KR102120007B1 - 객체 추적 장치 및 객체 추적 방법 - Google Patents
객체 추적 장치 및 객체 추적 방법 Download PDFInfo
- Publication number
- KR102120007B1 KR102120007B1 KR1020190062200A KR20190062200A KR102120007B1 KR 102120007 B1 KR102120007 B1 KR 102120007B1 KR 1020190062200 A KR1020190062200 A KR 1020190062200A KR 20190062200 A KR20190062200 A KR 20190062200A KR 102120007 B1 KR102120007 B1 KR 102120007B1
- Authority
- KR
- South Korea
- Prior art keywords
- bounding box
- input frame
- frame
- tracking
- input
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000000926 separation method Methods 0.000 claims description 39
- 238000010801 machine learning Methods 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000013527 convolutional neural network Methods 0.000 description 5
- 101100473585 Arabidopsis thaliana RPP4 gene Proteins 0.000 description 4
- 101150085479 CHS2 gene Proteins 0.000 description 4
- 101100167214 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) chsA gene Proteins 0.000 description 4
- 101100377543 Gerbera hybrida 2PS gene Proteins 0.000 description 4
- 101001018064 Homo sapiens Lysosomal-trafficking regulator Proteins 0.000 description 4
- 101000667110 Homo sapiens Vacuolar protein sorting-associated protein 13B Proteins 0.000 description 4
- 102100033472 Lysosomal-trafficking regulator Human genes 0.000 description 4
- 101100439693 Ustilago maydis (strain 521 / FGSC 9021) CHS4 gene Proteins 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/12—Bounding box
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
도 2는 본 발명의 일 실시예에 따른 객체 추적 방법을 나타내는 순서도이다.
도 3 내지 6은 도 2의 n번째 입력 프레임의 추적 경계 박스를 결정하고, 상기 추적 경계 박스에 상응하는 2차원 좌표를 출력하는 단계의 예들을 나타내는 순서도들이다.
도 7은 본 발명의 일 실시예에 따른 몰입형(immersive) 오디오-비디오 데이터 생성 장치를 나타내는 블록도이다.
도 8은 본 발명의 일 실시예에 따른 몰입형 오디오-비디오 데이터 생성 방법을 나타내는 순서도이다.
200: GOTURN 추적기 300: Mean-shift 추적기
400: 컬러 히스토그램 분석기 500: 학습 데이터 생성부
600: 분류기 700: 판단부
800: 깊이 추정부 900: 오디오 믹서
20: 몰입형 오디오-비디오 데이터 생성 장치
Claims (25)
- 입력 영상 데이터에 상응하는 복수의 입력 프레임들 중의 첫 번째 입력 프레임에서 목표 객체를 설정하고, 상기 목표 객체의 위치에 상응하는 최초 경계 박스(bounding box)를 생성하는 목표 객체 설정부;
상기 복수의 입력 프레임들 중에서 상기 첫 번째 입력 프레임을 제외한 나머지 입력 프레임들 각각에 대해 GOTURN(General Object Tracking Using Regression Network) 추적 알고리즘을 사용하여 상기 목표 객체의 위치를 추적하고, 상기 추적된 위치에 상응하는 제1 경계 박스를 생성하는 GOTURN 추적기;
상기 복수의 입력 프레임들 중에서 상기 나머지 입력 프레임들 각각에 대해 Mean-shift 추적 알고리즘을 사용하여 상기 목표 객체의 위치를 추적하고, 상기 추적된 위치에 상응하는 제2 경계 박스를 생성하는 Mean-shift 추적기;
n(n은 2 이상의 정수)번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램과 상기 첫 번째 입력 프레임에서 상기 최초 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제1 유사도, 상기 n번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램과 상기 첫 번째 입력 프레임에서 상기 최초 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제2 유사도, 상기 n번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램과 (n-k)(k는 n 미만의 자연수)번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제3 유사도, 및 상기 n번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램과 상기 (n-k)번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제4 유사도를 결정하는 컬러 히스토그램 분석기;
상기 제1 내지 제4 유사도들을 사용하여 상기 GOTURN 추적기 및 상기 Mean-shift 추적기 중의 하나를 나타내는 분류값을 출력하는 머신 러닝(Machine Learning) 기반의 분류기; 및
상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 2차원 좌표를 출력하는 판단부를 포함하는 객체 추적 장치. - 제1 항에 있어서, 상기 분류값이 상기 Mean-shift 추적기를 나타내는 경우, 상기 판단부는,
상기 n번째 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 레벨을 계산하고, 상기 평균 밝기 레벨이 제1 문턱 레벨보다 낮거나 상기 제1 문턱 레벨보다 높은 제2 문턱 레벨보다 높은 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제2 항에 있어서, 상기 판단부는,
상기 평균 밝기 레벨이 상기 제1 문턱 레벨 이상이고 상기 제2 문턱 레벨 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제2 항에 있어서, 상기 판단부는,
상기 평균 밝기 레벨이 상기 제1 문턱 레벨 이상이고 상기 제2 문턱 레벨 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리를 계산하고, 상기 이격 거리가 문턱 거리보다 먼 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제4 항에 있어서, 상기 판단부는,
상기 이격 거리가 상기 문턱 거리 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제1 항에 있어서, 상기 분류값이 상기 Mean-shift 추적기를 나타내는 경우, 상기 판단부는,
상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리를 계산하고, 상기 이격 거리가 문턱 거리보다 먼 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제6 항에 있어서, 상기 판단부는,
상기 이격 거리가 상기 문턱 거리 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제6 항에 있어서, 상기 판단부는,
상기 이격 거리가 상기 문턱 거리 이하인 경우, 상기 n번째 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 레벨을 계산하고, 상기 평균 밝기 레벨이 제1 문턱 레벨보다 낮거나 상기 제1 문턱 레벨보다 높은 제2 문턱 레벨보다 높은 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제8 항에 있어서, 상기 판단부는,
상기 평균 밝기 레벨이 상기 제1 문턱 레벨 이상이고 상기 제2 문턱 레벨 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제1 항에 있어서, 상기 분류값이 상기 GOTURN 추적기를 나타내는 경우,
상기 판단부는, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 객체 추적 장치. - 제1 항에 있어서, 상기 판단부는, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 경우, 상기 컬러 히스토그램 분석기로부터 수신되는 상기 제3 유사도와 기준값을 비교하고, 상기 제3 유사도가 상기 기준값보다 큰 경우, 상기 Mean-shift 추적기에 상기 n번째 입력 프레임의 상기 제1 경계 박스를 제공하고,
상기 Mean-shift 추적기는 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치를 상기 판단부로부터 수신되는 상기 제1 경계 박스로 초기화한 후, 상기 n번째 입력 프레임 이후로 수신되는 입력 프레임들에 대해 상기 목표 객체의 위치를 추적하는 동작을 수행하는 객체 추적 장치. - 제1 항에 있어서, 상기 판단부는, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 경우, 상기 컬러 히스토그램 분석기로부터 수신되는 상기 제4 유사도와 기준값을 비교하고, 상기 제4 유사도가 상기 기준값보다 큰 경우, 상기 GOTURN 추적기에 상기 n번째 입력 프레임의 상기 제2 경계 박스를 제공하고,
상기 GOTURN 추적기는 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치를 상기 판단부로부터 수신되는 상기 제2 경계 박스로 초기화한 후, 상기 n번째 입력 프레임 이후로 수신되는 입력 프레임들에 대해 상기 목표 객체의 위치를 추적하는 동작을 수행하는 객체 추적 장치. - 제1 항에 있어서, 상기 k는 3에 상응하는 객체 추적 장치.
- 제1 항에 있어서,
학습 영상 데이터에 상응하는 복수의 학습 프레임들 각각에 대해, 현재 학습 프레임에서 상기 GOTURN 추적기를 사용하여 추적한 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램과 첫 번째 학습 프레임에서 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램 사이의 유사도, 상기 현재 학습 프레임에서 상기 Mean-shift 추적기를 사용하여 추적한 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램과 상기 첫 번째 학습 프레임에서 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램 사이의 유사도, 상기 현재 학습 프레임에서 상기 GOTURN 추적기를 사용하여 추적한 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램과 상기 현재 학습 프레임과 상기 첫 번째 학습 프레임 사이에 존재하는 비교 학습 프레임에서 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램 사이의 유사도, 및 상기 현재 학습 프레임에서 상기 Mean-shift 추적기를 사용하여 추적한 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램과 상기 비교 학습 프레임에서 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램 사이의 유사도를 입력값들로 하고, 상기 GOTURN 추적기와 상기 Mean-shift 추적기 중에서 상기 현재 학습 프레임에서 더 높은 추적 정확도를 갖는 추적기를 나타내는 값을 상기 입력값들에 대한 라벨로 하는 학습 데이터를 생성하는 학습 데이터 생성부를 더 포함하고,
상기 분류기는 상기 학습 데이터를 사용하여 상기 입력값들을 상기 GOTURN 추적기와 상기 Mean-shift 추적기 중의 하나로 분류하는 학습을 수행하여 추적 알고리즘 선택 모델을 생성한 후, 상기 컬러 히스토그램 분석기로부터 수신되는 상기 제1 내지 제4 유사도들을 상기 추적 알고리즘 선택 모델에 입력하여 상기 GOTURN 추적기 및 상기 Mean-shift 추적기 중의 하나를 나타내는 상기 분류값을 출력하는 객체 추적 장치. - 입력 영상 데이터에 상응하는 복수의 입력 프레임들 중의 첫 번째 입력 프레임에서 목표 객체를 설정하고, 상기 목표 객체의 위치에 상응하는 최초 경계 박스를 생성하는 목표 객체 설정부;
상기 복수의 입력 프레임들 중에서 상기 첫 번째 입력 프레임을 제외한 나머지 입력 프레임들 각각에 대해 GOTURN 추적 알고리즘을 사용하여 상기 목표 객체의 위치를 추적하고, 상기 추적된 위치에 상응하는 제1 경계 박스를 생성하는 GOTURN 추적기;
상기 복수의 입력 프레임들 중에서 상기 나머지 입력 프레임들 각각에 대해 Mean-shift 추적 알고리즘을 사용하여 상기 목표 객체의 위치를 추적하고, 상기 추적된 위치에 상응하는 제2 경계 박스를 생성하는 Mean-shift 추적기;
n(n은 2 이상의 정수)번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램과 상기 첫 번째 입력 프레임에서 상기 최초 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제1 유사도, 상기 n번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램과 상기 첫 번째 입력 프레임에서 상기 최초 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제2 유사도, 상기 n번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램과 (n-k)(k는 n 미만의 자연수)번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제3 유사도, 및 상기 n번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램과 상기 (n-k)번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제4 유사도를 결정하는 컬러 히스토그램 분석기;
상기 제1 내지 제4 유사도들을 사용하여 상기 GOTURN 추적기 및 상기 Mean-shift 추적기 중의 하나를 나타내는 분류값을 출력하는 머신 러닝 기반의 분류기;
상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 2차원 좌표를 출력하는 판단부;
상기 판단부로부터 상기 복수의 입력 프레임들 각각에 대한 상기 2차원 좌표를 수신하고, 상기 복수의 입력 프레임들 각각에 대해 상기 2차원 좌표에 상응하는 객체의 깊이(depth)를 추정하여 상기 복수의 입력 프레임들 각각에서 상기 목표 객체의 추적된 위치에 상응하는 3차원 좌표를 출력하는 깊이 추정부; 및
상기 목표 객체에 상응하는 오디오 데이터를 상기 복수의 입력 프레임들 각각의 상기 3차원 좌표와 연결하여 몰입형(immersive) 오디오-비디오 데이터를 생성하는 오디오 믹서를 포함하는 몰입형 오디오-비디오 데이터 생성 장치. - 학습 영상 데이터를 사용하여 머신 러닝을 수행하여 추적 알고리즘 선택 모델을 생성하는 단계;
입력 영상 데이터에 상응하는 복수의 입력 프레임들 중의 첫 번째 입력 프레임에서 목표 객체를 설정하고, 상기 목표 객체의 위치에 상응하는 최초 경계 박스를 생성하는 단계;
상기 복수의 입력 프레임들 중에서 상기 첫 번째 입력 프레임을 제외한 나머지 입력 프레임들 각각에 대해 GOTURN 추적 알고리즘을 사용하여 상기 목표 객체의 위치를 추적하고, 상기 추적된 위치에 상응하는 제1 경계 박스를 생성하는 단계;
상기 복수의 입력 프레임들 중에서 상기 나머지 입력 프레임들 각각에 대해 Mean-shift 추적 알고리즘을 사용하여 상기 목표 객체의 위치를 추적하고, 상기 추적된 위치에 상응하는 제2 경계 박스를 생성하는 단계;
n(n은 2 이상의 정수)번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램과 상기 첫 번째 입력 프레임에서 상기 최초 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제1 유사도, 상기 n번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램과 상기 첫 번째 입력 프레임에서 상기 최초 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제2 유사도, 상기 n번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램과 (n-k)(k는 n 미만의 자연수)번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제3 유사도, 및 상기 n번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램과 상기 (n-k)번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제4 유사도를 결정하는 단계;
상기 제1 내지 제4 유사도들을 상기 추적 알고리즘 선택 모델에 입력하여 GOTURN 추적기 및 Mean-shift 추적기 중의 하나를 나타내는 분류값을 출력하는 단계; 및
상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 2차원 좌표를 출력하는 단계를 포함하는 객체 추적 방법. - 제16 항에 있어서, 상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 상기 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 상기 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 상기 2차원 좌표를 출력하는 단계는,
상기 Mean-shift 추적기 및 상기 GOTURN 추적기 중에서 상기 분류값이 나타내는 추적기를 판단하는 단계; 및
상기 분류값이 상기 GOTURN 추적기를 나타내는 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계를 포함하는 객체 추적 방법. - 제17 항에 있어서, 상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 상기 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 상기 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 상기 2차원 좌표를 출력하는 단계는,
상기 분류값이 상기 Mean-shift 추적기를 나타내는 경우, 상기 n번째 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 레벨을 계산하는 단계;
상기 평균 밝기 레벨이 제1 문턱 레벨보다 낮거나 상기 제1 문턱 레벨보다 높은 제2 문턱 레벨보다 높은 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계; 및
상기 평균 밝기 레벨이 상기 제1 문턱 레벨 이상이고 상기 제2 문턱 레벨 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계를 더 포함하는 객체 추적 방법. - 제17 항에 있어서, 상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 상기 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 상기 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 상기 2차원 좌표를 출력하는 단계는,
상기 분류값이 상기 Mean-shift 추적기를 나타내는 경우, 상기 n번째 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 레벨을 계산하는 단계;
상기 평균 밝기 레벨이 제1 문턱 레벨보다 낮거나 상기 제1 문턱 레벨보다 높은 제2 문턱 레벨보다 높은 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계;
상기 평균 밝기 레벨이 상기 제1 문턱 레벨 이상이고 상기 제2 문턱 레벨 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리를 계산하는 단계;
상기 이격 거리가 문턱 거리보다 먼 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계; 및
상기 이격 거리가 상기 문턱 거리 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계를 더 포함하는 객체 추적 방법. - 제17 항에 있어서, 상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 상기 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 상기 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 상기 2차원 좌표를 출력하는 단계는,
상기 분류값이 상기 Mean-shift 추적기를 나타내는 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리를 계산하는 단계;
상기 이격 거리가 문턱 거리보다 먼 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계; 및
상기 이격 거리가 상기 문턱 거리 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계를 더 포함하는 객체 추적 방법. - 제17 항에 있어서, 상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 상기 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 상기 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 상기 2차원 좌표를 출력하는 단계는,
상기 분류값이 상기 Mean-shift 추적기를 나타내는 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리를 계산하는 단계;
상기 이격 거리가 문턱 거리보다 먼 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계;
상기 이격 거리가 상기 문턱 거리 이하인 경우, 상기 n번째 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 레벨을 계산하는 단계;
상기 평균 밝기 레벨이 제1 문턱 레벨보다 낮거나 상기 제1 문턱 레벨보다 높은 제2 문턱 레벨보다 높은 경우, 상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계; 및
상기 평균 밝기 레벨이 상기 제1 문턱 레벨 이상이고 상기 제2 문턱 레벨 이하인 경우, 상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 단계를 더 포함하는 객체 추적 방법. - 제16 항에 있어서,
상기 n번째 입력 프레임의 상기 제1 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 경우, 상기 제3 유사도와 기준값을 비교하는 단계; 및
상기 제3 유사도가 상기 기준값보다 큰 경우, 상기 n번째 입력 프레임에서 상기 Mean-shift 추적 알고리즘을 사용하여 추적된 상기 목표 객체의 위치를 상기 제1 경계 박스로 초기화하는 단계를 더 포함하는 객체 추적 방법. - 제16 항에 있어서,
상기 n번째 입력 프레임의 상기 제2 경계 박스를 상기 n번째 프레임의 상기 추적 경계 박스로 결정하는 경우, 상기 제4 유사도와 기준값을 비교하는 단계; 및
상기 제4 유사도가 상기 기준값보다 큰 경우, 상기 n번째 입력 프레임에서 상기 GOTURN 추적 알고리즘을 사용하여 추적된 상기 목표 객체의 위치를 상기 제2 경계 박스로 초기화하는 단계를 더 포함하는 객체 추적 방법. - 제16 항에 있어서, 상기 학습 영상 데이터를 사용하여 머신 러닝을 수행하여 상기 추적 알고리즘 선택 모델을 생성하는 단계는,
상기 학습 영상 데이터에 상응하는 복수의 학습 프레임들 각각에 대해, 현재 학습 프레임에서 GOTURN 추적 알고리즘을 사용하여 추적한 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램과 첫 번째 학습 프레임에서 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램 사이의 유사도, 상기 현재 학습 프레임에서 Mean-shift 추적 알고리즘을 사용하여 추적한 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램과 상기 첫 번째 학습 프레임에서 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램 사이의 유사도, 상기 현재 학습 프레임에서 GOTURN 추적 알고리즘을 사용하여 추적한 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램과 상기 현재 학습 프레임과 상기 첫 번째 학습 프레임 사이에 존재하는 비교 학습 프레임에서 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램 사이의 유사도, 및 상기 현재 학습 프레임에서 Mean-shift 추적 알고리즘을 사용하여 추적한 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램과 상기 비교 학습 프레임에서 상기 학습 객체의 위치에 상응하는 경계 박스의 컬러 히스토그램 사이의 유사도를 입력값들로 하고, GOTURN 추적 알고리즘과 Mean-shift 추적 알고리즘 중에서 상기 현재 학습 프레임에서 더 높은 추적 정확도를 갖는 알고리즘을 나타내는 값을 상기 입력값들에 대한 라벨로 하는 학습 데이터를 생성하는 단계; 및
상기 학습 데이터를 사용하여 상기 입력값들을 GOTURN 추적 알고리즘과 Mean-shift 추적 알고리즘 중의 하나로 분류하는 학습을 수행하여 상기 추적 알고리즘 선택 모델을 생성하는 단계를 포함하는 객체 추적 방법. - 학습 영상 데이터를 사용하여 머신 러닝을 수행하여 추적 알고리즘 선택 모델을 생성하는 단계;
입력 영상 데이터에 상응하는 복수의 입력 프레임들 중의 첫 번째 입력 프레임에서 목표 객체를 설정하고, 상기 목표 객체의 위치에 상응하는 최초 경계 박스를 생성하는 단계;
상기 복수의 입력 프레임들 중에서 상기 첫 번째 입력 프레임을 제외한 나머지 입력 프레임들 각각에 대해 GOTURN 추적 알고리즘을 사용하여 상기 목표 객체의 위치를 추적하고, 상기 추적된 위치에 상응하는 제1 경계 박스를 생성하는 단계;
상기 복수의 입력 프레임들 중에서 상기 나머지 입력 프레임들 각각에 대해 Mean-shift 추적 알고리즘을 사용하여 상기 목표 객체의 위치를 추적하고, 상기 추적된 위치에 상응하는 제2 경계 박스를 생성하는 단계;
n(n은 2 이상의 정수)번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램과 상기 첫 번째 입력 프레임에서 상기 최초 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제1 유사도, 상기 n번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램과 상기 첫 번째 입력 프레임에서 상기 최초 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제2 유사도, 상기 n번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램과 (n-k)(k는 n 미만의 자연수)번째 입력 프레임에서 상기 제1 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제3 유사도, 및 상기 n번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램과 상기 (n-k)번째 입력 프레임에서 상기 제2 경계 박스의 컬러 히스토그램 사이의 유사도에 상응하는 제4 유사도를 결정하는 단계;
상기 제1 내지 제4 유사도들을 상기 추적 알고리즘 선택 모델에 입력하여 상기 GOTURN 추적기 및 상기 Mean-shift 추적기 중의 하나를 나타내는 분류값을 출력하는 단계;
상기 n번째 입력 프레임에서 상기 제2 경계 박스에 상응하는 영역의 평균 밝기 및 상기 n번째 입력 프레임의 상기 제2 경계 박스와 (n-1)번째 입력 프레임의 상기 제2 경계 박스 사이의 이격 거리 중의 적어도 하나와 상기 분류값에 기초하여 상기 n번째 입력 프레임의 상기 제1 경계 박스 및 상기 제2 경계 박스 중의 하나를 상기 n번째 입력 프레임의 추적 경계 박스로 결정하고, 상기 n번째 입력 프레임에서 상기 목표 객체의 추적된 위치로서 상기 추적 경계 박스에 상응하는 2차원 좌표를 출력하는 단계;
상기 복수의 입력 프레임들 각각에 대해 상기 2차원 좌표에 상응하는 객체의 깊이를 추정하여 상기 복수의 입력 프레임들 각각에서 상기 목표 객체의 추적된 위치에 상응하는 3차원 좌표를 출력하는 단계; 및
상기 목표 객체에 상응하는 오디오 데이터를 상기 복수의 입력 프레임들 각각의 상기 3차원 좌표와 연결하여 몰입형 오디오-비디오 데이터를 생성하는 단계를 포함하는 몰입형 오디오-비디오 데이터 생성 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190062200A KR102120007B1 (ko) | 2019-05-27 | 2019-05-27 | 객체 추적 장치 및 객체 추적 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190062200A KR102120007B1 (ko) | 2019-05-27 | 2019-05-27 | 객체 추적 장치 및 객체 추적 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102120007B1 true KR102120007B1 (ko) | 2020-06-05 |
Family
ID=71088920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190062200A KR102120007B1 (ko) | 2019-05-27 | 2019-05-27 | 객체 추적 장치 및 객체 추적 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102120007B1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11720648B2 (en) | 2021-05-03 | 2023-08-08 | Hyundai Mobis Co., Ltd. | Deep learning machine and operation method thereof |
US12002218B2 (en) | 2020-11-26 | 2024-06-04 | Samsung Electronics Co., Ltd. | Method and apparatus with object tracking |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011150594A (ja) * | 2010-01-22 | 2011-08-04 | Sony Corp | 画像処理装置および方法、並びにプログラム |
US20150055821A1 (en) * | 2013-08-22 | 2015-02-26 | Amazon Technologies, Inc. | Multi-tracker object tracking |
-
2019
- 2019-05-27 KR KR1020190062200A patent/KR102120007B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011150594A (ja) * | 2010-01-22 | 2011-08-04 | Sony Corp | 画像処理装置および方法、並びにプログラム |
US20150055821A1 (en) * | 2013-08-22 | 2015-02-26 | Amazon Technologies, Inc. | Multi-tracker object tracking |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12002218B2 (en) | 2020-11-26 | 2024-06-04 | Samsung Electronics Co., Ltd. | Method and apparatus with object tracking |
US11720648B2 (en) | 2021-05-03 | 2023-08-08 | Hyundai Mobis Co., Ltd. | Deep learning machine and operation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | GCNv2: Efficient correspondence prediction for real-time SLAM | |
Bakkay et al. | BSCGAN: Deep background subtraction with conditional generative adversarial networks | |
Minhas et al. | Incremental learning in human action recognition based on snippets | |
EP3385909B1 (en) | Optical flow determination system | |
Wang et al. | Static and moving object detection using flux tensor with split Gaussian models | |
Van Droogenbroeck et al. | Background subtraction: Experiments and improvements for ViBe | |
CN103259962B (zh) | 一种目标追踪方法和相关装置 | |
US20200311855A1 (en) | Object-to-robot pose estimation from a single rgb image | |
CN109598735A (zh) | 使用马尔科夫链跟踪和分割图像中的目标对象的方法以及使用该方法的设备 | |
JP7405198B2 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
CN107292918B (zh) | 基于视频在线学习的跟踪方法和装置 | |
KR102120007B1 (ko) | 객체 추적 장치 및 객체 추적 방법 | |
Sun et al. | Moving vehicle video detection combining ViBe and inter-frame difference | |
Walters et al. | Evreflex: Dense time-to-impact prediction for event-based obstacle avoidance | |
CN116343080A (zh) | 一种动态稀疏关键帧视频目标检测方法、装置及存储介质 | |
Duffhauss et al. | PillarFlowNet: A real-time deep multitask network for LiDAR-based 3D object detection and scene flow estimation | |
Dewan et al. | Detection of object in motion using improvised background subtraction algorithm | |
Chiberre et al. | Long-lived accurate keypoint in event streams | |
KR102429379B1 (ko) | 배경 분류 방법, 배경 분류 장치, 및 이를 포함하는 몰입형 오디오-비디오 데이터 생성 방법 및 장치 | |
Akok et al. | Robust object tracking by interleaving variable rate color particle filtering and deep learning | |
WO2024015811A1 (en) | Feature conditioned output transformer for generalizable semantic segmentation | |
Masuda et al. | Neural implicit event generator for motion tracking | |
WO2021019748A1 (ja) | 分類方法、分類プログラム、分類装置、学習方法、学習プログラム及び学習装置 | |
Zhai et al. | A moving target detection algorithm based on combination of GMM and LBP texture pattern | |
Boulmerka et al. | Background modeling in videos revisited using finite mixtures of generalized Gaussians and spatial information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20190527 |
|
PA0201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20200522 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20200601 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20200601 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20230518 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20240422 Start annual number: 5 End annual number: 5 |