KR102015119B1 - Method of Preparing Heteroatom-Doped Carbon Materials Using Spent Coffee Grounds and Application of Electrode Materials Thereof - Google Patents
Method of Preparing Heteroatom-Doped Carbon Materials Using Spent Coffee Grounds and Application of Electrode Materials Thereof Download PDFInfo
- Publication number
- KR102015119B1 KR102015119B1 KR1020160129886A KR20160129886A KR102015119B1 KR 102015119 B1 KR102015119 B1 KR 102015119B1 KR 1020160129886 A KR1020160129886 A KR 1020160129886A KR 20160129886 A KR20160129886 A KR 20160129886A KR 102015119 B1 KR102015119 B1 KR 102015119B1
- Authority
- KR
- South Korea
- Prior art keywords
- coffee grounds
- nitrogen
- waste
- waste coffee
- activated carbon
- Prior art date
Links
- 235000013353 coffee beverage Nutrition 0.000 title claims abstract description 116
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000007772 electrode material Substances 0.000 title claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 90
- 239000002699 waste material Substances 0.000 claims abstract description 55
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 45
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052796 boron Inorganic materials 0.000 claims abstract description 38
- 239000003225 biodiesel Substances 0.000 claims abstract description 21
- 150000002632 lipids Chemical class 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 167
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 54
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 36
- 239000002002 slurry Substances 0.000 claims description 36
- 238000001035 drying Methods 0.000 claims description 32
- 238000004519 manufacturing process Methods 0.000 claims description 31
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 30
- 238000002156 mixing Methods 0.000 claims description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 24
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 17
- 239000012190 activator Substances 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 14
- 239000001569 carbon dioxide Substances 0.000 claims description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 10
- ZRXYMHTYEQQBLN-UHFFFAOYSA-N [Br].[Zn] Chemical compound [Br].[Zn] ZRXYMHTYEQQBLN-UHFFFAOYSA-N 0.000 claims description 9
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 238000000527 sonication Methods 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000008096 xylene Substances 0.000 claims description 4
- NFLRFBAIICNFNU-UHFFFAOYSA-N B.[Ca] Chemical compound B.[Ca] NFLRFBAIICNFNU-UHFFFAOYSA-N 0.000 claims description 2
- TZZUZBBNLWHWPH-UHFFFAOYSA-N B.[Mg] Chemical compound B.[Mg] TZZUZBBNLWHWPH-UHFFFAOYSA-N 0.000 claims description 2
- ZPLBDNLAPHXWKG-UHFFFAOYSA-N [Sr].B Chemical compound [Sr].B ZPLBDNLAPHXWKG-UHFFFAOYSA-N 0.000 claims description 2
- JBANFLSTOJPTFW-UHFFFAOYSA-N azane;boron Chemical compound [B].N JBANFLSTOJPTFW-UHFFFAOYSA-N 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- PPTSBERGOGHCHC-UHFFFAOYSA-N boron lithium Chemical compound [Li].[B] PPTSBERGOGHCHC-UHFFFAOYSA-N 0.000 claims description 2
- XLKNMWIXNFVJRR-UHFFFAOYSA-N boron potassium Chemical compound [B].[K] XLKNMWIXNFVJRR-UHFFFAOYSA-N 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 2
- 238000001890 transfection Methods 0.000 claims 2
- MOOAHMCRPCTRLV-UHFFFAOYSA-N boron sodium Chemical group [B].[Na] MOOAHMCRPCTRLV-UHFFFAOYSA-N 0.000 claims 1
- 239000006227 byproduct Substances 0.000 claims 1
- 125000005842 heteroatom Chemical group 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 17
- 238000011282 treatment Methods 0.000 abstract description 9
- 230000004913 activation Effects 0.000 abstract description 7
- 239000010791 domestic waste Substances 0.000 abstract description 7
- 239000000446 fuel Substances 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 12
- 230000000694 effects Effects 0.000 description 6
- 235000005074 zinc chloride Nutrition 0.000 description 6
- 239000011592 zinc chloride Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 239000012279 sodium borohydride Substances 0.000 description 5
- 229910000033 sodium borohydride Inorganic materials 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000002361 compost Substances 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000010815 organic waste Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- -1 and thus Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000533293 Sesbania emerus Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910003106 Zn-Br Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/318—Preparation characterised by the starting materials
- C01B32/324—Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/354—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/354—After-treatment
- C01B32/372—Coating; Grafting; Microencapsulation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/354—After-treatment
- C01B32/378—Purification
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/34—Carbon-based characterised by carbonisation or activation of carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y02E60/528—
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 생활 폐기물인 일반 커피 찌꺼기에서부터 지질이나 바이오디젤(biodiesel)을 추출한 커피 찌꺼기에 이르기까지 다양한 폐커피(spent coffee grounds) 원료를 활성화 처리를 통해 질소가 도핑된 탄소소재를 제조하거나, 여기에 붕소 전구체를 도핑하여 높은 비표면적을 가지며 붕소와 질소가 동시에 도핑된 탄소소재를 제조하여 연료전지, 슈퍼커패시터 또는 레독스 흐름전지의 전극물질로 사용될 수 있는 폐커피를 이용한 이종원소 도핑 탄소소재의 제조방법에 관한 것이다.The present invention provides a nitrogen-doped carbon material through activation treatment of various waste coffee grounds raw materials, ranging from ordinary coffee grounds, which are household waste, to coffee grounds from which lipids or biodiesel are extracted. Preparation of hetero-doped carbonaceous material using waste coffee which can be used as electrode material of fuel cell, supercapacitor or redox flow battery by preparing carbon material doped with boron and nitrogen at the same time by doping boron precursor It is about a method.
Description
본 발명은 폐커피(spent coffee grounds)를 이용한 붕소나 질소의 이종원소가 도핑된 탄소소재의 제조방법에 관한 것으로, 보다 상세하게는 생활 폐기물인 일반 커피 찌꺼기에서부터 지질이나 바이오디젤(biodiesel)을 추출한 커피 찌꺼기에 이르기까지 다양한 폐커피 원료를 활성화 처리를 통해 높은 비표면적(specific surface area)을 가지며 질소가 도핑(doping)되어 있거나 붕소 및 질소가 동시에 도핑된 탄소재료를 합성하여 전극물질로 사용될 수 있는 폐커피(spent coffee grounds)를 이용한 탄소소재의 제조방법에 관한 것이다.The present invention relates to a method for producing a carbon material doped with a heterogeneous element of boron or nitrogen using waste coffee grounds, and more particularly, extracting lipids or biodiesel from ordinary coffee grounds, which are household wastes. It can be used as an electrode material by synthesizing carbon materials doped with nitrogen or doped with boron and nitrogen at the same time by activating various waste coffee raw materials such as coffee grounds. It relates to a method for producing a carbon material using spent coffee grounds.
한국인의 식생활이 점차 서구화됨에 따라 가장 비약적으로 소비량이 증가한 식재료가 바로 커피이다. 증가하는 만큼 커피 원두의 99.8%를 차지하는 커피 찌꺼기도 기하급수적으로 증가하였다. 환경부의 보도자료(2016년 4월 12일 배포)에 따르면 국내에서 연간 배출되는 커피 찌꺼기의 양은 약 10만 3천톤에 이른다. 종래의 처리 방식은 일반폐기물과 함께 종량제 봉투에 혼합하여 매립하는 것인데, 이 과정에서 종량제 봉투의 낭비와 매립지 포화 등 경제적 및 사회적 비용이 발생하게 된다.As Korean's diet gradually becomes westernized, coffee is the most rapidly consumed ingredient. As it increased, coffee grounds, which account for 99.8% of coffee beans, also increased exponentially. According to the Ministry of Environment's press release (distributed on April 12, 2016), the amount of coffee grounds discharged annually in Korea is about 103,000 tons. Conventional treatment method is to landfill by mixing in a pay-as-you-go bag together with the general waste, which incurs economic and social costs such as waste of pay-as-you-go bag and landfill saturation.
이를 해결하기 위해 가장 널리 이용되고 있는 방안은 퇴비로 이용하는 것이다. 가축의 분뇨를 재활용한 퇴비의 경우 악취를 발생시킨다는 단점을 지니지만, 커피 찌꺼기를 재활용한 퇴비는 이 문제에서 자유롭다. 더군다나 질소, 인, 칼륨과 같은 성분을 갖추고 있어 친환경 퇴비로서 적합하다.The most widely used solution to this problem is the use of compost. Composts from livestock manure have the disadvantage of producing odors, but compost from coffee grounds is free from this problem. Furthermore, it is suitable as an eco-friendly compost because it has ingredients such as nitrogen, phosphorus and potassium.
이외에 커피 찌꺼기는 약 15%의 지질을 함유하고 있기 때문에 바이오매스 연료를 얻기에도 충분하다. 용매를 이용한 추출(extraction) 방식을 통해 바이오디젤(biodiesel)을 생산할 수 있으며, 바이오 펠릿(bio pellet) 형태로도 이용 가능하다.In addition, coffee grounds contain about 15% of the lipids, which is enough to obtain biomass fuel. Biodiesel can be produced through solvent extraction and can also be used in the form of bio pellets.
하지만 위의 두 방안 모두 공통된 한계점을 가지고 있다. 각각 비료, 바이오매스로 사용된 뒤에 여전히 폐기물 형태의 잔여물이 남는다는 점이다. 매립에 드는 비용을 최소화하려 했지만 커피 찌꺼기를 완전하게 처리하는 근원적인 해결책이 될 수 없는 문제점이 있다.However, both of these approaches have common limitations. After being used as fertilizers and biomass, respectively, residues in the form of waste remain. There is a problem to minimize the cost of landfill, but there is a problem that can not be a fundamental solution to complete disposal of coffee grounds.
이에, 본 발명자들은 폐커피를 재활용하는 경제적인 방법을 모색하고자 예의 노력한 결과, 생활 폐기물인 일반 커피 찌꺼기에서부터 지질이나 바이오디젤을 추출한 커피 찌꺼기에 이르기까지 다양한 폐커피 원료에 활성화제를 첨가할 경우, 높은 비표면적을 가진 붕소 및 질소의 이종원소가 도핑된 탄소소재가 제조되며, 이를 연료전지의 전극, 슈퍼커패시터 그리고 레독스 흐름전지의 전극물질로 이용할 수 있는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to find an economical method of recycling waste coffee, and as a result, when activators are added to various waste coffee raw materials, ranging from general coffee grounds, which are household waste, to coffee grounds from which lipids or biodiesel are extracted, A carbon material doped with a heterogeneous element of boron and nitrogen having a high specific surface area was prepared, and it was confirmed that it can be used as an electrode material of a fuel cell electrode, a supercapacitor and a redox flow cell, and completed the present invention. .
본 발명의 목적은 생활 폐기물인 일반 커피 찌꺼기에서부터 지질이나 바이오디젤을 추출한 커피 찌꺼기에 이르기까지 다양한 폐커피 원료를 사용하여 커피 찌꺼기의 반영구적 활용을 가능케 하고 커피 찌꺼기의 완전하게 처리할 수 있는 질소와 붕소 등의 이종 원소가 도핑된 탄소소재를 제조하는 방법을 제공하는 데 있다.It is an object of the present invention to use semi-permanent utilization of coffee grounds from a variety of waste coffee raw materials, ranging from general coffee grounds, which are household wastes, to coffee grounds from which lipids or biodiesel are extracted, and nitrogen and boron that can completely dispose of coffee grounds. It is to provide a method for producing a carbon material doped with different elements such as.
본 발명의 다른 목적은 상기 제조방법에 의하여 생성되는 질소가 도핑된 혹은 붕소 및 질소가 동시에 도핑된 탄소소재를 우수한 성능을 가진 연료전지, 슈퍼커패시터 그리고 레독스 흐름 전지의 전극물질로의 적용을 제공하는 데 있다.Another object of the present invention is to provide the application of nitrogen-doped or boron and nitrogen-doped carbon materials produced by the manufacturing method to electrode materials of fuel cells, supercapacitors and redox flow batteries having excellent performance. There is.
상기 목적을 달성하기 위하여, 본 발명은 (a) 폐커피 찌꺼기를 수산화칼륨(KOH), 수산화나트륨(NaOH), 인산(H3PO4) 및 염화아연(ZnCl2)으로 구성된 군에서 선택된 1종 이상의 활성화제 수용액을 혼합하여 슬러리를 수득하는 단계; (b) 상기 (a)의 슬러리를 건조시키고 비활성 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; 및 (c) 상기 (b)의 활성탄을 정제 및 건조하는 단계를 포함하는 폐커피를 이용한 이종원소 도핑 탄소소재의 제조방법을 제공한다.In order to achieve the above object, the present invention (a) waste coffee grounds selected from the group consisting of potassium hydroxide (KOH), sodium hydroxide (NaOH), phosphoric acid (H 3 PO 4 ) and zinc chloride (ZnCl 2 ) Mixing the above aqueous activator solution to obtain a slurry; (b) drying the slurry of (a) and heat-treating the furnace in which an inert gas is introduced to obtain activated carbon; And (c) provides a method for producing a hetero-element doped carbon material using waste coffee comprising the step of purifying and drying the activated carbon of (b).
본 발명은 또한, (a) 폐커피 찌꺼기를 수산화칼륨(KOH), 수산화나트륨(NaOH), 인산(H3PO4) 및 염화아연(ZnCl2)으로 구성된 군에서 선택된 1종 이상의 활성화제 수용액을 혼합하여 슬러리를 수득하는 단계; (b) 상기 (a)의 슬러리를 건조시키고 비활성 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; (c) 상기 (b)의 활성탄을 정제 및 건조한 다음, 붕소 전구체를 첨가 및 혼합하여 슬러리를 수득하는 단계; (d) 상기 (c)의 슬러리를 건조시키고 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; 및 (e) 상기 (d)의 활성탄을 정제하는 단계 폐커피를 이용한 이종원소 도핑 탄소소재의 제조방법을 제공한다.The present invention also provides (a) waste coffee grounds containing at least one aqueous activator solution selected from the group consisting of potassium hydroxide (KOH), sodium hydroxide (NaOH), phosphoric acid (H 3 PO 4 ) and zinc chloride (ZnCl 2 ). Mixing to obtain a slurry; (b) drying the slurry of (a) and heat-treating the furnace in which an inert gas is introduced to obtain activated carbon; (c) purifying and drying the activated carbon of (b), and then adding and mixing the boron precursor to obtain a slurry; (d) drying the slurry of (c) and heat-treating in a heating furnace into which gas is introduced to obtain activated carbon; And (e) purifying the activated carbon of (d) to provide a method for producing hetero-doped carbon material using waste coffee.
본 발명은 또한, 상기 제조방법으로 제조된 1) 질소 도핑 다공성 탄소소재 및 2) 붕소 및 질소 동시 도핑 다공성 탄소소재의 이종원소 도핑 탄소소재를 제공한다.The present invention also provides a heterogeneous element-doped carbon material of 1) nitrogen-doped porous carbon material and 2) boron and nitrogen co-doped porous carbon material prepared by the above method.
본 발명은 또한, 1) 질소 도핑 다공성 탄소소재 및/또는 2) 붕소 및 질소 동시 도핑 다공성 탄소소재를 포함하는 전극물질을 제공한다.The present invention also provides an electrode material comprising 1) a nitrogen doped porous carbon material and / or 2) a boron and nitrogen co-doped porous carbon material.
본 발명에 따른 제조방법은 생활 폐기물인 일반 커피 찌꺼기에서부터 지질이나 바이오디젤을 추출한 커피 찌꺼기에 이르기까지 다양한 폐커피 원료를 사용하여 고성능의 배터리 전극 물질로 활용함으로써, 종래의 커피 찌꺼기의 처리 방안이었던 비료와 바이오매스가 지녔던 일회성을 넘어선 반영구적으로 처리함과 동시에 나아가 경제적 가치를 창출할 수 있다. 또한, 붕소를 도핑시 이산화탄소를 이용하는 경우 이산화탄소환원제에 의한 탄소재료 전환으로 인한 이산화탄소 감축에도 기여할 수 있다.The manufacturing method according to the present invention utilizes a variety of waste coffee raw materials, ranging from general coffee grounds, which are household wastes, to coffee grounds from which lipids or biodiesel are extracted, to be used as high-performance battery electrode materials, and thus, fertilizers that have been used to treat conventional coffee grounds. And semi-permanent processing beyond the one-offs of biomass and at the same time create economic value. In addition, when carbon dioxide is used when doping boron, it may contribute to carbon dioxide reduction due to carbon material conversion by a carbon dioxide reducing agent.
도 1은 본 발명의 실시예 1 및 2를 수행하기 위한 제조공정을 개략적으로 나타낸 모식도이다.
도 2는 실시예 1에서의 활성탄의 제조과정을 촬영한 사진이다.
도 3은 실시예 1에 따른 활성탄들의 비표면적 분석 중 질소 흡착등온선 그래프를 나타낸 도면이다.
도 4는 실시예 1에 따른 활성탄들의 비표면적 분석 중 마이크로 세공 분포도를 나타낸 도면이다.
도 5는 실시예 1에 따른 활성탄들의 주사전자현미경 촬영 사진이다.
도 6은 실시예 1 및 2에 따른 활성탄들의 CV 그래프를 나타낸 도면이다.
도 7은 실시예 1 및 2에 따른 활성탄들의 성능 및 내구도를 나타낸 그래프이다.1 is a schematic diagram schematically showing a manufacturing process for performing Examples 1 and 2 of the present invention.
Figure 2 is a photograph of the manufacturing process of the activated carbon in Example 1.
3 is a view showing a nitrogen adsorption isotherm graph of the specific surface area analysis of activated carbon according to Example 1.
4 is a view showing a micropore distribution diagram of the specific surface area analysis of activated carbon according to Example 1.
5 is a scanning electron microscope photograph of activated carbon according to Example 1. FIG.
6 is a graph showing CV graphs of activated carbons according to Examples 1 and 2. FIG.
7 is a graph showing the performance and durability of the activated carbon according to Examples 1 and 2.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명에서는 생활 폐기물인 일반 커피 찌꺼기에서부터 지질이나 바이오디젤을 추출한 커피 찌꺼기에 이르기까지 다양한 폐커피 원료를 활성화 처리 및 붕소나 질소의 도핑을 통해 제조된 탄소소재가 연료전지의 전극, 슈퍼커패시터 그리고 레독스 흐름전지의 전극으로 이용가능한 것을 확인하였다.In the present invention, the carbon material produced by activating a variety of waste coffee raw materials from the general coffee grounds, which are household wastes, to coffee grounds from which lipids or biodiesel are extracted, and the doping of boron or nitrogen is used as fuel electrodes, supercapacitors and res. It was confirmed that it can be used as an electrode of a dox flow battery.
따라서, 본 발명은 일 관점에서 (a) 폐커피 찌꺼기를 수산화칼륨(KOH), 수산화나트륨(NaOH), 인산(H3PO4) 및 염화아연(ZnCl2)으로 구성된 군에서 선택된 1종 이상의 활성화제 수용액을 혼합하여 슬러리를 수득하는 단계; (b) 상기 (a)의 슬러리를 건조시키고 비활성 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; 및 (c) 상기 (b)의 활성탄을 정제 및 건조하는 단계를 포함하는 폐커피를 이용한 이종원소 도핑 탄소소재의 제조방법에 관한 것이다.Accordingly, the present invention provides at least one activated coffee waste selected from the group consisting of (a) potassium hydroxide (KOH), sodium hydroxide (NaOH), phosphoric acid (H 3 PO 4 ) and zinc chloride (ZnCl 2 ). Mixing the first aqueous solution to obtain a slurry; (b) drying the slurry of (a) and heat-treating the furnace in which an inert gas is introduced to obtain activated carbon; And (c) relates to a method for producing a hetero-element doped carbon material using waste coffee comprising the step of purifying and drying the activated carbon of (b).
본 발명의 다른 관점에서 (a) 폐커피 찌꺼기를 수산화칼륨(KOH), 수산화나트륨(NaOH), 인산(H3PO4) 및 염화아연(ZnCl2)으로 구성된 군에서 선택된 1종 이상의 활성화제 수용액을 혼합하여 슬러리를 수득하는 단계; (b) 상기 (a)의 슬러리를 건조시키고 비활성 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; (c) 상기 (b)의 활성탄을 정제 및 건조한 다음, 붕소 전구체를 첨가 및 혼합하여 슬러리를 수득하는 단계; (d) 상기 (c)의 슬러리를 건조시키고 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; 및 (e) 상기 (d)의 활성탄을 정제하는 단계로 폐커피를 이용한 붕소 및 질소 도핑 탄소소재의 제조방법에 관한 것이다.In another aspect of the present invention (a) one or more activator aqueous solution selected from the group consisting of waste coffee grounds (KOH), sodium hydroxide (NaOH), phosphoric acid (H 3 PO 4 ) and zinc chloride (ZnCl 2 ) Mixing to obtain a slurry; (b) drying the slurry of (a) and heat-treating the furnace in which an inert gas is introduced to obtain activated carbon; (c) purifying and drying the activated carbon of (b), and then adding and mixing the boron precursor to obtain a slurry; (d) drying the slurry of (c) and heat-treating in a heating furnace into which gas is introduced to obtain activated carbon; And (e) purifying the activated carbon of (d) to a method for producing boron and nitrogen doped carbon materials using waste coffee.
본 발명은 폐커피 찌꺼기(spent coffee grounds)를 원료로 하여 탄소소재를 제조하는 공정과 이를 통해 생성된 탄소소재를 배터리 전극 물질로 적용한 사례에 관한 것이다. 바람직한 본 발명의 일 실시예에 의하여 생활 폐기물인 일반 커피 찌꺼기에서부터 지질이나 바이오디젤(biodiesel)을 추출한 커피 찌꺼기에 이르기까지 다양한 폐커피 원료에 수산화칼륨 활성화법(KOH activation)을 적용하여 활성탄을 제조할 수 있다. 본 발명을 통해 제조된 활성탄은 높은 비표면적(specific surface area)과 질소와 붕소가 도핑(doping)된 구조를 가지고 있기 때문에, 배터리를 위한 고품질의 전극 물질로 사용될 수 있다.The present invention relates to a process for manufacturing a carbon material using waste coffee grounds (spent coffee grounds) as a raw material and to a case of applying the carbon material produced as a battery electrode material. According to an embodiment of the present invention, activated carbon may be prepared by applying potassium hydroxide activation method (KOH activation) to various waste coffee raw materials, ranging from general coffee grounds, which are household wastes, to coffee grounds from which lipids or biodiesel are extracted. Can be. The activated carbon produced through the present invention has a high specific surface area and a structure doped with nitrogen and boron, and thus can be used as a high quality electrode material for a battery.
유기 폐기물인 커피 찌꺼기의 특성상 보관 방법에 따라 곰팡이의 형성과 같은 부패의 가능성이 존재한다. 원료의 부패 상태에 상관없이 일정한 품질의 활성탄을 생산할 수 있다. 궁극적으로는, 폐기물인 커피 찌꺼기를 이용해 고성능의 전극 물질을 생산하여 경제적 가치를 창출할 수 있다.Due to the nature of coffee grounds, organic waste, there is a possibility of decay, such as the formation of mold, depending on the storage method. It is possible to produce a certain quality of activated carbon regardless of the raw material decay. Ultimately, waste coffee grounds can be used to produce high performance electrode materials to create economic value.
본 발명은 커피 찌꺼기로부터 고품질의 활성탄을 제조하기 위해 수산화칼륨 활성화법을 도입한다. 수산화칼륨 활성화법은 화학적 활성화법(chemical activation)의 일종으로 다공성 구조를 유도하기에 매우 효과적인 처리법이다.The present invention introduces potassium hydroxide activation to produce high quality activated carbon from coffee grounds. Potassium hydroxide activation is a kind of chemical activation and is a very effective treatment for inducing a porous structure.
본 발명이 제시하는 제조법은 다음의 단계를 포함할 수 있다:The manufacturing method proposed by the present invention may include the following steps:
(a) 폐커피 찌꺼기를 건조하고 수산화칼륨(KOH), 수산화나트륨(NaOH), 인산(H3PO4) 및 염화아연(ZnCl2)으로 구성된 군에서 선택된 1종 이상의 활성화제 수용액을 혼합하여 슬러리를 수득하는 단계; (b) 상기 (a)의 슬러리를 건조시키고 비활성 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; (c) 상기 (b)의 활성탄을 정제 및 건조한 다음, 붕소 전구체를 첨가 및 혼합하여 슬러리를 수득하는 단계; (d) 상기 (c)의 슬러리를 건조시키고 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; 및 (e) 상기 (d)의 활성탄을 정제하는 단계.(a) a slurry by drying the waste coffee grounds and mixing one or more aqueous activator solutions selected from the group consisting of potassium hydroxide (KOH), sodium hydroxide (NaOH), phosphoric acid (H 3 PO 4 ) and zinc chloride (ZnCl 2 ) Obtaining; (b) drying the slurry of (a) and heat-treating the furnace in which an inert gas is introduced to obtain activated carbon; (c) purifying and drying the activated carbon of (b), and then adding and mixing the boron precursor to obtain a slurry; (d) drying the slurry of (c) and heat-treating in a heating furnace into which gas is introduced to obtain activated carbon; And (e) purifying the activated carbon of (d).
본 발명이 제시하는 제조법은 커피 찌꺼기를 건조하지 않는 경우에도 적용 가능하다: (a) 수분이 포함된 폐커피 찌꺼기를 수산화칼륨(KOH), 수산화나트륨(NaOH), 인산(H3PO4) 및 염화아연(ZnCl2)으로 구성된 군에서 선택된 1종 이상의 활성화제 수용액을 혼합하여 슬러리를 수득하는 단계; (b) 상기 (a)의 슬러리를 건조시키고 비활성 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; (c) 상기 (b)의 활성탄을 정제 및 건조한 다음, 붕소 전구체를 첨가 및 혼합하여 슬러리를 수득하는 단계; (d) 상기 (c)의 슬러리를 건조시키고 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; 및 (e) 상기 (d)의 활성탄을 정제하는 단계.The recipe proposed by the present invention is applicable even when coffee grounds are not dried: (a) waste coffee grounds containing water are potassium hydroxide (KOH), sodium hydroxide (NaOH), phosphoric acid (H 3 PO 4 ) and Mixing at least one aqueous activator solution selected from the group consisting of zinc chloride (ZnCl 2 ) to obtain a slurry; (b) drying the slurry of (a) and heat-treating the furnace in which an inert gas is introduced to obtain activated carbon; (c) purifying and drying the activated carbon of (b), and then adding and mixing the boron precursor to obtain a slurry; (d) drying the slurry of (c) and heat-treating in a heating furnace into which gas is introduced to obtain activated carbon; And (e) purifying the activated carbon of (d).
본 발명의 바람직한 일 실시예에 의한 제조법은 다음과 같다:The preparation method according to one preferred embodiment of the present invention is as follows:
(a) 원료인 커피 찌꺼기를 건조하고, 건조된 커피 찌꺼기와 수산화칼륨 수용액을 혼합하여 슬러리를 수득하는 단계; (b) 일부 또는 전체 건조시킨 슬러리를 질소가 흐르는 가열로(furnace)에서 열처리하는 단계; (c) 생성된 활성탄을 염산, 물, 에탄올 등으로 정제하는 단계; (d) 정제 후의 활성탄을 건조시키는 단계; (e) 질소가 도핑된 활성탄의 완성.(a) drying the coffee grounds as a raw material and mixing the dried coffee grounds with an aqueous potassium hydroxide solution to obtain a slurry; (b) heat treating the partially or totally dried slurry in a furnace through which nitrogen flows; (c) purifying the resultant activated carbon with hydrochloric acid, water, ethanol and the like; (d) drying the activated carbon after purification; (e) Completion of activated carbon doped with nitrogen.
또는or
(a) 수분이 포함된 커피 찌꺼기와 수산화칼륨 수용액을 혼합하는 단계; (b) (a)에서 혼합한 슬러리(slurry)를 건조시키고, 일부 또는 전체 건조시킨 슬러리를 질소가 흐르는 가열로(furnace)에서 열처리하는 단계; (c) 생성된 활성탄을 염산, 물, 에탄올 등으로 정제하고, 건조시키는 단계; (d) 질소가 도핑된 활성탄의 완성.(a) mixing coffee grounds with water and aqueous potassium hydroxide solution; (b) drying the slurry mixed in (a) and heat-treating the partially or fully dried slurry in a furnace through which nitrogen flows; (c) purifying the resultant activated carbon with hydrochloric acid, water, ethanol and the like, and drying; (d) completion of nitrogen doped activated carbon.
본 제조법은 일반 커피 찌꺼기뿐만 아니라 지질이나 바이오디젤 추출 후의 커피 찌꺼기에도 적용이 가능한 기술이다. 이를 원료로 한 활성탄의 제조 단계는 상기의 단계와 동일하다.This recipe is a technique that can be applied to coffee grounds after extraction of lipids or biodiesel as well as general coffee grounds. The step of producing activated carbon using this as the raw material is the same as the above step.
유기 폐기물인 커피 찌꺼기의 특성상, 곰팡이와 같은 부패된 원료 발생이 가능하다. 부패된 원료의 경우에도 상기 제조 공정이 적용 가능하다.Due to the nature of the coffee waste, which is an organic waste, it is possible to produce decayed raw materials such as mold. Even in the case of spoiled raw materials, the above manufacturing process is applicable.
본 발명의 (a) 단계에서 사용되는 커피 찌꺼기는 커피음료 생성 후 발생하는 일반 폐커피 찌꺼기 또는 폐커피 찌꺼기에서 벤젠, 자일렌, 클로로포름, 헥산, 에틸 아세테이트, 메탄올, 에탄올 및 사이클로헥산으로 구성된 군에서 선택된 1종 이상의 유기용매나 스팀을 이용하여 지질을 추출하거나 트렌스화 반응을 통하여 바이오디젤을 추출한 후 발생하는 폐커피 찌꺼기일 수 있다. 즉, 통상적인 의미의 일반 커피 찌꺼기뿐만 아니라 지질이나 바이오디젤 추출을 거친 커피 찌꺼기를 포함한다. 또한, 유기 폐기물 특성 상 발생할 수 있는 부패의 여부에 관계없이 상기 제조 공정에 원료로 사용 가능하다.In the group consisting of benzene, xylene, chloroform, hexane, ethyl acetate, methanol, ethanol and cyclohexane in general waste coffee grounds or waste coffee grounds generated after coffee beverage production, the coffee grounds used in step (a) of the present invention It may be waste coffee dregs generated after extracting a lipid or extracting biodiesel through a transduction reaction using one or more selected organic solvents or steam. That is, it includes coffee grounds that have undergone lipid or biodiesel extraction as well as common coffee grounds in a conventional sense. In addition, it can be used as a raw material in the manufacturing process irrespective of the corruption that may occur due to the nature of the organic waste.
상기 (a) 단계에서 커피 찌꺼기를 건조하지 않고도 다음 단계로 진행이 가능하다.In the step (a) it is possible to proceed to the next step without drying coffee grounds.
상기 (a) 단계에서 바이오디젤을 추출한 커피 찌꺼기는 추출 방법에 따라 다음과 같이 분류할 수 있다: (1) 유기용매 용매 (벤젠, 자일렌, 클로로포름, 헥산, 에틸 아세테이트, 메탄올, 에탄올, 사이클로헥산 등)로 추출한 커피 찌꺼기; (2)인-시투 에스터교환(in-situ transesterification)을 거친 커피 찌꺼기; (3) 수증기(steam) 및 산 및 염기 수용액증기로 추출한 커피 찌꺼기.The coffee grounds from which biodiesel was extracted in step (a) can be classified according to the extraction method as follows: (1) organic solvent solvent (benzene, xylene, chloroform, hexane, ethyl acetate, methanol, ethanol, cyclohexane Coffee grounds, etc.); (2) coffee grounds through in-situ transesterification; (3) Coffee grounds extracted with steam and aqueous solutions of acid and base.
상기 활성화제의 수용액은 농도 상으로 6몰농도 이하, 바람직하게는 0.5~6M를 사용하는 것이 바람직하다. 혼합 시, 커피 찌꺼기 원료와 활성화제의 질량비는 1:0.1 ~ 1:3인 것이 바람직하다.The aqueous solution of the activator is preferably 6 molar concentrations or less, preferably 0.5 to 6M in concentration. At the time of mixing, the mass ratio of the coffee ground material and the activator is preferably 1: 0.1 to 1: 3.
상기 (a) 단계의 목적은 화학적 활성법을 통한 다공성 확보이므로, 수산화칼륨 외에 다음의 활성화제들이 사용가능하나, 이에 한정되는 것은 아니다: 수산화나트륨(NaOH), 인산(H3PO4) 및 염화아연(ZnCl2).Since the purpose of step (a) is to secure porosity through chemical activity, the following activators may be used in addition to potassium hydroxide, but are not limited thereto: sodium hydroxide (NaOH), phosphoric acid (H 3 PO 4 ), and chlorides. Zinc (ZnCl 2 ).
상기 상기 (a) 및 (c) 단계의 혼합은 교반기를 통한 혼합 방법과 음파처리(sonication)를 통한 혼합 방법이 모두 가능하며, 원료의 양에 따라 혼합 시간이 달라질 수 있다. 일반적으로 30분 내지 1시간이 적당하다.The mixing of the steps (a) and (c) may be both a mixing method through a stirrer and a mixing method through sonication, and the mixing time may vary depending on the amount of raw materials. Generally 30 minutes to 1 hour is suitable.
상기 (a) 단계에서 수산화칼륨 등과 같은 활성화제를 수용액 상태로 혼합하는 방법 외에 활성화제를 분말 형태로 커피 찌꺼기와 혼합하는 것도 가능하다.In addition to the method of mixing an activator such as potassium hydroxide in an aqueous solution state in the step (a), it is also possible to mix the activator with coffee grounds in powder form.
상기 (b), (c) 또는 (d) 단계에서 150℃ 이하의 온도, 바람직하게는 50~150℃의 온도에서 건조하는 것이 바람직하다.In the step (b), (c) or (d) it is preferable to dry at a temperature of 150 ℃ or less, preferably 50 ~ 150 ℃.
상기 (b) 단계의 기체는 질소나 질소가 포함된 배기가스, 아르곤과 같은 비활성 기체의 사용도 가능하다.The gas of step (b) may be the use of inert gas, such as nitrogen, exhaust gas containing nitrogen, argon.
상기 (d) 단계의 열처리 시, 기체유량은 10~3000㎖min-1이 적합하고, 1~10℃min-1의 승온 속도로 400~1000℃까지 증가시킨 후 2시간 이하, 바람직하게는 1~5℃min-1의 승온 속도로 400~1000℃까지 증가시킨 후 0.5~2시간의 시간 동안 열처리할 수 있다.When the heat treatment in the step (d), the gas flow rate is 10 ~ 3000mLmin- 1 is suitable, after increasing to 400 ~ 1000 ℃ at a temperature increase rate of 1 ~ 10
상기 (d) 단계의 열처리는 이산화탄소를 탄소로 전환시 유량은 10~3000㎖min-1이며 1~5℃min-1의 승온 속도로 500-1000℃에서 0.5~2시간을 유지할 수 있다.The heat treatment of step (d) is a flow rate when converting carbon dioxide to carbon is 10 ~ 3000mLmin -1 and can be maintained for 0.5 to 2 hours at 500-1000 ℃ at a temperature increase rate of 1 ~ 5 ℃ min -1 .
또한, 상기 (d) 단계의 열처리는 이산화탄소를 탄소로 전환시가 아닐 경우 질소나 아르곤 가스 또는 질소가 포함된 배기가스 유량은 10~3000㎖min-1이고, 1~5℃min-1의 승온 속도로 500~1000℃에서 0.5~2시간을 유지할 수 있다.In addition, in the heat treatment of step (d), when the carbon dioxide is not converted to carbon, the flow rate of the exhaust gas containing nitrogen, argon gas, or nitrogen is 10 to 3000 mlmin -1 , and the temperature is increased to 1 to 5 ° C min -1 . The speed can be maintained at 500 to 1000 ° C. for 0.5 to 2 hours.
상기 (c) 및 (e)의 정제는 염산, 물 및 에탄올을 첨가하여 수행할 수 있다. 특히 (e) 단계의 정제는 열처리 후의 활성탄에 남아있는 염들을 제거하는 것이 주 목적이며, 이 때 염산, 증류수, 에탄올을 순차적으로 사용할 수 있다.Purification of (c) and (e) can be carried out by adding hydrochloric acid, water and ethanol. In particular, the purification of step (e) is to remove the salts remaining in the activated carbon after the heat treatment, at this time, hydrochloric acid, distilled water, ethanol can be used sequentially.
상기 붕소 전구체는 수소화붕소나트륨 외에도 다음의 전구체를 사용할 수 있다: 보론옥사이드(B2O3), 보릭에시드(H2BO3), 리튬 붕소하이드라이드(LiBH4), 칼륨 붕소하이드라이드(KBH4), 마그네슘 붕소하이드라이드(Mg(BH4)2), 칼슘 붕소하이드라이드(Ca(BH4)2), 스트론튬 붕소하이드라이드(Sr(BH4)2) 또는 암모니아보레인(NH3BH3).In addition to sodium borohydride, the boron precursor may use the following precursors: boron oxide (B 2 O 3 ), boric acid (H 2 BO 3 ), lithium boron hydride (LiBH 4 ), potassium boron hydride (KBH 4) ), Magnesium boron hydride (Mg (BH 4 ) 2 ), calcium boron hydride (Ca (BH 4 ) 2 ), strontium boron hydride (Sr (BH 4 ) 2 ) or ammonia borane (NH 3 BH 3 ) .
상기 붕소 전구체 용액을 만들 시 용매는 유기용매인 다이메틸설폭사이드(dimethyl sulfoxide), 다이메틸폼아마이드(dimethylformamide) 등이 사용 가능하며 이들은 수소화붕소나트륨과 반응하지 않는다. 위에서 언급된 다른 붕소 전구체 역시 반응하지 않는 범위에서 물, 알코올 혹은 유기 용매를 사용하여 용액을 만들 수 있다.When preparing the boron precursor solution, a solvent may be an organic solvent such as dimethyl sulfoxide, dimethylformamide, and the like, and they do not react with sodium borohydride. The other boron precursors mentioned above can also be prepared using water, alcohols or organic solvents in a range that does not react.
상기 붕소 전구체 용액의 농도는 용매에 따른 용해도에 따라 가변적일 수 있다. 일반적으로 0.5~6몰농도의 용액의 사용이 바람직하다.The concentration of the boron precursor solution may vary depending on the solubility of the solvent. In general, the use of a solution of 0.5 to 6 molarity is preferred.
본 발명은 상기에서 제시한 탄소소재의 제조방법에 후처리 공정을 추가한 양질의 탄소소재의 제조법 또한 포함한다. 상기 단계는 (i) 커피 찌꺼기를 원료로 한 질소가 도핑된 활성탄과 수소화붕소나트륨(NaBH4) 용액 등과 같은 붕소 전구체 용액을 혼합하는 단계; (ii) 혼합한 슬러리를 건조시키는 단계; (iii) 건조시킨 슬러리를 이산화탄소가 흐르는 가열로에서 열처리하는 단계; (iv) 생성된 활성탄을 염산, 물, 에탄올 등으로 정제하는 단계; (v) 정제 후의 활성탄을 건조시키는 단계; 및 (vi) 붕소와 질소가 도핑된 활성탄의 완성으로 구성될 수 있다.The present invention also includes a method for producing a high quality carbon material by adding a post-treatment step to the method for producing a carbon material described above. The step comprises the steps of: (i) mixing a boron precursor solution such as nitrogen-doped activated carbon with coffee grounds and sodium borohydride (NaBH 4 ) solution; (ii) drying the mixed slurry; (iii) heat treating the dried slurry in a heating furnace through which carbon dioxide flows; (iv) purifying the resulting activated carbon with hydrochloric acid, water, ethanol and the like; (v) drying the activated carbon after purification; And (vi) completion of boron and nitrogen doped activated carbon.
상기 (i) 단계는 교반기를 통한 혼합 방법과 음파처리(sonication)를 통한 혼합 방법이 모두 가능하며, 원료의 양에 따라 혼합 시간이 달라질 수 있다. 일반적으로 30분 내지 1시간이 적당하다.In the step (i), both a mixing method through a stirrer and a mixing method through sonication may be possible, and the mixing time may vary depending on the amount of raw materials. Generally 30 minutes to 1 hour is suitable.
상기 (i) 단계에서 붕소 전구체를 수용액 상태로 혼합하는 방법 외에 분말 형태로 질소가 도핑된 활성탄과 혼합하는 것도 가능하다.In addition to the method of mixing the boron precursor in an aqueous solution state in step (i), it is also possible to mix with activated carbon doped with nitrogen in the form of a powder.
상기 (ii) 단계는 150℃ 이하, 바람직하게는 50~150℃의 온도에서 건조하는 것이 바람직하다.The step (ii) is preferably dried at a temperature of less than 150 ℃, preferably 50 ~ 150 ℃.
상기 (iii) 단계에서 붕소 전구체를 통해 이산화탄소 전환을 하는 것이다. 이 과정에서 활성탄의 탄소 구조 내에 붕소가 도핑된다. 따라서 이산화탄소에 대한 유량과 열처리 조건이 중요한데, 유량은 10~3000㎖min-1이 적합하다. 열처리의 경우 1~5℃min-1의 승온 속도로 500-1000℃에서 최대 2시간을 유지하는 것이 바람직하다.Carbon dioxide conversion through the boron precursor in step (iii). In the process, boron is doped in the carbon structure of activated carbon. Therefore, the flow rate and heat treatment condition for carbon dioxide is important, the flow rate is 10 ~ 3000mLmin -1 is suitable. In the case of heat treatment, it is preferable to maintain the maximum 2 hours at 500-1000 degreeC by the temperature increase rate of 1-5 degreeCmin <-1> .
또한 상기 (iii) 단계에서 이산화탄소를 탄소로 전환시키지 않을 경우 이산화탄소 이외에 다른 비활성가스나 질소 및 질소가 포함된 배기가스를 쓸 수 있다. 이에 대한 유량과 열처리 조건이 중요한데, 유량은 10~3000㎖min-1이 적합하다. 열처리의 경우 1~5℃min-1의 승온 속도로 500-1000℃에서 최대 2시간을 유지하는 것이 바람직하다.In addition, if the carbon dioxide is not converted to carbon in the step (iii), other inert gas or exhaust gas containing nitrogen and nitrogen may be used. Flow rate and heat treatment conditions for this is important, the flow rate is 10 ~ 3000mLmin -1 is suitable. In the case of heat treatment, it is preferable to maintain the maximum 2 hours at 500-1000 degreeC by the temperature increase rate of 1-5 degreeCmin <-1> .
상기 (iv) 단계는 열처리 후의 활성탄에 남아있는 염들을 제거하는 것이 주 목적이며, 이 때 염산, 증류수, 에탄올을 순차적으로 사용하게 된다.The main purpose of step (iv) is to remove the salts remaining in the activated carbon after the heat treatment, in which case hydrochloric acid, distilled water and ethanol are used sequentially.
상기 (v) 단계는 150℃ 이하, 바람직하게는 50~150℃의 온도에서 건조하는 것이 바람직하다.Step (v) is preferably dried at a temperature of less than 150 ℃, preferably 50 ~ 150 ℃.
상기 (vi) 단계에서 얻어지는 산물이 붕소와 질소가 도핑된 활성탄이며, 이 다공성 탄소 물질은 이차전지의 전극 물질로 사용될 수 있다.The product obtained in step (vi) is activated carbon doped with boron and nitrogen, and the porous carbon material may be used as an electrode material of a secondary battery.
따라서, 본 발명의 또 다른 관점에서 상기 제조방법으로 제조된 1) 질소 도핑 다공성 탄소소재 및 2) 붕소 및 질소 동시 도핑 다공성 탄소소재의 이종원소 도핑 탄소소재에 관한 것이며 비표면적이 500~3000m2/g의 범위에 있다.Therefore, in another aspect of the present invention relates to a heterogeneous element-doped carbon material of 1) nitrogen-doped porous carbon material and 2) boron and nitrogen co-doped porous carbon material prepared by the above method, and has a specific surface area of 500-3000m 2 / is in the range of g.
또한, 본 발명의 또 다른 관점에서 1) 질소 도핑 다공성 탄소소재 및/또는 2) 붕소 및 질소 동시 도핑 다공성 탄소소재를 포함하는 전극물질에 관한 것이다.The present invention also relates to an electrode material comprising 1) a nitrogen doped porous carbon material and / or 2) a boron and nitrogen co-doped porous carbon material.
상기 탄소소재는 슈퍼커패시터 또는 연료전지의 전극 재료로 이용하기에 적합하다. 또한 브롬 산화/환원 (Br2 + 2e- ⇔ 2Br-)에 활성을 띠므로, Zn-Br 레독스 흐름전지에서 양극의 소재로 활용할 수 있다.The carbon material is suitable for use as an electrode material for supercapacitors or fuel cells. Further bromine oxidation / reduction can be utilized, so the active strip, in the Zn-Br redox flow cell as a material of the positive electrode (Br 2 + 2e - - ⇔ 2Br).
또한, 본 발명의 폐커피를 이용한 이종원소 탄소소재의 제조방법에 의해 지질 또는 바이오디젤을 추가 생산물로 얻을 수 있다.In addition, it is possible to obtain a lipid or biodiesel as an additional product by the method for producing a heterogeneous carbon material using waste coffee of the present invention.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples.
[실시예]EXAMPLE
실시예Example 1: 다양한 커피 찌꺼기로부터 질소가 1: Nitrogen from various coffee grounds 도핑된Doped 활성탄의 제조 및 이의 아연-브롬 Preparation of Activated Carbon and Zinc-Bromium thereof 레독스흐름전지Redox Flow Battery (Zinc-Bromine (Zinc-Bromine RedoxRedox Flow Battery) 양극 물질로의 활용 Flow Battery) Use as anode material
전체적인 제조 공정은 도 1의 '질소가 도핑된 활성탄의 제조' 파트를 따른다.The overall manufacturing process follows the 'manufacturing of nitrogen-doped activated carbon' part of FIG. 1.
커피 찌꺼기의 경우 두 그룹으로 나누어 활성탄 제조를 하였다. 첫 번째 그룹은 일반 폐커피 찌꺼기이고, 두 번째 그룹은 지질이나 바이오디젤을 추출한 뒤의 폐 커피 찌꺼기이다. 지질이나 바이오디젤을 추출한 커피 찌꺼기는 사용한 추출 방법에 따라 3가지로 나뉜다: 1)클로로포름으로 추출한 커피 찌꺼기; 2)인-시투 에스터교환을 거친 커피 찌꺼기; 3)증기로 추출한 커피 찌꺼기. 따라서 폐 커피 찌꺼기에서 위의 기름성분을 추출하지 않은 것과 총 4 종류의 커피 찌꺼기에 대해 활성탄을 제조하였다.In the case of coffee grounds, activated carbon was prepared in two groups. The first group is general waste coffee grounds, and the second group is waste coffee grounds after extraction of lipids or biodiesel. Coffee grounds from which lipids or biodiesel are extracted are divided into three types according to the extraction method used: 1) coffee grounds extracted with chloroform; 2) coffee grounds that have undergone in-situ transesterification; 3) Coffee grounds extracted with steam. Therefore, activated carbon was prepared for all four types of coffee grounds without extracting the above oil components from the waste coffee grounds.
한 번의 실험 시에 건조된 2g의 커피 찌꺼기를 취하여, 수산화칼륨 수용액과 혼합하였다. 이 때 사용된 수용액의 농도는 6몰농도이며, 커피 찌꺼기에 대한 질량비가 1:0.5가 되도록 양을 조절하였다. 약 30분 가량 음파처리를 함으로써 수산화칼륨 이온이 커피 찌꺼기에 골고루 스며들도록 하였다.In one experiment, 2 g of dried coffee grounds were taken and mixed with aqueous potassium hydroxide solution. At this time, the concentration of the aqueous solution used was 6 mol concentration, and the amount was adjusted so that the mass ratio to coffee grounds is 1: 0.5. The sonication was performed for about 30 minutes so that the potassium hydroxide ions were evenly penetrated into the coffee grounds.
음파처리가 끝나면 혼합물은 슬러리의 형태를 띠는데, 이를 도가니(crucible)에 평평하게 깔아주었다(도 2-1) 그리고 100℃로 설정한 진공오븐에서 만 하루 동안 건조시켰다(도 2-2)At the end of the sonication, the mixture took the form of a slurry, which was laid flat on the crucible (Fig. 2-1) and dried for one day only in a vacuum oven set at 100 ° C (Fig. 2-2).
건조된 슬러리를 담은 도가니를 전기로에 넣고, 전기로 내부의 산화 기체를 제거하기 위해 50㎖min-1의 질소를 흘려주며 30분간 퍼징(purging)하였다. 이후, 5℃min-1의 승온 속도로 750℃까지 가열한 뒤 1시간동안 열처리를 하며 활성화를 하였다.The crucible containing the dried slurry was placed in an electric furnace, and purged for 30 minutes with flowing 50 mlmin −1 of nitrogen to remove oxidizing gas inside the electric furnace. Thereafter, the substrate was heated to 750 ° C. at a temperature rising rate of 5 ° C. min −1 , and then activated by heat treatment for 1 hour.
열처리가 끝난 활성탄은 2번의 염산(2몰농도) 처리, 2번의 증류수 처리 그리고 1번의 에탄올 처리를 거치는 정제 과정 후에 100℃로 설정한 진공오븐에서 만 하루 동안 건조시켰다. 건조 후, 최종적으로 질소가 도핑된 활성탄을 얻을 수 있었다(도 2-3)After the heat treatment, the activated carbon was dried in a vacuum oven set at 100 ° C. for one day after two hydrochloric acid treatments, two distilled water treatments, and one ethanol treatment. After drying, finally, the activated carbon doped with nitrogen was obtained (Fig. 2-3).
본 발명을 통해 제조된 활성탄은 매우 높은 비표면적 값을 가짐을 비표적 분석(BET analysis)을 통해 확인하였다. 도 3은 각 활성탄의 질소 흡착등온선(N2 adsorption isotherms)을 나타내고, 도 4는 전기화학적 활성에 영향을 주는 마이크로 세공(micropore)의 분포도를 나타낸 것이다. 이를 바탕으로 정리한 수치를 표 1에 나타내었다.It was confirmed through BET analysis that the activated carbon produced through the present invention has a very high specific surface area value. Figure 3 shows the nitrogen adsorption isotherms (N 2 adsorption isotherms) of each activated carbon, Figure 4 shows the distribution of micropores (micropore) affecting the electrochemical activity. Table 1 summarized the results.
(m2/g)SBET
(m 2 / g)
(cm3/g)Pore volume
(cm 3 / g)
1: 수산화칼륨 활성화를 적용하지 않은 비교군1: Comparative group without potassium hydroxide activation
2: 일반 커피 찌꺼기를 원료로 한 활성탄2: activated carbon made from ordinary coffee grounds
3: 바이오디젤을 추출한 커피 찌꺼기를 원료로 한 활성탄3: Activated charcoal based on coffee grounds from biodiesel
이를 통해 커피 찌꺼기로부터 합성한 활성탄이 높은 비표면적과 수많은 마이크로 세공을 가졌음을 알 수 있다. 이는 아연-브롬 레독스 흐름전지 양극 반응에 유리한 부분으로 작용할 것이다.This shows that activated carbon synthesized from coffee grounds has a high specific surface area and numerous micropores. This will serve as an advantageous part for the anode reaction of zinc-bromine redox flow battery.
비표면적 분석에서 파악했던 활성탄의 다공성 구조를 주사전자현미경(SEM)에서도 확인할 수 있었다(도 5). 도 5의 a는 일반 커피 찌꺼기를 원료로 한 활성탄이고, b는 바이오디젤을 추출한 커피 찌꺼기를 원료로 한 활성탄이다.The porous structure of activated carbon identified in the specific surface area analysis was also confirmed by scanning electron microscopy (SEM) (FIG. 5). Fig. 5A shows activated charcoal based on normal coffee grounds, and b shows activated carbon based on coffee grounds from which biodiesel is extracted.
아연-브롬 레독스 흐름전지의 양극 반응(Br2 + e- ⇔ 2Br-)에 대한 전기화학적 활성을 측정하기 위해 QBr(Quaternary ammonium bromide)용액을 전해질로 하는 3전극 시스템에서 활성 테스트를 하였다. 각 활성탄의 활성을 CV(Cyclic voltammetry)방식의 그래프로 나타내었으며(도 6), 도 6의 a는 일반 커피 찌꺼기를 원료로 한 활성탄이고, b는 바이오디젤을 추출한 커피 찌꺼기를 원료로 한 활성탄이며, c는 실시예 2의 활성탄의 결과이다. 여기서 넓이는 활성과 비례한다. 이에 사이클에 따른 넓이 변화를 각 활성탄 별로 정리함으로써 성능과 내구도를 동시에 나타내었다(도 7)Zinc-bromine LES anode reaction of the redox flow battery (Br 2 + e - ⇔ 2Br -) to measure the electrochemical activity of the active was tested in a three electrode system of the (Quaternary ammonium bromide) QBr solution as an electrolyte. The activity of each activated carbon is shown in a graph of CV (Cyclic voltammetry) method (FIG. 6), a of FIG. 6 is activated carbon based on normal coffee grounds, and b is activated carbon based on coffee grounds extracted from biodiesel. , c is the result of the activated carbon of Example 2. Where area is proportional to activity. Thus, by changing the area according to the cycle for each activated carbon, the performance and durability were simultaneously shown (Fig. 7).
실시예Example 2: 질소와 붕소가 2: nitrogen and boron 도핑된Doped 활성탄의 제조 및 이의 아연-브롬 Preparation of Activated Carbon and Zinc-Bromium thereof 레독스흐름전지Redox Flow Battery (Zinc-Bromine (Zinc-Bromine RedoxRedox Flow Battery) 양극 물질로의 활용 Flow Battery) Use as anode material
실시예 2는 양질의 활성탄을 얻기 위한 실시예 1의 후처리 공정으로, 도 1의 '붕소와 질소가 도핑된 활성탄의 제조' 파트를 따른다.Example 2 is a post-treatment process of Example 1 to obtain high quality activated carbon, and follows the part of 'Preparing Activated Carbon Doped with Boron and Nitrogen' of FIG. 1.
실시예 1에서 제조한 활성탄 중 일반 커피 찌꺼기를 원료로 한 활성탄을 대상으로 실시예 2를 진행하였다.Example 2 was carried out on activated charcoal using general coffee grounds as the raw material of the activated carbon prepared in Example 1.
약 1g의 활성탄을 취하여 1몰농도의 수소화붕소나트륨 용액과 혼합하였다. 이때 사용된 용매는 다이메틸설폭사이드이며, 활성탄에 대한 질량비가 1:0.5가 되도록 투여하였다. 약 30분 가량 음파처리를 함으로써 수소화붕소나트륨 이온이 활성탄에 골고루 스며들도록 하였다.About 1 g of activated carbon was taken and mixed with 1 mol of sodium borohydride solution. At this time, the solvent used was dimethyl sulfoxide, so that the mass ratio to activated carbon was 1: 0.5. The sonication was performed for about 30 minutes so that the sodium borohydride ion was evenly infiltrated into the activated carbon.
슬러리의 형태를 띤 혼합물을 도가니에 깔고 150℃에서 만 하루 동안 건조시켰다.The mixture in the form of a slurry was placed in a crucible and dried at 150 ° C. for only one day.
건조된 슬러리를 담은 도가니를 전기로에 넣고, 전기로 내부의 산화 기체를 제거하기 위해 50㎖min-1의 질소를 흘려주며 30분간 퍼징(purging)하였다. 이후, 5℃min-1의 승온 속도로 500℃까지 가열한 뒤 이산화탄소 기체를 투입하여 이산화탄소 전환이 일어나도록 하였다. 이때의 유량은 75㎖min-1였다. 그리고 2시간 동안 열처리를 하였다.The crucible containing the dried slurry was placed in an electric furnace, and purged for 30 minutes with flowing 50 mlmin −1 of nitrogen to remove oxidizing gas inside the electric furnace. Then, after heating to 500 ℃ at a temperature increase rate of 5 ℃ min -1 was added to the carbon dioxide gas to cause the carbon dioxide conversion occurs. The flow rate at this time was 75 ml min -1 . And heat treatment for 2 hours.
열처리가 끝난 활성탄은 2번의 염산(2몰농도) 처리, 2번의 증류수 처리 그리고 1번의 에탄올 처리를 거치는 정제 과정 후에 100℃로 설정한 진공오븐에서 만 하루 동안 건조시켰다. 건조 후, 최종적으로 붕소와 질소가 도핑된 활성탄을 얻을 수 있었다.After the heat treatment, the activated carbon was dried in a vacuum oven set at 100 ° C. for one day after two hydrochloric acid treatments, two distilled water treatments, and one ethanol treatment. After drying, finally, activated carbon doped with boron and nitrogen was obtained.
붕소와 질소가 도핑되었기 때문에 아연-브롬 레독스 흐름전지 양극 반응에 유리한 부분으로 작용할 것이다. 이를 파악하고자 실시예 1의 조건과 동일하게 활성 테스트를 하였다. 이에 관한 CV 그래프와 성능 및 내구도를 나타내는 그래프를 수록하였다(도 6 및 도 7).Doped with boron and nitrogen would be an advantageous part for the anode reaction of zinc-bromine redox flow cell. In order to determine this activity test was carried out in the same manner as in Example 1. CV graphs and graphs showing performance and durability were recorded (FIGS. 6 and 7).
실시예 1 및 2로부터 커피 찌꺼기로부터 질소가 도핑된 활성탄 및 질소와 붕소가 도핑된 활성탄이 제조되는 것을 확인하였으며, 이는 아연-브롬 레독스흐름전지(Zinc-Bromine Redox Flow Battery) 양극 물질로 활용 가능하다는 것을 확인하였다.It was confirmed from Examples 1 and 2 that activated carbon doped with nitrogen and activated carbon doped with nitrogen and boron were prepared from coffee grounds, which can be used as a zinc-bromine redox flow battery anode material. It was confirmed that.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail the specific parts of the present invention, it is apparent to those skilled in the art that such specific description is merely a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
Claims (19)
(a) 폐커피 찌꺼기를 수산화칼륨(KOH), 수산화나트륨(NaOH) 및 인산(H3PO4)으로 구성된 군에서 선택된 1종 이상의 0.5~6M 농도의 활성화제 수용액을 혼합하여 슬러리를 수득하는 단계;
(b) 상기 (a)의 슬러리를 건조시키고 비활성 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; 및
(c) 상기 (b)의 활성탄을 정제 및 건조하는 단계,
상기 폐커피 찌꺼기와 활성화제의 질량비는 1:0.1~1:3이고,
상기 폐커피 찌꺼기는, 폐커피 찌꺼기에서 벤젠, 자일렌, 클로로포름, 헥산, 에틸 아세테이트, 메탄올, 에탄올 및 사이클로헥산으로 구성된 군에서 선택된 1종 이상의 유기용매나 스팀을 이용하여 지질을 추출하거나 트랜스화 반응을 통하여 바이오디젤을 추출한 후 발생하는 폐커피 찌꺼기인 것을 특징으로 함.
Method for producing hetero-doped carbon material using waste coffee comprising the following steps:
(a) mixing the waste coffee grounds with one or more 0.5 to 6 M aqueous solutions of activators selected from the group consisting of potassium hydroxide (KOH), sodium hydroxide (NaOH) and phosphoric acid (H 3 PO 4 ) to obtain a slurry ;
(b) drying the slurry of (a) and heat-treating the furnace in which an inert gas is introduced to obtain activated carbon; And
(c) purifying and drying the activated carbon of (b),
The mass ratio of the waste coffee grounds and the activator is 1: 0.1 ~ 1: 3,
The waste coffee grounds are extracted from the waste coffee grounds by using one or more organic solvents or steam selected from the group consisting of benzene, xylene, chloroform, hexane, ethyl acetate, methanol, ethanol, and cyclohexane, or a transfection reaction. Characterized in that the waste coffee waste generated after extracting the biodiesel through.
(a) 폐커피 찌꺼기를 수산화칼륨(KOH), 수산화나트륨(NaOH) 및 인산(H3PO4)으로 구성된 군에서 선택된 1종 이상의 0.5~6M 농도의 활성화제 수용액을 혼합하여 슬러리를 수득하는 단계;
(b) 상기 (a)의 슬러리를 건조시키고 비활성 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계;
(c) 상기 (b)의 활성탄을 정제 및 건조한 다음, 붕소 전구체를 첨가 및 혼합하여 슬러리를 수득하는 단계;
(d) 상기 (c)의 슬러리를 건조시키고 가스가 유입된 가열로에서 열처리하여 활성탄을 수득하는 단계; 및
(e) 상기 (d)의 활성탄을 정제하는 단계,
상기 폐커피 찌꺼기와 활성화제의 질량비는 1:0.1~1:3이고,
상기 폐커피 찌꺼기는 커피음료 생성 후 발생하는 일반 폐커피 찌꺼기 또는 폐커피 찌꺼기에서 벤젠, 자일렌, 클로로포름, 헥산, 에틸 아세테이트, 메탄올, 에탄올 및 사이클로헥산으로 구성된 군에서 선택된 1종 이상의 유기용매나 스팀을 이용하여 지질을 추출하거나 트랜스화 반응을 통하여 바이오디젤을 추출한 후 발생하는 폐커피 찌꺼기인 것을 특징으로 함.
Method for producing hetero-doped carbon material using waste coffee comprising the following steps:
(a) mixing the waste coffee grounds with one or more 0.5-6 M aqueous activator solutions selected from the group consisting of potassium hydroxide (KOH), sodium hydroxide (NaOH) and phosphoric acid (H 3 PO 4 ) to obtain a slurry ;
(b) drying the slurry of (a) and heat-treating the furnace in which an inert gas is introduced to obtain activated carbon;
(c) purifying and drying the activated carbon of (b), and then adding and mixing the boron precursor to obtain a slurry;
(d) drying the slurry of (c) and heat-treating in a heating furnace into which gas is introduced to obtain activated carbon; And
(e) purifying the activated carbon of (d),
The mass ratio of the waste coffee grounds and the activator is 1: 0.1 ~ 1: 3,
The waste coffee grounds are one or more organic solvents or steam selected from the group consisting of benzene, xylene, chloroform, hexane, ethyl acetate, methanol, ethanol and cyclohexane in general waste coffee grounds or waste coffee grounds generated after coffee beverage production. Extracting lipids using or characterized in that the waste coffee waste generated after the extraction of biodiesel through a transfection reaction.
The method according to claim 1 or 2, wherein the waste coffee grounds of step (a) is dried at 50-150 ° C., followed by mixing an activator aqueous solution, and the drying of steps (b), (c) or (d) Method for producing a hetero-element carbon material using waste coffee, characterized in that carried out at a temperature of 50 ~ 150 ℃.
The method of claim 1 or 2, wherein the purification of step (c) is performed by adding hydrochloric acid, water and ethanol.
The method of claim 1 or 2, wherein the mixing of the steps (a) and (c) is carried out using a stirrer or sonication in the solid or slurry state of the hetero element doped carbon material using waste coffee Manufacturing method.
According to claim 1 or 2, wherein the heat treatment of step (b) is heated to 400 ~ 1000 ℃ at a rate of 1 ~ 10 ℃ min -1 under nitrogen or argon gas or nitrogen-containing exhaust gas 0.5 ~ 2 Method for producing a hetero-doped carbon material using waste coffee, characterized in that the heat treatment for a time period.
According to claim 2, wherein the heat treatment of step (d) is a flow rate when converting carbon dioxide to carbon is 10 ~ 3000mlmin -1 and 0.5 ~ 2 hours at 500-1000 ℃ at a temperature increase rate of 1 ~ 5 ℃ min -1 Method for producing a heterogeneous element-doped carbon material using waste coffee, characterized in that to maintain.
The method of claim 2, wherein the heat treatment of step (d) is a flow rate of nitrogen, argon or nitrogen containing exhaust gas when the carbon dioxide is not converted to carbon is 10 ~ 3000mlmin -1 , 1 ~ 5 ℃ min Method for producing a hetero-element doped carbon material using waste coffee, characterized in that for 0.5 to 2 hours at 500 ~ 1000 ℃ at a temperature rising rate of -1 .
The method of claim 2, wherein the boron precursor is sodium boron hydride (NaBH 4 ), boron oxide (B 2 O 3 ), boric acid (H 2 BO 3 ), lithium boron hydride (LiBH 4 ), potassium boron hydride (KBH 4 ), magnesium boron hydride (Mg (BH 4 ) 2 ), calcium boron hydride (Ca (BH 4 ) 2 ), strontium boron hydride (Sr (BH 4 ) 2 ), and ammonia borane (NH 3) BH 3 ) A method for producing a hetero-element doped carbon material using waste coffee, characterized in that at least one selected from the group consisting of.
[Claim 3] The method for producing hetero-doped carbonaceous material according to claim 1 or 2, wherein lipid or biodiesel is obtained as a by-product.
Electrode material of zinc-bromine redox flow battery comprising a nitrogen-doped carbon material prepared by the method of claim 1.
Electrode material of zinc-bromine redox flow battery comprising a boron and nitrogen-doped carbon material prepared by the method of claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160129886A KR102015119B1 (en) | 2016-10-07 | 2016-10-07 | Method of Preparing Heteroatom-Doped Carbon Materials Using Spent Coffee Grounds and Application of Electrode Materials Thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160129886A KR102015119B1 (en) | 2016-10-07 | 2016-10-07 | Method of Preparing Heteroatom-Doped Carbon Materials Using Spent Coffee Grounds and Application of Electrode Materials Thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180038802A KR20180038802A (en) | 2018-04-17 |
KR102015119B1 true KR102015119B1 (en) | 2019-08-27 |
Family
ID=62083302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160129886A KR102015119B1 (en) | 2016-10-07 | 2016-10-07 | Method of Preparing Heteroatom-Doped Carbon Materials Using Spent Coffee Grounds and Application of Electrode Materials Thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102015119B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109888314B (en) * | 2019-03-13 | 2019-12-24 | 深圳市中金岭南科技有限公司 | Preparation method of boron-cobalt-nitrogen doped carbon nanomaterial for zinc-air battery |
TWI695540B (en) | 2019-07-26 | 2020-06-01 | 國立清華大學 | Microbial fuel cell and method of manufacturing the same |
CN110534757A (en) * | 2019-09-11 | 2019-12-03 | 上海交通大学 | High performance carbon electrode and preparation method thereof |
CN111821949B (en) * | 2020-07-21 | 2021-08-27 | 南京农业大学 | Nitrogen-phosphorus co-doped peanut shell carbon and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010020007A1 (en) * | 2008-08-20 | 2010-02-25 | The University Of Queensland | Nanoporous carbon electrodes and supercapacitors formed therefrom |
KR101340009B1 (en) * | 2013-03-06 | 2013-12-11 | 한국과학기술원 | Method for the synthesis of carbon materials using carbon dioxide |
WO2016157508A1 (en) * | 2015-03-27 | 2016-10-06 | Nec Corporation | Boron-doped activated carbon material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100259546B1 (en) | 1998-02-19 | 2000-06-15 | 김학희 | The preparation of activated carbon from coffee waste |
JP2005075686A (en) | 2003-09-01 | 2005-03-24 | King Car Food Industrial Co Ltd | Method for producing activated carbon by using lees of coffee bean |
KR101176969B1 (en) | 2005-04-12 | 2012-08-30 | (주)인비트로플랜트 | A process for producing activated carbon from coffee grounds |
KR101630933B1 (en) * | 2014-08-29 | 2016-06-16 | 한국과학기술원 | Method of preparing heteroatom-doped carbon materials using flue gas comprising carbon dioxide |
-
2016
- 2016-10-07 KR KR1020160129886A patent/KR102015119B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010020007A1 (en) * | 2008-08-20 | 2010-02-25 | The University Of Queensland | Nanoporous carbon electrodes and supercapacitors formed therefrom |
KR101340009B1 (en) * | 2013-03-06 | 2013-12-11 | 한국과학기술원 | Method for the synthesis of carbon materials using carbon dioxide |
WO2016157508A1 (en) * | 2015-03-27 | 2016-10-06 | Nec Corporation | Boron-doped activated carbon material |
Also Published As
Publication number | Publication date |
---|---|
KR20180038802A (en) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Biomass-derived porous graphitic carbon materials for energy and environmental applications | |
CN102923688B (en) | Preparation method and application of nitrogen-doped carbon material | |
US7799733B2 (en) | Process for preparing high surface area carbon | |
KR102015119B1 (en) | Method of Preparing Heteroatom-Doped Carbon Materials Using Spent Coffee Grounds and Application of Electrode Materials Thereof | |
CN108529587B (en) | Preparation method and application of phosphorus-doped biomass graded porous carbon material | |
KR101946446B1 (en) | Method of Preparing Porous Carbon Materials Co-Doped with Boron and Nitrogen | |
CN109019559B (en) | Element-doped three-dimensional porous carbon material and preparation method and application thereof | |
US10829420B2 (en) | Filamentous organism-derived carbon-based materials, and methods of making and using same | |
CN102247802A (en) | Method for preparing activated carbon | |
CN107244664B (en) | Preparation method and application of graphene-like structure carbon electrode material | |
JP2024038019A (en) | Method for generating highly active monolithic net-shape biochar electrode | |
CN113060719A (en) | Wood-based carbon foam and preparation method thereof, cathode electrocatalyst, cathode and metal-air battery | |
CN106915744B (en) | A kind of stalk resource utilizes method | |
CN107651687A (en) | A kind of preparation method and applications of the Carbon Materials rich in pyridine nitrogen | |
KR20140036506A (en) | The method for manufacturing the hard carbon and the hard carbon manufactured thereby | |
Konwar et al. | Sustainable synthesis of N and P co-doped porous amorphous carbon using oil seed processing wastes | |
CN109167077A (en) | A kind of phosphorus doping porous carbon oxygen reduction catalyst and its preparation method and application | |
CN111729680A (en) | High-efficiency bifunctional oxygen electrocatalyst with heterostructure and preparation and application thereof | |
Xu et al. | Nitrogen/sulfur co-doped non-noble metal material as an efficient electrocatalyst for the oxygen reduction reaction in alkaline media | |
CN112479205A (en) | Narrow-pore bamboo sheath activated carbon and preparation method thereof | |
Zhao et al. | Fabrication of a Sustainable Closed Loop for Waste-Derived Materials in Electrochemical Applications | |
CN112201785B (en) | Lithium-philic and sulfur-philic co-doped two-dimensional layered graphitized porous carbon material and preparation method and application thereof | |
CN107324327A (en) | A kind of method and purposes using coal as the direct synthetic graphite material of raw material | |
CN110492114A (en) | A kind of N doping porous carbon oxygen reduction catalyst and its preparation method and application | |
CN114204055B (en) | Cathode catalyst for fuel cell and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |