 수용액에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들어 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조할 수 있다. 또한, 동 몰량의 화합물 및 물 중의 산 또는 알코올 (예를 들어, 글리콜 모노메틸 에테르)을 가열하고, 이어서 상기 혼합물을 증발시켜 건조시키거나, 또는 석출된 염을 흡인 여과시킬 수 있다.In the present invention, the term “pharmaceutically acceptable salt” or “salt thereof” may be an acid addition salt formed by free acid. Acid addition salts can be prepared by conventional methods, for example, by dissolving the compound in an excess of aqueous acid solution and precipitating the salt using a water miscible organic solvent such as methanol, ethanol, acetone or acetonitrile. In addition, the same molar amount of the compound and the acid or alcohol in water (eg, glycol monomethyl ether) can be heated and then the mixture is evaporated to dryness or the precipitated salt can be suction filtered.

상기 유리산으로는 무기산 또는 유기산을 사용할 수 있다 상기 무기산의 비제한적인 예로는 염산, 인산, 황산, 질산, 주석산 등을 사용할 수 있으며, 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다. As the free acid, an inorganic acid or an organic acid may be used. As a non-limiting example of the inorganic acid, hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, and tartaric acid may be used, and these may be used alone or by mixing two or more.

상기 랄록시펜의 염은, 달리 지시되지 않는 한, 상기 랄록시펜의 화합물에 존재할 수 있는 산성 또는 염기성 기의 염을 모두 포함할 수 있다. 예를 들어 상기 랄록시펜의 염으로는 하이드록시기의 나트륨, 칼슘 및 칼륨염 등이 포함될 수 있고, 아미노기의 염으로는 하드로브로마이드, 황산, 수소 황산염, 인산염, 수소 인산염, 이수소 인산염, 아세테이트, 숙시네이트, 시트레이트, 타르트레이트, 락테이트, 만델레이트, 메탄술포네이트 (메실레이트) 및 p-톨루엔술포네이트 (토실레이트)염 등을 들 수 있으며 당업계에서 알려진 염의 제조방법을 통하여 제조될 수 있다.The salt of the raloxifene may include all salts of acidic or basic groups that may be present in the compound of the raloxifene, unless otherwise indicated. For example, the salt of the raloxifene may include sodium, calcium and potassium salts of the hydroxy group, and the salt of the amino group may include hard bromide, sulfuric acid, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogen phosphate, acetate, Succinate, citrate, tartrate, lactate, mandelate, methanesulfonate (mesylate) and p-toluenesulfonate (tosylate) salts, and the like, and may be prepared through a method of preparing a salt known in the art. have.

또한 본 발명에 따른 전신경화증의 예방 또는 치료용 조성물은 약학적으로 유효한 양의 랄록시펜 또는 그의 염을 단독으로 포함하거나 하나 이상의 약학적으로 허용되는 담체, 부형제 또는 희석제를 포함할 수 있다. 상기에서 약학적으로 유효한 양이란 전신경화증의 증상을 예방, 개선 및 치료하기에 충분한 양을 말한다.In addition, the composition for preventing or treating systemic sclerosis according to the present invention may contain a pharmaceutically effective amount of raloxifene or a salt thereof alone, or may include one or more pharmaceutically acceptable carriers, excipients, or diluents. The pharmaceutically effective amount in the above refers to an amount sufficient to prevent, improve and treat symptoms of systemic sclerosis.

본 발명에 따른 랄록시펜 또는 그의 염의 약학적으로 유효한 양은 몸무게가 60kg인 성인 환자를 기준으로 할 때, 일반적으로 일반적으로 0.001 ~ 1,000 ㎎/일이며, 바람직하게는 0.01 ~ 500 ㎎/일이다. 그러나 상기 약학적으로 유효한 양은 전신경화증 증상의 정도, 환자의 연령, 체중, 건강상태, 성별, 투여 경로 및 치료기간 등에 따라 적절히 변화될 수 있다.The pharmaceutically effective amount of raloxifene or a salt thereof according to the present invention is generally 0.001 to 1,000 mg/day, and preferably 0.01 to 500 mg/day, based on an adult patient weighing 60 kg. However, the pharmaceutically effective amount may be appropriately changed according to the degree of symptoms of systemic sclerosis, the patient's age, weight, health status, sex, administration route, and treatment period.

또한, 상기에서 “약학적으로 허용되는”이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.In addition, “pharmaceutically acceptable” in the above refers to a composition that is physiologically acceptable and does not generally cause an allergic reaction such as gastrointestinal disorder, dizziness or similar reaction when administered to a human. Examples of the carrier, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, Polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In addition, fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.

또한, 본 발명의 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. In addition, the compositions of the present invention can be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.

경구 투여용 제형으로는 예를 들면 정제, 환제, 경/연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제, 엘릭시르제 등이 있는데, 이들 제형은 유효성분 이외에 희석제(예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로즈 및/ 또는 글리신), 활택제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리에틸렌 글리콜)를 함유하고 있다. 정제는 또한 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및/또는 폴리비닐피롤리딘과 같은 결합제를 함유할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제 또는 비등 혼합물 및/또는 흡수제, 착색제, 향미제, 및 감미제를 함유할 수 있다.Formulations for oral administration include, for example, tablets, pills, hard/soft capsules, liquids, suspensions, emulsifiers, syrups, granules, elixirs, etc., and these formulations include diluents (e.g. lactose, dext, in addition to active ingredients). Rose, sucrose, mannitol, sorbitol, cellulose and/or glycine), lubricants (eg silica, talc, stearic acid and its magnesium or calcium salts and/or polyethylene glycols). Tablets may also contain a binder such as magnesium aluminum silicate, starch paste, gelatin, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidine, and optionally, such as starch, agar, alginic acid or its sodium salt. Disintegrants or boiling mixtures and/or absorbents, colorants, flavors, and sweeteners.

본 발명의 랄록시펜 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 약학적 조성물은 비경구 투여할 수 있으며, 비경구 투여는 피하주사, 정맥주사, 근육 내 주사 또는 흉부 내 주사를 주입하는 방법에 의한다. 이때, 비경구 투여용 제형으로 제제화하기 위하여 랄록시펜 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 약학적 조성물을 안정제 또는 완충제와 함께 물에 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알 단위 투여형으로 제조할 수 있다. 상기 조성물은 멸균되고/되거나 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제, 및 기타 치료적으로 유용한 물질을 함유할 수 있으며, 통상적인 방법인 혼합, 과립화 또는 코팅 방법에 따라 제제화할 수 있다.The pharmaceutical composition containing the raloxifene of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient may be administered parenterally, and parenteral administration is a method of injecting subcutaneous injection, intravenous injection, intramuscular injection, or intrathoracic injection. Depends on At this time, in order to formulate a formulation for parenteral administration, a pharmaceutical composition containing raloxifene or a pharmaceutically acceptable salt thereof as an active ingredient is mixed with water with a stabilizer or a buffer to prepare a solution or suspension, and this is an ampoule or vial. It can be prepared in unit dosage form. The composition may be sterile and/or contain preservatives, stabilizers, hydrating or emulsifying accelerators, adjuvants such as salts and/or buffers for osmotic pressure control, and other therapeutically useful substances, conventional methods of mixing, granulation It can be formulated according to the chemical or coating method.

본 발명에 따른 전신경화증의 예방 또는 치료용 조성물은 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있으며, 활성 성분의 투여량은 투여 경로, 환자의 연령, 성별, 체중 및 환자의 중증도 등의 여러 인자에 따라 적절히 선택될 수 있고, 본 발명에 따른 전신경화증의 예방 또는 치료용 조성물은 전신경화증의 증상을 예방, 개선 또는 치료하는 효과를 가지는 다른 화합물과 병행하여 투여할 수 있다.The composition for the prevention or treatment of systemic sclerosis according to the present invention can be administered through various routes including oral, transdermal, subcutaneous, intravenous or intramuscular, and the dosage of the active ingredient is the route of administration, age, sex, weight of the patient and It may be appropriately selected according to various factors such as the severity of the patient, and the composition for preventing or treating systemic sclerosis according to the present invention may be administered in combination with other compounds having an effect of preventing, improving or treating symptoms of systemic sclerosis. have.

본 발명의 일실시예에서는, 닥티노마이신(Dactinomycin)이 α-SMA의 발현을 감소시키고, 콜라겐 생성을 억제하며 탁티노마이신을 처리하면 TGF-β1에 의해 증가된 세포의 증식도가 감소됨을 확인하였다(도 6).In one embodiment of the present invention, it is confirmed that Dactinomycin decreases the expression of α-SMA, inhibits collagen production, and treats Tactinomycin to reduce the proliferation of cells increased by TGF-β1. (Fig. 6).

따라서, 본 발명의 전신경화증 예방 또는 치료용 조성물은 유효성분으로 닥티노마이신을 추가로 포함할 수 있다.Therefore, the composition for preventing or treating systemic sclerosis of the present invention may further include dactinomycin as an active ingredient.

다른 측면에서, 본 발명은 또한, 랄록시펜(raloxifene) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 전신경화증(Systemic sclerosis; SSc) 예방 또는 개선을 위한 건강기능식품을 제공한다.In another aspect, the present invention also provides a health functional food for preventing or improving systemic sclerosis (SSc) containing raloxifene or a pharmaceutically acceptable salt thereof as an active ingredient.

상기 랄록시펜의 구체적인 내용은 전술한 바와 같다.The specific contents of the raloxifene are as described above.

본 발명에서 용어 "건강기능식품"은 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 정제, 캅셀, 분말, 과립, 액상 및 환 등의 형태로 제조 및 가공한 식품을 말한다. 여기서 '기능성'이라 함은 인체의 구조 및 기능에 대하여 영양소를 조절하거나 생리학적 작용 등과 같은 보건용도에 유용한 효과를 얻는 것을 의미한다. 본 발명의 건강기능식품은 당 업계에서 통상적으로 사용되는 방법에 의하여 제조가능하며, 상기 제조 시에는 당 업계에서 통상적으로 첨가하는 원료 및 성분을 첨가하여 제조할 수 있다. 또한 상기 건강기능식품의 제형 또한 건강기능식품으로 인정되는 제형이면 제한 없이 제조될 수 있다. In the present invention, the term "health functional food" refers to food prepared and processed in the form of tablets, capsules, powders, granules, liquids and pills, etc. using ingredients or ingredients having useful functionality for the human body. Here, the term'functional' refers to obtaining a useful effect for health use such as adjusting nutrients or physiological effects on the structure and function of the human body. The health functional food of the present invention can be manufactured by a method conventionally used in the art, and may be prepared by adding raw materials and ingredients conventionally added in the art. In addition, the formulation of the health functional food can also be prepared without limitation as long as the formulation is recognized as a health functional food.

본 발명에 따른 전신경화증의 예방 또는 개선용 건강기능식품에 있어서, 상기 랄록시펜을 건강기능식품의 첨가물로 사용하는 경우 이를 그대로 첨가하거나 다른 식품 또는 식품성분과 함께 사용할 수 있고, 통상적인 방법에 따라 적절하게 사용할 수 있다. 유효 성분의 혼합양은 예방, 건강 또는 치료 등의 각 사용 목적에 따라 적합하게 결정할 수 있다.In the health functional food for preventing or improving systemic sclerosis according to the present invention, when the raloxifene is used as an additive of the health functional food, it can be added as it is or used with other foods or food ingredients, and is suitable according to a conventional method Can be used. The mixing amount of the active ingredient can be appropriately determined according to each purpose of use, such as prevention, health, or treatment.

건강기능식품의 제형은 산제, 과립제, 환, 정제, 캡슐제의 형태뿐만 아니라 일반 식품 또는 음료의 형태 어느 것이나 가능하다.The formulation of the dietary supplement can be in the form of powders, granules, pills, tablets, capsules, as well as in the form of regular food or beverages.

상기 식품의 종류에는 특별히 제한은 없고, 상기 물질을 첨가할 수 있는 식품의 예로는 육류, 소세지, 빵, 쵸콜렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 식품을 모두 포함할 수 있다.The type of the food is not particularly limited, and examples of foods to which the substance can be added include dairy products including meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gums, and ice cream. , Various soups, beverages, teas, drinks, alcoholic beverages and vitamin complexes, and may include all foods in the ordinary sense.

유효 성분의 혼합량은 그의 사용 목적(예방 또는 개선용)에 따라 적합하게 결정될 수 있다. 일반적으로, 건강식품 중의 상기 화합물의 양은 전체 식품 중량의 0.1 내지 90 중량부로 가할 수 있다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있으며, 안전성 면에서 아무런 문제가 없기 때문에 유효성분은 상기 범위 이상의 양으로도 사용될 수 있다.The mixing amount of the active ingredient can be appropriately determined according to its purpose of use (for prevention or improvement). In general, the amount of the compound in the health food can be added to 0.1 to 90 parts by weight of the total food weight. However, in the case of long-term intake for health and hygiene purposes or for health control purposes, the amount may be below the above range, and since there is no problem in terms of safety, the active ingredient may be used in an amount above the above range.

본 발명에 따른 기능성식품 중 음료는 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로 함유할 수 있다. 상술한 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드, 말토스, 슈크로스와 같은 디사카라이드 및 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드, 자일리톨, 소르비톨, 에리트리톨 등의 당알콜 일 수 있다 감미제로서는 타우마틴, 스테비아 추출물과 같은 천연 감미제나, 사카린, 아스파르탐과 같은 합성 감미제 등을 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명에 따른 음료 100 mL당 약 0.01 ~ 0.04g, 바람직하게는 약 0.02 ~ 0.03 g일 수 있다.Among the functional foods according to the present invention, the beverage may contain various flavoring agents or natural carbohydrates, etc., as additional components, like a conventional beverage. The natural carbohydrates described above may be monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, and polysaccharides such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. Natural sweeteners such as Martin and Stevia extracts, synthetic sweeteners such as saccharin and aspartame can be used. The ratio of the natural carbohydrate may be about 0.01 to 0.04 g per 100 mL of the beverage according to the present invention, preferably about 0.02 to 0.03 g.

상기 외에 본 발명에 따른 전신경화증의 예방 또는 개선용 건강기능식품은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제를 함유 할 수 있다. 그 밖에 본 발명의 전신경화증의 예방 또는 개선용 건강기능식품 조성물은 천연 과일쥬스, 과일쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 혼합하여 사용할 수 있다. 이러한 첨가제의 비율은 제한되지 않으나 본 발명의 기능성식품 100 중량부 대비 0.01 ~ 0.1 중량부의 범위에서 선택되는 것이 일반적이다.In addition to the above, the health functional food for preventing or improving systemic sclerosis according to the present invention includes various nutrients, vitamins, electrolytes, flavoring agents, coloring agents, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloidal thickeners, and pH adjusting agents , Stabilizers, preservatives, glycerin, alcohol, carbonic acid used in carbonated beverages. In addition, the health functional food composition for preventing or improving systemic sclerosis of the present invention may contain natural fruit juice, fruit juice beverage and fruit for the production of vegetable beverages. These ingredients can be used independently or in combination. The ratio of these additives is not limited, but is generally selected from 0.01 to 0.1 parts by weight compared to 100 parts by weight of the functional food of the present invention.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited to these examples.

전신경화증(Systemic Sclerosis, SSc) 환자 특이적인 유도만능줄기세포(induced pluripotent stem cells, iPSCs)의 제조 및 특성 분석 Preparation and characterization of induced pluripotent stem cells (iPSCs) specific to systemic sclerosis (SSc) patients

<1-1> 환자 모집 및 유도만능줄기세포의 분리<1-1> Recruitment of patients and isolation of induced pluripotent stem cells

전신경화증 환자의 혈액은 서울 성모 병원의 류마티스 내과에서 획득했다. 전혈을 인산완충 식염수 (PBS)로 희석하고 피콜농도구배(Ficoll gradient)를 통해 850 xg에서 30분간 원심 분리 하였다. 말초혈액 세포(Peripheral Blood Cell, PBMC) 를 수집 및 동결 시켰다. 실험에 사용하기 전에 PBMC를 해동시키고 CC110 사이토카인 칵테일(STEMCELL)이 보충 된 StemSpan 배양액(STEM CELL Technological, Vacouver, British Colubia, Canada)에 재현탁했다. 리프로그래밍 전에 세포를 5% CO2, 37℃에서 5일 동안 유지시켰다. 이 연구는 서울 성모 병원 가톨릭 대학교의 기관 검토위원회(The institutional Review Board(IRB) of the Catholic University of Korea) 에 의해 승인 받았다.Blood from patients with systemic sclerosis was obtained from Rheumatology Internal Medicine at St. Mary's Hospital in Seoul. Whole blood was diluted with phosphate buffered saline (PBS) and centrifuged at 850 xg for 30 minutes through a Ficoll gradient. Peripheral Blood Cells (PBMCs) were collected and frozen. PBMCs were thawed prior to use in the experiment and resuspended in StemSpan culture (STEM CELL Technological, Vacouver, British Colubia, Canada) supplemented with CC110 cytokine cocktail (STEMCELL). Cells were maintained at 5% CO 2 , 37° C. for 5 days prior to reprogramming. The study was approved by The Institutional Review Board (IRB) of the Catholic University of Korea, St. Mary's Hospital in Seoul.

<1-2> 전신경화증 환자 유래 유도만능줄기세포의 리프로그래밍<1-2> Reprogramming of induced pluripotent stem cells from systemic sclerosis patients

유도만능줄기세포(induced pluripotent stem cells, iPSCs)는 전신경화증 환자의 혈액에서 말초혈액 세포(Peripheral Blood Cell, PBMC)를 분리하여 Yamanaka 펙터를 포함하는 센다이(Sendai) 바이러스를 처리하여 iPSC를 획득하였다. 일반적으로 유도만능 줄기세포 리프로그래밍은 체세포에 리프로그래밍에 필요한 인자를 인위적으로 과발현시켜 만능줄기세포를 유도해내는 기술을 의미한다. 상기 유전자를 과발현시키는 방법으로는 바이러스, 플라스미드 벡터, mRNA, 단백질 등이 있다. 3x105 개의 PBMC를 24-웰 플레이트(Well Plate)에 도말하였다. CytoTune-iPSC 센다이 리프로그래밍 키트를 사용하여 리프로그래밍을 유도했다. 바이러스 형질도입은 3x105개의 세포당 7.5의 다중성 감염으로 수행되었다. 바이러스를 처리 한 뒤 1,160 xg, 37℃에서 30분간 원심분리 한 후 5% CO2, 37℃에서 배양 하였다. 다음날 세포를 비트로넥틴(Vitronectin; Life Technologies)으로 코팅된 24-웰 플레이트로 옮기고 1,160 xg, 37℃에서 10분간 원심분리 한 후 5% CO2, 37℃에서 배양 하였다. Essential 8(Life Technologies)을 1:1의 비율로 배양액을 첨가 하였다. 리프로그래밍된 세포는 일일 배양액 교환으로 Essential 8 배양액에서 유지 및 확장되었다.Induced pluripotent stem cells (iPSCs) isolated Peripheral Blood Cells (PBMCs) from the blood of patients with systemic sclerosis and treated with Sendai virus containing Yamanaka effector to obtain iPSCs. In general, induced pluripotent stem cell reprogramming refers to a technique for inducing pluripotent stem cells by artificially overexpressing factors required for reprogramming in somatic cells. Methods for overexpressing the gene include viruses, plasmid vectors, mRNA, and proteins. 3×10 5 PBMCs were plated on 24-well plates. Reprogramming was induced using the CytoTune-iPSC Sendai reprogramming kit. Virus transduction was performed with a multiplex infection of 7.5 per 3×10 5 cells. After treating the virus, the cells were centrifuged at 1,160 xg and 37°C for 30 minutes and then cultured at 5% CO 2 and 37°C. The next day, the cells were transferred to a 24-well plate coated with Vitronectin (Life Technologies), centrifuged at 1,160 xg, 37°C for 10 minutes, and then cultured at 5% CO 2 , 37°C. Essential 8 (Life Technologies) was added to the culture solution in a 1:1 ratio. Reprogrammed cells were maintained and expanded in Essential 8 culture by daily culture exchange.

<1-3> 세포 형태 확인<1-3> Cell morphology confirmation

리프로그래밍된 세포는 일일 배양액 교환으로 Essential 8 배양액에서 유지 및 확장되었다. 세포의 형태 확인에 적절한 콜로니를 얻기 위해 5x103 개의 세포를 비트로넥틴이 코팅된 6-웰 플레이트에 도말 하고 5일 동안 유지하여 iPSC 형태를 Leica DMi8 현미경을 사용하여 확인하였다 (도 1B).Reprogrammed cells were maintained and expanded in Essential 8 culture by daily culture exchange. To obtain a colony suitable for cell morphology, 5x10 3 cells were plated on a 6-well plate coated with Vitronectin and maintained for 5 days to confirm iPSC morphology using a Leica DMi8 microscope (FIG. 1B).

<1-4> AP 염색<1-4> AP staining

AP 염색(Alkaline Phosphatase staining)을 위해 상기 실시예 1-2를 통해 생성 및 유지된 iPSC를 5x103 개의 세포를 비트로넥틴이 코팅된 6-웰 플레이트에 도말 하고 5일 동안 확장하였다. 미분화 iPSC 콜로니의 염색은 알칼라인 포스파타아제 검출 키트 (Alkaline phosphatase detection kit; Millipore, Billerica, MA, USA)를 사용하여 수행하였다. 배양액을 제거하고, 4% 포름알데하이드(Paraformaldehyde)로 1-2분간 고정하였다. 남아있는 고정액을 0.05% Tween-20을 포함하는 PBS로 세척하였다. Fast Red Violet, 나프톨 AS-BI 인산염 용액 및 물을 2:1:1의 비율로 혼합하여 15분간 염색 하였다. 0.05% Tween-20을 포함하는 PBS로 세척한 뒤 PBS를 넣어 건조를 방지 하였다. 염색된 콜로니를 Leica DMi8 현미경을 사용하여 측정하였다. 상기 실험으로 iPSC의 전분화능을 확인하였다 (도 1C).IPSC generated and maintained through Example 1-2 above for AP staining (Alkaline Phosphatase staining) was spread on 5x10 3 cells in Vitronectin coated 6-well plate and expanded for 5 days. Staining of undifferentiated iPSC colonies was performed using an alkaline phosphatase detection kit (Millipore, Billerica, MA, USA). The culture was removed, and fixed with 4% formaldehyde for 1-2 minutes. The remaining fixative was washed with PBS containing 0.05% Tween-20. Fast Red Violet, naphthol AS-BI phosphate solution and water were mixed at a ratio of 2:1:1 and stained for 15 minutes. After washing with PBS containing 0.05% Tween-20, PBS was added to prevent drying. Stained colonies were measured using a Leica DMi8 microscope. This experiment confirmed the iPSC starch differentiation ability (FIG. 1C).

<1-5> 세포면역 염색<1-5> Cell immune staining

면역 형광 염색을 위해 상기 실시예 1-2를 통해 생성 및 유지된 iPSC를 5x103 개의 세포를 비트로넥틴이 코팅된 6-웰 플레이트에 도말 하고 5일 동안 확장하였다. 확장 후 PBS로 세척하고 4% 포름알데하이드로 30분간 고정하였다. 남은 고정액을 염화암모늄 용액으로 제거 한 뒤, 0.1% Triton X-100(BIOSESANG)을 처리하여 세포의 투과성을 증가 시켰다. 2% 소혈청 알부민(BSA)을 함유하는 PBS로 실온에서 30분 동안 세포를 차단한 뒤, 일차 항체를 하기의 희석 비율로 PBA에 희석하였다: OCT4(1/100; Santa Cruz, CA, USA), KLF4(1/250; Abcam, Cambridge, UK), SOX2(1/100; BioLegend, San Diego, CA, USA), TRA-1-60(1/100; Millipore), TRA-1-81(1/100; Millipore) 및 SSEA4(1/200; Millipore). 일차 항체를 실온에서 2시간 동안 배양 하였다. 핵 염색제로 DAPI를 사용하였다. 염색 후 세포를 세척하고 ProLong Antifade 시약을 사용하여 봉입하였다. Carl Zeiss 면역 형광 현미경으로 염색된 콜로니를 검출하였다.For immunofluorescence staining, iPSCs generated and maintained through Example 1-2 above were spread on 5x10 3 cells on a Vitronectin coated 6-well plate and expanded for 5 days. After expansion, washed with PBS and fixed with 4% formaldehyde for 30 minutes. After removing the remaining fixative with an ammonium chloride solution, 0.1% Triton X-100 (BIOSESANG) was treated to increase cell permeability. After blocking the cells for 30 minutes at room temperature with PBS containing 2% bovine serum albumin (BSA), the primary antibody was diluted in PBA at the following dilution ratio: OCT4 (1/100; Santa Cruz, CA, USA) , KLF4(1/250; Abcam, Cambridge, UK), SOX2(1/100; BioLegend, San Diego, CA, USA), TRA-1-60(1/100; Millipore), TRA-1-81(1 /100; Millipore) and SSEA4 (1/200; Millipore). Primary antibodies were incubated for 2 hours at room temperature. DAPI was used as a nuclear stain. After staining, the cells were washed and sealed using ProLong Antifade reagent. Colonies stained with a Carl Zeiss immunofluorescence microscope were detected.

그 결과, iPSC 마커인 SSEA4, OCT4, TRA-1-60, SOX2, TRA-1-81, KLF4의 발현을 IFA로 확인할 수 있었다(도 1D).As a result, expression of iPSC markers SSEA4, OCT4, TRA-1-60, SOX2, TRA-1-81, and KLF4 was confirmed by IFA (FIG. 1D).

<1-6> qRT-PCR 수행<1-6> Perform qRT-PCR

qRT-PCR을 위해, Trizol을 사용하여 total RNA를 추출하였고, Revert Aid TM First Strand cDNA Synthesis kit를 사용하여 cDNA를 합성하였다. 합성된 cDNA를 LightCycle 480 SYBR Green을 이용하여 qRT-PCR을 수행하였다. 사용한 프라이머를 [표 1]에 제시 하였다. 모든 실험은 3회 반복하였으며, 평균 사이클의 임계값은 내부대조로써 GAPDH을 평균화하기 위한 유전자 발현을 계산하기 위하여 사용되었다.For qRT-PCR, total RNA was extracted using Trizol, and cDNA was synthesized using the Revert Aid TM First Strand cDNA Synthesis kit. QRT-PCR was performed on the synthesized cDNA using LightCycle 480 SYBR Green. The primers used are shown in [Table 1]. All experiments were repeated three times, and the threshold of the average cycle was used to calculate gene expression for averaging GAPDH as an internal control.

전분화능 마커 유전자 확인을 위한 프라이머 서열Primer sequence for identification of starch potential marker gene 타겟 유전자Target gene 방향direction 염기서열(5'->3')Base sequence (5'->3') 서열번호Sequence number 크기size OCT4OCT4 ForwardForward ACCCCTGGTGCCGTGAAACCCCTGGTGCCGTGAA 1One 190190 ReverseReverse GGCTGAATACCTTCCCAAATAGGCTGAATACCTTCCCAAATA 22 SOX2SOX2 ForwardForward CAGCGCATGGACAGTTACCAGCGCATGGACAGTTAC 33 321321 ReverseReverse GGAGTGGGAGGAAGAGGTGGAGTGGGAGGAAGAGGT 44 NANOGNANOG ForwardForward AAAGGCAAACAACCCACTAAAGGCAAACAACCCACT 55 270270 ReverseReverse GCTATTCTTCGGCCAGTTGCTATTCTTCGGCCAGTT 66 LIN28LIN28 ForwardForward GTTCGGCTTCCTGTCCATGTTCGGCTTCCTGTCCAT 77 122122 ReverseReverse CTGCCTCACCCTCCTTCACTGCCTCACCCTCCTTCA 88 GAPDHGAPDH ForwardForward ACCCACTCCTCCACCTTTGAACCCACTCCTCCACCTTTGA 99 101101 ReverseReverse CTGTTGCTGTAGCCAAATTCGTCTGTTGCTGTAGCCAAATTCGT 1010

그 결과, iPSC marker인 OCT4, SOX2, NANOG, LIN28의 유전자 발현을 확인하였다(도 1E).As a result, gene expression of the iPSC markers OCT4, SOX2, NANOG, and LIN28 was confirmed (FIG. 1E).

<1-7> 테라토마 형성 관찰<1-7> teratoma formation observation

테라토마 형성 관찰을 위해서는 종양을 유도하기 위해 SCID 마우스, Nude 마우스 등 면역결핍 마우스가 일반적으로 사용되며, 해당 실험에서는 SCID 마우스를 사용하였다. 상기 실시예 1-2를 통해 생성 및 유지된 1x106 개의 iPSC를 Matrigel(BD Biosciences)과 1:1의 비율로 혼합하였다. 인슐린 주사기를 이용하여 SCID 마우스의 정소에 세포를 주입하고, 8-12주 후 생성된 종양을 추출하여 헤마톡실린(Hematoxylin) 과 에오신(Eosin) 염색을 수행하였다 For observation of teratoma formation, immunodeficient mice such as SCID mice and Nude mice are generally used to induce tumors, and SCID mice are used in the experiment. 1x10 6 iPSCs generated and maintained through Example 1-2 were mixed with Matrigel (BD Biosciences) in a ratio of 1:1. Cells were injected into the testis of SCID mice using an insulin syringe, and the tumors generated after 8-12 weeks were extracted to perform hematoxylin and eosin staining.

그 결과, 내배엽(Endoderm), 중배엽(Mesoderm), 외배엽(Ectoderm)으로 모두 분화가 가능한 줄기세포능을 가진 역분화 줄기세포가 생성된 것을 확인하였다(도 1F).As a result, it was confirmed that dedifferentiated stem cells having stem cell functions capable of differentiating into endoderm, mesoderm, and ectoderm were generated (FIG. 1F).

전신경화증 특이적 iPSC의 케라틴세포(Keratinocyte)로의 분화 Differentiation of systemic sclerosis specific iPSCs into keratinocytes

<2-1> 케라틴세포 분화 프로토콜<2-1> keratinocyte differentiation protocol

상기 실시예 1을 통해 생성 및 유지된 iPSC를 Aggrewell 배양액(STEMCELL)에 재현탁하고 현적배양(Hanging drop culture)방법을 이용하여 배양체(EB; Embryonic Body)를 형성 하였다. 세포를 5% CO2, 37℃에서 하루 동안 배양 하였다. 형성된 EB는 수확하여 Essential 8 배양액에 1ng/ml BMP4를 첨가하여 유지하였다. 다음날, EB를 수확하여 콜라겐 IV 코팅 플레이트에 부착하였다. 분화 기간 동안 배양액을 2일에 한번 교환하였다. 배양액은 케라틴 분화 배양액 1 (DMEM/F12 3:1, 2 % fetal bovine serum (FBS), 0.3 mmol/L L-ascorbic acid, 5 μg/mL insulin, and 24 μg/mL adenine) 로 교환하고, 3 μM RA (Retinoic acid), 25 ng/mL BMP4, 20 ng/mL EGF를 첨가 하여 7일간 유지하였다. 7일 뒤 (Day8), 배양액은 케라틴 분화 배양액 2 (defined keratinocyte serum-free medium, 0.3 mmol/l L-ascorbic acid, 5 μg/ml insulin, 10 μg/ml adenine) 으로 교환하고, 3 μM RA (Retinoic acid), 25 ng/mL BMP4, 20 ng/mL EGF를 첨가 하여 4일간 유지하였다. 4일 뒤 (Day12), 배양액은 케라틴 분화 배양액 3 (defined keratinocyte serum-free medium 와 keratinocyte serum-free medium (1:1))으로 교환하고, 10 ng/mL BMP4 와 20 ng/mL EGF를 첨가하여 분화된 케라틴세포를 유지 확장 하였다 (도 2A). The iPSCs generated and maintained through Example 1 were resuspended in Aggrewell culture (STEMCELL) and cultured (EB; Embryonic Body) using a Hanging drop culture method. Cells were incubated at 5% CO 2 at 37° C. for one day. The formed EB was harvested and maintained by adding 1 ng/ml BMP4 to the Essential 8 culture. The next day, EBs were harvested and attached to collagen IV coated plates. During the differentiation period, the culture was changed once every 2 days. The culture was exchanged for keratin differentiation culture 1 (DMEM/F12 3:1, 2% fetal bovine serum (FBS), 0.3 mmol/L L-ascorbic acid, 5 μg/mL insulin, and 24 μg/mL adenine), and 3 It was maintained for 7 days by adding μM RA (Retinoic acid), 25 ng/mL BMP4, and 20 ng/mL EGF. After 7 days (Day8), the culture was exchanged for keratin differentiation culture 2 (defined keratinocyte serum-free medium, 0.3 mmol/l L-ascorbic acid, 5 μg/ml insulin, 10 μg/ml adenine), and 3 μM RA ( Retinoic acid), 25 ng/mL BMP4, and 20 ng/mL EGF were added and maintained for 4 days. After 4 days (Day12), the culture was exchanged for keratin differentiation culture 3 (defined keratinocyte serum-free medium and keratinocyte serum-free medium (1:1)), and 10 ng/mL BMP4 and 20 ng/mL EGF were added. Differentiated keratinocytes were maintained and expanded (FIG. 2A ).

<2-2> 케라틴세포 형태 및 마커 확인<2-2> Confirmation of keratinocyte morphology and marker

상기 실시예 2-1에서 형성된 케라틴세포를 분화 시작 후 21일에 수확하여 형태를 Leica DMi8 현미경을 사용하여 확인하였다. 수확된 세포를 PBS로 세척하고 면역형광 염색을 위해 세포를 4% 포름알데하이드로 30분간 고정한 후, 남은 고정액을 염화암모늄 용액으로 제거 한 뒤, 0.1% Triton X-100(BIOSESANG)을 처리하여 세포의 투과성을 증가 시켰다. 2% 소혈청 알부민(BSA)을 함유하는 PBS로 실온에서 30분 동안 세포를 차단한 뒤, 일차 항체를 하기의 희석 비율로 PBA에 희석하였다: p63(1/100; Abcam, Cambridge, UK), KRT14(1/100; Abcam, Cambridge, UK). 일차 항체를 실온에서 2시간 동안 배양 하였다. 핵 염색제로 DAPI를 사용하였다. 염색 후 세포를 세척하고 ProLong Antifade 시약을 사용하여 봉입하였다. Carl Zeiss 면역 형광 현미경으로 염색된 케라틴세포를 검출하였다. The keratinocytes formed in Example 2-1 were harvested on the 21st day after the start of differentiation to confirm the morphology using a Leica DMi8 microscope. After washing the harvested cells with PBS and fixing the cells with 4% formaldehyde for 30 minutes for immunofluorescence staining, the remaining fixative is removed with ammonium chloride solution, and then treated with 0.1% Triton X-100 (BIOSESANG). Permeability was increased. After blocking the cells for 30 minutes at room temperature with PBS containing 2% bovine serum albumin (BSA), the primary antibody was diluted in PBA at the following dilution ratio: p63 (1/100; Abcam, Cambridge, UK), KRT14 (1/100; Abcam, Cambridge, UK). Primary antibodies were incubated for 2 hours at room temperature. DAPI was used as a nuclear stain. After staining, the cells were washed and sealed using ProLong Antifade reagent. Keratin cells stained with a Carl Zeiss immunofluorescence microscope were detected.

그 결과, 케라틴세포의 마커인 p63 및 KRT14의 발현을 IFA로 확인하였다 (도 2B).As a result, expression of p63 and KRT14 markers of keratinocytes was confirmed by IFA (FIG. 2B ).

<2-3> iPSC 및 신경 외배엽 마커의 발현 감소 확인<2-3> Confirmation of iPSC and Neuroectodermal Marker Expression Reduction

상기 실시예 2-1에서 형성된 케라틴세포를 분화 시작 후 21일에 수확 하여 qRT-PCR을 위해, Trizol을 사용하여 total RNA를 추출하였고, Revert Aid TM First Strand cDNA Synthesis kit를 사용하여 cDNA를 합성하였다. 합성된 cDNA를 LightCycle 480 SYBR Green을 이용하여 qRT-PCR을 수행하였다. 사용한 프라이머를 [표 2]에 제시 하였다. 모든 실험은 3회 반복하였으며, 평균 사이클의 임계값은 내부대조로써 GAPDH을 평균화하기 위한 유전자 발현을 계산하기 위하여 사용되었다. The keratinocytes formed in Example 2-1 were harvested on the 21st day after the start of differentiation, and total RNA was extracted using Trizol for qRT-PCR, and cDNA was synthesized using Revert Aid TM First Strand cDNA Synthesis kit. . QRT-PCR was performed on the synthesized cDNA using LightCycle 480 SYBR Green. The primers used are shown in [Table 2]. All experiments were repeated three times, and the threshold of the average cycle was used to calculate gene expression for averaging GAPDH as an internal control.

그 결과, iPSC 마커인 OCT4와 신경 외배엽(neuroectoderm) 마커인 PAX6와 SOX1의 발현이 감소됨을 확인 하였다 (도 2C). As a result, it was confirmed that the expression of the iPSC markers OCT4 and the neuroectoderm markers PAX6 and SOX1 is reduced (FIG. 2C ).

<2-4> qRT-PCR을 이용한 케라틴세포 마커의 발현 확인<2-4> Confirmation of expression of keratinocyte markers using qRT-PCR

상기 실시예 2-1에서 형성된 케라틴세포를 분화 시작 후 21일에 수확하여 qRT-PCR을 위해, 트리졸을 사용하여 총 RNA를 추출하였고, Revert Aid TM First Strand cDNA Synthesis kit를 사용하여 cDNA를 합성하였다. 합성된 cDNA를 LightCycle 480 SYBR Green을 이용하여 qRT-PCR을 수행하였다. 사용한 프라이머를 [표 2]에 제시하였다. 모든 실험은 3회 반복하였으며, 평균 사이클의 임계값은 내부대조로써 GAPDH을 평균화하기 위한 유전자 발현을 계산하기 위하여 사용되었다.The keratinocytes formed in Example 2-1 were harvested on the 21st day after the start of differentiation, and total RNA was extracted using trizol for qRT-PCR, and cDNA was synthesized using Revert Aid TM First Strand cDNA Synthesis kit. Did. QRT-PCR was performed on the synthesized cDNA using LightCycle 480 SYBR Green. The primers used are shown in Table 2. All experiments were repeated three times, and the threshold of the average cycle was used to calculate gene expression for averaging GAPDH as an internal control.

케라틴세포 분화 마커 확인을 위한 프라이머 서열Primer sequence for identifying keratinocyte differentiation markers 타겟 유전자Target gene 방향direction 염기서열(5'->3')Base sequence (5'->3') 서열번호Sequence number 크기size hOCT4hOCT4 ForwardForward ACCCCTGGTGCCGTGAAACCCCTGGTGCCGTGAA 1111 190190 ReverseReverse GGCTGAATACCTTCCCAAATAGGCTGAATACCTTCCCAAATA 1212 hPAX6hPAX6 ForwardForward GTCCATCTTTGCTTGGGAAAGTCCATCTTTGCTTGGGAAA 1313 110110 ReverseReverse TAGCCAGGTTGCGAAGAACTTAGCCAGGTTGCGAAGAACT 1414 hSOX1hSOX1 ForwardForward CACAACTCGGAGATCAGCAACACAACTCGGAGATCAGCAA 1515 133133 ReverseReverse GGTACTTGTAATCCGGGTGCGGTACTTGTAATCCGGGTGC 1616 hNp63hNp63 ForwardForward GGAAAACAATGCCCAGACTCGGAAAACAATGCCCAGACTC 1717 294294 ReverseReverse GTGGAATACGTCCAGGTGGCGTGGAATACGTCCAGGTGGC 1818 hKRT5hKRT5 ForwardForward ACCGTTCCTGGGTAACAGAGCCACACCGTTCCTGGGTAACAGAGCCAC 1919 198198 ReverseReverse GCGGGAGACAGACGGGGTGATGGCGGGAGACAGACGGGGTGATG 2020 hKRT14hKRT14 ForwardForward GCAGTCATCCAGAGATGTGACCGCAGTCATCCAGAGATGTGACC 2121 181181 ReverseReverse GGGATCTTCCAGTGGGATCTGGGATCTTCCAGTGGGATCT 2222 hGAPDHhGAPDH ForwardForward ACCCACTCCTCCACCTTTGAACCCACTCCTCCACCTTTGA 2323 110110 ReverseReverse CTGTTGCTGTAGCCAAATTCGTCTGTTGCTGTAGCCAAATTCGT 2424

그 결과, 케라틴세포의 마커인 Np63, KRT5 및 KRT14의 발현이 증가됨을 확인 하였다 (도 2D).As a result, it was confirmed that the expression of the markers of keratinocytes Np63, KRT5 and KRT14 increased (FIG. 2D ).

전신경화증 특이적 iPSC의 섬유아세포(Fibroblast)로의 분화 Differentiation of systemic sclerosis specific iPSCs into fibroblasts

<3-1> 섬유아세포 분화 프로토콜<3-1> Fibroblast differentiation protocol

상기 실시예 1을 통해 생성 및 유지된 iPSC를 Aggrewell 배양액(STEMCELL)에 재현탁하고 현적배양(Hanging drop culture)방법을 이용하여 배양체(EB; Embryonic Body)를 형성 하였다. 세포를 5% CO2, 37℃에서 하루 동안 배양 하였다. 형성된 EB는 수확하여 Essential 8 배양액에 유지하였다. 다음날, EB를 수확하여 마트리겔 코팅된 플레이트에 부착하였다. 배양액은 섬유아세포 분화 배양액 1(DMEM/F12 3:1, 5 % fetal bovine serum (FBS), 5 μg/ml insulin, 0.18 mM adenine, and 10 ng/ml epidermal growth factor (EGF))으로 교환하였다. 분화 기간 동안 배양액을 2일에 한번 교환하였다. 3일 뒤(Day4) 섬유아세포 분화 배양액1에 0.5nM BMP4를 첨가하여 3일간 유지하였다. 그 후 배양액을 섬유아세포 분화 배양액 2(DMEM/F12 1:1, 5 % FBS, 1 % nonessential amino acids)로 교환하여 7일간 유지하였다. 7일 뒤(Day14), 확장된 세포를 코팅되지 않은 플레이트에 옮겨주었다. 이때 배양액은 섬유아세포 분화 배양액 1로 교체하였다. 7일 뒤(Day 21), 확장된 세포를 콜라겐 1 코팅된 플레이트에 옮겨주었다. 배양액은 섬유아세포 분화 배양액 1로 2일에 한번 교환하여 분화된 섬유아세포를 유지 확장 하였다 (도 3A). The iPSCs generated and maintained through Example 1 were resuspended in Aggrewell culture (STEMCELL) and cultured (EB; Embryonic Body) using a Hanging drop culture method. Cells were incubated at 5% CO 2 at 37° C. for one day. The formed EB was harvested and kept in Essential 8 culture. The next day, EB was harvested and attached to a Matrigel coated plate. The culture was exchanged for fibroblast differentiation culture 1 (DMEM/F12 3:1, 5% fetal bovine serum (FBS), 5 μg/ml insulin, 0.18 mM adenine, and 10 ng/ml epidermal growth factor (EGF)). During the differentiation period, the culture was changed once every 2 days. After 3 days (Day4), 0.5 nM BMP4 was added to the fibroblast differentiation culture 1 and maintained for 3 days. Thereafter, the culture medium was exchanged with fibroblast differentiation culture medium 2 (DMEM/F12 1:1, 5% FBS, 1% nonessential amino acids) and maintained for 7 days. Seven days later (Day14), expanded cells were transferred to uncoated plates. At this time, the culture medium was replaced with fibroblast differentiation culture medium 1. Seven days later (Day 21), expanded cells were transferred to collagen 1 coated plates. The culture medium was expanded by maintaining the differentiated fibroblasts by changing the fibroblast differentiation culture medium once every 2 days (FIG. 3A ).

<3-2> 섬유아세포의 형태 및 마커 확인<3-2> Identification of fibroblast morphology and marker

상기 실시예 3-1에서 형성된 섬유아세포를 분화 시작 후 28일에 수확하여 형태를 Leica DMi8 현미경을 사용하여 확인하였다. 수확된 세포를 PBS로 세척하고 면역형광 염색을 위해 세포를 4% 포름알데하이드로 30분간 고정한 후, 남은 고정액을 염화암모늄 용액으로 제거 한 뒤, 0.1% Triton X-100(BIOSESANG)을 처리하여 세포의 투과성을 증가 시켰다. 2% 소혈청 알부민(BSA)을 함유하는 PBS로 실온에서 30분 동안 세포를 차단한 뒤, 일차 항체를 하기의 희석 비율로 PBA에 희석하였다: Fibronectin(1/200; Abcam, Cambridge, UK), Vimentin(1/200; Abcam, Cambridge, UK). 일차 항체를 실온에서 2시간 동안 배양 하였다. 핵 염색제로 DAPI를 사용하였다. 염색 후 세포를 세척하고 ProLong Antifade 시약을 사용하여 봉입하였다. Carl Zeiss 면역 형광 현미경으로 염색된 케라틴세포를 검출하였다. The fibroblasts formed in Example 3-1 were harvested on the 28th day after the start of differentiation, and the morphology was confirmed using a Leica DMi8 microscope. After washing the harvested cells with PBS and fixing the cells with 4% formaldehyde for 30 minutes for immunofluorescence staining, the remaining fixative is removed with ammonium chloride solution, and then treated with 0.1% Triton X-100 (BIOSESANG). Permeability was increased. After blocking the cells for 30 minutes at room temperature with PBS containing 2% bovine serum albumin (BSA), the primary antibody was diluted in PBA at the following dilution ratio: Fibronectin (1/200; Abcam, Cambridge, UK), Vimentin (1/200; Abcam, Cambridge, UK). Primary antibodies were incubated for 2 hours at room temperature. DAPI was used as a nuclear stain. After staining, the cells were washed and sealed using ProLong Antifade reagent. Keratin cells stained with a Carl Zeiss immunofluorescence microscope were detected.

그 결과, 섬유아세포의 세포 마커인 fibronectin과 vimentin의 발현을 IFA로 확인하였다 (도 3B).As a result, expression of fibronectin and vimentin, which are cell markers of fibroblasts, was confirmed by IFA (FIG. 3B).

<3-3> iPSC 및 섬유아세포 마커(ECM 마커)의 발현 확인<3-3> Expression of iPSC and fibroblast marker (ECM marker)

상기 실시예 3-1에서 형성된 섬유아세포를 분화 시작 후 28일에 수확 하여 qRT-PCR을 위해, 트리졸을 사용하여 총 RNA를 추출하였고, Revert Aid TM First Strand cDNA Synthesis kit를 사용하여 cDNA를 합성하였다. 합성된 cDNA를 LightCycle 480 SYBR Green을 이용하여 qRT-PCR을 수행하였다. 사용한 프라이머를 [표 3]에 제시 하였다. 모든 실험은 3회 반복하였으며, 평균 사이클의 임계값은 내부대조로써 GAPDH을 평균화하기 위한 유전자 발현을 계산하기 위하여 사용되었다.The fibroblasts formed in Example 3-1 were harvested on the 28th day after the start of differentiation, and total RNA was extracted using trizol for qRT-PCR, and cDNA was synthesized using Revert Aid TM First Strand cDNA Synthesis kit. Did. QRT-PCR was performed on the synthesized cDNA using LightCycle 480 SYBR Green. The primers used are presented in [Table 3]. All experiments were repeated three times, and the threshold of the average cycle was used to calculate gene expression for averaging GAPDH as an internal control.

섬유아세포 분화 마커 및 섬유화 인자 발현 확인을 위한 프라이머 서열Primer sequence for fibroblast differentiation marker and fibrosis factor expression confirmation 타겟 유전자Target gene 방향direction 염기서열(5'->3')Base sequence (5'->3') 서열번호Sequence number 크기size hOCT4hOCT4 ForwardForward ACCCCTGGTGCCGTGAAACCCCTGGTGCCGTGAA 1111 190190 ReverseReverse GGCTGAATACCTTCCCAAATAGGCTGAATACCTTCCCAAATA 1212 hCOL1A1hCOL1A1 ForwardForward CCCCTGGAAAGAATGGAGATGCCCCTGGAAAGAATGGAGATG 2525 148148 ReverseReverse TCCAAACCACTGAAACCTCTGTCCAAACCACTGAAACCTCTG 2626 hCOL1A2hCOL1A2 ForwardForward GGATGAGGAGACTGGCAACCGGATGAGGAGACTGGCAACC 2727 7777 ReverseReverse TGCCCTCAGCAACAAGTTCATGCCCTCAGCAACAAGTTCA 2828 hCOL3A1hCOL3A1 ForwardForward CGCCCTCCTAATGGTCAAGGCGCCCTCCTAATGGTCAAGG 2929 161161 ReverseReverse TTCTGAGGACCAGTAGGGCATTCTGAGGACCAGTAGGGCA 3030 hACTA2hACTA2 ForwardForward AAAGCAAGTCCTCCAGCGTTAAAGCAAGTCCTCCAGCGTT 3131 115115 ReverseReverse TTCACAGGATTCTGGGAGCGTTCACAGGATTCTGGGAGCG 3232 hGAPDHhGAPDH ForwardForward ACCCACTCCTCCACCTTTGAACCCACTCCTCCACCTTTGA 3333 110110 ReverseReverse CTGTTGCTGTAGCCAAATTCGTCTGTTGCTGTAGCCAAATTCGT 3434

그 결과, iPSC에서 발현하던 OCT4의 발현이 분화 후에 감소 하였으며, fibroblast marker의 발현은 증가함을 확인하였다. 이때, 정상인에 비해 전신경화증 환자에서 fibroblast marker의 발현이 모두 증가되어 있음을 확인하였다 (도 3C).As a result, it was confirmed that the expression of OCT4 expressed in iPSC decreased after differentiation, and the expression of fibroblast marker increased. At this time, it was confirmed that the expression of all fibroblast markers is increased in patients with systemic sclerosis compared to normal people (FIG. 3C ).

상기 결과를 통해 전신경화증의 임상증상과 동일한 경향을 확인하였으며, 전신경화증 환자의 유도만능 줄기세포로부터 분화한 섬유아세포의 시험관내에서 질환모델링을 검증하였다.Through the above results, the same trend as the clinical symptoms of systemic sclerosis was confirmed, and disease modeling in vitro of fibroblasts differentiated from induced pluripotent stem cells in patients with systemic sclerosis was verified.

3D 피부 오가노이드(organoid) 및 인간화된 마우스 모델의 제작Construction of 3D skin organoids and humanized mouse models

<4-1> 3D 피부 오가노이드 제작 프로토콜<4-1> 3D skin organoid production protocol

상시 실시예 2 및 3에서 형성된 케라틴세포와 섬유아세포를 이용하여 3D 피부 오가노이드를 제작하였다. 분화 28일 이후의 2x105 개의 섬유아세포를 수확하여 콜라겐 1과 혼합하여 6-웰 크기의 트렌스웰 플레이트(Transwell plate)에 도말 하였다. 5일간 섬유아세포 분화 배양액 1로 2일에 한번 교환 하였다. 콜라겐 1이 겔화되면 분화 21일 이후의 1x106 개의 케라틴세포를 수확하여 50-100 μl의 상피세포 배양액 1(Epithelial Medium; EP1; DMEM/F12 3:1, 4 mM L-glutamine, 40 μM adenine, 10 μg/mL transferrin, 10 μg/mL insulin, and 0.1 % FBS)에 재현탁하여 섬유아세포 위에 도말한다. 2일간 (Day7) 유지 한 뒤 배양액을 상피세포 배양액 2(Epithelial Medium; EP2; EP1 배양액에 1.8mM calcium chloride를 첨가하여 제조 하였다)으로 교환하여 2일간 배양하였다. 2일 뒤 (Day 9), 상피세포 배양액 3(Epithelial Medium; EP3; DMEM/F12 1:1, 4 mM L-glutamine, 40 μM adenine, 10 μg/mL transferrin, 10 μg/mL insulin, 2 % FBS, 1.8 mM calcium chloride )로 교환하였다. 이때 배양액은 트렌스웰 플레이트의 인서트 아래쪽에만 첨가하여 air-liquid interface 배양 방법으로 유지하였다 (도면 4A).3D skin organoids were produced using keratinocytes and fibroblasts formed in Examples 2 and 3 at all times. 2x10 5 fibroblasts after 28 days of differentiation were harvested and mixed with collagen 1 and plated on a 6-well size Transwell plate. Changed once every 2 days with fibroblast differentiation culture 1 for 5 days. When collagen 1 is gelated, 1×10 6 keratinocytes after 21 days of differentiation are harvested and 50-100 μl of epithelial cell culture medium 1 (Epithelial Medium; EP1; DMEM/F12 3:1, 4 mM L-glutamine, 40 μM adenine, Resuspend in 10 μg/mL transferrin, 10 μg/mL insulin, and 0.1% FBS) and streak onto fibroblasts. After maintaining for 2 days (Day7), the culture was replaced with epithelial cell culture medium 2 (Epithelial Medium; EP2; prepared by adding 1.8 mM calcium chloride to the EP1 culture) and cultured for 2 days. After 2 days (Day 9), epithelial cell culture medium 3 (Epithelial Medium; EP3; DMEM/F12 1:1, 4 mM L-glutamine, 40 μM adenine, 10 μg/mL transferrin, 10 μg/mL insulin, 2% FBS , 1.8 mM calcium chloride). At this time, the culture medium was added only to the bottom of the insert of the transwell plate and maintained by an air-liquid interface culture method (Figure 4A).

<4-2> 인간화 마우스 모델 제작 모식도 및 3D 피부 이식 프로토콜<4-2> Schematic diagram of humanized mouse model and 3D skin transplantation protocol

상기 실시예 4-1을 통해 형성된 3D 피부 오가노이드를 봉합고정드레싱 방법을 이용하여 마우스에 이식하였다(도 4B). 마취된 SCID 마우스의 피부조직을 1x2cm로 자른 뒤(도 4C), iPSC 유래 3D 피부 오가노이드를 올렸다(도 4D). 마우스 피부와 이식할 피부 오가노이드를 8-9번 봉합하였다(도 4E). 거즈를 봉합 부위에 올린 뒤 봉합 후 남은 봉합사로 묶어주었다(도 4F-H). 밴드로 드레싱을 해준 뒤 마우스의 경과를 지켜보면서 유지하였다(도 4I-J).The 3D skin organoids formed through Example 4-1 were implanted into mice using a suture fixed dressing method (FIG. 4B). The skin tissue of the anesthetized SCID mouse was cut to 1×2 cm (FIG. 4C), and then 3D skin organoids derived from iPSC were raised (FIG. 4D). Mouse skin and skin organoids to be implanted were closed 8-9 times (FIG. 4E ). After placing the gauze on the suture site, the suture was tied with the remaining suture (FIG. 4F-H). After dressing with a band, it was maintained while watching the progress of the mice (Fig. 4I-J).

시험관 내 및 생체 내 전신경화증 질환 모델링 특성 확인Identification of systemic sclerosis disease modeling characteristics in vitro and in vivo

<5-1> 시험관 내 세포 증식도 분석<5-1> Analysis of cell proliferation in vitro

상기 실시예 1 및 3에서 형성된 전신경화증환자의 iPSC와 iPSC유래 섬유아세포의 증식도 분석을 위해 96-웰 플레이트에 5x103 개의 세포를 도말 하였다. 세포증식도는 Cell Counting Kit-8 (Dojindo)를 이용하여 450nm의 흡광도를 측정하였다. For the analysis of the proliferation of iPSC and iPSC-derived fibroblasts of the systemic sclerosis patients formed in Examples 1 and 3, 5×10 3 cells were plated in a 96-well plate. Cell proliferation was measured by using the Cell Counting Kit-8 (Dojindo) at 450 nm.

그 결과, 정상인 iPSC와 전신경화증환자 iPSC사이의 세포 증식도의 차이는 없었으나(도 5A), 정상인iPSC 유래 섬유아세포에 비해 전신경화증 환자의 iPSC유래 섬유아세포의 세포증식도가 증가 되어있음을 확인하였으며(도 5B).As a result, there was no difference in cell proliferation between normal iPSC and iPSC in systemic sclerosis patients (FIG. 5A), but it was confirmed that cell proliferation of iPSC-derived fibroblasts in systemic sclerosis patients was increased compared to normal iPSC-derived fibroblasts. (Fig. 5B).

상기 결과를 통해 전신경화증의 임상증상과 동일한 경향을 확인하였으며, 전신경화증 환자의 유도만능 줄기세포로부터 분화한 섬유아세포의 시험관내에서 질환모델링을 검증하였다.Through the above results, the same trend as the clinical symptoms of systemic sclerosis was confirmed, and disease modeling in vitro of fibroblasts differentiated from induced pluripotent stem cells in patients with systemic sclerosis was verified.

<5-2> 시험관 내 섬유화 인자 발현 분석<5-2> In vitro fibrosis factor expression analysis

상기 실시예 3에서 형성된 전신경화증 환자의 iPSC유래 섬유아세포의 섬유화 인자 발현을 확인하기 위해, 1x106 개의 섬유아세포를 100mm 배양접시에 도말 하고, 5일간 유지 및 확장하였다. 섬유화 인자 발현 분석을 위해 RIPA buffer(Sigma)를 이용하여 단백질을 추출하였으며, Bradford assay로 단백질 농도를 정량화 하였다. 동일한 농도의 단백질을 10% SDS-PAGE에 로딩하고 polyvinylidene difluoride membranes에 단백질을 옮겨주었다. 5% skim milk을 함유하는 PBS로 실온에서 1시간 동안 blocking 뒤, 일차 항체를 하기의 희석 비율로 5% skim milk을 함유하는 PBS 에 희석하였다: α-SMA(1/200; Abcam). 일차 항체를 실온에서 2시간 동안 배양 하였다. 0.1% Tween-20을 포함하는 PBS로 세척한 뒤, peroxidase-linked IgG 이차항체를 배양시킨 후 ECL kit를 이용하여 단백질 발현을 측정하였다.In order to confirm the expression of the fibrosis factor of iPSC-derived fibroblasts in patients with systemic sclerosis formed in Example 3, 1×10 6 fibroblasts were plated on a 100 mm culture dish, maintained and expanded for 5 days. The protein was extracted using RIPA buffer (Sigma) to analyze the expression of fibrosis factors, and the protein concentration was quantified by Bradford assay. The same concentration of protein was loaded on 10% SDS-PAGE and the protein was transferred to polyvinylidene difluoride membranes. After blocking for 1 hour at room temperature with PBS containing 5% skim milk, the primary antibody was diluted in PBS containing 5% skim milk at the following dilution ratio: α-SMA (1/200; Abcam). Primary antibodies were incubated for 2 hours at room temperature. After washing with PBS containing 0.1% Tween-20, the peroxidase-linked IgG secondary antibody was cultured, and protein expression was measured using the ECL kit.

그 결과, 정상인iPSC 유래 섬유아세포에 비해 전신경화증 환자의 iPSC유래 섬유아세포에서 섬유화 인자인 α-SMA의 발현이 증가되어 있음을 확인하였다(도 5C). 이를 image J program을 이용하여 정량화 하였을 때, 통계적으로 유의한 증가를 확인 하였다(도 5D).As a result, it was confirmed that the expression of fibrosis factor α-SMA is increased in iPSC-derived fibroblasts of patients with systemic sclerosis compared to normal iPSC-derived fibroblasts (FIG. 5C ). When this was quantified using the image J program, a statistically significant increase was confirmed (FIG. 5D).

상기 결과를 통해 전신경화증의 임상증상과 동일한 경향을 확인하였으며, 전신경화증 환자의 유도만능 줄기세포로부터 분화한 섬유아세포의 시험관내에서 질환모델링을 검증하였다.Through the above results, the same trend as the clinical symptoms of systemic sclerosis was confirmed, and disease modeling in vitro of fibroblasts differentiated from induced pluripotent stem cells in patients with systemic sclerosis was verified.

<5-3> 시험관 내 콜라겐 발현 분석<5-3> Analysis of collagen expression in vitro

상기 실시예 3에서 형성된 전신경화증 환자의 iPSC유래 섬유아세포의 콜라겐 발현을 확인하기 위해, 1x106 개의 섬유아세포를 100mm 배양접시에 도말 하고, 5일간 유지 및 확장하였다. 콜라겐 발현은 Hydroxyproline assay kit(Sigma)를 이용하였다. 세포 또는 세포배양액을 수확하여 염산과 1:1의 비율로 혼합하고, 120℃에서 3시간 배양한다. 배양 후, 5mg의 activated charcoal을 넣어준 뒤, 13,000 xg에서 5분간 원심 분리하여 상층액만 분리하였다. 수확된 상층액을 96웰 플레이트로 옮겨준 뒤 60℃에서 완전히 건조 하였다. Chloramine T/Oxidation Buffer 혼합제를 웰에 넣고 실온에서 5분간 배양한다. 희석한 DMAB Reagent를 넣고 60℃에서 90분간 배양한 뒤, 560nm의 흡광도를 측정하였다. To confirm the collagen expression of iPSC-derived fibroblasts of the systemic sclerosis patient formed in Example 3, 1x10 6 fibroblasts were plated on a 100 mm culture dish, maintained and expanded for 5 days. For collagen expression, a Hydroxyproline assay kit (Sigma) was used. The cells or cell cultures are harvested, mixed with hydrochloric acid in a ratio of 1:1, and incubated at 120°C for 3 hours. After incubation, 5 mg of activated charcoal was added, followed by centrifugation at 13,000 xg for 5 minutes to separate only the supernatant. The harvested supernatant was transferred to a 96-well plate and dried completely at 60°C. Add the Chloramine T/Oxidation Buffer mixture to the well and incubate for 5 minutes at room temperature. After adding the diluted DMAB Reagent and incubating at 60°C for 90 minutes, absorbance at 560 nm was measured.

그 결과, 정상인iPSC 유래 섬유아세포에 비해 전신경화증 환자의 iPSC유래 섬유아세포에서 섬유화 인자인 총 콜라겐의 발현이 증가되어 있음을 확인하였다(도 5E). As a result, it was confirmed that the expression of total collagen as a fibrosis factor is increased in iPSC-derived fibroblasts of systemic sclerosis patients compared to normal iPSC-derived fibroblasts (FIG. 5E).

상기 결과를 통해 전신경화증의 임상증상과 동일한 경향을 확인하였으며, 전신경화증 환자의 유도만능 줄기세포로부터 분화한 섬유아세포의 시험관내에서 질환모델링을 검증하였다.Through the above results, the same trend as the clinical symptoms of systemic sclerosis was confirmed, and disease modeling in vitro of fibroblasts differentiated from induced pluripotent stem cells in patients with systemic sclerosis was verified.

<5-4> 시험관 내 3D 섬유아세포 층 분석<5-4> Analysis of 3D fibroblast layer in vitro

상시 실시예 3에서 형성된 섬유아세포를 이용하여 3D 섬유아세포 층을 제작하였다. 분화 28일 이후의 2x105 개의 섬유아세포를 수확하여 콜라겐 1과 혼합하여 6-웰 크기의 트렌스웰 플레이트(Transwell plate)에 도말 하였다. 5일간 섬유아세포 분화 배양액 1로 2일에 한번 교환 하였다 (도 5F).A 3D fibroblast layer was produced using the fibroblasts formed in Example 3 at all times. 2x10 5 fibroblasts after 28 days of differentiation were harvested and mixed with collagen 1 and plated on a 6-well size Transwell plate. Changed once every 2 days with fibroblast differentiation culture 1 for 5 days (FIG. 5F ).

그 결과, 정상인 iPSC 유래 섬유아세포에 비해 전신경화증 환자의 iPSC유래 섬유아세포를 이용하여 제작한 3D 섬유아세포 층이 두께가 증가되어있음을 확인하였다(도 5G).As a result, it was confirmed that the thickness of the 3D fibroblast layer produced using iPSC-derived fibroblasts of patients with systemic sclerosis is increased compared to normal iPSC-derived fibroblasts (FIG. 5G).

상기 결과를 통해 전신경화증의 임상증상과 동일한 경향을 확인하였으며, 전신경화증 환자의 유도만능 줄기세포로부터 분화한 섬유아세포의 시험관내에서 질환모델링을 검증하였다.Through the above results, the same trend as the clinical symptoms of systemic sclerosis was confirmed, and disease modeling in vitro of fibroblasts differentiated from induced pluripotent stem cells in patients with systemic sclerosis was verified.

<5-5> 시험관 내 섬유화 인자 발현 분석<5-5> In vitro fibrosis factor expression analysis

상기 실시예 3-1에서 형성된 섬유아세포를 분화 시작 후 28일에 수확하여 PBS로 세척하고 면역형광 염색을 위해 세포를 4% 포름알데하이드로 30분간 고정하였다. 한 후, 남은 고정액을 염화암모늄 용액으로 제거 한 뒤, 0.1% Triton X-100(BIOSESANG)을 처리하여 세포의 투과성을 증가 시켰다. 2% 소혈청 알부민(BSA)을 함유하는 PBS로 실온에서 30분 동안 세포를 차단한 뒤, 일차 항체를 하기의 희석 비율로 PBA에 희석하였다: α-SMA(1/200; Abcam). 일차 항체를 실온에서 2시간 동안 배양 하였다. 핵 염색제로 DAPI를 사용하였다. 염색 후 세포를 세척하고 ProLong Antifade 시약을 사용하여 봉입하였다. Carl Zeiss 면역 형광 현미경으로 섬유아세포의 섬유화 인자인 α-SMA 발현을 IFA로 확인하였다The fibroblasts formed in Example 3-1 were harvested on the 28th day after the start of differentiation, washed with PBS, and fixed for 30 minutes with 4% formaldehyde for immunofluorescence staining. After that, the remaining fixative was removed with ammonium chloride solution, and then treated with 0.1% Triton X-100 (BIOSESANG) to increase cell permeability. After blocking the cells for 30 minutes at room temperature with PBS containing 2% bovine serum albumin (BSA), the primary antibody was diluted in PBA at the following dilution ratio: α-SMA (1/200; Abcam). Primary antibodies were incubated for 2 hours at room temperature. DAPI was used as a nuclear stain. After staining, the cells were washed and sealed using ProLong Antifade reagent. The expression of α-SMA, a fibroblast fibroblast, was confirmed by IFA using a Carl Zeiss immunofluorescence microscope.

그 결과, 정상인 iPSC 유래 섬유아세포에 비해 전신경화증 환자의 iPSC유래 섬유아세포에서 섬유화 인자인 α-SMA의 발현이 증가되어 있음을 확인하였다(도 5H).As a result, it was confirmed that the expression of fibrosis factor α-SMA is increased in iPSC-derived fibroblasts of patients with systemic sclerosis compared to normal iPSC-derived fibroblasts (FIG. 5H ).

상기 결과를 통해 전신경화증의 임상증상과 동일한 경향을 확인하였으며, 전신경화증 환자의 유도만능 줄기세포로부터 분화한 섬유아세포의 시험관내에서 질환모델링을 검증하였다.Through the above results, the same trend as the clinical symptoms of systemic sclerosis was confirmed, and disease modeling in vitro of fibroblasts differentiated from induced pluripotent stem cells in patients with systemic sclerosis was verified.

<5-6> 생체 내 전신경화증 모델링 제작 및 조직학적 분석<5-6> Systemic sclerosis modeling in vivo and histological analysis

상기 실시예 4-1에서 형성된 정상인과 전신경화증 환자 iPSC 유래 3D 피부 오가노이드를 SCID 마우스에 이식하였다. 이식 2주 후 피부조직을 수확하여 염색분석을 위해 파라핀 블록을 제작하였다. 수확된 피부 조직을 4% 포름알데하이드에 고정시켰다. 남아있는 고정액을 제거하기 위해 흐르는 물에 조직을 하루 동안 유지시켰다. 탈수는 에탄올 용액의 농도를 증가시키면서 순차적으로 수행되었다. 탈수 후 자일렌으로 투명과정을 거친 뒤, 파라핀 침투를 시켰다. 다음날 조직을 파라핀 블록에 고정시키고 마이크로톰을 이용하여 조직절편을 얻었다. 슬라이드를 60℃에서 1시간 동안 건조하였다. 슬라이드를 자일렌으로 탈파라핀화 한 뒤, 에탄올 용액의 농도를 감소시키면서 재수화하고, 수돗물에 세척한 뒤 염색을 진행하였다. 3D skin organoids derived from iPSC, which were normal humans and systemic sclerosis patients formed in Example 4-1, were implanted into SCID mice. After 2 weeks of transplantation, skin tissue was harvested and paraffin blocks were prepared for staining analysis. The harvested skin tissue was fixed in 4% formaldehyde. The tissue was kept in the running water for one day to remove the remaining fixative. Dehydration was carried out sequentially while increasing the concentration of the ethanol solution. After dehydration, a transparent process was performed with xylene, followed by paraffin penetration. The next day, the tissue was fixed to a paraffin block and a tissue section was obtained using a microtome. The slide was dried at 60° C. for 1 hour. After the slides were deparaffinized with xylene, they were rehydrated while reducing the concentration of the ethanol solution, washed with tap water, and stained.

헤마톡실린과 에오신(H&E) 염색을 위해 절편을 해리스 헤마톡실린 용액에 10분간 배양하였다. 슬라이드를 세척하고, 1% HCl이 첨가된 에탄올 용액에 탈색 후 0.2% 암모니아수(Ammonia water) 에 중화작용을 수행하였다. 1분 30초 동안 에오신(Eosin)용액으로 대조 염색하였다. 슬라이드를 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거한 뒤, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다. For hematoxylin and eosin (H&E) staining, sections were incubated in a Harris hematoxylin solution for 10 minutes. The slide was washed, decolorized in an ethanol solution with 1% HCl, and then neutralized in 0.2% ammonia water. Control staining was performed with an eosin solution for 1 minute 30 seconds. The slide was washed and dehydrated while increasing the concentration of ethanol. After removing the remaining ethanol with xylene, it was sealed using VectaMount Permanent Mounting Medium.

마손 삼색염색(Masson Trichrome staining)을 위해서 슬라이드를 Bouin 용액에 하룻동안 매염처리를 하였다. 슬라이드를 세척 후 바이게르트 철 헤마톡실린 (Weigert iron hematoxylin)으로 10분간 핵을 염색하였다. Biebrich scarlet-acid fuchsin으로 5분간 세포질을 염색하였다. Phosphotungstic acid와 Phosphomolybdic acid와 DW를 1:1:2의 비율로 혼합한 용액으로 10분간 탈색하였다. 2% aniline blue용액에 5분간 유지하여 교원섬유를 염색하였다. 슬라이드를 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거하고, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다.For Masson Trichrome staining, slides were buried overnight in Bouin solution. After washing the slides, nuclei were stained for 10 minutes with Weigert iron hematoxylin. The cytoplasm was stained for 5 minutes with biebrich scarlet-acid fuchsin. The solution was mixed with Phosphotungstic acid, Phosphomolybdic acid, and DW in a ratio of 1:1:2 for 10 minutes. The fiber was dyed by holding it in a 2% aniline blue solution for 5 minutes. The slide was washed and dehydrated while increasing the concentration of ethanol. The remaining ethanol with xylene was removed and sealed using VectaMount Permanent Mounting Medium.

피크로시리우스 레드 염색(Picrosirius Red staining)을 위해서 슬라이드를 피크로시리우스 레드 용액에 1시간 유지하였다. 아세트산으로 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거한 뒤, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다. The slides were kept for 1 hour in the Pyrosirius Red solution for Picrosirius Red staining. It was washed with acetic acid and dehydrated while increasing the concentration of ethanol. After removing the remaining ethanol with xylene, it was sealed using VectaMount Permanent Mounting Medium.

면역화학 염색을 위해 3% 과산화수소에서 15분간 배양하여 내인성 퍼옥시다아제를 차단하였다. 슬라이드를 세척 후, 1% 소혈청 알부민(BSA)을 함유하는 PBS로 실온에서 1시간 동안 세포를 차단한 뒤, 일차 항체를 하기의 희석 비율로 PBA에 희석하였다: collagen 3(1/200;Abcam), α-SMA(1/200; Abcam). 일차 항체를 실온에서 4℃에서 하루 동안 배양 하였다. 다음날 0.1% 트윈-20(TBST)을 함유하는 트리스 완충 식염수(TBS)로 세척하고, 2차 항체를 실온에서 10분간 유지 후, 10분간 ABC시약에 배양하였다. 슬라이드를 PBS로 세척하고, DAB 용액을 1분 동안 유지하였다. 핵 염색제로 Mayer's hematoxylin을 1분간 적용 하였다. 슬라이드를 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거하고, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다.For immunochemical staining, endogenous peroxidase was blocked by incubation for 15 minutes in 3% hydrogen peroxide. After washing the slides, cells were blocked for 1 hour at room temperature with PBS containing 1% bovine serum albumin (BSA), and then the primary antibody was diluted in PBA at the following dilution ratio: collagen 3(1/200;Abcam ), α-SMA (1/200; Abcam). Primary antibodies were incubated at room temperature at 4°C for one day. The next day, washed with Tris buffered saline (TBS) containing 0.1% Tween-20 (TBST), the secondary antibody was maintained at room temperature for 10 minutes, and then cultured in ABC reagent for 10 minutes. The slides were washed with PBS and the DAB solution was maintained for 1 minute. Mayer's hematoxylin was applied for 1 minute as a nuclear stain. The slide was washed and dehydrated while increasing the concentration of ethanol. The remaining ethanol with xylene was removed and sealed using VectaMount Permanent Mounting Medium.

그 결과, 정상인 iPSC 유래 3D 피부 오가노이드를 이식한 마우스에 비해 전신경화증 환자의 iPSC유래 3D 피부 오가노이드를 이식한 마우스의 피부두께가 증가되어있는 것을 확인하였다. 또한 콜라겐 3와 α-SMA의 발현이 전신경화증 환자의 iPSC유래 3D 피부 오가노이드를 이식한 마우스에서 증가되어있는 것을 확인하였다 (도 5I).As a result, it was confirmed that the skin thickness of mice implanted with iPSC-derived 3D skin organoids in patients with systemic sclerosis was increased compared to mice implanted with normal 3D skin organoids derived from iPSC. In addition, it was confirmed that the expression of collagen 3 and α-SMA is increased in mice transplanted with iPSC-derived 3D skin organoids in patients with systemic sclerosis (FIG. 5I ).

상기 결과를 통해 전신경화증의 임상증상과 동일한 경향을 확인하였으며, 전신경화증 환자의 유도만능 줄기세포로부터 분화한 세포의 생체 내 질환모델링을 검증하였다.Through the above results, the same trend as the clinical symptoms of systemic sclerosis was confirmed, and in vivo disease modeling of cells differentiated from induced pluripotent stem cells in patients with systemic sclerosis was verified.

iPSC로부터 유도된 전신경화증 모델을 이용한 항섬유화 약제 스크리닝Screening of antifibrotic agents using iPSC-derived systemic sclerosis model

<6-1> FDA 승인된 약물 스크리닝<6-1> FDA Approved Drug Screening

상기 실시예 3에서 형성된 iPSC유래 섬유아세포의 증식도 분석을 위해 96-웰 플레이트에 5x103 개의 세포를 도말 하였다. 도말한 세포에 FDA 승인된 약물 약 800 가지를 처리하여 증식도를 감소시키는 약제를 스크리닝 하였다(도 6A). 세포증식도는 Cell Counting Kit-8 (Dojindo)를 이용하여 450nm의 흡광도를 측정하였다(도 6B).In order to analyze the proliferation of iPSC-derived fibroblasts formed in Example 3, 5×10 3 cells were plated in a 96-well plate. The smeared cells were treated with about 800 FDA-approved drugs to screen for drugs that reduce the proliferation (Fig. 6A). Cell proliferation was measured by using the Cell Counting Kit-8 (Dojindo) at 450 nm (Fig. 6B).

선별된 약물을 이용하여 총 콜라겐 발현을 감소시키는 약제를 검출하기 위해, 상기 실시예 5-3과 동일하게 1x106 개의 섬유아세포를 100mm 배양접시에 도말 하고, 약물을 처리한 뒤, 유지 및 확장하였다. 콜라겐 발현은 Hydroxyproline assay kit(Sigma)를 이용하였다. 세포 또는 세포배양액을 수확하여 염산과 1:1의 비율로 혼합하고, 120℃에서 3시간 배양한다. 배양 후, 5mg의 activated charcoal을 넣어준 뒤, 13,000 xg에서 5분간 원심 분리하여 상층액만 분리하였다. 수확된 상층액을 96웰 플레이트로 옮겨준 뒤 60℃에서 완전히 건조 하였다. Chloramine T/Oxidation Buffer 혼합제를 웰에 넣고 실온에서 5분간 배양한다. 희석한 DMAB Reagent를 넣고 60℃에서 90분간 배양한 뒤, 560nm의 흡광도를 측정하였다.In order to detect a drug that reduces the total collagen expression using the selected drug, 1x10 6 fibroblasts were plated on a 100mm culture dish as in Example 5-3 above, treated with the drug, and then maintained and expanded. . For collagen expression, a Hydroxyproline assay kit (Sigma) was used. The cells or cell cultures are harvested, mixed with hydrochloric acid in a ratio of 1:1, and incubated at 120°C for 3 hours. After incubation, 5 mg of activated charcoal was added, followed by centrifugation at 13,000 xg for 5 minutes to separate only the supernatant. The harvested supernatant was transferred to a 96-well plate and dried completely at 60°C. Add the Chloramine T/Oxidation Buffer mixture to the well and incubate for 5 minutes at room temperature. After adding the diluted DMAB Reagent and incubating at 60°C for 90 minutes, absorbance at 560 nm was measured.

그 결과, 닥티노마이신(Dactinomycin)과 랄록시펜(Raloxifene)이 증가된 세포의 증식도를 감소시키며, 총 콜라겐의 발현을 감소시킴을 확인하였다(도 6C-F).As a result, it was confirmed that Dactinomycin and Raloxifene decreased the cell proliferation and increased total collagen expression (Fig. 6C-F).

<6-2> 타겟 약제의 시험관 내 섬유화 인자 발현 분석<6-2> Analysis of fibrosis factor expression in vitro of target drug

상기 실험을 통해 선별된 약물인 닥티노마이신과 랄록시펜의 항섬유화 효과를 검증하기 위해 1x106 개의 섬유아세포를 100mm 배양접시에 도말 하고, 타겟 약물을 처리하고, 유지 및 확장하였다. 섬유화 인자 발현 분석을 위해 RIPA buffer(Sigma)를 이용하여 단백질을 추출하였으며, Bradford assay로 단백질 농도를 정량화 하였다. 동일한 농도의 단백질을 10% SDS-PAGE에 로딩하고 polyvinylidene difluoride membranes에 단백질을 옮겨주었다. 5% skim milk을 함유하는 PBS로 실온에서 1시간 동안 blocking 뒤, 일차 항체를 하기의 희석 비율로 5% skim milk을 함유하는 PBS 에 희석하였다: α-SMA(1/200; Abcam). 일차 항체를 실온에서 2시간 동안 배양 하였다. 0.1% Tween-20을 포함하는 PBS로 세척한 뒤, peroxidase-linked IgG 이차항체를 배양시킨 후 ECL kit를 이용하여 단백질 발현을 측정하였다. In order to verify the antifibrotic effect of the drugs selected through the experiments, dactinomycin and raloxifene, 1x10 6 fibroblasts were plated on a 100 mm culture dish, treated with the target drug, maintained and expanded. The protein was extracted using RIPA buffer (Sigma) to analyze the expression of fibrosis factors, and the protein concentration was quantified by Bradford assay. The same concentration of protein was loaded on 10% SDS-PAGE and the protein was transferred to polyvinylidene difluoride membranes. After blocking for 1 hour at room temperature with PBS containing 5% skim milk, the primary antibody was diluted in PBS containing 5% skim milk at the following dilution ratio: α-SMA (1/200; Abcam). Primary antibodies were incubated for 2 hours at room temperature. After washing with PBS containing 0.1% Tween-20, the peroxidase-linked IgG secondary antibody was cultured, and protein expression was measured using the ECL kit.

그 결과, 닥티노마이신 보다 랄록시펜이 α-SMA의 발현을 효과적으로 감소시키는 것을 확인 하였다(도 6G-I).As a result, it was confirmed that raloxifene effectively decreased the expression of α-SMA than dactinomycin (FIG. 6G-I).

랄록시펜의 시험관 내 항섬유화 효과 검증Validation of anti-fibrosis effect of raloxifene in vitro

<7-1> 랄록시펜 처리에 의한 시험관 내 세포 증식도 감소 확인<7-1> Confirmation of reduction in cell proliferation in vitro by treatment with raloxifene

상기 실시예 6에서 선정된 약물인 랄록시펜의 세포 증식 억제 효과를 확인하기 위해 wound healing 실험을 진행하였다. 섬유아세포를 6웰 플레이트에 도말 하고 유지 및 확장하였다. 세포가 플레이트를 가득 채우면 플레이트에 스크레치를 내고, TGF-β1로 섬유화 유도 및 랄록시펜 약물 처리를 하였다. Wound healing experiment was conducted to confirm the cell proliferation inhibitory effect of the drug selected in Example 6, raloxifene. Fibroblasts were plated in 6-well plates, maintained and expanded. When the cells filled the plate, the plate was scratched, and fibrosis induction with TGF-β1 and treatment with raloxifene drug were performed.

그 결과, TGF-β1에 의해 증가된 세포의 증식도가 랄록시펜에 의해 감소됨을 확인하였다(도 7A-D). 상기 결과를 통해 랄록시펜이 세포의 증식도 감소에 효과가 있음을 검증하였다.As a result, it was confirmed that the proliferation of cells increased by TGF-β1 was decreased by raloxifene (FIGS. 7A-D ). Through the above results, it was verified that raloxifene is effective in reducing cell proliferation.

<7-2> 랄록시펜 처리에 의한 3D 섬유아세포 층 두께 감소 확인<7-2> Confirmation of 3D Fibroblast Layer Thickness Reduction by Raloxifen Treatment

상기 실시예 6에서 선정된 약물인 랄록시펜의 피부 두께 감소 효과를 확인하기 위해 3D 섬유아세포 층에 TGF-β1로 섬유화 유도 및 랄록시펜 약물 처리를 하였다. In order to confirm the effect of reducing the skin thickness of the drug selected in Example 6, raloxifene, the 3D fibroblast layer was induced with TGF-β1 and treated with raloxifene drug.

그 결과, TGF-β1에 의해 증가된 3D 섬유아세포층 두께가 랄록시펜에 의해 감소됨을 확인하였다(도 7E-G). 상기 결과를 통해 랄록시펜이 3D 섬유아세포층 두께 감소에 효과가 있음을 검증하였다.As a result, it was confirmed that the 3D fibroblast layer thickness increased by TGF-β1 was decreased by raloxifene (FIGS. 7E-G ). Through the above results, it was verified that raloxifene is effective in reducing the thickness of the 3D fibroblast layer.

<7-3> 랄록시펜 처리에 의한 섬유화 인자 발현 감소 확인<7-3> Confirmation of Reduction of Fibrosis Factor Expression by Raloxifen Treatment

상기 실시예 6에서 선정된 약물인 랄록시펜의 섬유화 인자 발현의 감소 효과를 확인하기 위해 랄록시펜을 농도별로 처리하고 α-SMA의 발현을 확인하였다. 1x106 개의 섬유아세포를 100mm 배양접시에 도말 하고, 랄록시펜을 처리하고, 유지 및 확장하였다. 섬유화 인자 발현 분석을 위해 RIPA buffer(Sigma)를 이용하여 단백질을 추출하였으며, Bradford assay로 단백질 농도를 정량화 하였다. 동일한 농도의 단백질을 10% SDS-PAGE에 로딩하고 polyvinylidene difluoride membranes에 단백질을 옮겨주었다. 5% skim milk을 함유하는 PBS로 실온에서 1시간 동안 blocking 뒤, 일차 항체를 하기의 희석 비율로 5% skim milk을 함유하는 PBS 에 희석하였다: α-SMA(1/200; Abcam). 일차 항체를 실온에서 2시간 동안 배양 하였다. 0.1% Tween-20을 포함하는 PBS로 세척한 뒤, peroxidase-linked IgG 이차항체를 배양시킨 후 ECL kit를 이용하여 단백질 발현을 측정하였다.In order to confirm the reduction effect of the expression of the fibrosis factor of the drug selected in Example 6, raloxifene, raloxifene was treated by concentration and the expression of α-SMA was confirmed. 1×10 6 fibroblasts were plated on a 100 mm culture dish, treated with raloxifene, maintained and expanded. The protein was extracted using RIPA buffer (Sigma) to analyze the expression of fibrosis factors, and the protein concentration was quantified by Bradford assay. The same concentration of protein was loaded on 10% SDS-PAGE and the protein was transferred to polyvinylidene difluoride membranes. After blocking for 1 hour at room temperature with PBS containing 5% skim milk, the primary antibody was diluted in PBS containing 5% skim milk at the following dilution ratio: α-SMA (1/200; Abcam). Primary antibodies were incubated for 2 hours at room temperature. After washing with PBS containing 0.1% Tween-20, the peroxidase-linked IgG secondary antibody was cultured, and protein expression was measured using the ECL kit.

그 결과, 랄록시펜의 처리 농도가 증가함에 따라 α-SMA의 발현이 감소함을 확인하였다(도 7H-I).As a result, it was confirmed that the expression of α-SMA decreases as the treatment concentration of raloxifene increases (FIG. 7H-I ).

다음으로, 랄록시펜을 농도별로 처리하고 총 콜라겐 발현 변화를 확인 하였다. 상기 실시예 5-3과 동일하게 1x106 개의 섬유아세포를 100mm 배양접시에 도말 하고, 약물을 처리한 뒤, 유지 및 확장하였다. 콜라겐 발현은 Hydroxyproline assay kit(Sigma)를 이용하였다. 세포 또는 세포배양액을 수확하여 염산과 1:1의 비율로 혼합하고, 120℃에서 3시간 배양한다. 배양 후, 5mg의 activated charcoal을 넣어준 뒤, 13,000 xg에서 5분간 원심 분리하여 상층액만 분리하였다. 수확된 상층액을 96웰 플레이트로 옮겨준 뒤 60℃에서 완전히 건조 하였다. Chloramine T/Oxidation Buffer 혼합제를 웰에 넣고 실온에서 5분간 배양한다. 희석한 DMAB Reagent를 넣고 60℃에서 90분간 배양한 뒤, 560nm의 흡광도를 측정하였다.Next, raloxifene was treated by concentration and total collagen expression change was confirmed. In the same manner as in Example 5-3, 1×10 6 fibroblasts were plated on a 100 mm culture dish, treated with drugs, and maintained and expanded. For collagen expression, a Hydroxyproline assay kit (Sigma) was used. The cells or cell cultures are harvested, mixed with hydrochloric acid in a ratio of 1:1, and incubated at 120°C for 3 hours. After incubation, 5 mg of activated charcoal was added, followed by centrifugation at 13,000 xg for 5 minutes to separate only the supernatant. The harvested supernatant was transferred to a 96-well plate and dried completely at 60°C. Add the Chloramine T/Oxidation Buffer mixture to the well and incubate for 5 minutes at room temperature. After adding the diluted DMAB Reagent and incubating at 60°C for 90 minutes, absorbance at 560 nm was measured.

그 결과, 랄록시펜의 처리 농도가 증가함에 따라 총 콜라겐의 발현이 감소함을 확인하였다(도 7J).As a result, it was confirmed that the expression of total collagen decreased as the treatment concentration of raloxifene increased (FIG. 7J ).

전신경화증 동물 모델인 Bleomycin 모델에서의 랄록시펜의 효능 검증Validation of Raloxifene in Bleomycin, an animal model of systemic sclerosis

<8-1> Bleomycin 모델 확립 프로토콜<8-1> Bleomycin model establishment protocol

브레오신(동아에스티, 15mg)을 PBS에 녹여서 마우스의 목덜미 부위에 매일 주입하여 전신경화증 모델을 확립하였다. 브레오신 주입 3일 뒤부터 랄록시펜과 bazedoxifene을 21일간 피하주사 하였다(도 8A).A systemic sclerosis model was established by dissolving leucine (Dong-A ST, 15mg) in PBS and injecting it daily into the nape of the mouse. Raloxifen and bazedoxifene were injected subcutaneously for 21 days from 3 days after the injection of leucine (Fig. 8A).

<8-2> Bleomycin 모델에서의 랄록시펜 처리에 의한 섬유화 인자 발현 분석<8-2> Analysis of fibrosis factor expression by treatment with raloxifene in bleomycin model

상기 실시예 8-1에서 확립된 bleomycin 모델에서의 랄록시펜의 항섬유화 효능을 검증하기 위해 ECM유전자 발현을 확인하였다. 피부조직을 수확 후, Trizol을 사용하여 total RNA를 추출하였고, Revert Aid TM First Strand cDNA Synthesis kit를 사용하여 cDNA를 합성하였다. 합성된 cDNA를 LightCycle 480 SYBR Green을 이용하여 qRT-PCR을 수행하였다. 사용한 프라이머를 [표 4]에 제시 하였다. 모든 실험은 3회 반복하였으며, 평균 사이클의 임계값은 내부대조로써 GAPDH을 평균화하기 위한 유전자 발현을 계산하기 위하여 사용되었다.ECM gene expression was confirmed to verify the antifibrosis efficacy of raloxifene in the bleomycin model established in Example 8-1. After harvesting the skin tissue, total RNA was extracted using Trizol, and cDNA was synthesized using the Revert Aid TM First Strand cDNA Synthesis kit. QRT-PCR was performed on the synthesized cDNA using LightCycle 480 SYBR Green. The primers used are presented in [Table 4]. All experiments were repeated three times, and the threshold of the average cycle was used to calculate gene expression for averaging GAPDH as an internal control.

섬유화 인자 발현 확인을 위한 프라이머 서열Primer sequence to confirm expression of fibrosis factor 타겟 유전자Target gene 방향direction 염기서열(5'->3')Base sequence (5'->3') 서열번호Sequence number 크기size mCOL1A1mCOL1A1 ForwardForward GCAACAGTCGCTTCACCTACA GCAACAGTCGCTTCACCTACA 3535 138138 ReverseReverse CAATGTCCAAGGGAGCCACATCAATGTCCAAGGGAGCCACAT 3636 mCOL3A1mCOL3A1 ForwardForward TGAGCGTGGCTATTCCTTCGT TGAGCGTGGCTATTCCTTCGT 3737 7676 ReverseReverse GCCGTGGCCATCTCATTTTCAAGCCGTGGCCATCTCATTTTCAA 3838 mACTA2mACTA2 ForwardForward GTTCTAGAGGATGGCTGTACTAGTTCTAGAGGATGGCTGTACTA 3939 108108 ReverseReverse TTGCCTTGCGTGTTTGATATTC TTGCCTTGCGTGTTTGATATTC 4040 mGAPDHmGAPDH ForwardForward ACCCCAGCAAGGACACTGAGCAAGACCCCAGCAAGGACACTGAGCAAG 4141 9292 ReverseReverse TGGGGGTCTGGGATGGAAATTGTGTGGGGGTCTGGGATGGAAATTGTG 4242

상기 실험을 통해 랄록시펜 처리에 의해 섬유화 인자 마커인 COL1A1, COL3A1, ACTA2의 발현이 감소함을 확인하였다(도 8C-E).Through the above experiment, it was confirmed that the expression of the fibrosis factor markers COL1A1, COL3A1, and ACTA2 was decreased by treatment with raloxifene (FIGS. 8C-E ).

<8-3> Bleomycin 모델에서의 랄록시펜 처리에 의한 피부조직 두께분석<8-3> Skin tissue thickness analysis by Raloxifen treatment in Bleomycin model

상기 실시예 8-1에서 확립된 bleomycin 모델에서의 랄록시펜의 항섬유화 효능을 검증하기 피부조직을 수확 후 파라핀 블록을 제작하였다. 수확된 피부 조직을 4% 포름알데하이드에 고정시켰다. 남아있는 고정액을 제거하기 위해 흐르는 물에 조직을 하루동안 유지시켰다. 탈수는 에탄올 용액의 농도를 증가시키면서 순차적으로 수행되었다. 탈수 후 자일렌으로 투명과정을 거친 뒤, 파라핀 침투를 시켰다. 다음날 조직을 파라핀 블록에 고정시키고 마이크로톰을 이용하여 조직절편을 얻었다. 슬라이드를 60℃에서 1시간 동안 건조하였다. 슬라이드를 자일렌으로 탈파라핀화 한 뒤, 에탄올 용액의 농도를 감소시키면서 재수화하고, 수돗물에 세척한 뒤 염색을 진행하였다. To verify the anti-fibrotic efficacy of raloxifene in the bleomycin model established in Example 8-1, the skin tissue was harvested and paraffin blocks were prepared. The harvested skin tissue was fixed in 4% formaldehyde. The tissue was kept in the running water for a day to remove the remaining fixative. Dehydration was carried out sequentially while increasing the concentration of the ethanol solution. After dehydration, a transparent process was performed with xylene, followed by paraffin penetration. The next day, the tissue was fixed to a paraffin block and a tissue section was obtained using a microtome. The slide was dried at 60° C. for 1 hour. After the slides were deparaffinized with xylene, they were rehydrated while reducing the concentration of the ethanol solution, washed with tap water, and stained.

헤마톡실린과 에오신(H&E) 염색을 위해 절편을 해리스 헤마톡실린 용액에 10분간 배양하였다. 슬라이드를 세척하고, 1% HCl이 첨가된 에탄올 용액에 탈색 후 0.2% 암모니아수(Ammonia water) 에 중화작용을 수행하였다. 1분 30초 동안 에오신(Eosin)용액으로 대조 염색하였다. 슬라이드를 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거한 뒤, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다.For hematoxylin and eosin (H&E) staining, sections were incubated in a Harris hematoxylin solution for 10 minutes. The slide was washed, decolorized in an ethanol solution with 1% HCl, and then neutralized in 0.2% ammonia water. Control staining was performed with an eosin solution for 1 minute 30 seconds. The slide was washed and dehydrated while increasing the concentration of ethanol. After removing the remaining ethanol with xylene, it was sealed using VectaMount Permanent Mounting Medium.

마손 삼색염색(Masson Trichrome staining)을 위해서 슬라이드를 Bouin 용액에 하룻동안 매염처리를 하였다. 슬라이드를 세척 후 바이게르트 철 헤마톡실린 (Weigert iron hematoxylin)으로 10분간 핵을 염색하였다. Biebrich scarlet-acid fuchsin으로 5분간 세포질을 염색하였다. Phosphotungstic acid와 Phosphomolybdic acid와 DW를 1:1:2의 비율로 혼합한 용액으로 10분간 탈색하였다. 2% aniline blue용액에 5분간 유지하여 교원섬유를 염색하였다. 슬라이드를 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거하고, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다.For Masson Trichrome staining, slides were buried overnight in Bouin solution. After washing the slides, nuclei were stained for 10 minutes with Weigert iron hematoxylin. The cytoplasm was stained for 5 minutes with biebrich scarlet-acid fuchsin. The solution was mixed with Phosphotungstic acid, Phosphomolybdic acid, and DW in a ratio of 1:1:2 for 10 minutes. The fiber was dyed by holding it in a 2% aniline blue solution for 5 minutes. The slide was washed and dehydrated while increasing the concentration of ethanol. The remaining ethanol with xylene was removed and sealed using VectaMount Permanent Mounting Medium.

피크로시리우스 레드 염색(Picrosirius Red staining)을 위해서 슬라이드를 피크로시리우스 레드 용액에 1시간 유지하였다. 아세트산으로 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거한 뒤, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다.The slides were kept for 1 hour in the Pyrosirius Red solution for Picrosirius Red staining. It was washed with acetic acid and dehydrated while increasing the concentration of ethanol. After removing the remaining ethanol with xylene, it was sealed using VectaMount Permanent Mounting Medium.

면역화학 염색을 위해 3% 과산화수소에서 15분간 배양하여 내인성 퍼옥시다아제를 차단하였다. 슬라이드를 세척 후, 1% 소혈청 알부민(BSA)을 함유하는 PBS로 실온에서 1시간 동안 세포를 차단한 뒤, 일차 항체를 하기의 희석 비율로 PBA에 희석하였다: α-SMA(1/200; Abcam). 일차 항체를 실온에서 4℃에서 하루 동안 배양 하였다. 다음날 0.1% 트윈-20(TBST)을 함유하는 트리스 완충 식염수(TBS)로 세척하고, 2차 항체를 실온에서 10분간 유지 후, 10분간 ABC시약에 배양하였다. 슬라이드를 PBS로 세척하고, DAB 용액을 1분 동안 유지하였다. 핵 염색제로 Mayer's hematoxylin을 1분간 적용 하였다. 슬라이드를 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거하고, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다. For immunochemical staining, endogenous peroxidase was blocked by incubation for 15 minutes in 3% hydrogen peroxide. After washing the slides, cells were blocked for 1 hour at room temperature with PBS containing 1% bovine serum albumin (BSA), and then the primary antibody was diluted in PBA at the following dilution ratio: α-SMA (1/200; Abcam). Primary antibodies were incubated at room temperature at 4°C for one day. The next day, washed with Tris buffered saline (TBS) containing 0.1% Tween-20 (TBST), the secondary antibody was maintained at room temperature for 10 minutes, and then cultured in ABC reagent for 10 minutes. The slides were washed with PBS and the DAB solution was maintained for 1 minute. Mayer's hematoxylin was applied for 1 minute as a nuclear stain. The slide was washed and dehydrated while increasing the concentration of ethanol. The remaining ethanol with xylene was removed and sealed using VectaMount Permanent Mounting Medium.

그 결과, bleomycin 마우스 모델에서 증가되었던 피부조직의 두께가 랄록시펜에 의해 감소함을 확인하였다(도 8B, F).As a result, it was confirmed that the thickness of the skin tissue increased in the bleomycin mouse model was decreased by raloxifen (FIG. 8B, F).

<8-4> Bleomycin 모델에서의 랄록시펜 처리에 의한 폐섬유화 분석<8-4> Pulmonary Fibrosis Analysis by Raloxifen Treatment in Bleomycin Model

상기 실시예 8-1에서 확립된 bleomycin 모델에서 랄록시펜 처리에 의한 폐섬유화 감소 효과를 확인하기 위해 마손 삼색염색을 진행 하였다. 마손 삼색염색(Masson Trichrome staining)을 위해서 슬라이드를 Bouin 용액에 하룻동안 매염처리를 하였다. 슬라이드를 세척 후 바이게르트 철 헤마톡실린 (Weigert iron hematoxylin)으로 10분간 핵을 염색하였다. Biebrich scarlet-acid fuchsin으로 5분간 세포질을 염색하였다. Phosphotungstic acid와 Phosphomolybdic acid와 DW를 1:1:2의 비율로 혼합한 용액으로 10분간 탈색하였다. 2% aniline blue용액에 5분간 유지하여 교원섬유를 염색하였다. 슬라이드를 세척하고, 에탄올의 농도를 증가시키면서 탈수과정을 거쳤다. 자일렌으로 남아있는 에탄올을 제거하고, VectaMount Permanent Mounting Medium을 사용하여 봉입하였다.In order to confirm the effect of reducing pulmonary fibrosis by treatment with raloxifene in the bleomycin model established in Example 8-1, abrasion tricolor staining was performed. For Masson Trichrome staining, slides were buried overnight in Bouin solution. After washing the slides, nuclei were stained for 10 minutes with Weigert iron hematoxylin. The cytoplasm was stained for 5 minutes with biebrich scarlet-acid fuchsin. The solution was mixed with Phosphotungstic acid, Phosphomolybdic acid, and DW in a ratio of 1:1:2 for 10 minutes. The fiber was dyed by holding it in a 2% aniline blue solution for 5 minutes. The slide was washed and dehydrated while increasing the concentration of ethanol. The remaining ethanol with xylene was removed and sealed using VectaMount Permanent Mounting Medium.

그 결과, bleomycin 마우스 모델에서 증가되었던 폐섬유화가 랄록시펜에 의해 감소함을 확인하였다(도 8G).As a result, it was confirmed that lung fibrosis, which was increased in the bleomycin mouse model, was decreased by raloxifene (FIG. 8G ).

<110> CATHOLIC UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION <120> PHAMACEUTICAL COMPOSITION COMPRISING RALOXIFENE FOR PREVENTING OR TREATING SYSTEMIC SCLEROSIS <130> 1064735 <160> 42 <170> KoPatentIn 3.0 <210> 1 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for OCT4 <400> 1 acccctggtg ccgtgaa 17 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for OCT4 <400> 2 ggctgaatac cttcccaaat a 21 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for SOX2 <400> 3 cagcgcatgg acagttac 18 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for SOX2 <400> 4 ggagtgggag gaagaggt 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for NANOG <400> 5 aaaggcaaac aacccact 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for NANOG <400> 6 aaaggcaaac aacccact 18 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for LIN28 <400> 7 gttcggcttc ctgtccat 18 <210> 8 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for LIN28 <400> 8 ctgcctcacc ctccttca 18 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for GAPDH <400> 9 acccactcct ccacctttga 20 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for GAPDH <400> 10 ctgttgctgt agccaaattc gt 22 <210> 11 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hOCT4 <400> 11 acccctggtg ccgtgaa 17 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hOCT4 <400> 12 ggctgaatac cttcccaaat a 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hPAX6 <400> 13 gtccatcttt gcttgggaaa 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hPAX6 <400> 14 tagccaggtt gcgaagaact 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hSOX1 <400> 15 cacaactcgg agatcagcaa 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hSOX1 <400> 16 ggtacttgta atccgggtgc 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hNp63 <400> 17 ggaaaacaat gcccagactc 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hNp63 <400> 18 gtggaatacg tccaggtggc 20 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hKRT5 <400> 19 accgttcctg ggtaacagag ccac 24 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hKRT5 <400> 20 gcgggagaca gacggggtga tg 22 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hKRT14 <400> 21 gcagtcatcc agagatgtga cc 22 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hKRT14 <400> 22 gggatcttcc agtgggatct 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hGAPDH <400> 23 acccactcct ccacctttga 20 <210> 24 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hGAPDH <400> 24 ctgttgctgt agccaaattc gt 22 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hCOL1A1 <400> 25 cccctggaaa gaatggagat g 21 <210> 26 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hCOL1A1 <400> 26 tccaaaccac tgaaacctct g 21 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hCOL1A2 <400> 27 ggatgaggag actggcaacc 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hCOL1A2 <400> 28 tgccctcagc aacaagttca 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hCOL3A1 <400> 29 cgccctccta atggtcaagg 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hCOL3A1 <400> 30 ttctgaggac cagtagggca 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hACTA2 <400> 31 aaagcaagtc ctccagcgtt 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hACTA2 <400> 32 ttcacaggat tctgggagcg 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hGAPDH <400> 33 acccactcct ccacctttga 20 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hGAPDH <400> 34 ctgttgctgt agccaaattc gt 22 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for mCOL1A1 <400> 35 gcaacagtcg cttcacctac a 21 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for mCOL1A1 <400> 36 caatgtccaa gggagccaca t 21 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for mCOL3A1 <400> 37 tgagcgtggc tattccttcg t 21 <210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for mCOL3A1 <400> 38 gccgtggcca tctcattttc aa 22 <210> 39 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for mACTA2 <400> 39 gttctagagg atggctgtac ta 22 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for mACTA2 <400> 40 ttgccttgcg tgtttgatat tc 22 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for mGAPDH <400> 41 accccagcaa ggacactgag caag 24 <210> 42 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for mGAPDH <400> 42 tgggggtctg ggatggaaat tgtg 24 <110> CATHOLIC UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION <120> PHAMACEUTICAL COMPOSITION COMPRISING RALOXIFENE FOR PREVENTING OR TREATING SYSTEMIC SCLEROSIS <130> 1064735 <160> 42 <170> KoPatentIn 3.0 <210> 1 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for OCT4 <400> 1 acccctggtg ccgtgaa 17 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for OCT4 <400> 2 ggctgaatac cttcccaaat a 21 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for SOX2 <400> 3 cagcgcatgg acagttac 18 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for SOX2 <400> 4 ggagtgggag gaagaggt 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for NANOG <400> 5 aaaggcaaac aacccact 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for NANOG <400> 6 aaaggcaaac aacccact 18 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for LIN28 <400> 7 gttcggcttc ctgtccat 18 <210> 8 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for LIN28 <400> 8 ctgcctcacc ctccttca 18 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for GAPDH <400> 9 acccactcct ccacctttga 20 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for GAPDH <400> 10 ctgttgctgt agccaaattc gt 22 <210> 11 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hOCT4 <400> 11 acccctggtg ccgtgaa 17 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hOCT4 <400> 12 ggctgaatac cttcccaaat a 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hPAX6 <400> 13 gtccatcttt gcttgggaaa 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hPAX6 <400> 14 tagccaggtt gcgaagaact 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hSOX1 <400> 15 cacaactcgg agatcagcaa 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hSOX1 <400> 16 ggtacttgta atccgggtgc 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hNp63 <400> 17 ggaaaacaat gcccagactc 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hNp63 <400> 18 gtggaatacg tccaggtggc 20 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hKRT5 <400> 19 accgttcctg ggtaacagag ccac 24 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hKRT5 <400> 20 gcgggagaca gacggggtga tg 22 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hKRT14 <400> 21 gcagtcatcc agagatgtga cc 22 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hKRT14 <400> 22 gggatcttcc agtgggatct 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hGAPDH <400> 23 acccactcct ccacctttga 20 <210> 24 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hGAPDH <400> 24 ctgttgctgt agccaaattc gt 22 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hCOL1A1 <400> 25 cccctggaaa gaatggagat g 21 <210> 26 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hCOL1A1 <400> 26 tccaaaccac tgaaacctct g 21 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hCOL1A2 <400> 27 ggatgaggag actggcaacc 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hCOL1A2 <400> 28 tgccctcagc aacaagttca 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hCOL3A1 <400> 29 cgccctccta atggtcaagg 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hCOL3A1 <400> 30 ttctgaggac cagtagggca 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hACTA2 <400> 31 aaagcaagtc ctccagcgtt 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hACTA2 <400> 32 ttcacaggat tctgggagcg 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for hGAPDH <400> 33 acccactcct ccacctttga 20 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for hGAPDH <400> 34 ctgttgctgt agccaaattc gt 22 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for mCOL1A1 <400> 35 gcaacagtcg cttcacctac a 21 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for mCOL1A1 <400> 36 caatgtccaa gggagccaca t 21 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for mCOL3A1 <400> 37 tgagcgtggc tattccttcg t 21 <210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for mCOL3A1 <400> 38 gccgtggcca tctcattttc aa 22 <210> 39 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for mACTA2 <400> 39 gttctagagg atggctgtac ta 22 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for mACTA2 <400> 40 ttgccttgcg tgtttgatat tc 22 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for mGAPDH <400> 41 accccagcaa ggacactgag caag 24 <210> 42 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for mGAPDH <400> 42 tgggggtctg ggatggaaat tgtg 24

Claims (8)

랄록시펜(raloxifene) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 전신경화증(Systemic sclerosis; SSc) 예방 또는 치료용 약학적 조성물.
Pharmaceutical composition for preventing or treating systemic sclerosis (SSc) containing raloxifene or a pharmaceutically acceptable salt thereof as an active ingredient.
제1항에 있어서,
상기 조성물은 TGF-β1에 의해 유도된 세포 증식도를 감소시키고, 섬유아세포층 두께 또는 피부조직의 두께를 감소시키는 것을 특징으로 하는 전신경화증 예방 또는 치료용 약학적 조성물.
According to claim 1,
The composition is a pharmaceutical composition for preventing or treating systemic sclerosis, characterized in that it reduces the cell proliferation induced by TGF-β1 and reduces the thickness of the fibroblast layer or the thickness of skin tissue.
제1항에 있어서,
상기 조성물은 TGF-β1에 의해 유도된 섬유화 인자 마커의 발현을 억제 또는 감소시키는 것을 특징으로 하는 전신경화증 예방 또는 치료용 약학적 조성물.
According to claim 1,
The composition is a pharmaceutical composition for preventing or treating systemic sclerosis, characterized by inhibiting or reducing the expression of the fibrosis factor marker induced by TGF-β1.
제3항에 있어서,
상기 섬유화 인자 마커는 COL1A1, COL3A1, ACTA2인 것을 특징으로 하는 전신경화증 예방 또는 치료용 약학적 조성물.
According to claim 3,
The fibrosis factor marker is COL1A1, COL3A1, ACTA2, characterized in that the pharmaceutical composition for preventing or treating systemic sclerosis.
제1항에 있어서,
상기 전신경화증은 폐, 간, 신장, 심혈관계 또는 피부의 전신경화증을 포함하는, 전신경화증 예방 또는 치료용 약학적 조성물.
According to claim 1,
The systemic sclerosis comprises systemic sclerosis of the lungs, liver, kidneys, cardiovascular system or skin, pharmaceutical composition for preventing or treating systemic sclerosis.
제1항에 있어서,
상기 전신경화증은 미만성 피부 전신경화증(dcSSc) 또는 제한성 피부 전신경화증(IcSSc)인, 전신경화증 예방 또는 치료용 약학적 조성물.
According to claim 1,
The systemic sclerosis is diffuse skin systemic sclerosis (dcSSc) or limited skin systemic sclerosis (IcSSc), a pharmaceutical composition for preventing or treating systemic sclerosis.
제1항에 있어서,
상기 조성물은 유효성분으로 닥티노마이신(Dactinomycin)을 추가로 포함하는 것을 특징으로 하는 약학적 조성물.
According to claim 1,
The composition is a pharmaceutical composition characterized in that it further comprises Dactinomycin (Dactinomycin) as an active ingredient.
랄록시펜(raloxifene) 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 전신경화증(Systemic sclerosis; SSc) 예방 또는 개선을 위한 건강기능식품.Health functional food for preventing or improving systemic sclerosis (SSc) containing raloxifene or a pharmaceutically acceptable salt thereof as an active ingredient.
KR1020190021901A 2019-02-25 2019-02-25 Phamaceutical composition comprising raloxifene for preventing or treating systemic sclerosis KR102132554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190021901A KR102132554B1 (en) 2019-02-25 2019-02-25 Phamaceutical composition comprising raloxifene for preventing or treating systemic sclerosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190021901A KR102132554B1 (en) 2019-02-25 2019-02-25 Phamaceutical composition comprising raloxifene for preventing or treating systemic sclerosis

Publications (1)

Publication Number Publication Date
KR102132554B1 true KR102132554B1 (en) 2020-07-09

Family

ID=71602362

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190021901A KR102132554B1 (en) 2019-02-25 2019-02-25 Phamaceutical composition comprising raloxifene for preventing or treating systemic sclerosis

Country Status (1)

Country Link
KR (1) KR102132554B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215856A (en) * 1993-12-21 1995-08-15 Eli Lilly & Co Medicinal composition for suppressing pulmonary hypertension disease
US6107331A (en) * 1996-02-28 2000-08-22 Pfizer Inc. Use of estrogen antagonists and estrogen agonists in inhibiting pathological conditions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215856A (en) * 1993-12-21 1995-08-15 Eli Lilly & Co Medicinal composition for suppressing pulmonary hypertension disease
US6107331A (en) * 1996-02-28 2000-08-22 Pfizer Inc. Use of estrogen antagonists and estrogen agonists in inhibiting pathological conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Matrix Biology, 51, 26-36, 2016. *

Similar Documents

Publication Publication Date Title
Mueller et al. Autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in human gliomas with tumor progression
KR101939401B1 (en) Composition for preventing or treating ischemic cardiac diseases comprising inhibiting agent for synthesis or secretion of AGE-albumin of mononuclear phagocyte as active ingredient
Xu et al. Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an in vivo mouse model
CN107849535A (en) Allochthon from mescenchymal stem cell
Yang et al. An experimental study on intracerebroventricular transplantation of human amniotic epithelial cells in a rat model of Parkinson's disease
Xiang et al. Direct in vivo application of induced pluripotent stem cells is feasible and can be safe
EP3903579A1 (en) Systemic sclerosis disease model and use thereof
Guarino et al. Pathological relevance of epithelial and mesenchymal phenotype plasticity
CN111407879B (en) Application of Chinese yam protein extract in preparation of medicine for treating erectile dysfunction
CN110960670B (en) Application of phycocyanin peptide in preparation of anti-pulmonary fibrosis drugs
KR102107602B1 (en) Media composition for reprogramming of human hepatocytes
Li et al. Renal Fibrosis Is Alleviated through Targeted Inhibition of IL-11–Induced Renal Tubular Epithelial-to-Mesenchymal Transition
KR102132554B1 (en) Phamaceutical composition comprising raloxifene for preventing or treating systemic sclerosis
WO2015093901A1 (en) Pharmaceutical composition containing taz protein activation inducing component for muscle differentiation and muscle regeneration
Tosi et al. Heat shock protein 90 involvement in the development of idiopathic epiretinal membranes
KR20180016179A (en) A method for preparing of fibrosis disease models and use of fibrosis disease model
KR102600585B1 (en) A composition comprising ginseng for preventing, improving or treating chronic obstructive pulmonary disease
KR20180132298A (en) Use related with liver cell differentiation and liver disease using Yap/Taz
US20220387509A1 (en) Composition for preventing or treating renal diseases, comprising exosomes derived from precursor cells of induced pluripotent stem cell-derived mesenchymal stem cells
JP2022530232A (en) A pharmaceutical composition for preventing or treating myositis, which comprises mitochondria isolated as an active ingredient.
CN103800919A (en) Application of TUFT1 (tuftelin 1) in preparation of formulation for liver cancer diagnosis and treatment
KR101954777B1 (en) OCT4 expression or ubiquitination regulating composition comprising CHIP
WO2014098211A1 (en) Tissue regeneration accelerator
Li et al. Wedelolactone suppresses breast cancer growth and metastasis via regulating TGF-β1/Smad signaling pathway
CN115721719B (en) Use of TRPM8 activators and PDE5 inhibitors for treating pulmonary hypertension

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant