Nothing Special   »   [go: up one dir, main page]

KR102121551B1 - Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds - Google Patents

Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds Download PDF

Info

Publication number
KR102121551B1
KR102121551B1 KR1020180164966A KR20180164966A KR102121551B1 KR 102121551 B1 KR102121551 B1 KR 102121551B1 KR 1020180164966 A KR1020180164966 A KR 1020180164966A KR 20180164966 A KR20180164966 A KR 20180164966A KR 102121551 B1 KR102121551 B1 KR 102121551B1
Authority
KR
South Korea
Prior art keywords
catalyst
weight
volatile organic
parts
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020180164966A
Other languages
Korean (ko)
Inventor
박성희
Original Assignee
우석대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우석대학교 산학협력단 filed Critical 우석대학교 산학협력단
Priority to KR1020180164966A priority Critical patent/KR102121551B1/en
Application granted granted Critical
Publication of KR102121551B1 publication Critical patent/KR102121551B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법에 관한 것으로, 보다 상세하게는 FCC 공정으로부터 배출되는 폐촉매를 주원료로하여 아나타제형 이산화티타늄과 구리 및 망간을 특정 배합비로 혼합시키고, 주물 폐분진인 주물분진을 바인더로 사용하여 휘발성 유기화합물 제거용 복합산화물 촉매를 제조함으로써, 종래 귀금속계 촉매 대비 가격경쟁력이 우수한 동시에 FCC 공정으로부터 배출되는 폐촉매 및 주물공장에서 발생되는 폐기물인 주물분진을 고부가가치로 사용할 수 있으며, 간단한 제조공정으로 성능 및 내구성이 뛰어난 휘발성 유기화합물 제거용 촉매를 용이하게 제조할 수 있는, 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a composite oxide catalyst for removing volatile organic compounds, and more specifically, a waste a catalyst discharged from the FCC process is mixed with anatase type titanium dioxide, copper and manganese in a specific mixing ratio, and the casting waste By producing a composite oxide catalyst for the removal of volatile organic compounds by using the dust, which is a dust, as a binder, it has excellent price competitiveness compared to a conventional noble metal-based catalyst, and at the same time, improves the waste catalyst generated from the FCC process and waste generated from the foundry. The present invention relates to a method for preparing a composite oxide catalyst for removing volatile organic compounds, which can be used as an added value and can easily produce a catalyst for removing volatile organic compounds, which is excellent in performance and durability in a simple manufacturing process.

Description

휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법{Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds}Manufacturing method of complex oxide catalyst for removing volatile organic compounds{Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds}

본 발명은 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법에 관한 것으로, 보다 상세하게는 FCC 공정 폐촉매를 이용하여 종래 휘발성 유기화합물 제거용 촉매 대비 가격경쟁력이 우수하고, 간단한 공정으로 성능 및 내구성이 우수한 휘발성 유기화합물 제거용 복합산화물 촉매를 제조할 수 있는 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법에 관한 것이다. The present invention relates to a method for preparing a composite oxide catalyst for removing volatile organic compounds, and more specifically, it has excellent price competitiveness compared to a catalyst for removing volatile organic compounds using a FCC process waste catalyst, and has simple performance and durability. The present invention relates to a method for preparing a composite oxide catalyst for removing volatile organic compounds, which can produce an excellent composite oxide catalyst for removing volatile organic compounds.

석유화학제품 제조 공정, 각종 정밀화학제품의 생산이나, 섬유, 플라스틱 또는 전자부품재료의 제조 및 도금, 도장공정을 수행하는 공장에서 발생하는 휘발성 유기화합물(Volatile organic compounds; VOCs)은 고도의 산업화에 따라 그 배출량이 증가하고 있으며 인체에 유해한 화학물질로도 알려져 있다. 이러한 휘발성 유기화합물을 제거하기 위한 방안으로는 직접연소법, 흡착법, 촉매산화법 등이 있으나, 경제성과 환경 친화적인 측면에서 촉매산화법이 가장 이상적인 방법으로 평가되고 있다.Volatile organic compounds (VOCs) produced in factories that perform petrochemical product manufacturing processes, production of various fine chemical products, or manufacturing, plating, and coating processes for textiles, plastics, or electronic parts materials are highly industrialized. Accordingly, its emissions are increasing and it is also known as a chemical harmful to the human body. The methods for removing these volatile organic compounds include direct combustion, adsorption, and catalytic oxidation, but catalytic oxidation is considered to be the most ideal method in terms of economy and environmental friendliness.

촉매산화법은 열소각법에 비하여 조업 온도가 현저히 낮아 에너지 사용량이 50 %에 지나지 않고, 비교적 저렴한 소재로 이루어진 작은 반응기에서 운전된다는 이점 때문에 휘발성 유기화합물의 제거에 주로 이용되고 있다. 이러한 촉매산화법에 따른 휘발성 유기화합물의 산화 제거 반응에서 우수한 활성을 제공하는 촉매는 단연 귀금속계 촉매라 할 수 있다.The catalytic oxidation method is mainly used for the removal of volatile organic compounds due to the advantage of operating in a small reactor made of a relatively inexpensive material, with an energy consumption of only 50% due to a significantly lower operating temperature compared to the thermal incineration method. A catalyst that provides excellent activity in the oxidation removal reaction of volatile organic compounds according to the catalytic oxidation method can be referred to as a noble metal catalyst.

이러한 촉매산화법의 일례로 미국등록특허 제4059675호 및 대한민국 공개특허 제2016-0045689호에서는 귀금속 중 1종 또는 2종 이상을 단독으로 포함하는 촉매를 사용하여 휘발성 유기화합물을 분해하는 반응이 제시되어 있다. 또한, 그 밖에는 비귀금속(non-noble metal)을 활성 성분으로 갖는 것으로서 전이금속 산화물 및 희토류 금속 산화물로 구성된 촉매를 들 수 있는데, 이들의 촉매활성은 아직 귀금속 촉매에 비해 산화반응 효율이 현저히 떨어지는 편이다.As an example of such a catalytic oxidation method, U.S. Patent No. 4059675 and Republic of Korea Patent Publication No. 2016-0045689 disclose a reaction for decomposing a volatile organic compound using a catalyst containing one or more of noble metals alone. . In addition, there are other catalysts composed of a transition metal oxide and a rare earth metal oxide as having a non-noble metal as an active ingredient. Their catalytic activity is still significantly lower in oxidation reaction efficiency than a noble metal catalyst. to be.

이와 같은 귀금속계 촉매를 이용한 촉매산화법의 경우, 비교적 저온(150 ℃ 내지 450 ℃)에서 높은 활성을 보이지만, 귀금속이 단독으로 포함되어 그의 함유 비율에 따라 가격 경쟁력이 떨어지며, 해당 금속의 희소성 및 수요의 증가로 인해 매년 가격이 상승하고 있는 추세이고, 특히 열적 안정성이 낮아 반응 과정에서 열에 의해 쉽게 응집되어 촉매 비활성을 초래하는 단점을 가지고 있어 이를 대체하기 위한 새로운 촉매 개발이 요구되고 있다.In the case of the catalytic oxidation method using such a noble metal catalyst, it exhibits high activity at a relatively low temperature (150° C. to 450° C.), but since the noble metal is contained alone, the price competitiveness decreases depending on its content ratio, and the scarcity and demand of the metal Due to the increase, the price is increasing every year, and in particular, it has a disadvantage that it is easily agglomerated by heat during the reaction process due to low thermal stability, and thus, a new catalyst to replace it is required.

이와 관련하여 특히 니켈 함유 촉매는 귀금속 촉매에 비해 가격은 저렴하나, 촉매활성은 비슷하여 귀금속 촉매의 대체제로 관심을 받고 있다. 하지만 니켈 촉매 자체는 낮은 열적 안정성 때문에 이를 보완할 수 있는 복합 산화물에 대한 연구가 진행되고 있다.In this regard, nickel-containing catalysts are inexpensive compared to noble metal catalysts, but have similar catalytic activity, and are receiving attention as a substitute for noble metal catalysts. However, due to the low thermal stability of the nickel catalyst itself, research is being conducted on a complex oxide that can compensate for it.

한편, 유동층 촉매접촉분해(Fluidized Catalytic Cracking; FCC)공정에서는 원유 증류과정에서 생산된 경유나 디젤 유분을 유동층 반응기에서 촉매와 접촉시켜 가솔린이나 나프타 유분으로 분해시킨다. 자동차 증가로 가솔린 수요가 많아지고 석유화학공업의 발달로 나프타 수요가 커지면서 FCC 공정의 조업규모가 커져서, FCC 공정이 석유화학 공정 중에서 가장 크다. On the other hand, in the fluidized catalytic cracking (FCC) process, light oil or diesel oil produced in a crude oil distillation process is contacted with a catalyst in a fluidized bed reactor to decompose it into gasoline or naphtha oil. As the demand for gasoline increases due to the increase in automobiles and the demand for naphtha increases due to the development of the petrochemical industry, the operation scale of the FCC process increases, and the FCC process is the largest among the petrochemical processes.

FCC 공정에는 실리카-알루미나에 제올라이트 Y를 섞어 만든 구형 촉매가 사용된다. 실리카-알루미나의 큰 세공내에 제올라이트 입자가 들어 있어 큰 반응물이 먼저 실리카-알루미나 산점에서 일차 분해된 후, 제올라이트 세공에 확산되어 들어와 옥탄가가 높은 가지 달린 탄화수소로 전환된다. 최근에는 제올라이트의 열적 안정성을 증진시키고 분해공정에서 탄소침적을 줄이기 위하여 알루미늄을 일부 용출시켜 제조한 초안정 제올라이트 Y(Ultra Stable Y; USY)로 FCC 공정의 촉매를 만든다. In the FCC process, a spherical catalyst made of zeolite Y mixed with silica-alumina is used. Since the zeolite particles are contained in the large pores of silica-alumina, the large reactants are first decomposed first at the silica-alumina acid point, then diffused into the zeolite pores and converted into branched hydrocarbons having a high octane number. Recently, to improve the thermal stability of zeolites and to reduce carbon deposits in the decomposition process, catalysts for FCC processes are made with ultra-stable zeolite Y (USY) produced by eluting aluminum partially.

그러나 이 촉매는 접촉시간이 불과 수초인데도 불구하고 탄소침적으로 활성이 심하게 저하되므로, 1차 사용 후 사이클론으로 회수하여 재생기로 보내 공기를 넣어 침적탄소를 태워 제거한 후, 다시 사용한다. 사용과 재생과정에서 축적된 열적 피로와 유동과정에서 마모로 인해 입자가 부서지고 세공내 탄소침적이 완전히 제거되지 않아 촉매 활성이 서서히 저하되므로, 유동층 촉매 반응기에서는 새 촉매를 일정량 공급하면서 사용한 촉매를 일정량 제거하는 방법으로 촉매 활성을 일정하게 유지한다.However, although the catalyst has only a few seconds of contact time, its activity is severely degraded by carbon deposition, and after the first use, it is recovered by cyclone, sent to a regenerator, and then air is removed to burn the deposited carbon, and then used again. In the fluidized bed catalytic reactor, a certain amount of used catalyst is supplied while a certain amount of new catalyst is supplied. The catalytic activity is kept constant by the removal method.

이와 같이 사용 후 폐기된 FCC 공정 촉매는 실리카와 알루미나 외에 다른 성분이 거의 없어서 공해발생 우려가 없고, 기계적 강도가 우수하여 보통 공기중에서 소성하여 침적탄소를 제거한 후 시멘트 제조원료로 사용되거나, 또는 벽돌 제조나 다른 제올라이트 합성 원료로 재활용이 고려되고 있으나, 발생량이 워낙 많고 경제성이 낮아 석회석과 혼합하여 처분하는 등 FCC 공정 폐촉매의 부가가치가 매우 낮은 편이다.The FCC process catalyst discarded after use has almost no other components other than silica and alumina, so there is no fear of pollution, and it has excellent mechanical strength, so it is usually fired in the air to remove deposited carbon, or used as a raw material for cement production, or brick production. However, although recycling is considered as another raw material for zeolite synthesis, the added value of the waste catalyst of the FCC process is very low, such as disposing it by mixing it with limestone due to its large amount and low economic efficiency.

따라서, FCC 공정에서 배출되는 다량의 폐촉매를 이용하여 고부가가치로 사용할 수 있는 연구개발이 더욱 필요한 실정이다.Therefore, there is a need for research and development that can be used at a high added value by using a large amount of waste catalyst discharged from the FCC process.

미국등록특허 제4059675호(등록일 : 1977.11.22)U.S. Patent No. 4059675 (Registration Date: 1977.11.22) 대한민국공개특허 제2016-0045689호(공개일 : 2016.04.27)Republic of Korea Patent No. 2016-0045689 (Publication date: 2016.04.27)

본 발명의 주된 목적은 종래 휘발성 유기화합물 제거용 귀금속 촉매 대비 가격경쟁력이 우수하고 간단한 공정으로 성능 및 내구성이 우수한 휘발성 유기화합물 제거용 촉매를 용이하게 제조할 수 있는, FCC 공정 폐촉매를 이용한 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법을 제공하는데 있다. The main object of the present invention is a volatile organic using a FCC catalyst waste catalyst, which can easily produce a catalyst for removing a volatile organic compound, which is superior in price competitiveness and has excellent performance and durability in a simple process compared to a conventional noble metal catalyst for removing a volatile organic compound. Disclosed is a method for preparing a composite oxide catalyst for removing a compound.

상기와 같은 목적을 달성하기 위하여, 본 발명의 일 구현예는 (a) FCC 공정 폐촉매 100 중량부에 대하여, 아나타제(anatase)형 결정구조를 가지는 이산화티타늄 100 중량부 ~ 400 중량부, 구리 전구체 1 중량부 ~ 20 중량부, 망간 전구체 5 ~ 30 중량부 및 주물분진 50 중량부 ~ 200 중량부를 혼합하고, 물을 첨가하여 성형용 배토를 형성하는 원료 배합단계; (b) 상기 성형용 배토를 성형하는 단계; 및 (c) 상기 성형물을 건조 및 소성하여 촉매를 형성하는 단계를 포함하고, 상기 FCC 공정 폐촉매는 폐촉매 총 중량에 대하여 산화알루미늄 15 중량% ~ 60 중량%, 이산화규소 35 중량% ~ 80 중량% 및 산화니켈 0.1 중량% ~ 20 중량%를 함유하는 것을 특징으로 하는 휘발성 유기화합물 복합산화물 촉매의 제조방법을 제공한다.In order to achieve the above object, an embodiment of the present invention (a) FCC process waste catalyst 100 parts by weight of titanium dioxide having an anatase (anatase) crystal structure 100 parts by weight to 400 parts by weight, copper precursor 1 part by weight to 20 parts by weight, 5 to 30 parts by weight of the manganese precursor and 50 parts to 200 parts by weight of the cast dust, and adding water to form a forming clay; (b) forming the forming clay; And (c) drying and firing the molding to form a catalyst, wherein the FCC process waste catalyst is 15 wt% to 60 wt% aluminum oxide, 35 wt% to 80 wt% silicon dioxide, based on the total weight of the waste catalyst. % And nickel oxide 0.1 wt% to 20 wt%.

본 발명의 바람직한 일 구현예에서, 상기 휘발성 유기화합물 복합산화물 촉매의 제조방법은 (a) 단계 이전에 (i) FCC 공정 폐촉매를 300 ℃ ~ 400 ℃에서 열처리하는 단계; (ii) 상기 열처리된 FCC 공정 폐촉매를 기포를 사용하여 수세하는 단계; (iii) 상기 수세된 폐촉매를 산성 용액 또는 염기성 용액의 기포를 사용하여 세척하는 단계; (iv) 상기 세척된 폐촉매를 45 ℃ ~ 85 ℃의 기포를 사용하여 수세하는 단계; 및 (v)상기 수세된 폐촉매를 건조 시키는 단계를 포함하는 전처리 단계를 추가로 포함하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the method for preparing the volatile organic compound composite oxide catalyst comprises: (a) prior to step (i) heat treating the FCC process waste catalyst at 300°C to 400°C; (ii) washing the heat-treated FCC process waste catalyst with air bubbles; (iii) washing the washed waste catalyst using a bubble of an acidic solution or a basic solution; (iv) washing the washed waste catalyst using bubbles of 45°C to 85°C; And (v) may be characterized in that it further comprises a pre-treatment step comprising the step of drying the washed waste catalyst.

본 발명의 바람직한 일 구현예에서, 상기 구리 전구체는 황산구리, 염화제1구리, 염화제2구리, 질산구리, 아세트산구리, 탄산구리, 시안화구리 및 요오드화구리로 구성된 군에서 선택되는 1종 이상이고, 망간 전구체는 염화제1망간, 염화제1망간4수화물, 염화제2망간, 4염화망간, 질산망간 6수화물, 질산망간 4수화물 및 질산망간 1수화물로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the copper precursor is at least one selected from the group consisting of copper sulfate, cuprous chloride, cupric chloride, copper nitrate, copper acetate, copper carbonate, copper cyanide and copper iodide, The manganese precursor is characterized in that it is at least one member selected from the group consisting of first manganese chloride, first manganese chloride tetrahydrate, manganese chloride, manganese tetrachloride, manganese nitrate hexahydrate, manganese nitrate tetrahydrate and manganese nitrate monohydrate. can do.

본 발명의 바람직한 일 구현예에서, 상기 (c) 단계의 건조는 80 ℃ ~ 120 ℃에서 수행하고, 소성은 400 ℃ ~ 700 ℃에서 1 시간 ~ 10 시간 동안 수행하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the drying of step (c) may be performed at 80°C to 120°C, and firing may be performed at 400°C to 700°C for 1 hour to 10 hours.

본 발명에 따른 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법은 FCC 공정으로부터 배출되는 폐촉매를 주원료로하여 아나타제형 이산화티타늄과 구리 및 망간을 특정 배합비로 혼합시키고, 주물 폐분진인 주물분진을 바인더로 사용하여 휘발성 유기화합물 제거용 복합산화물 촉매를 제조함으로써, 종래 귀금속계 촉매 대비 가격경쟁력이 우수한 동시에 FCC 공정으로부터 배출되는 폐촉매 및 주물공장에서 발생되는 폐기물인 주물분진을 고부가가치로 사용할 수 있으며, 간단한 제조공정으로 성능 및 내구성이 뛰어난 휘발성 유기화합물 제거용 촉매를 용이하게 제조할 수 있는 효과가 있다.The method of manufacturing a composite oxide catalyst for removing volatile organic compounds according to the present invention uses a waste catalyst discharged from the FCC process as a main raw material, mixes anatase-type titanium dioxide with copper and manganese in a specific mixing ratio, and binds casting dust as a casting waste dust to a binder. By producing a composite oxide catalyst for removing volatile organic compounds by using as, it has excellent price competitiveness compared to a conventional noble metal catalyst, and at the same time, it is possible to use the waste catalyst generated from the FCC process and the waste generated from the foundry as a high added value. It has the effect of easily producing a catalyst for removing volatile organic compounds having excellent performance and durability through a simple manufacturing process.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known and commonly used in the art.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a part “includes” a certain component, it means that the component may further include other components, not to exclude other components, unless specifically stated to the contrary.

본원 명세서 전체에서, 휘발성 유기화합물은 증기압이 높아 대기 중으로 쉽게 증발되는 액체 또는 기체상 유기화합물로, 벤젠, 포름알데히드, 톨루엔, 자일렌, 에틸렌, 스틸렌, 아세트알데히드 등을 통칭한다.Throughout the present specification, volatile organic compounds are liquid or gaseous organic compounds that are easily vaporized into the atmosphere due to high vapor pressure, and collectively refer to benzene, formaldehyde, toluene, xylene, ethylene, styrene, and acetaldehyde.

본 발명은 (a) FCC 공정 폐촉매 100 중량부에 대하여, 아나타제(anatase)형 결정구조를 가지는 이산화티타늄 100 중량부 ~ 400 중량부, 구리 전구체 1 중량부 ~ 20 중량부, 망간 전구체 5 ~ 30 중량부 및 주물분진 50 중량부 ~ 200 중량부를 혼합하고, 물을 첨가하여 성형용 배토를 형성하는 원료 배합단계; (b) 상기 성형용 배토를 성형하는 단계; 및 (c) 상기 성형물을 건조 및 소성하여 촉매를 형성하는 단계를 포함하고, 상기 FCC 공정 폐촉매는 폐촉매 총 중량에 대하여 산화알루미늄 15 중량% ~ 60 중량%, 이산화규소 35 중량% ~ 80 중량% 및 니켈 0.1 중량% ~ 20 중량%를 함유하는 것을 특징으로 하는 휘발성 유기화합물 촉매의 제조방법에 관한 것이다.The present invention (a) FCC process 100 parts by weight of titanium dioxide having an anatase (anatase) crystal structure, 100 parts by weight to 400 parts by weight of copper waste catalyst, 1 part to 20 parts by weight of copper precursor, 5 to 30 parts of manganese precursor A raw material mixing step of mixing parts by weight and 50 parts by weight to 200 parts by weight of casting dust, and adding water to form a forming clay; (b) forming the forming clay; And (c) drying and firing the molding to form a catalyst, wherein the FCC process waste catalyst is 15 wt% to 60 wt% aluminum oxide, 35 wt% to 80 wt% silicon dioxide, based on the total weight of the waste catalyst. % And nickel 0.1% to 20% by weight relates to a method for producing a volatile organic compound catalyst.

보다 구체적으로, 본 발명에 따른 휘발성 유기화합물 복합산화물 촉매의 제조방법은 FCC 공정에서 배출되는 폐촉매에 함유된, 휘발성 유기화합물 제거에 유용한 성분을 재활용함과 동시에 주물작업시 발생되는 폐분진을 촉매 바인더로 사용하고, 휘발성 유기화합물 제거 효율을 향상시킬 수 있는 성분을 특정 함량으로 추가로 혼합하여 제조함으로써, 종래 귀금속계 촉매 대비 가격경쟁력이 우수한 동시에 FCC 공정으로부터 배출되는 폐촉매 및 주물 폐분진을 고부가가치로 사용할 수 있고, 간단한 공정으로 성능 및 내구성이 뛰어난 휘발성 유기화합물 제거용 복합산화물 촉매를 용이하게 제조할 수 있다.More specifically, the method for producing a volatile organic compound composite oxide catalyst according to the present invention recycles the components contained in the waste catalyst discharged from the FCC process, useful for removing volatile organic compounds, and catalyzes waste dust generated during casting operations. Used as a binder and additionally mixed with a certain content to improve the efficiency of removing volatile organic compounds, it is superior in price competitiveness compared to a conventional noble metal-based catalyst, and at the same time, improves waste catalyst and casting waste dust discharged from the FCC process. It can be used as an added value, and a simple process can easily produce a composite oxide catalyst for removing volatile organic compounds with excellent performance and durability.

상기 FCC 공정 폐촉매는 정유 공장의 FCC 공정으로부터 배출되어 폐기되는 폐촉매로, 산화알루미늄 15 중량% ~ 60 중량%, 이산화규소 35 중량% ~ 80 중량% 및 산화니켈 0.1 중량% ~ 20 중량%를 함유하고, 5 m2/g 내지 200 m2/g의 비표면적, 그리고 100 Å ~ 180 Å의 기공 사이즈를 갖는다. 또한, 제조회사에 따라 차이가 있으나 일부는 Y형 또는 ZSM-5형 제올라이트를 포함할 수 있다.The FCC process waste catalyst is a waste catalyst that is discharged and discarded from the FCC process of an oil refinery, aluminum oxide 15 wt% ~ 60 wt%, silicon dioxide 35 wt% ~ 80 wt% and nickel oxide 0.1 wt% ~ 20 wt% Contains, and has a specific surface area of 5 m 2 /g to 200 m 2 /g, and a pore size of 100 mm 2 to 180 mm 2 . In addition, there are differences depending on the manufacturer, but some may include a Y-type or ZSM-5-type zeolite.

상기 FCC 공정 폐촉매에 함유된 상기 산화알루미늄(Al2O3)은 500 ℃의 소성온도에서도 비표면적이 100 m2/g ~ 500 m2/g로 넓고, 700 ℃ ~ 800 ℃에서도 상이 감마(γ)형에서 알파(α)형으로 변화됨으로 열적 안정성이 우수한 장점이 있다.The aluminum oxide (Al 2 O 3 ) contained in the FCC process waste catalyst has a specific surface area of 100 m 2 /g to 500 m 2 /g, even at a firing temperature of 500° C., and a gamma difference between 700° C. and 800° C. ( There is an advantage of excellent thermal stability by changing from γ) to alpha (α).

또한, 상기 FCC 공정 폐촉매에 함유된 산화니켈(NiO)은 공기와 반응하여 휘발성 유기화합물을 산화시키는 반응에서 주요 촉매작용을 하는 활성물질 역할을 수행한다.In addition, nickel oxide (NiO) contained in the FCC process waste catalyst acts as an active material that acts as a major catalyst in the reaction of oxidizing volatile organic compounds by reacting with air.

한편, 본 발명에 따른 휘발성 제거용 복합산화물 촉매의 제조방법은 원료를 배합하기 이전에 FCC 공정 폐촉매 표면에 결합되어 있는 다양한 불순물을 제거하기 위한 전처리 단계를 추가로 수행할 수 있다. 이때, 상기 전처리는 (i) 오일성분, 탄소, 황 성분 등의 불순물이 효과적으로 제거될 수 있는 온도, 바람직하게는 300 ℃ ~ 400 ℃에서 폐촉매를 열처리하고[(i) 단계], 상기 열처리된 폐촉매는 순수한 물(pure water)에서 미세기포를 사용하여 수세한 다음[(ii) 단계], 상기 수세된 폐촉매를 산성 용액 또는 염기성 용액의 기포를 사용하여 세척한다[(iii) 단계]. 상기 세척된 폐촉매를 45 ℃ ~ 85 ℃의 순수 기포를 사용하여 수세하고[(iv) 단계], 상기 수세된 폐촉매를 건조시킨다[(v) 단계].On the other hand, the method of manufacturing a composite oxide catalyst for volatile removal according to the present invention may further perform a pretreatment step for removing various impurities bound to the surface of the FCC catalyst waste catalyst prior to mixing the raw materials. At this time, the pretreatment is (i) heat treatment of the waste catalyst at a temperature at which impurities such as oil components, carbon, and sulfur components can be effectively removed, preferably 300 °C to 400 °C ((i) step), and the heat treatment is performed. The waste catalyst is washed with pure water in a fine bubble (step (ii)), and then the washed waste catalyst is washed with bubbles of an acidic solution or a basic solution (step (iii)). The washed waste catalyst is washed with pure bubbles of 45°C to 85°C (step (iv)), and the washed waste catalyst is dried (step (v)).

상기 (ii) 단계에서는 폐촉매에 침적된 열처리된 불순물 등을 제거될 수 있고, (iii) 단계에서는 촉매 활성 사이트를 감소시키는 Na, K 등의 알칼리 금속, Mg, Ca 등의 알칼리 토금속, 비소와 같은 중금속, SO2, SO3 등의 황화합물 등의 비활성 물질을 제거시킬 수 있다. 이때, 산성 용액으로는 황산 수용액을 사용할 수 있고, 상기 염기성 용액으로서는 암모니아수를 사용할 수 있으며, 상기 황산 수용액 및 암모니아수의 농도는 0.5 % 내지 1.5 % 범위의 값을 가질 수 있다. 상기 농도가 0.5 % 미만인 경우는 상기 비활성 물질의 세척 효과가 떨어지며, 1.5 %를 초과하는 경우는 폐촉매 내에 포함된 바나듐 혹은 텅스텐과 같은 활성 금속들까지 함께 제거될 수 있으므로 바람직하지 않다.In the step (ii), heat treated impurities deposited on the waste catalyst can be removed, and in the step (iii), alkali metals such as Na, K, alkaline earth metals such as Mg and Ca, and arsenic are reduced to reduce the catalytically active sites. Inactive substances such as heavy metals, sulfur compounds such as SO 2 and SO 3 can be removed. At this time, an aqueous solution of sulfuric acid may be used as the acidic solution, and ammonia water may be used as the basic solution, and the concentrations of the aqueous sulfuric acid solution and ammonia water may have a value in the range of 0.5% to 1.5%. When the concentration is less than 0.5%, the cleaning effect of the inactive material is deteriorated, and when it exceeds 1.5%, it is not preferable because active metals such as vanadium or tungsten contained in the waste catalyst can be removed together.

산성 또는 염기성 용액을 사용하여 세척된 상기 폐촉매는 순수를 사용하여 수세를 실시한다[(iv) 단계]. 상기 수세에 의해 상기 폐촉매에 잔류하는 상기 산성 혹은 염기성 용액과 잔여 비활성 물질 등을 제거할 수 있다. 이때 수세는 45 ℃ ~ 85 ℃의 온수를 사용하여 잔류하는 상기 산성 혹은 염기성 용액과 잔여 비활성 물질 등을 효율적으로 제거시킬 수 있다. 상기 온수의 온도가 45 ℃ 미만인 경우에는 비활성 물질의 제거효율이 저조하고, 85 ℃를 초과할 경우에는 폐촉매에 잔류할 수 있는 NH3, 알칼리 금속 또는 알칼리 토금속 들은 물과 반응하여 염을 발생시킬 수 있다.The waste catalyst washed with an acidic or basic solution is washed with pure water (step (iv)). The acidic or basic solution remaining in the waste catalyst and the residual inert material may be removed by the washing. At this time, the water washing can efficiently remove the remaining acidic or basic solution and residual inactive substances using hot water at 45°C to 85°C. When the temperature of the hot water is less than 45°C, the removal efficiency of the inert material is low, and when it exceeds 85°C, NH 3 , alkali metal or alkaline earth metals that may remain in the waste catalyst react with water to generate salt. Can be.

전술된 전처리 단계에서는 순수의 미세기포 및 산성 또는 염기성 용액의 미세기포를 사용하여 수행될 수 있다. 상기 미세기포는 압축공기를 다수의 기공이 형성된 다공체를 통과시켜 세정 용액에 미세기포(평균 직경이 200 ㎛ 이하)를 발생시킴으로써, 폐촉매의 미세한 세공들에 침적된 비활성 물질들을 효과적으로 제거시킬 수 있다.In the above-described pretreatment step, it may be performed using microbubbles of pure water and microbubbles of an acidic or basic solution. The microbubbles can effectively remove the inert substances deposited in micropores of the waste catalyst by generating microbubbles (average diameter of 200 μm or less) in the cleaning solution by passing compressed air through a porous body having a large number of pores. .

이후, (v) 단계에서는 40 ℃ 내지 90 ℃의 열풍을 이용하여 폐촉매를 건조시킨 다음, 분쇄시킬 수 있다. 상기 폐촉매에 잔류할 수 있는 NH3, 알칼리금속 또는 알칼리 토금속 들은 물과 반응하여 염을 발생시킬 수 있으므로, 상기 건조 공정을 통해 상기 폐촉매 상의 물기를 완전히 제거하는 것이 바람직하다.Thereafter, in the step (v), the waste catalyst may be dried using hot air at 40°C to 90°C, and then pulverized. NH 3 , alkali metals or alkaline earth metals that may remain in the waste catalyst may react with water to generate salt, and thus it is preferable to completely remove water on the waste catalyst through the drying process.

전술된 바와 같이 전처리된 FCC 공정 폐촉매는 이산화티탄, 구리 전구체, 망간 전구체 및 주물분진과 혼합되고, 여기에 물을 첨가하여 성형용 배토를 형성하는 원료 배합단계를 수행한다[(a) 단계].As described above, the pre-processed FCC process waste catalyst is mixed with titanium dioxide, a copper precursor, a manganese precursor, and a casting dust, and water is added thereto to perform a raw material mixing step of forming a forming clay (step (a)). .

상기 이산화티탄은 아나타제형 또는 아나타제와 루타일이 혼재된 형태를 사용할 수 있으나, 부반응 감소 측면에서 아나타제형을 사용하는 것이 바람직하고, FCC 공정 폐촉매 100 중량부에 대하여 100 중량부 ~ 400 중량부, 바람직하게는 150 중량부 ~ 350 중량부를 혼합한다. 만일 FCC 공정 폐촉매 100 중량부에 대하여 이산화티탄이 100 중량부 미만으로 혼합될 경우, 촉매 성형시 원하는 형태로 성형하기 어렵고, 휘발성 유기화합물 제거효율이 저하될 수 있으며, 400 중량부를 초과하여 혼합될 경우에는 이산화티탄 첨가량 대비 휘발성 유기화합물 제거효율이 미미하고, 제조비용이 높아지는 문제점이 발생될 수 있다.The titanium dioxide may be in the form of an anatase type or a mixture of anatase and rutile, but it is preferable to use an anatase type in terms of reducing side reactions. 100 parts by weight to 400 parts by weight based on 100 parts by weight of the FCC catalyst waste catalyst, Preferably, 150 parts by weight to 350 parts by weight are mixed. If the titanium dioxide is mixed with less than 100 parts by weight based on 100 parts by weight of the FCC process waste catalyst, it is difficult to form into a desired shape when forming a catalyst, and the removal efficiency of volatile organic compounds may decrease, and it may be mixed in excess of 400 parts by weight. In the case, the efficiency of removing volatile organic compounds compared to the amount of titanium dioxide added is insignificant, and a problem of high manufacturing cost may occur.

또한, 본 발명은 저온에서 휘발성 유기화합물의 제거 성능을 개선시키기 위해 FCC 공정 폐촉매 100 중량부에 대하여, 구리 전구체 1 중량부 ~ 20 중량부, 바람직하게는 2 중량부 ~ 15 중량부 및 망간 전구체 5 중량부 ~ 30 중량부, 바람직하게는 10 중량부 ~ 25 중량부를 혼합한다. 이때 FCC 공정 폐촉매 100 중량부에 대하여 구리 전구체 및 망간 전구체를 각각 1 중량부 및 5 중량부 미만으로 혼합시킬 경우, 저온에서 휘발성 유기화합물의 제거가 미흡하고, 20 중량부 및 30 중량부를 초과하여 혼합될 경우에는 부반응이 진행되거나, 비표면적이 작아 촉매 성능이 저하되는 문제점이 발생될 수 있다. In addition, the present invention relates to 1 part by weight to 20 parts by weight of a copper precursor, preferably 2 parts by weight to 15 parts by weight, and a manganese precursor with respect to 100 parts by weight of the FCC process waste catalyst to improve the performance of removing volatile organic compounds at low temperatures. 5 parts by weight to 30 parts by weight, preferably 10 parts by weight to 25 parts by weight are mixed. At this time, when the copper precursor and the manganese precursor are mixed with less than 1 part by weight and 5 parts by weight, respectively, with respect to 100 parts by weight of the FCC process waste catalyst, the removal of volatile organic compounds is insufficient at low temperatures, and the weight exceeds 20 parts by weight and 30 parts by weight. When mixed, a side reaction may proceed, or a specific surface area may be small, resulting in a problem that catalyst performance is deteriorated.

이때, 상기 구리 전구체는 황산구리, 염화제1구리, 염화제2구리, 질산구리, 아세트산구리, 탄산구리, 시안화구리 및 요오드화구리로 구성된 군에서 선택되는 1종 이상일 수 있고, 망간 전구체는 염화 제1망간, 염화 제1망간 4수화물, 염화 제2망간, 4염화망간, 질산망간 6수화물, 질산망간 4수화물 및 질산망간 1수화물로 구성된 군에서 선택되는 1종 이상일 수 있다. 다만, 구리 전구체 및 망간 전구체는 상기 나열된 물질에 한정되지 않고, 사용하는 물에 용해 가능한 것이면 적용이 가능하다.In this case, the copper precursor may be at least one selected from the group consisting of copper sulfate, cupric chloride, cupric chloride, copper nitrate, copper acetate, copper carbonate, copper cyanide and copper iodide, and the manganese precursor may be first chloride. It may be one or more selected from the group consisting of manganese, first manganese chloride tetrahydrate, manganese chloride, manganese tetrachloride, manganese nitrate hexahydrate, manganese nitrate tetrahydrate, and manganese nitrate monohydrate. However, the copper precursor and the manganese precursor are not limited to the materials listed above, and can be applied as long as they are soluble in water.

주물분진은 주물공장에서 발생한 분진을 집진기를 통해 회수한 것이다. 통상적으로 일반적으로 주물공장은 모래 80 중량% ~ 85 중량%, 벤토나이트 8 중량% ~ 10 중량%, 숯 3.5 중량% ~ 6 중량% 및 물 3 중량% ~ 4 중량%를 섞어 생형사를 만들고, 그 생형사를 몰딩하며 생형사 몰딩에 용탕을 하고, 용탕 후 냉각하고, 모래 등을 제거하여 주조를 마무리한다. 이 과정에서 냉각 및 모래 제거시 분진이 발생하는데, 이러한 분진은 집진 후드를 통해 집진되고, 필터를 통해 걸러져 환경의 오염을 막는다. 필터에 의해 걸러진 분진에는 주성분이 벤토나이트, 산화규소, 산화알루미늄 및 산화철이 대부분이고, 불순물이 포함되며, 이를 모아서 버릴 경우 환경오염은 방지되지만 배합성분으로 재활용하지 못하여 자원이 계속 낭비되는 문제점이 있었다. 또한, 이로 인하여 산업자원이 낭비되고 벤토나이트의 소비가 증가되어 제조원가가 상승되는 문제가 있었다.Foundry dust is dust collected from a foundry factory collected through a dust collector. In general, the foundry usually produces 80% by weight to 85% by weight of sand, 8% to 10% by weight of bentonite, 3.5% to 6% by weight of charcoal, and 3% to 4% by weight of water to make raw sand. Mold the raw sand and melt it in the green sand molding, cool it after melting, remove sand, and finish casting. During this process, dust is generated during cooling and sand removal, which is collected through a dust collecting hood and filtered through a filter to prevent contamination of the environment. The dust filtered by the filter mainly contains bentonite, silicon oxide, aluminum oxide, and iron oxide, and contains impurities. When collected and discarded, environmental pollution is prevented, but there is a problem in that resources are continuously wasted because they cannot be recycled as a compound. In addition, due to this, there was a problem in that industrial resources were wasted and the consumption of bentonite increased, leading to an increase in manufacturing cost.

한편, 종래에는 휘발성 유기화합물 제거용 촉매의 압출 성형시 기계적 강도를 높이기 위하여 무기물 바인더로 카올린, 제올라이트, 점토 등이 있지만 이들 원료들은 다량으로 첨가될 경우 기계적 강도는 좋아지지만 휘발성 유기화합물 제거 효율은 급격히 감소하게 된다. On the other hand, in the past, in the extrusion molding of a catalyst for removing volatile organic compounds, kaolin, zeolite, clay, etc. are used as inorganic binders to increase the mechanical strength, but when these raw materials are added in large quantities, the mechanical strength is improved, but the efficiency of removing volatile organic compounds rapidly Will decrease.

이에, 본 발명에서는 촉매의 바인더 역할로, 주물 공정에서 발생되는 폐분진을 이용하여 촉매를 제조함으로써, 폐기물을 유용한 자원으로 재활용할 수 있음과 더불어 휘발성 유기화합물 제거효율을 향상시킬 수 있다.Thus, in the present invention, as a binder of the catalyst, by manufacturing the catalyst using the waste dust generated in the casting process, it is possible to recycle the waste as a useful resource and improve the efficiency of removing volatile organic compounds.

구체적으로, 상기 주물분진에 함유된 산화규소 및 산화알루미늄은 FCC 공정 폐촉매와 성분이 유사하여 FCC 공정 폐촉매와 친화성이 있고, 촉매 내구성을 개선시킬 뿐만 아니라, 주물분진에 함유된 벤토나이트는 물과 혼합되면 높은 점성을 가지는 반죽을 형성할 수 있다. 이에, FCC 공정 폐촉매만으로는 점토성 반죽을 할 수 없고, 바인더로서 주물분진을 첨가해야만 성형을 할 수 있는 점성이 생긴다. 또한, 상기 주물분진은 성형 건조시 건조 강도가 높아서 촉매의 강도를 높이는 강화제 역할도 수행할 수 있다. Specifically, the silicon oxide and aluminum oxide contained in the casting dust have similar components to the FCC process waste catalyst, and thus have affinity with the FCC process waste catalyst, and improve catalyst durability, as well as the bentonite contained in the casting dust is water. When mixed with can form a dough having a high viscosity. As a result, it is not possible to make clay dough with the FCC process waste catalyst alone, and a viscosity that can be molded only when casting dust is added as a binder occurs. In addition, the casting dust has a high drying strength during molding and drying, and may also serve as a strengthening agent for increasing the strength of the catalyst.

상기 주물분진은 FCC 공정 폐촉매에 혼합되기 전에 물과 접촉시켜 이물질을 분리한다. 일 예로 알루미늄 폐 분진을 수중으로 통과시켜 먼지 등을 제조할 수 있다. 이와 같이 이물질이 제거된 주물분진은 상온 ~ 80 ℃ 건조시켜 사용할 수 있다.The casting dust is separated from foreign substances by contact with water before being mixed with the FCC process waste catalyst. For example, dust can be produced by passing aluminum waste dust into water. As such, the casting dust from which the foreign matter has been removed can be used by drying at room temperature to 80°C.

본 발명의 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법에 있어서, 혼합되는 주물분진의 함량으로는 FCC 공정 폐촉매 100 중량부에 대하여, 50 중량부 ~ 200 중량부, 바람직하게는 80 ~ 150 중량부를 혼합할 수 있다. 만일, FCC 공정 폐촉매 100 중량부에 대하여 주물분진이 50 중량부 미만으로 혼합될 경우, 촉매의 접착제 역할을 제대로 수행할 수 없고, 200 중량부를 초과할 경우에는 휘발성 유기화합물 제거 효율이 저하될 수 있다.In the method of preparing a composite oxide catalyst for removing volatile organic compounds of the present invention, the content of the mixed casting dust is 50 parts by weight to 200 parts by weight, preferably 80 to 150 parts by weight with respect to 100 parts by weight of the FCC catalyst waste catalyst. You can mix parts. If the casting dust is mixed with less than 50 parts by weight with respect to 100 parts by weight of the FCC process waste catalyst, the catalyst cannot function properly, and if it exceeds 200 parts by weight, the efficiency of removing volatile organic compounds may decrease. have.

이때, 전술된 FCC 공정 폐촉매, 이산화티타늄, 구리 전구체, 망간 전구체 및 주물분진은 배합되기 전 또는 배합 후에 균일하게 배합되도록 평균 입경이 100 mesh ~ 200 mesh 크기로 분쇄하는 단계를 추가로 포함될 수 있다. 상기 분쇄방법은 볼밀 등과 같이 공지의 분쇄방법이면 제한 없이 사용할 수 있다. At this time, the above-described FCC process waste catalyst, titanium dioxide, copper precursor, manganese precursor and casting dust may be further included a step of grinding the average particle diameter to 100 mesh ~ 200 mesh size to be uniformly blended before or after blending. . The grinding method may be used without limitation as long as it is a known grinding method such as a ball mill.

이후, FCC 공정 폐촉매와 이산화티타늄, 구리 전구체, 망간 전구체 및 주물분진이 배합되면, 물을 첨가하여 성형용 배토를 형성하는 원료 배합단계를 수행한다. 상기 물은 성형방법에 따라 적합한 유동성을 갖도록 조절하면서 원료 배합물을 혼련하여 성형용 배토를 조성할 수 있으며, 바람직하게는 성형용 배토 총 중량에 대하여 10 중량% ~ 40 중량%로 투입할 수 있으나, 이에 제한되지 않는다.Thereafter, when the FCC process waste catalyst is mixed with titanium dioxide, copper precursor, manganese precursor and casting dust, a raw material mixing step is performed by adding water to form a forming clay. The water may be mixed with a raw material mixture while controlling to have suitable fluidity according to a molding method to form a forming clay, preferably 10% to 40% by weight based on the total weight of forming clay. It is not limited to this.

또한, 상기 원료 배합단계에서는 촉매를 제조할 때 첨가되는 일반적으로 알려진 첨가제들을 추가로 함유할 수 있으며, 이러한 첨가제들은 본 발명이 속하는 기술분야의 숙련된 기술자이면 어려움 없이 선택할 수 있고, 예를 들어 메틸셀룰로오스, 그리스 화이버, 점토 등의 무기 및 유기 바인더, 분산제, 가소제, 윤활제, 중화제 등 일 수 있다.In addition, the raw material mixing step may further contain generally known additives added when preparing a catalyst, and these additives can be selected without difficulty by those skilled in the art to which the present invention pertains, for example, methyl Inorganic and organic binders such as cellulose, grease fibers, and clay, dispersants, plasticizers, lubricants, neutralizing agents, and the like.

본 발명에 따른 성형단계는 원료 배합단계에서 얻어진 성형용 배토로부터 목적하는 형상의 촉매를 성형하는 단계로, 본 발명에 따른 촉매의 형상은 성형용 배토를 압출 성형하는 것에 의해 입자형이나, 모노리스(monlith) 형태로 압출 가공하거나, 슬레이트, 플레이트, 펠렛 등의 다양한 형태로 제조하여 사용될 수 있다.The forming step according to the present invention is a step of forming a catalyst having a desired shape from the forming clay obtained in the raw material mixing step, and the shape of the catalyst according to the present invention is a particle type or monolith by extrusion molding the forming clay. monlith), or can be used in various forms such as slate, plate, pellet.

또는 본 발명에 따른 복합산화물 촉매를 실제로 적용할 경우에는 허니컴, 금속판, 금속 섬유, 세라믹 필터, 메탈 폼 등의 구조체에 코팅하여 사용될 수 있다. Alternatively, when the composite oxide catalyst according to the present invention is actually applied, it may be used by coating on structures such as a honeycomb, a metal plate, a metal fiber, a ceramic filter, and a metal foam.

상기 성형단계에서 일정 형상으로 성형된 성형물은 건조한 다음, 소성시켜 촉매를 제조한다. 이때 건조는 80 ℃ ~ 120 ℃에서 10 ~ 24 시간 동안 수행한 다음, 400 ℃ ~ 700 ℃에서 1 ~ 10 시간 동안 소성하여 최종적으로 휘발성 유기 화합물 제거용 촉매를 제조할 수 있다. In the molding step, the molded article molded into a predetermined shape is dried and then fired to prepare a catalyst. At this time, drying is performed at 80°C to 120°C for 10 to 24 hours, and then calcined at 400°C to 700°C for 1 to 10 hours to finally prepare a catalyst for removing volatile organic compounds.

상기한 본 발명의 제조방법에 의해 제조되는 복합산화물 촉매는 200 m2/g ~ 300 m2/g의 비표면적(BET) 및 100 Å ~ 300 Å의 기공크기를 가져 휘발성 유기화합물 제거효율이 우수함은 물론 높은 온도에서의 열적 안정성과 화학적 안정성이 탁월하여 선택적 산화촉매로서 휘발성 유기화합물 제거성능을 장시간 유지할 수 있다. 또한, 정유공장의 부산물인 폐촉매 및 주물공장의 부산물인 주물분진을 이용하기 때문에 촉매제조에 소용되는 비용 측면에서도 유리하다.The composite oxide catalyst prepared by the manufacturing method of the present invention has a specific surface area (BET) of 200 m 2 /g to 300 m 2 /g and a pore size of 100 Å to 300 Å, which is excellent in removing volatile organic compounds. Of course, it is excellent in thermal stability and chemical stability at high temperatures, and as a selective oxidation catalyst, it is possible to maintain volatile organic compound removal performance for a long time. In addition, the waste catalyst, which is a by-product of the refinery, and the casting dust, which is a by-product of the foundry, are used, which is advantageous in terms of cost used for catalyst production.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석해서는 안 된다.Hereinafter, the present invention will be described in more detail through examples. Since these examples are only for illustrating the present invention, it should not be construed that the scope of the present invention is limited by these examples.

<< 실시예Example 1 내지 7 및 1 to 7 and 비교예Comparative example 1 및 4> 1 and 4>

본 발명의 실시예 및 비교예에서 사용된 FCC 공정의 폐촉매[SK화학(주)]는 전처리 단계를 수행하였고, 상기 전처리 단계가 수행된 폐촉매의 주요성분 함량은 하기 표 1에 나타낸 바와 같다. 한편, 남동공단 소재 주물공장에서 배출되는 주물분진 또한 수세 후, 불순물을 제거하였다. 상기 폐촉매 100 중량부에 아나타제형 이산화티타늄, 염화제1구리, 염화제1망간 및 표 2의 주요 성분을 가지는 주물분진을 하기 표 3의 함량으로 혼합한 다음, 이들의 평균 입도가 150 mesh가 되도록 볼밀 분쇄하고, 분쇄된 혼합물을 물과 함께 통상의 가압식 니더(혼련기)에 투입하고 혼련하여 성형용 배토를 수득하였다. 얻어진 배토를 직접 스크류식 압출 성형기에 의해 모노리스(150 mm × 150 mm × 150 mm, 격벽두께 : 0.7 mm, 격벽 피치 4.0 mm)형태로 압출 성형하고, 110 ℃에서 15시간 동안 건조하여 수분을 완전히 제거한 다음, 공기 분위기에서 550 ℃의 온도로 3시간 동안 소성하여 복합산화물 촉매를 제조하였다.The waste catalyst of the FCC process used in Examples and Comparative Examples of the present invention [SK Chemical Co., Ltd.] performed a pre-treatment step, and the main component contents of the waste catalyst subjected to the pre-treatment step are shown in Table 1 below. . On the other hand, the casting dust discharged from the foundry factory in Namdong Industrial Complex was also washed with water to remove impurities. 100 parts by weight of the waste catalyst was mixed with anatase-type titanium dioxide, cuprous chloride, manganese chloride, and the casting dust having the main components shown in Table 2 in the contents shown in Table 3 below, and their average particle size was 150 mesh. The ball mill was pulverized as much as possible, and the pulverized mixture was added to a conventional pressurized kneader (kneader) together with water and kneaded to obtain a molding clay. The obtained clay was directly extruded in the form of a monolith (150 mm × 150 mm × 150 mm, partition wall thickness: 0.7 mm, partition wall pitch 4.0 mm) by a screw type extrusion machine, dried at 110° C. for 15 hours to completely remove moisture. Next, a composite oxide catalyst was prepared by firing in an air atmosphere at a temperature of 550° C. for 3 hours.

성분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 V2O5 V 2 O 5 NiONiO MoO3 MoO 3 Fe2O3 Fe 2 O 3 기타Other 함량(평균 중량%)Content (average weight %) 36.036.0 20.020.0 5.55.5 10.010.0 2.52.5 0.50.5 25.525.5

성분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 벤토나이트Bentonite 기타Other 함량(평균 중량%)Content (average weight %) 8.08.0 54.054.0 1.201.20 28.028.0 8.808.80

구분division 폐촉매
(중량부)
Waste catalyst
(Parts by weight)
이산화티타늄
(중량부)
Titanium dioxide
(Parts by weight)
염화제1구리
(중량부)
Cuprous chloride
(Parts by weight)
염화제1망간
(중량부)
Manganese Chloride
(Parts by weight)
주물분진
(중량부)
Casting dust
(Parts by weight)
실시예 1Example 1 100100 200200 1010 1010 100100 실시예 2Example 2 100100 200200 1010 1010 180180 실시예 3Example 3 100100 200200 1010 1010 7070 실시예 4Example 4 100100 120120 1010 1010 100100 실시예 5Example 5 100100 380380 1010 1010 100100 실시예 6Example 6 100100 200200 1.51.5 1010 100100 실시예 7Example 7 100100 200200 2020 1010 100100 비교예 1Comparative Example 1 100100 -- 1010 1010 100100 비교예 2Comparative Example 2 100100 200200 -- 1010 100100 비교예 3Comparative Example 3 100100 200200 1010 -- 100100 비교예 4Comparative Example 4 100100 200200 1010 1010 --

[[ 실험예Experimental Example 1 : 촉매의 기계적 강도 측정] 1: Measurement of the mechanical strength of the catalyst]

실시예 및 비교예에서 제조된 복합산화물 촉매의 기계적 강도를 알아보기 위하여 25.4 mm × 25.4 mm × 25.4 mm 크기의 정사면체 형태의 촉매로 제조하여 강도 측정에 사용되는 Instron 기기(Instron Universal Testing Instrument Model 4201, Instron사)를 이용해 각 시료당 10회 이상 강도를 측정하여 분석하였으며, 그 결과를 하기 표 4에 나타내었다. 이때, 표 4의 사용 A 촉매는 현재 판매되고 있는 A사의 휘발성 유기화합물 제거용 촉매이다.Instron device (Instron Universal Testing Instrument Model 4201, used for strength measurement by preparing a catalyst of 25.4 mm × 25.4 mm × 25.4 mm sized tetrahedron in order to find out the mechanical strength of the composite oxide catalyst prepared in Examples and Comparative Examples) Instron) was used to measure and analyze the intensity at least 10 times per sample, and the results are shown in Table 4 below. At this time, the use A catalyst of Table 4 is a catalyst for removing volatile organic compounds of company A currently on sale.

[[ 실험예Experimental Example 2 : 휘발성 유기화합물의 제거 효율 측정] 2: Measurement of removal efficiency of volatile organic compounds]

실시예 및 비교예에서 제조된 복합산화물 촉매의 휘발성 유기화합물의 제거 효율을 측정하기 위해 톨루엔 제거 실험을 수행하였다. 상기 톨루엔 제거 실험은 인코넬로 제작된 상압의 고정층 반응기 중심에 촉매를 충진하고, 반응기 내로 톨루엔을 공간속도 100,000 h-1 통과시켜 반응 전후의 반응물 농도를 FID-기체 크로마토그래피 장비를 이용하여 온도별(150 ℃ ~ 250 ℃)로 분석하여 수행하였다. 인코넬 반응기를 가열로를 이용해 온도에 따른 톨루엔 전환율을 분석하였으며, 그 결과를 표 4에 나타내었다. 이때, 표 4의 사용 A 촉매는 현재 판매되고 있는 A사의 휘발성 유기화합물 제거용 촉매이다.Toluene removal experiments were performed to measure the removal efficiency of volatile organic compounds of the composite oxide catalysts prepared in Examples and Comparative Examples. In the toluene removal experiment, the catalyst was filled in a fixed bed reactor at a normal pressure made of Inconel, and the toluene was passed through a space velocity of 100,000 h -1 into the reactor to determine the concentration of reactants before and after the reaction using FID-gas chromatography equipment. 150 ℃ ~ 250 ℃). Toluene conversion according to temperature was analyzed using a heating furnace for an Inconel reactor, and the results are shown in Table 4. At this time, the use A catalyst of Table 4 is a catalyst for removing volatile organic compounds of company A currently on sale.

구분division 기계적 강도Mechanical strength 휘발성 유기 화합물 제거율(%)Volatile organic compound removal rate (%) 축강도
(kg/cm2)
Axial strength
(kg/cm 2 )
측면강도
(kg/cm2)
Lateral strength
(kg/cm 2 )
150 ℃150 ℃ 200 ℃200 ℃ 250 ℃ 250 ℃
실시예 1Example 1 4141 3232 78.178.1 96.296.2 98.098.0 실시예 2Example 2 5454 4848 68.468.4 92.492.4 91.391.3 실시예 3Example 3 3333 1212 80.180.1 97.097.0 98.698.6 실시예 4Example 4 3838 1818 71.271.2 94.494.4 97.597.5 실시예 5Example 5 4343 3535 70.870.8 93.293.2 94.794.7 실시예 6Example 6 4242 3030 60.660.6 87.687.6 91.191.1 실시예 7Example 7 3939 3030 68.568.5 96.596.5 98.898.8 비교예 1Comparative Example 1 2929 1111 59.559.5 85.085.0 87.287.2 비교예 2Comparative Example 2 3939 3333 61.061.0 81.081.0 84.484.4 비교예 3Comparative Example 3 4040 3333 31.231.2 71.871.8 79.079.0 비교예 4Comparative Example 4 -- -- -- -- -- 상용 A 촉매Commercial A catalyst 3232 1212 62.262.2 89.089.0 92.592.5

표 4에 나타난 바와 같이, 실시예 1 내지 7에서 제조된 촉매는 비교예 1 내지 4에서 제조된 촉매에 비해 기계적 강도, 휘발성 유기화합물 효율이 우수한 것으로 나타났고, 특히 비교예 4에서는 압출 성형된 촉매가 파손되어 기계적 강도 및 휘발성 유기화합물 제거율을 측정할 수 없었다.As shown in Table 4, the catalysts prepared in Examples 1 to 7 were found to have better mechanical strength and volatile organic compound efficiency than the catalysts prepared in Comparative Examples 1 to 4, and in particular, in Comparative Example 4, the extruded catalyst Was broken and mechanical strength and removal rate of volatile organic compounds could not be measured.

따라서, 본 발명에 따른 제조방법으로 제조된 휘발성 유기화합물 제거용 복합산화물 촉매는 종래 휘발성 유기화합물 제거용 촉매 대비 가격경쟁력이 우수한 동시에 FCC 공정으로부터 배출되는 폐촉매를 고부가가치로 사용할 수 있으며, 간단한 제조공정으로 성능 및 내구성이 뛰어난 휘발성 유기화합물 제거용 촉매를 용이하게 제조할 수 있음을 확인할 수 있었다.Accordingly, the composite oxide catalyst for removing volatile organic compounds prepared by the manufacturing method according to the present invention has superior price competitiveness compared to the catalyst for removing volatile organic compounds and can use waste catalyst discharged from the FCC process with high added value, and simple production. It was confirmed that the process can easily produce a catalyst for removing volatile organic compounds having excellent performance and durability.

이상과 같이, 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 이래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by a limited embodiment, the present invention is not limited by this, and is described hereinafter and the technical idea of the present invention by a person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the equivalent claims.

Claims (4)

(a) FCC 공정 폐촉매 100 중량부에 대하여, 아나타제(anatase)형 결정구조를 가지는 이산화티타늄 100 중량부 ~ 400 중량부, 구리 전구체 1 중량부 ~ 20 중량부, 망간 전구체 5 ~ 30 중량부 및 주물분진 50 중량부 ~ 200 중량부를 혼합하고, 물을 첨가하여 성형용 배토를 형성하는 원료 배합단계;
(b) 상기 성형용 배토를 성형하는 단계; 및
(c) 상기 성형물을 건조 및 소성하여 촉매를 형성하는 단계를 포함하고,
상기 FCC 공정 폐촉매는 폐촉매 총 중량에 대하여 산화알루미늄 15 중량% ~ 60 중량%, 이산화규소 35 중량% ~ 80 중량% 및 산화니켈 0.1 중량% ~ 20 중량%를 함유하는 것을 특징으로 하는 휘발성 유기화합물 복합산화물 촉매의 제조방법.
(a) 100 parts by weight of titanium dioxide having an anatase type crystal structure, 100 parts by weight to 400 parts by weight of copper precursor, 1 part to 20 parts by weight of copper precursor, 5 to 30 parts by weight of manganese precursor, and A raw material mixing step of mixing 50 parts by weight to 200 parts by weight of casting dust and adding water to form a forming clay;
(b) forming the forming clay; And
(c) drying and firing the molding to form a catalyst,
The FCC process waste catalyst is volatile organic, characterized in that it contains 15% to 60% by weight of aluminum oxide, 35% to 80% by weight of silicon dioxide, and 0.1% to 20% by weight of nickel oxide based on the total weight of the spent catalyst. Method for preparing compound composite oxide catalyst.
제1항에 있어서,
상기 휘발성 유기화합물 복합산화물 촉매의 제조방법은 (a) 단계 이전에 (i) FCC 공정 폐촉매를 300 ℃ ~ 400 ℃에서 열처리하는 단계; (ii) 상기 열처리된 FCC 공정 폐촉매를 기포를 사용하여 수세하는 단계; (iii) 상기 수세된 폐촉매를 산성 용액 또는 염기성 용액의 기포를 사용하여 세척하는 단계; (iv) 상기 세척된 폐촉매를 45 ℃ ~ 85 ℃의 기포를 사용하여 수세하는 단계; 및 (v)상기 수세된 폐촉매를 건조 시키는 단계를 포함하는 전처리 단계를 추가로 포함하는 것을 특징으로 하는 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법.
According to claim 1,
The method for preparing the volatile organic compound composite oxide catalyst may include (i) heat treatment of the FCC process waste catalyst at 300°C to 400°C before step (a); (ii) washing the heat-treated FCC process waste catalyst with air bubbles; (iii) washing the washed waste catalyst using a bubble of an acidic solution or a basic solution; (iv) washing the washed waste catalyst using bubbles of 45°C to 85°C; And (v) drying the washed waste catalyst, further comprising a pre-treatment step of removing the volatile organic compound.
제1항에 있어서,
상기 구리 전구체는 황산구리, 염화제1구리, 염화제2구리, 질산구리, 아세트산구리, 탄산구리, 시안화구리 및 요오드화구리로 구성된 군에서 선택되는 1종 이상이고, 망간 전구체는 염화 제1망간, 염화 제1망간 4수화물, 염화 제2망간, 4염화망간, 질산망간 6수화물, 질산망간 4수화물 및 질산망간 1수화물로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법.
According to claim 1,
The copper precursor is at least one selected from the group consisting of copper sulfate, cupric chloride, cupric chloride, copper nitrate, copper acetate, copper carbonate, copper cyanide and copper iodide, and the manganese precursor is first manganese chloride, chloride A complex oxide catalyst for removing volatile organic compounds, characterized in that at least one member selected from the group consisting of first manganese tetrahydrate, manganese chloride, manganese tetrachloride, manganese nitrate hexahydrate, manganese nitrate tetrahydrate and manganese nitrate monohydrate Method of manufacturing.
제1항에 있어서,
상기 (c) 단계의 건조는 80 ℃ ~ 120 ℃에서 수행하고, 소성은 400 ℃ ~ 700 ℃에서 1 시간 ~ 10 시간 동안 수행하는 것을 특징으로 하는 휘발성 유기화합물 제거용 복합산화물 촉매의 제조방법.
According to claim 1,
The drying of step (c) is performed at 80°C to 120°C, and firing is performed at 400°C to 700°C for 1 hour to 10 hours.
KR1020180164966A 2018-12-19 2018-12-19 Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds Active KR102121551B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180164966A KR102121551B1 (en) 2018-12-19 2018-12-19 Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180164966A KR102121551B1 (en) 2018-12-19 2018-12-19 Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds

Publications (1)

Publication Number Publication Date
KR102121551B1 true KR102121551B1 (en) 2020-06-10

Family

ID=71087206

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180164966A Active KR102121551B1 (en) 2018-12-19 2018-12-19 Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds

Country Status (1)

Country Link
KR (1) KR102121551B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059675A (en) 1976-05-24 1977-11-22 Continental Oil Company Decomposition of halogenated organic compounds
KR19980020360A (en) * 1996-09-04 1998-06-25 반봉찬 Gas phase cesium collector using waste fluid catalytic cracking (FCC) catalyst
KR101464994B1 (en) * 2014-05-28 2014-11-25 허승주 Catalyst support for Preparing a Catalyst for Removal of Nitrogen Oxides and method for Preparing thereof
KR101610757B1 (en) * 2015-11-24 2016-04-08 주식회사 세일에프에이 Composite composition for removing harmful gas containing manganese-copper catalyst
KR20160045689A (en) 2013-08-23 2016-04-27 바스프 코포레이션 Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
KR20190072322A (en) * 2017-12-15 2019-06-25 한국화학연구원 Composite for the removal of VOC and the preparing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059675A (en) 1976-05-24 1977-11-22 Continental Oil Company Decomposition of halogenated organic compounds
KR19980020360A (en) * 1996-09-04 1998-06-25 반봉찬 Gas phase cesium collector using waste fluid catalytic cracking (FCC) catalyst
KR20160045689A (en) 2013-08-23 2016-04-27 바스프 코포레이션 Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
KR101464994B1 (en) * 2014-05-28 2014-11-25 허승주 Catalyst support for Preparing a Catalyst for Removal of Nitrogen Oxides and method for Preparing thereof
KR101610757B1 (en) * 2015-11-24 2016-04-08 주식회사 세일에프에이 Composite composition for removing harmful gas containing manganese-copper catalyst
KR20190072322A (en) * 2017-12-15 2019-06-25 한국화학연구원 Composite for the removal of VOC and the preparing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
한국대기환경학회 2008 추계학술대회 논문집 *

Similar Documents

Publication Publication Date Title
KR100439004B1 (en) A Catalyst for Selective Catalytic Reduction of Nitrogen Oxides and A Method for Preparing the Same
Long et al. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts
EP0389041B1 (en) Titania extrudates
US4758418A (en) Process for combusting solid sulfur-containing material
US4957892A (en) Process for combusting solid sulfur containing material
KR101704367B1 (en) Supported catalyst of digestion residues of titanyl sulphate-containing black solution
KR20170083606A (en) Afx zeolite
KR102608017B1 (en) Hydrocarbon oil catalyst, production method, and hydrogenation method thereof
US4642178A (en) Process for conversion of hydrocarbons
JP2019534838A (en) Synthesis of AEI and Cu-AEI zeolite
KR20190056421A (en) High silica AEI zeolite
KR101308496B1 (en) Methods of manufacturing a honeycomb catalyst
WO2014054607A1 (en) Shipboard gas treatment apparatus
RU2678446C1 (en) Boron oxide in fcc processes
KR101464994B1 (en) Catalyst support for Preparing a Catalyst for Removal of Nitrogen Oxides and method for Preparing thereof
JPS6011280A (en) Porous mullite
CN108993613A (en) A kind of composite ceramic fiber structure and its preparation method and application
KR101667863B1 (en) Titanium-containing granular powder and method for production thereof, and exhaust gas treatment catalyst using same and method for production thereof
KR102121551B1 (en) Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds
KR100372202B1 (en) Catalyst for removing the volatile organic compounds and it&#39;s preparation method
KR102195343B1 (en) Method of Preparing Catalyst for Removing Nitrogen Oxides Using Waste FCC Catalysts
JP2001149758A (en) Catalyst and method for catalytic cracking of nitrogen oxides
CN107149941B (en) Low-temperature denitration catalyst using selective reduction reaction of catalytic waste and method for manufacturing same
CN116689018B (en) Low-temperature denitration catalyst synthesized by taking waste FCC catalyst as raw material and preparation method thereof
KR100641694B1 (en) Titania manufacturing method for denitrification catalyst extrusion

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20181219

PA0201 Request for examination
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20200427

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200604

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200604

End annual number: 3

Start annual number: 1

PG1601 Publication of registration