Nothing Special   »   [go: up one dir, main page]

KR102076232B1 - Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same - Google Patents

Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same Download PDF

Info

Publication number
KR102076232B1
KR102076232B1 KR1020190012675A KR20190012675A KR102076232B1 KR 102076232 B1 KR102076232 B1 KR 102076232B1 KR 1020190012675 A KR1020190012675 A KR 1020190012675A KR 20190012675 A KR20190012675 A KR 20190012675A KR 102076232 B1 KR102076232 B1 KR 102076232B1
Authority
KR
South Korea
Prior art keywords
waste
wood
composition
bio
powder
Prior art date
Application number
KR1020190012675A
Other languages
Korean (ko)
Inventor
임철환
Original Assignee
(주)애니우드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)애니우드 filed Critical (주)애니우드
Priority to KR1020190012675A priority Critical patent/KR102076232B1/en
Application granted granted Critical
Publication of KR102076232B1 publication Critical patent/KR102076232B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/02Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board the layer being formed of fibres, chips, or particles, e.g. MDF, HDF, OSB, chipboard, particle board, hardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/007Manufacture of substantially flat articles, e.g. boards, from particles or fibres and at least partly composed of recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1858Handling of layers or the laminate using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0468Crushing, i.e. disintegrating into small particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2272/00Resin or rubber layer comprising scrap, waste or recycling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/70Scrap or recycled material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention relates to bio-synthetic wood using waste plastic, which recycles the waste plastic and fiber of waste wood, agricultural waste, and the like to reduce discharged waste and recycle the bio-synthetic wood discarded after use as bio-synthetic wood of the same kinds; and a manufacturing method thereof. According to the present invention, the bio-synthetic wood using waste plastic comprises: a core part including waste plastic powder, fiber powder acquired from waste wood or agricultural waste, and a first composition including a crosslinking agent, a dispersant, a foaming agent, a processing additive, and a shock resistant agent; and a cover part made of a second composition including PVC resin, a stabilizer, and an additive, and laminated on the outer surface of the core part by a predetermined thickness to form a wood pattern.

Description

폐플라스틱을 이용한 바이오 인조목재 및 그 제조 방법{Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same}Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same}

본 발명은 바이오 인조목재에 관한 것으로, 더욱 상세하게는 폐플라스틱과, 폐목재 또는 농산 폐기물 등의 섬유질을 원료로 하여 만들어진 바이오 인조목재 및 그 제조방법에 관한 것이다.The present invention relates to bio-artificial wood, and more particularly, to a bio-artificial wood made from fibers such as waste plastics, waste wood or agricultural wastes, and a manufacturing method thereof.

폐기물로서 폐플라스틱은 최근 세계적인 환경오염물질로서 대두되고 있다. 폐플라스틱의 일반적인 처리방법으로는 우선 매립이나 소각처리 등이 있다. 그러나 생분해성 플라스틱을 제외하고는 대부분의 플라스틱이 분해가 되지 않으며 무게에 비해 부피가 커서 매립지의 추가 건설이 어려운 상황에서 매립에 의한 폐플라스틱의 환경오염과 바다에 버려져 해양환경오염을 일으키는 등 이의 처리는 많은 문제점을 가져오게 된다. Waste plastics as a waste have recently emerged as a global environmental pollutant. General methods of waste plastics include landfill or incineration. However, except for biodegradable plastics, most plastics are not decomposed, and due to its bulky volume, it is difficult to construct landfills. This brings a lot of problems.

한편, 폐플라스틱의 소각처리의 경우에는 다이옥신 같은 유독가스가 발생하고 에너지 손실이 크므로 효율적인 대안이 되기 위해서는 많은 설비투자가 필요하게 된다. 따라서, 폐플라스틱을 적절히 회수하여 재활용(recycling)하는 방안이 환경보호 및 유용자원의 재회수 관점에서 최선책으로 대두되고 있다.On the other hand, in the case of incineration of waste plastics, toxic gases such as dioxins are generated and energy loss is large, so a lot of facility investment is required to be an efficient alternative. Therefore, a method of appropriately recovering and recycling waste plastics has emerged as the best solution from the viewpoint of environmental protection and recycling of useful resources.

폐플라스틱의 재활용에 관한 연구는 전세계적으로 활발히 진행되고 있으나 현재까지는 몇몇 플라스틱의 분해기작에 관해서만 발표되었을 뿐 구체적으로 폐플라스틱을 회수하여 경제적으로 재사용할 수 있는 방안을 제시한 예는 별로 없다. 단지, 공업적으로 미국과 유럽 등지에서 주로 HDPE, LDPE, PP 등의 열가소성 플라스틱의 단일 조성을 톱밥과 함께 섞어 인조목재로 이용하고 있을 뿐이다. Although the research on the recycling of waste plastics is being actively carried out all over the world, until now, only the decomposition mechanisms of some plastics have been published, and there are few examples of how to recover waste plastics and economically reuse them. However, industrially, only a single composition of thermoplastics such as HDPE, LDPE, PP, and the like is mixed with sawdust in the United States and Europe and used as artificial wood.

종래의 인조목재는 폐 플라스틱에 충진재(석분, 목분, 기타 분쇄물)를 혼합하고 폐 플라스틱을 완전히 용융상태에서 충진재를 교반하여 펠릿형태로 제작 후 다시 압형기에서 압형하여 제작한 것들이 소개되고 있다.Conventional artificial wood has been introduced by mixing the filling material (stone powder, wood powder, other pulverized product) to the waste plastic and stirring the filler in a completely molten state of the waste plastic to produce a pellet form and then press-molded in a compactor.

이와 같은 소재의 인조목재 제품은 플라스틱의 밀도가 높아 기후에 따라 수축과 팽창이 심하며, 무겁기 때문에 정교한 건설용 자재로 대용하기에 적합하지 않으며, 특히 못질, 톱질이 잘 되지 않아 실질적으로 사용되지 못하고 있는 실정이다.Artificial wood products made of these materials have high density of plastics, which can cause severe shrinkage and expansion depending on the climate, and are not suitable to substitute for sophisticated construction materials, especially since they are not nailed and sawed well. It is true.

대한민국 공개특허 제10-1995-0013678호(1995.06.15. 공개)Republic of Korea Patent Publication No. 10-1995-0013678 대한민국 등록특허 제10-1756821호(2017.07.05. 등록)Republic of Korea Patent Registration No. 10-1756821 (2017.07.05.registration)

본 발명은 상기한 문제를 해결하기 위한 것으로, 본 발명의 목적은 폐플라스틱과, 폐목재 또는 농산 폐기물 등의 섬유질을 재활용함으로써 배출되는 쓰레기를 줄이는 효과와 함께 사용후 폐기되는 바이오 인조목재를 동종류의 바이오 인조목재로 재활용할 수 있는 바이오 인조목재 및 그 제조방법을 제공함에 있다. The present invention is to solve the above problems, an object of the present invention is the same kind of bioplastics discarded after use with the effect of reducing waste discharged by recycling waste plastics and fibers such as waste wood or agricultural waste. The present invention provides a bio artificial wood that can be recycled as a bio artificial wood and a method of manufacturing the same.

상기한 목적을 달성하기 위한 본 발명에 따른 폐플라스틱을 이용한 바이오 인조목재는, 폐플라스틱을 가공하여 얻어지는 폐플라스틱 분말과, 폐목재 또는 농산 폐기물 등을 가공하여 얻어진 섬유질 분말과, 가교제, 분산제, 발포제, 가공조제, 충격보강제, 난연제 등을 포함하는 제1조성물로 만들어진 코어부; 및, 열가소성 수지에 안정제, 안료(pigment), 이산화티타늄(TiO2), UV 차단제, 첨가제를 포함하는 마스터배치(master batch) 형태의 제2조성물로 만들어지며, 상기 코어부의 외면에 일정한 두께로 적층되어 목재 무늬를 생성하는 커버부;를 포함할 수 있다. Bio-artificial wood using waste plastic according to the present invention for achieving the above object is a waste plastic powder obtained by processing waste plastic, fibrous powder obtained by processing waste wood or agricultural waste, crosslinking agent, dispersant, foaming agent A core part made of a first composition including a processing aid, an impact modifier, a flame retardant, and the like; And a second composition in the form of a master batch containing a stabilizer, a pigment, titanium dioxide (TiO 2 ), a UV blocking agent, and an additive in a thermoplastic resin, and laminated to a constant thickness on an outer surface of the core part. And a cover part to generate a wood pattern.

상기 커버부와 코어부는 일체로 압출 성형되어 만들어진다. The cover portion and the core portion are made by extrusion molding integrally.

또한 본 발명의 바이오 인조목재를 제조하는 방법은, In addition, the method for producing a bio-artificial wood of the present invention,

(S1) 폐플라스틱을 분쇄하여 폐플라스틱 분말을 제조하는 단계;(S1) pulverizing the waste plastic to produce a waste plastic powder;

(S2) 폐목재 또는 농산 폐기물을 분쇄하여 섬유질 분말을 제조하는 단계;(S2) pulverizing waste wood or agricultural waste to produce a fibrous powder;

(S3) 상기 폐플라스틱 분말과 섬유질 분말을 가교제, 분산제, 발포제, 가공조제, 충격보강제, 난연제 등과 함께 혼합하고, 일정 온도 범위에서 가열하여 혼련시켜 겔상의 바이오 합성원료를 제조하는 단계;(S3) mixing the waste plastic powder and the fibrous powder with a crosslinking agent, a dispersing agent, a foaming agent, a processing aid, an impact modifier, a flame retardant, and the like, and heating and kneading the mixture at a predetermined temperature to prepare a gel-like biosynthetic raw material;

(S4) 상기 겔상의 합성원료를 일정한 온도 범위에서 냉각하여 분말화된 제1조성물을 제조하는 단계;(S4) preparing a powdered first composition by cooling the gel-like synthetic raw material in a predetermined temperature range;

(S5) 상기 제1조성물을 제1압출성형기에 투입하여 코어부를 압출 성형하는 단계;(S5) extruding the core part by putting the first composition into a first extrusion molding machine;

(S6) 상기 제1압출성형기의 1차 다이스의 일측에 연결되는 제2압출성형기에 제2조성물을 투입하여 상기 1차 다이스를 통과하는 코어부의 외측으로 제2조성물을 공급하여 커버부를 적층하면서 압출하는 단계;(S6) The second composition is injected into a second extrusion molding machine connected to one side of the first die of the first extrusion molding machine, and the second composition is supplied to the outside of the core part passing through the first die, and the cover part is laminated while being extruded. Making;

(S7) 상기 1차 다이스를 통해 압출되는 코어부와 커버부의 적층체를 냉각하는 단계;(S7) cooling the stack of the core portion and the cover portion extruded through the primary die;

를 포함한다. It includes.

상기 폐플라스틱 분말과 섬유질 분말은 30~120 메쉬(mesh)의 크기를 갖는 것이 바람직하다. The waste plastic powder and fiber powder preferably has a size of 30 ~ 120 mesh (mesh).

상기 (S3) 단계를 수행하기 전에 상기 폐플라스틱 분말과 섬유질 분말은 50~150℃의 온도 범위에서 회전하면서 1차 가열되어 건조 및 용융된다. Before performing the step (S3), the waste plastic powder and the fibrous powder are first heated and dried and melted while rotating in a temperature range of 50 ~ 150 ℃.

상기 (S7) 단계에서는 상기 코어부와 커버부의 적층체를 진공펌프와 연결된 진공캘리브레이터(vacuum calibrator)를 통과시키면서 진공압을 발생시켜 최종 제품 형태로 성형함과 동시에 냉각수를 공급하여 냉각시킨다.In the step (S7) while passing through the vacuum calibrator (vacuum calibrator) connected to the vacuum pump and the stack of the core portion to generate a vacuum pressure to form a final product form and at the same time supplying cooling water to cool.

상기 (S6) 단계에서 상기 제2압출성형기는 제1압출성형기의 1차 다이스의 측면에 연결되어 1차 다이스를 통과하는 코어부의 측방에서 제2조성물을 공급하여 코어부의 외면에 커버부를 적층한다. In the step (S6), the second extrusion molding machine is connected to the side of the primary die of the first extrusion molding machine and supplies the second composition from the side of the core portion passing through the primary die to stack the cover portion on the outer surface of the core portion.

상기 1차 다이스의 내부에는 상기 제2압출성형기의 선단에 마련된 사이드압출노즐과 연통되어 사이드압출노즐을 통해 토출되는 용융 상태의 제2조성물을 상기 캐비티 내측으로 안내하는 원료공급통로가 형성되고, 상기 원료공급통로는 1차 다이스의 일측면에서부터 상측으로 연장된 후 캐비티의 상부면 외측의 중앙에서 양측으로 분기된 다음, 캐비티의 상부면 양측으로 연통되는 유로로 형성되는 것이 바람직하다. A raw material supply passage is formed inside the primary die to communicate with the side extrusion nozzle provided at the tip of the second extrusion molding machine to guide the second composition in the molten state discharged through the side extrusion nozzle into the cavity. The raw material supply passage is preferably formed as a passage extending from one side of the primary die to the upper side and then branched from both sides of the upper side of the cavity to both sides, and then communicating to both sides of the upper surface of the cavity.

본 발명의 바이오 인조목재는 폐플라스틱과, 폐목재 또는 농산 폐기물 등을 분쇄하여 만들어진 분말 재료로 압출성형된 코어부와, 상기 코어부의 외면에 적층되어 일체화된 수지 재질의 커버부를 포함하며, 코어부와 커버부가 동시에 압출 성형되어 제작되므로 제작이 매우 용이하며, 가격이 저렴한 이점이 있다.The bio-artificial wood of the present invention includes a core part extruded from waste plastic and a powder material made by pulverizing waste wood or agricultural waste, and a cover part made of a resin material laminated and laminated on an outer surface of the core part. And the cover part is produced by extrusion molding at the same time is very easy to manufacture, there is a low cost advantage.

또한 바이오 인조목재가 폐플라스틱과, 폐목재 또는 농산 폐기물을 재활용하여 만들어지므로 환경 오염을 최소화할 수 있고, 자원 재활용 효과도 얻을 수 있다.In addition, since bio-artificial wood is made by recycling waste plastics and waste wood or agricultural waste, it is possible to minimize environmental pollution and to obtain resource recycling effects.

그리고 코어부를 형성하는 제1조성물의 재료로서 잣 껍질 분말을 혼합하면 피톤치드가 함유되는 효과도 얻을 수 있다.When pine nut powder is mixed as the material of the first composition forming the core portion, the effect of containing phytoncide can also be obtained.

도 1은 본 발명의 일 실시예에 따른 폐플라스틱을 이용한 바이오 인조목재의 사시도이다.
도 2는 본 발명에 따른 바이오 인조목재를 제조하는 방법의 일 실시예를 나타낸 순서도이다.
도 3은 본 발명에 따른 바이오 인조목재를 제조하기 위한 제조 장치의 일 실시예의 구성을 나타낸 정면도이다.
도 4는 도 3에 도시된 바이오 인조목재 제조 장치의 평면도이다.
도 5는 도 3에 도시된 바이오 인조목재 제조 장치에 구성되는 제1압출성형기의 트윈 스크류를 나타낸 평면도이다.
도 6은 도 3에 도시된 바이오 인조목재 제조 장치에서 압출 성형 공정이 수행되는 주요 부분을 나타낸 평면도이다.
도 7은 도 5의 I-I 선 단면도이다.
도 8은 본 발명에 따른 제조 장치 및 방법으로 제조된 바이오 인조목재 시제품에 대한 굴곡최대하중시험 결과를 나타낸 시험성적서이다.
1 is a perspective view of a bio artificial wood using waste plastics according to an embodiment of the present invention.
Figure 2 is a flow chart showing an embodiment of a method for manufacturing bio-artificial wood according to the present invention.
Figure 3 is a front view showing the configuration of an embodiment of a manufacturing apparatus for producing a bio-artificial wood according to the present invention.
4 is a plan view of the bio-artificial wood manufacturing apparatus shown in FIG.
FIG. 5 is a plan view illustrating a twin screw of the first extrusion molding machine configured in the bio artificial wood manufacturing apparatus shown in FIG. 3.
FIG. 6 is a plan view illustrating a main part of an extrusion molding process performed in the bio-artificial wood manufacturing apparatus shown in FIG. 3.
FIG. 7 is a cross-sectional view taken along the line II of FIG. 5.
Figure 8 is a test report showing the results of the maximum load test for the artificial bio-wood prototype manufactured by the manufacturing apparatus and method according to the present invention.

본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.Configurations shown in the embodiments and drawings described herein are only preferred examples of the disclosed invention, and there may be various modifications that may substitute the embodiments and drawings of the present specification at the time of filing of the present application.

이하에서는 첨부된 도면을 참조하여 폐플라스틱을 이용한 바이오 인조목재 및 그 제조 방법을 후술된 실시예들에 따라 구체적으로 설명하도록 한다. 도면에서 동일한 부호는 동일한 구성 요소를 나타낸다. Hereinafter, with reference to the accompanying drawings will be described in detail according to the embodiments described below the bio-artificial wood using the waste plastic and its manufacturing method. Like reference numerals in the drawings denote like elements.

도 1은 본 발명의 일 실시예에 따른 폐플라스틱을 이용한 바이오 인조목재를 나타낸 것으로, 본 발명의 바이오 인조목재(10)는 폐플라스틱을 포함하는 조성물로 만들어진 코어부(11)와, 코어부(11)의 외면에 일정한 두께로 적층되어 목재 무늬를 생성하게 되는 커버부(12)를 포함한다. 1 is a view illustrating a bio artificial wood using waste plastics according to an embodiment of the present invention. The bio artificial wood 10 of the present invention includes a core part 11 and a core part made of a composition including waste plastic. 11) includes a cover portion 12 that is laminated to a predetermined thickness on the outer surface to produce a wood pattern.

상기 코어부(11)는 폐플라스틱 분말과, 폐목재 또는 농산 폐기물로부터 얻어진 섬유질 분말과, 가교제, 분산제, 발포제, 가공조제, 충격보강제, 난연제 등을 포함하는 제1조성물로 만들어진다. The core portion 11 is made of a first composition comprising waste plastic powder, fibrous powder obtained from waste wood or agricultural waste, and a crosslinking agent, a dispersant, a foaming agent, a processing aid, an impact modifier, a flame retardant, and the like.

상기 폐플라스틱 분말은 제1조성물 전체 중량의 30~40중량%로 혼합되며, 상기 섬유질 분말은 50~60 중량%, 가교제 0.05~3 중량%, 분산제 1~2 중량%, 발포제 0.05~0.2 중량%, 가공조제 3~5 중량%, 충격보강제 3~5 중량%, 잔부의 난연제 등을 포함할 수 있다. 여기에 피톤치드 효과를 위하여 잣 껍질 분말을 혼합할 수 있는데, 잣 껍질 분말을 혼합할 경우 상기 섬유질 분말의 30~50중량%를 치환하는 형태로 혼합한다. The waste plastic powder is mixed in 30 to 40% by weight of the total weight of the first composition, the fibrous powder is 50 to 60% by weight, 0.05 to 3% by weight crosslinking agent, 1 to 2% by weight dispersant, 0.05 to 0.2% by weight foaming agent It may include 3 to 5% by weight of the processing aid, 3 to 5% by weight of the impact modifier, the remaining flame retardant. Here, pine nut shell powder may be mixed for the phytoncide effect, and when the pine nut shell powder is mixed, 30 to 50% by weight of the fiber powder is mixed in a substitution form.

폐플라스틱 분말은 사용후 버려지는 폐플라스틱을 수세 및 건조하고 분쇄하여 입자 크기가 30~120 메쉬의 분말로 된 것으로, PVC, PE, PP, ABS 등의 수지로 이루어질 수 있다. 폐플라스틱으로서 가소제가 없는 uPVC(unplasticized polyvinyl chloride)를 사용할 경우 가열 시에 독성이 거의 없어서 친환경적인 인조목재를 제조할 수 있다.The waste plastic powder is a powder having a particle size of 30 to 120 mesh by washing, drying and pulverizing waste plastic discarded after use, and may be made of a resin such as PVC, PE, PP, or ABS. The use of plasticizer-free unplasticized polyvinyl chloride (uPVC) as a waste plastic has little toxicity when heated, making it an environmentally friendly artificial wood.

상기 섬유질 분말은 폐목재 또는 농산 폐기물 등을 수세 및 건조하고 분쇄하여 입자 크기가 30~120 메쉬의 분말로 된 것을 사용한다. The fibrous powder uses a powder having a particle size of 30 to 120 mesh by washing, drying and pulverizing waste wood or agricultural waste.

상기 발포제는 액상의 저비점 탄화수소를 열가소성 고분자 껍질(shell)에 넣은 열팽창성 발포제 쉘이 사용될 수 있는데, 이와 같은 발포제 쉘은 가열함으로써, 고분자 껍질이 연화되고, 안에 있던 액상 탄화수소가 기체로 변하며 그 압력으로 팽창하여 체적의 50 ~ 100배의 중공분자로 변하게 된다. 이 때, 발포제 쉘은 독립기포를 형성하게 되어 경량화가 가능하며, 함수율을 최소화할 수 있는 이점을 제공하게 된다. 또한 발포제 쉘은 발포 후, 독립기포를 형성하게 되어 경량화가 가능하며, 제품의 비중 및 함수율을 낮출 수 있다.The blowing agent may be a thermally expandable blowing agent shell in which a liquid low-boiling hydrocarbon is placed in a thermoplastic polymer shell. The blowing agent shell softens the polymer shell by heating, and turns the liquid hydrocarbon inside into a gas, and at a pressure thereof. It expands into a hollow molecule 50 to 100 times its volume. At this time, the foaming shell is to form an independent bubble can be reduced in weight, it provides an advantage that can minimize the moisture content. In addition, after the foaming agent shell is foamed, an independent bubble is formed to be lightweight, and the specific gravity and water content of the product can be lowered.

가공조제는 폐플라스틱 분말의 수지 성분(예를 들어 PVC 수지)을 가공할 때 가공을 돕는 역할을 한다. 즉, 발포 압출시 수지 성분의 용융을 촉진하고, 균일한 셀 구조를 유지시켜주는 역할을 하며, 가공된 수지에 점탄성을 부여하는 작용을 한다. 상기 가공조제는 높은 분자량을 가진 것을 사용하는 것이 바람직한데, 본 발명에서는 메틸 메타크릴레이트(Methyl methacrylate: MMA) 60~85 중량%와 부틸아크릴레이트(Butyl Acrylate) 15~40 중량%를 혼합하여 만들어진 것을 사용한다. Processing aids assist in processing the resin component of the waste plastic powder (eg PVC resin). That is, it serves to promote melting of the resin component during foam extrusion and to maintain a uniform cell structure, and to impart viscoelasticity to the processed resin. The processing aid is preferably used having a high molecular weight, in the present invention is made by mixing 60 to 85% by weight of methyl methacrylate (MMA) and 15 to 40% by weight of butyl acrylate (Butyl Acrylate) Use it.

상기 분산제는 압출 발포 성형 과정에서 윤활 작용을 하여 용융된 원료가 압출성형기에서 원활하게 흘러갈 수 있도록 하는데, 상기 분산제는 팔미틴산(palmitic acid)과 스테아린산(stearic acid) 외에 지방산(Fatty acid)을 혼합하여 만들어질 수 있다. The dispersing agent lubricates during the extrusion foaming process so that the molten raw material can flow smoothly in the extrusion molding machine. The dispersing agent is mixed with fatty acid in addition to palmitic acid and stearic acid. Can be made.

상기 가교제는 인조목재의 압출 성형시 열에 의해 가교(경화) 반응이 일어나 거대 응집물이 형성되는 것을 방지하여 균일한 혼련을 달성할 수 있도록 하는 작용을 한다. 또한, 상기 가교제는 목재의 질감을 얻기 위하여 다량의 주재료(폐플라스틱 분말 및 섬유질 분말)를 첨가하여도 물성 저하가 발생하지 않도록 하는 작용도 한다. 본 발명에서 사용되는 가교제는 당 분야에서 그 사용이 알려진 통상의 것을 사용할 수 있다.The crosslinking agent serves to prevent uniform crosslinking by hardening a crosslinking (curing) reaction by heat during extrusion of artificial wood to form a large aggregate. In addition, the crosslinking agent also acts to prevent the degradation of physical properties even if a large amount of the main material (waste plastic powder and fiber powder) is added to obtain the texture of the wood. The crosslinking agent used in the present invention may use a conventional one known in the art.

상기 충격보강제는 충격 강도 및 성형성을 향상시키기 위해 첨가하는 재료로서, 염소화 폴리에틸렌, 탄산칼슘, 스테아린산칼슘, 활석 등을 혼합하여 만들어진다. The impact modifier is a material added to improve impact strength and formability, and is made by mixing chlorinated polyethylene, calcium carbonate, calcium stearate, talc, and the like.

상기 난연제는 내화성을 제공하는 성분으로서 공지의 난연제 등을 사용할 수 있다.The flame retardant may be a known flame retardant or the like as a component that provides fire resistance.

상기 커버부(12)는 코어부(11)와 함께 압출 성형되면서 코어부(11)의 외면에 일체로 적층되는 것으로, 커버부(12)의 표면에 천연 목재의 무늬를 형성함으로써 인조목재가 천연 목재와 같은 느낌을 갖게 된다. The cover part 12 is integrally laminated on the outer surface of the core part 11 while being extruded together with the core part 11, and the artificial wood is natural by forming a pattern of natural wood on the surface of the cover part 12. It feels like wood.

상기 커버부(12)는 열가소성 수지에 공지의 안정제와, 안료(pigment), 이산화티타늄(TiO2), UV 차단제, 첨가제를 포함하는 마스터배치(master batch) 형태의 제2조성물로 만들어진다. The cover part 12 is made of a second composition in the form of a master batch containing a stabilizer, a pigment, titanium dioxide (TiO 2 ), a UV blocking agent, and an additive in a thermoplastic resin.

도 2는 본 발명의 바이오 인조목재를 제조하는 방법의 일 실시예를 나타낸 순서도이고, 도 3 내지 도 6은 본 발명의 바이오 인조목재를 제조하기 위한 장치의 구성을 나타낸 것으로, 도 2 내지 도 6을 참조하여 본 발명에 따른 바이오 인조목재를 제조하는 방법을 상세히 설명하면 다음과 같다.Figure 2 is a flow chart showing an embodiment of a method for producing a bio-artificial timber of the present invention, Figures 3 to 6 shows the configuration of the apparatus for producing a bio-artificial timber of the present invention, Figures 2 to 6 Referring to the method for producing a bio-artificial wood according to the present invention in detail as follows.

사용후 버려지는 폐플라스틱을 수세 및 건조하고 분쇄하여 입자 크기가 30~120 메쉬인 폐플라스틱 분말로 제조한다. 그리고, 폐목재 또는 농산 폐기물을 수세 및 건조하고 분쇄하여 입자 크기가 30~120 메쉬인 섬유질 분말을 제조한다. 상기 폐플라스틱 분말과 섬유질 분말을 제조하는 단계의 순서는 상관이 없으며, 압출 성형 공정이 수행되는 장소 이외의 장소에서 별도로 만들어질 수 있다.The waste plastic discarded after use is washed with water, dried and pulverized to produce waste plastic powder having a particle size of 30 to 120 mesh. Then, the waste wood or agricultural wastes are washed with water, dried and pulverized to produce a fibrous powder having a particle size of 30 to 120 mesh. The order of the steps of preparing the waste plastic powder and the fibrous powder is irrelevant, and may be made separately at a place other than the place where the extrusion molding process is performed.

상기 폐플라스틱 분말은 50~120℃의 온도 범위에서 회전하면서 1차 가열되어 건조 및 용융되면서 펠릿 형태로 만들어진다. The waste plastic powder is first heated, dried and melted while rotating in a temperature range of 50 to 120 ° C. to form pellets.

또한 상기 섬유질 분말은 50~150℃의 온도 범위에서 회전하면서 1차 가열되어 건조 및 용융되면서 펠릿 형태로 만들어진다. In addition, the fibrous powder is made in the form of pellets as it is first heated, dried and melted while rotating in a temperature range of 50 ~ 150 ℃.

이어서 상기 펠릿 형태의 폐플라스틱 분말과 섬유질 분말을 가교제, 분산제, 발포제, 가공조제, 충격보강제, 난연제 등과 함께 배합기에 투입하고, 50~150℃의 온도 범위로 가열하여 혼련시켜 겔상의 합성원료를 제조한다. 이 때 상기 폐플라스틱 분말 30~40중량%, 섬유질 분말 50~60 중량%, 가교제 0.05~3중량%, 분산제 1~2 중량%, 발포제 0.05~0.2 중량%, 가공조제 3~5 중량%, 충격보강제 3~5중량%, 잔부의 난연제의 배합비로 혼합되는 것이 바람직하다. Subsequently, the pellet-type waste plastic powder and the fibrous powder are added to a blender together with a crosslinking agent, a dispersing agent, a foaming agent, a processing aid, an impact modifier, a flame retardant, and the like, and heated and kneaded to a temperature range of 50 to 150 ° C. to prepare a gel-like synthetic raw material. do. At this time, the waste plastic powder 30 to 40% by weight, fibrous powder 50 to 60% by weight, crosslinking agent 0.05 to 3% by weight, dispersant 1 to 2% by weight, foaming agent 0.05 to 0.2% by weight, processing aid 3 to 5% by weight, impact It is preferable to mix with 3 to 5 weight% of reinforcing agents and the compounding ratio of remainder flame retardant.

상기와 같이 얻어진 겔상의 합성원료를 30~80℃의 온도 범위에서 냉각하여 분말화된 제1조성물을 제조한다. The gel-like synthetic raw material obtained as described above is cooled in a temperature range of 30 to 80 ° C. to prepare a powdered first composition.

이어서 상기 제1조성물을 제1압출성형기(100)의 호퍼(110)에 투입하고, 소정의 온도로 가열하면서 이송하여 용융시킨 후 선단의 1차 다이스(120)를 통해 코어부(11)를 압출 성형한다. 상기 제1압출성형기(100)는 서로 나란하게 배치된 2개의 스크류(130)(도 5 참조)가 회전하면서 제1조성물 원료의 혼합 및 혼련을 더욱 원활하게 하는 트윈(twin) 압출성형기를 적용할 수 있다. Subsequently, the first composition is introduced into the hopper 110 of the first extrusion molding machine 100, and is transported and melted while heating to a predetermined temperature, and then the core portion 11 is extruded through the primary die 120 at the tip. Mold. The first extrusion molding machine 100 may be applied to a twin extruder for smoothly mixing and kneading the first composition raw material while rotating two screws 130 (see FIG. 5) disposed side by side. Can be.

상기 제1압출성형기(100)에 투입되는 제1조성물에는 다량의 섬유질이 포함되므로 제1압출성형기(100) 내부에서 제1조성물을 용융하면서 이송할 때 용융된 제1조성물이 원활하게 이송되지 않을 수 있다. 따라서 도 5에 도시한 것과 같이, 제1압출성형기(100) 내에서 제1조성물을 이송하는 한 쌍의 스크류(130)의 나선형 블레이드(132)의 피치를 전후방향을 따라 서로 다르게 함으로써 제1조성물을 원활하게 이송할 수 있다. 상기 스크류(130)의 블레이드(132)는 스크류(130)의 전단부에서부터 후방을 향해 일정 거리(L1)까지의 제1영역에서는 블레이드(132)가 제1피치(P1)로 형성되고, 제1영역 후방의 일정 거리(L2)까지의 제2영역에서는 블레이드(132)가 제1피치(P1)보다 작은 제2피치(P2)로 형성되며, 이후 후단부의 일정 거리(L3)까지의 제3영역에서는 상기 제1피치(P1)보다 큰 제3피치(P3)로 형성된다. Since the first composition injected into the first extruder 100 includes a large amount of fiber, the molten first composition may not be smoothly transferred when the first composition is melted and transported in the first extruder 100. Can be. Accordingly, as shown in FIG. 5, the pitch of the spiral blades 132 of the pair of screws 130 for conveying the first composition in the first extruder 100 is different from each other along the front and rear directions so that the first composition is different. Can be transported smoothly. In the blade 132 of the screw 130, the blade 132 is formed as the first pitch P1 in the first region from the front end portion of the screw 130 to a predetermined distance L1 toward the rear. In the second region up to the predetermined distance L2 behind the region, the blade 132 is formed with the second pitch P2 smaller than the first pitch P1, and then the third region up to the predetermined distance L3 at the rear end portion. In FIG. 3, the third pitch P3 is larger than the first pitch P1.

이와 같이 스크류(130)의 블레이드(132)의 피치가 영역 별로 다르게 구성되면, 제1영역에서는 제1조성물이 원활하게 이송되면서 용융이 이루어지고, 중간의 조밀한 제2영역에서는 용융된 제1조성물의 성분이 균일하게 배합되어 이후의 압출 성형 후에 불량률이 현저하게 저하된다. 또한 제2영역에서 균일하게 배합된 제1조성물은 이후의 제3영역에서 신속하게 후방으로 이송되어 압출된다. 따라서 압출 속도를 향상시키면서도 압출물의 밀도를 더욱 균일하게 할 수 있는 이점이 있다.As such, when the pitch of the blades 132 of the screw 130 is configured to be different for each region, the first composition is smoothly transferred while melting in the first region, and the molten first composition is formed in the middle dense second region. The components of are uniformly blended so that the defective rate is significantly lowered after the extrusion. In addition, the first composition uniformly blended in the second region is quickly conveyed backward and extruded in the third region. Therefore, there is an advantage that the density of the extrudate can be made more uniform while improving the extrusion speed.

도 6 및 도 7을 참조하면, 상기 제1압출성형기(100)의 1차 다이스(120)에는 코어부(11)가 압출되는 캐비티(121)가 마련되어 있으며, 상기 1차 다이스(120)의 캐비티(121)는 2차 조성물에 의한 커버부(12)를 형성하기 위한 제2압출성형기(200) 선단의 사이드압출노즐(210)과 연결된다.6 and 7, the first die 120 of the first extruder 100 is provided with a cavity 121 through which the core portion 11 is extruded, and the cavity of the primary die 120 is provided. 121 is connected to the side extrusion nozzle 210 at the tip of the second extrusion molding machine 200 for forming the cover portion 12 by the secondary composition.

따라서 제1압출성형기(100)의 1차 다이스(120)를 통해 코어부(11)를 압출함과 동시에, 제2압출성형기(200)에 마스터배치 형태의 제2조성물을 투입하여 상기 1차 다이스(120)를 통과하는 코어부(11)의 외측으로 용융된 제2조성물을 공급하여 코어부(11)의 외면에 커버부(12)를 적층하면서 동시에 압출한다. Therefore, the core portion 11 is extruded through the first die 120 of the first extrusion machine 100, and the second die in the master batch form is introduced into the second extrusion machine 200 to the first die. The molten second composition is supplied to the outside of the core portion 11 passing through the 120, and the cover portion 12 is laminated on the outer surface of the core portion 11 and simultaneously extruded.

이 때, 상기 제2압출성형기(200) 선단의 사이드압출노즐(210)은 1차 다이스(120)의 일 측면에 수평하게 연결되는 것이 바람직하다. 그리고, 상기 1차 다이스(120) 내부에는 상기 사이드압출노즐(210)과 연통되어 사이드압출노즐(210)을 통해 토출되는 용융 상태의 제2조성물을 상기 캐비티(121) 내측으로 안내하는 원료공급통로(122)가 형성된다. At this time, the side extrusion nozzle 210 of the tip of the second extrusion molding machine 200 is preferably horizontally connected to one side of the primary die (120). In addition, a raw material supply passage communicating with the side extrusion nozzle 210 in the primary die 120 to guide the second composition in a molten state discharged through the side extrusion nozzle 210 into the cavity 121. 122 is formed.

바이오 인조목재의 상부면은 천연 목재의 무늬가 형성되며 외부로 노출되는 부분이므로 두께의 균일도가 중요하다. 따라서 제2압출성형기(200)를 1차 다이스(120)의 일 측면에서 연결하여 제2조성물을 공급할 때 공급되는 제2조성물이 캐비티(121) 내부에서 코어부(11)의 상부면에 균일하게 공급되어야 한다. The upper surface of the bio-artificial timber is a pattern of natural wood and exposed to the outside, so the uniformity of thickness is important. Therefore, the second composition supplied when the second extrusion molding machine 200 is connected from one side of the primary die 120 to supply the second composition is uniformly provided on the upper surface of the core part 11 in the cavity 121. Must be supplied.

이를 위해 상기 원료공급통로(122)는 1차 다이스(120)의 일측면에서부터 상측으로 연장된 후 캐비티(121)의 상부면 외측의 중앙에서 양측으로 분기된 다음, 캐비티(121)의 상부면 양측으로 연통되는 유로로 형성된다. 이러한 원료공급통로(122)의 형태에 의해 캐비티(121) 내의 코어부(11)의 상부면에 제2조성물이 균일하게 공급될 수 있게 되고, 캐비티(121)의 후단부를 통해 코어부(11)와 커버부(12)의 적층체가 압출되었을 때 커버부(12)의 두께가 전체적으로 균일하게 형성될 수 있게 된다. To this end, the raw material supply passage 122 extends from one side of the primary die 120 to the upper side and then branches to both sides from the center of the outside of the upper surface of the cavity 121, and then both sides of the upper surface of the cavity 121. It is formed into a passage communicating with. The shape of the raw material supply passage 122 allows the second composition to be uniformly supplied to the upper surface of the core portion 11 in the cavity 121, and through the rear end portion of the cavity 121. When the laminate of the cover part 12 is extruded, the thickness of the cover part 12 may be uniformly formed as a whole.

상기 제1압출성형기(100) 및 제2압출성형기(200)의 1차 다이스(120)에서 코어부(11)와 커버부(12)의 적층체로 이루어진 인조목재 반제품이 압출되면, 상기 인조목재 반제품은 제1압출성형기(100)의 후방에 인라인(inline)으로 배열된 진공캘리브레이터(300)로 이송된다. In the first die 120 of the first extrusion molding machine 100 and the second extrusion molding machine 200, if the artificial wood semi-finished product made of a laminate of the core part 11 and the cover part 12 is extruded, the artificial wood semi-finished product Is transferred to the vacuum calibrator 300 arranged inline at the rear of the first extrusion molding machine 100.

상기 진공캘리브레이터(300)는 진공펌프와 연결되어 있다. 따라서 진공캘리브레이터(300)에서는 진공펌프를 이용하여 진공압을 발생시켜 바이오 인조목재 반제품을 최종 제품 형태로 성형함과 동시에 냉각수를 공급하여 냉각시킨다. The vacuum calibrator 300 is connected to a vacuum pump. Therefore, the vacuum calibrator 300 generates a vacuum pressure by using a vacuum pump to cool the biofinished wood semi-finished product into a final product and simultaneously supply cooling water.

상기 진공캘리브레이터(300)를 통과하면서 최종 제품 형태로 성형된 바이오 인조목재는 인장기(400)를 통과한 후, 엠보기(500)를 통과하면서 커버부(12)의 상부면과 하부면에 천연 목재 무늬가 새겨진다. 상기 인장기(400)는 바이오 인조목재를 적절한 압력과 힘, 동일한 속도로 전방에서 후방으로 이송하는 기능을 수행하는 것으로, 당 분야에서 사용하는 공지의 인장기를 적용할 수 있다. 또한 상기 엠보기(500)는 인조목재의 커버부(12)의 상부면과 하부면에 천연 목재 무늬를 각인할 수 있는 한 쌍의 전사롤러(510)를 구비한다. Bio artificial wood molded into the final product form while passing through the vacuum calibrator 300 passes through the tensioner 400, and then passes through the embo 500, natural on the upper and lower surfaces of the cover portion 12 Wood pattern is carved. The tensioner 400 performs the function of transferring the bio-artificial wood to the front at the same pressure and force, the same speed to the rear, it is possible to apply a known tensioner used in the art. In addition, the embo 500 is provided with a pair of transfer rollers 510 to imprint the natural wood pattern on the upper surface and the lower surface of the cover portion 12 of the artificial wood.

상기 엠보기(500)를 통과한 바이오 인조목재는 절단기(600)에서 일정한 길이로 절단된 후 후방의 적재기(700)에 순차적으로 적재된다. The bio-artificial timber passing through the embo 500 is cut into a predetermined length in the cutter 600 and then sequentially loaded in the rear loader 700.

이와 같이 본 발명의 바이오 인조목재는 폐플라스틱과, 폐목재 또는 농산 폐기물을 분쇄하여 만들어진 분말 재료로 압출성형된 코어부(11)와, 상기 코어부(11)의 외면에 적층되어 일체화된 수지 재질의 커버부(12)를 포함하며, 코어부(11)와 커버부(12)가 동시에 압출 성형되어 제작되므로 제작이 매우 용이하며, 가격이 저렴한 바이오 인조목재를 제조할 수 있다.As described above, the bio-artificial timber of the present invention is a core material 11 extruded from waste plastic and a powder material made by pulverizing waste wood or agricultural waste, and a resin material laminated and laminated on the outer surface of the core part 11. It includes a cover portion 12, the core portion 11 and the cover portion 12 is produced by extrusion molding at the same time very easy to manufacture, it can be produced inexpensive bio artificial wood.

또한 바이오 인조목재가 폐플라스틱과, 폐목재 또는 농산 폐기물을 재활용하여 만들어지므로 환경 오염을 최소화할 수 있고, 자원 재활용 효과도 얻을 수 있다.In addition, since bio-artificial wood is made by recycling waste plastics and waste wood or agricultural waste, it is possible to minimize environmental pollution and to obtain resource recycling effects.

또한 도 8에 도시한 굴곡최대하중시험성적서를 통해 알 수 있는 것과 같이, 본 발명에 따른 제조 장치 및 방법으로 제조된 바이오 인조목재 시제품은 굴곡최대하중이 6760N으로, KS기준강도인 3400N 보다 거의 2배 높은 최대하중을 보이는 것으로 확인되었으며, 통상의 인조목재의 굴곡최대하중이 대략 4000N~5000N인 것과 비교하여도 본 발명의 바이오 인조목재가 훨씬 우수한 기계적 강도를 가짐을 알 수 있다. In addition, as can be seen through the bending maximum load test report shown in Figure 8, the bio-artificial timber prototype produced by the manufacturing apparatus and method according to the present invention has a maximum bending load of 6760N, almost 2 than the KS reference strength 3400N It was confirmed that it exhibits a double maximum load, and it can be seen that the bio-artificial timber of the present invention has much superior mechanical strength as compared with the bending maximum load of conventional artificial timber is approximately 4000N-5000N.

이는 전술한 것과 같이 제1압출성형기(100)에서 상이한 피치의 블레이드(132)를 갖는 2개의 스크류(130)를 이용하여 제1조성물 원료를 용융 및 혼련함으로써 제1조성물의 수지 성분이 섬유질 분말 성분에 원활하게 함침될 수 있으며, 코어부(11)의 외면에 커버부(12)가 일체화되면서 압출 성형되기 때문인 것으로 분석된다. This is achieved by melting and kneading the first composition raw material using two screws 130 having blades 132 of different pitches in the first extrusion molding machine 100, as described above. It can be impregnated smoothly, and it is analyzed that the cover part 12 is integrally extruded while being integral with the outer surface of the core part 11.

이상에서 본 발명은 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기에서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연하며, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.Although the present invention has been described in detail with reference to the embodiments, those skilled in the art to which the present invention pertains will be capable of various substitutions, additions, and modifications within the scope without departing from the technical spirit described above. It is to be understood that such modified embodiments also fall within the protection scope of the invention as defined by the appended claims below.

10 : 인조목재 11 : 코어부
12 : 커버부 100 : 제1압출성형기
110 : 호퍼 120 : 1차 다이스
121 : 캐비티 122 : 원료공급통로
130 : 스크류 132 : 블레이드
200 : 제2압출성형기 210 : 사이드압출노즐
300 : 진공캘리브레이터 400 : 인장기
500 : 엠보기 600 : 절단기
700 : 적재기
10: artificial wood 11: core part
12: cover part 100: first extrusion molding machine
110: hopper 120: primary dice
121: cavity 122: raw material supply passage
130: screw 132: blade
200: 2nd extrusion molding machine 210: side extrusion nozzle
300: vacuum calibrator 400: tensioning machine
500: M View 600: Cutter
700: Stacker

Claims (8)

삭제delete 삭제delete 폐플라스틱 분말과, 폐목재 또는 농산 폐기물로부터 얻어진 섬유질 분말과, 가교제, 분산제, 발포제, 가공조제, 충격보강제, 난연제를 포함하는 제1조성물로 만들어진 코어부(11); 및,
열가소성 수지에 안정제와 안료, 이산화티타늄(TiO2), UV 차단제, 첨가제를 포함하는 제2조성물로 만들어지며, 상기 코어부(11)의 외면에 일정한 두께로 적층되어 목재 무늬를 생성하는 커버부(12);
를 포함하는 바이오 인조목재를 제조하는 방법으로서,
(S1) 폐플라스틱을 분쇄하여 폐플라스틱 분말을 제조하는 단계;
(S2) 폐목재 또는 농산 폐기물을 분쇄하여 섬유질 분말을 제조하는 단계;
(S3) 상기 폐플라스틱 분말과 섬유질 분말을 가교제, 분산제, 발포제, 가공조제, 충격보강제와 함께 혼합하고, 일정 온도 범위에서 가열하여 혼련시켜 겔상의 합성원료를 제조하는 단계;
(S4) 상기 겔상의 합성원료를 일정한 온도 범위에서 냉각하여 분말화된 제1조성물을 제조하는 단계;
(S5) 상기 제1조성물을 제1압출성형기(100)에 투입하여 코어부(11)를 압출 성형하는 단계;
(S6) 상기 제1압출성형기(100)의 1차 다이스(120)의 일측에 연결되는 제2압출성형기(200)에 제2조성물을 투입하여 상기 1차 다이스(120)의 캐비티(121)를 통과하는 코어부(11)의 외측으로 제2조성물을 공급하여 커버부(12)를 적층하면서 압출하는 단계;
(S7) 상기 1차 다이스(120)를 통해 압출되는 코어부(11)와 커버부(12)의 적층체를 냉각하는 단계;
를 포함하고,
상기 (S3) 단계를 수행하기 전에 상기 폐플라스틱 분말과 섬유질 분말은 50~150℃의 온도 범위에서 회전하면서 1차 가열되어 건조 및 용융되면서 펠릿 형태로 되며,
상기 (S6) 단계에서 상기 제2압출성형기(200)는 제1압출성형기(100)의 1차 다이스(120)의 측면에 연결되어 1차 다이스(120)의 캐비티(121)를 통과하는 코어부(11)의 측방에서 제2조성물을 공급하여 코어부(11)의 외면에 커버부(12)를 적층하며,
상기 1차 다이스(120)의 내부에는 상기 제2압출성형기(200)의 선단에 마련된 사이드압출노즐(210)과 연통되어 사이드압출노즐(210)을 통해 토출되는 용융 상태의 제2조성물을 상기 캐비티(121) 내측으로 안내하는 원료공급통로(122)가 형성되고, 상기 원료공급통로(122)는 1차 다이스(120)의 일측면에서부터 상측으로 연장된 후 캐비티(121)의 상부면 외측의 중앙에서 양측으로 분기된 다음, 캐비티(121)의 상부면 양측으로 연통되는 유로로 형성되는 바이오 인조목재의 제조 방법.
A core portion 11 made of waste plastic powder, fibrous powder obtained from waste wood or agricultural waste, and a first composition comprising a crosslinking agent, a dispersant, a foaming agent, a processing aid, an impact modifier, a flame retardant; And,
The cover part is made of a second composition including a stabilizer and a pigment, a titanium dioxide (TiO 2 ), a UV blocking agent, and an additive in the thermoplastic resin, and is laminated on the outer surface of the core part 11 to a predetermined thickness to generate a wood pattern. 12);
As a method of manufacturing a bio-artificial wood comprising a,
(S1) pulverizing the waste plastic to produce a waste plastic powder;
(S2) pulverizing waste wood or agricultural waste to produce a fibrous powder;
(S3) mixing the waste plastic powder and the fibrous powder with a crosslinking agent, a dispersant, a foaming agent, a processing aid, an impact modifier, and kneading by heating at a predetermined temperature range to prepare a gel-like synthetic raw material;
(S4) preparing a powdered first composition by cooling the gel-like synthetic raw material in a predetermined temperature range;
(S5) extrusion of the core portion 11 by inserting the first composition into the first extrusion molding machine 100;
(S6) The second composition is injected into the second extrusion molding machine 200 connected to one side of the primary die 120 of the first extrusion molding machine 100 to open the cavity 121 of the primary die 120. Supplying a second composition to an outer side of the core part 11 passing through and extruding while stacking the cover part 12;
(S7) cooling the stack of the core portion 11 and the cover portion 12 is extruded through the primary die 120;
Including,
Before performing the step (S3), the waste plastic powder and the fibrous powder are pelletized as the first heating, drying and melting while rotating in a temperature range of 50 ~ 150 ℃,
In the step (S6), the second extruder 200 is connected to the side of the primary die 120 of the first extruder 100 and passes through the cavity 121 of the primary die 120. Supplying the second composition from the side of (11) to laminate the cover portion 12 on the outer surface of the core portion 11,
The cavity of the second composition in the molten state is communicated with the side extrusion nozzle 210 provided at the tip of the second extrusion molding machine 200 and discharged through the side extrusion nozzle 210 inside the primary die 120. A raw material supply passage 122 is formed to guide inwardly, and the raw material supply passage 122 extends from one side of the primary die 120 to the upper side and then the center of the outer side of the upper surface of the cavity 121. After branching to both sides in, the manufacturing method of bio-artificial wood is formed as a flow path communicating with both sides of the upper surface of the cavity (121).
제3항에 있어서, 상기 폐플라스틱 분말과 섬유질 분말은 30~120 메쉬(mesh)의 크기를 갖는 폐플라스틱을 이용한 바이오 인조목재의 제조 방법.The method of claim 3, wherein the waste plastic powder and the fibrous powder have a size of 30 to 120 mesh. 삭제delete 제3항에 있어서, 상기 (S7) 단계에서는 상기 코어부(11)와 커버부(12)의 적층체를 진공펌프와 연결된 진공캘리브레이터(300)를 통과시키면서 진공압을 발생시켜 최종 제품 형태로 성형함과 동시에 냉각수를 공급하여 냉각시키는 바이오 인조목재의 제조 방법.The method of claim 3, wherein in the step (S7) while forming a vacuum pressure while passing the laminated body of the core portion 11 and the cover portion 12 connected to the vacuum pump 300 to form a final product form And at the same time supplying cooling water to cool the bio artificial wood. 삭제delete 삭제delete
KR1020190012675A 2019-01-31 2019-01-31 Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same KR102076232B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190012675A KR102076232B1 (en) 2019-01-31 2019-01-31 Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190012675A KR102076232B1 (en) 2019-01-31 2019-01-31 Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190072285A Division KR102070681B1 (en) 2019-06-18 2019-06-18 Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same

Publications (1)

Publication Number Publication Date
KR102076232B1 true KR102076232B1 (en) 2020-02-13

Family

ID=69515326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190012675A KR102076232B1 (en) 2019-01-31 2019-01-31 Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same

Country Status (1)

Country Link
KR (1) KR102076232B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102348150B1 (en) * 2021-05-27 2022-01-07 김성규 Eco-friendly deck member using waste synthetic resin
CN114474754A (en) * 2022-02-09 2022-05-13 福建双羿竹木发展有限公司 Conical geometric bamboo product forming equipment and forming method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950013678A (en) 1993-11-11 1995-06-15 이상일 Manufacturing method of artificial wood using waste fiber and waste plastic
KR20110081682A (en) * 2010-01-08 2011-07-14 주식회사 제이피 Double extrusion panel manufacturing system and method using waste plastic materials, and double extrusion panel
KR101187947B1 (en) * 2012-03-08 2012-10-05 김현용 Strength and fire-retardant reinforced eco-friendly synthetic wood products and method of eco-friendly synthetic wood
KR20140018024A (en) * 2012-08-03 2014-02-12 조현택 Method and apparatus for manufacturing of synthetic woods
KR20140092653A (en) * 2013-01-16 2014-07-24 (주)엘지하우시스 Wood plastic composite and manufacturing method thereof
KR101756821B1 (en) 2016-10-31 2017-07-11 전북대학교산학협력단 Wood plastic composite made of waste plastics and a method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950013678A (en) 1993-11-11 1995-06-15 이상일 Manufacturing method of artificial wood using waste fiber and waste plastic
KR20110081682A (en) * 2010-01-08 2011-07-14 주식회사 제이피 Double extrusion panel manufacturing system and method using waste plastic materials, and double extrusion panel
KR101187947B1 (en) * 2012-03-08 2012-10-05 김현용 Strength and fire-retardant reinforced eco-friendly synthetic wood products and method of eco-friendly synthetic wood
KR20140018024A (en) * 2012-08-03 2014-02-12 조현택 Method and apparatus for manufacturing of synthetic woods
KR20140092653A (en) * 2013-01-16 2014-07-24 (주)엘지하우시스 Wood plastic composite and manufacturing method thereof
KR101756821B1 (en) 2016-10-31 2017-07-11 전북대학교산학협력단 Wood plastic composite made of waste plastics and a method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102348150B1 (en) * 2021-05-27 2022-01-07 김성규 Eco-friendly deck member using waste synthetic resin
CN114474754A (en) * 2022-02-09 2022-05-13 福建双羿竹木发展有限公司 Conical geometric bamboo product forming equipment and forming method thereof
CN114474754B (en) * 2022-02-09 2023-07-21 福建双羿竹木发展有限公司 Forming equipment and forming method for conical geometric bamboo products

Similar Documents

Publication Publication Date Title
KR102070681B1 (en) Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same
AU2006235604B2 (en) Material to be injection molded, process thereof, and use therefore
JP5395496B2 (en) Method for producing cellulose fiber-containing thermoplastic resin composition
WO2000046010A1 (en) Extruded wood polymer composite and method of manufacture
KR20120036946A (en) Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam
US6380272B1 (en) Manufacturing method for structural members from foamed plastic composites containing wood flour
KR102076232B1 (en) Bio-synthetic Wood Made of Waste Plastics And a Method of Manufacturing the Same
CN105713403A (en) Wood-plastic composite and preparation method for special-shape molded member thereof
CN105924992A (en) Anti-aging wear-resistant wood-plastic floor and preparation technology
KR20140092653A (en) Wood plastic composite and manufacturing method thereof
Berger et al. Investigations of species effects in an injection-molding-grade, wood-filled polypropylene
US20020125598A1 (en) Manufacturing method for structural members from foamed plastic composites containing wood flour
KR102485998B1 (en) Wood plastic composite pellet composition, deck panel manufactured from the same and manufacturing method thereof
KR100886838B1 (en) Woodchips and structural materials using prepreg of powder and chips of woods
Sozen et al. The effects of lignocellulosic fillers on mechanical, morphological and thermal properties of wood polymer composites
JP2009001597A (en) Method for producing thermoplastic resin composition containing cellulose fiber
KR101282820B1 (en) Lightweight wood-plastic composite and method for manufacturing the same
EP2138292A1 (en) Recovery of cellular plastic material
KR20050017280A (en) The manufacturing method for recycling the mixed scrapped plastics and the mixed scrapped plastics produced by using this method
Stanaszek-Tomal Wood-polymer composites as an alternative to the natural environment
KR101780557B1 (en) Recycling PVC pipe for thermal fluid
EP3842482A1 (en) Ecological composite made of recycled thermoplastic materials and method used in its production
RU2483087C1 (en) Method of producing filled chemically cross-linked foamed polyolefin and composition of filled chemically cross-linked foamed polyolefin
CN105038175A (en) Production method for floor
US20240084093A1 (en) System and method of extruding a hemp composite board using hemp feedstocks

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant