Nothing Special   »   [go: up one dir, main page]

KR101926678B1 - 탄화규소 에피 웨이퍼 및 이의 제조 방법 - Google Patents

탄화규소 에피 웨이퍼 및 이의 제조 방법 Download PDF

Info

Publication number
KR101926678B1
KR101926678B1 KR1020120058854A KR20120058854A KR101926678B1 KR 101926678 B1 KR101926678 B1 KR 101926678B1 KR 1020120058854 A KR1020120058854 A KR 1020120058854A KR 20120058854 A KR20120058854 A KR 20120058854A KR 101926678 B1 KR101926678 B1 KR 101926678B1
Authority
KR
South Korea
Prior art keywords
wafer
silicon carbide
susceptor
ratio
raw material
Prior art date
Application number
KR1020120058854A
Other languages
English (en)
Other versions
KR20130134938A (ko
Inventor
강석민
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020120058854A priority Critical patent/KR101926678B1/ko
Priority to PCT/KR2013/004757 priority patent/WO2013180485A1/ko
Priority to US14/404,462 priority patent/US20150144963A1/en
Priority to CN201380035035.2A priority patent/CN104395986A/zh
Publication of KR20130134938A publication Critical patent/KR20130134938A/ko
Application granted granted Critical
Publication of KR101926678B1 publication Critical patent/KR101926678B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

실시예에 따른 에피 웨이퍼 제조 방법은, 서셉터 내에 웨이퍼를 준비하는 단계; 상기 웨이퍼 상에 에피층을 성장하는 단계를 포함하고, 상기 웨이퍼 상에 에피층을 성장하는 단계는, 상기 서셉터 내에 제 1 투입량으로 원료를 투입하는 제 1 공정; 및 상기 서셉터 내에 제 2 투입량으로 원료를 투입하는 제 2 공정을 포함하고, 상기 제 1 투입량은 상기 제 2 투입량보다 작다.
실시예에 따른 에피 웨이퍼는, 웨이퍼; 및 상기 웨이퍼 상에 형성되는 에피층을 포함하고, 상기 웨이퍼의 표면 결함은 1 ea/㎠ 이다.

Description

탄화규소 에피 웨이퍼 및 이의 제조 방법{SILICON CARBIDE EPI WAFER AND METHOD OF FABRICATING THE SAME}
실시예는 탄화규소 에피 웨이퍼 및 이의 제조 방법에 관한 것이다.
일반적으로 기판 또는 웨이퍼(wafer)상에 다양한 박막을 형성하는 기술 중에 화학 기상 증착 방법(Chemical Vapor Deposition; CVD)이 많이 사용되고 있다. 화학 기상 증착 방법은 화학 반응을 수반하는 증착 기술로, 소스 물질의 화학 반응을 이용하여 웨이퍼 표면상에 반도체 박막이나 절연막 등을 형성한다.
이러한 화학 기상 증착 방법 및 증착 장치는 최근 반도체 소자의 미세화와 고효율, 고출력 LED 개발 등으로 박막 형성 기술 중 매우 중요한 기술로 주목받고 있다. 현재 웨이퍼 상에 규소 막, 산화물 막, 질화규소 막 또는 산질화규소 막, 텅스텐 막 등과 같은 다양한 박막들을 증착하기 위해 이용되고 있다.
일례로, 기판 또는 웨이퍼 상에 탄화규소 박막을 증착하기 위해서는, 웨이퍼와 반응할 수 있는 반응 가스가 투입되어야 한다. 종래에는 원료로서, 표준전구체인 실란(SiH4), 에틸렌(C2H4)과 같은 기상 원료 또는, 메틸트리클로로실레인(methyltrichlorosilane;MTS)과 같은 액상 원료를 투입하고, 상기 원료를 가열하여 CH3, SiClx 등의 중간 화합물을 생성한 후, 이러한 중간 화합물이 증착부에 투입되어 서셉터 내에 위치하는 웨이퍼와 반응하여 탄화규소 에피층을 증착하였다.
그러나, 상기 탄화규소 상에 에피층을 증착시에는 웨이퍼 상에 발생할 수 있는 결함(defect) 또는 표면 조도 등의 문제점이 발생할 수 있다. 상기 웨이퍼의 결함 또는 표면 조도는 상기 탄화규소 에피 웨이퍼의 품질을 저하시킬 수 있다.
이에 따라, 상기 결함 또는 표면 조도와 같은 문제점을 해결할 수 있는 탄화규소 에피 웨이퍼 및 이의 제조 방법의 필요성이 대두된다.
실시예는 웨이퍼의 표면 결함 및/또는 표면 조도를 감소시켜 고품질의 탄화규소 에피 웨이퍼를 제조할 수 있는 에피 웨이퍼 제조 방법 및 에피 웨이퍼를 제공하고자 한다.
실시예에 따른 에피 웨이퍼 제조 방법은, 서셉터 내에 웨이퍼를 준비하는 단계; 상기 웨이퍼 상에 에피층을 성장하는 단계를 포함하고, 상기 웨이퍼 상에 에피층을 성장하는 단계는, 상기 서셉터 내에 제 1 투입량으로 원료를 투입하는 제 1 공정; 및 상기 서셉터 내에 제 2 투입량으로 원료를 투입하는 제 2 공정을 포함하고, 상기 제 1 투입량은 상기 제 2 투입량보다 작다.
실시예에 따른 에피 웨이퍼는, 웨이퍼; 및 상기 웨이퍼 상에 형성되는 에피층을 포함하고, 상기 웨이퍼의 표면 결함은 1 ea/㎠ 이다.
실시예에 따른 에피 웨이퍼 제조 방법은, 상기 서셉터 내부에 투입되는 원료의 양을 조절하여 상기 제 1 공정과 상기 제 2 공정의 성장 속도를 달리할 수 있다. 자세하게, 상기 제 1 공정의 원료 투입량을 상기 제 2 공정의 원료 투입량에 비해 1/10 이하로 하여, 상기 제 1 공정의 성장 속도를 상기 제 2 공정의 성장 속도에 비해 1/20 내지 1/5의 범위로 할 수 있다.
이에 따라, 실시예에 따른 에피 웨이퍼 제조 방법은, 제 1 공정에서 일반적인 성장 공정에 비해 연료의 투입량을 작게 하여 성장 속도를 낮추어, 웨이퍼의 표면 상에 존재하는 표면 결함을 감소시킬 수 있다. 바람직하게는, 상기 웨이퍼의 표면 결함을 약 1 ea/㎠ 이하로 감소시킬 수 있다. 이어서, 상기 제 2 성장 속도에서 에피층을 증착하여 최종적인 탄화규소 에피 웨이퍼에 존재하는 표면 결함을 감소시킬 수 있다.
따라서, 실시예에 따른 에피 웨이퍼 제조 방법에 따라 제조되는 최종적으로 제조되는 탄화규소 에피 웨이퍼는 표면 결함을 감소하여 고품질의 탄화규소 에피 웨이퍼를 제조할 수 있다.
또한, 실시예에 따른 탄화규소 에피 웨이퍼는 표면 결함이 약 1 ea/㎠ 이하일 수 있다.
도 1은 실시예에 따른 에피 웨이퍼 제조 방법을 설명하기 위한 공정 흐름도이다.
도 2 내지 도 4는 실시예에 따른 에피 웨이퍼 제조 방법을 설명하기 위한 서셉터의 분해 사시도, 사시도 및 단면도로서, 도 2는 실시예에 따른 증착 장치를 분해한 분해사시도이고, 도 3은 실시예에 따른 증착 장치를 도시한 사시도이며, 도 4는 도 3에서 I-I'를 따라서 절단한 단면도의 일부이다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 “상/위(on)”에 또는 “하/아래(under)”에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다.
이하. 도 1 내지 도 4를 참조하여 실시예에 따른 에피 웨이퍼 및 에피 웨이퍼 제조 방법을 설명한다.
도 1은 실시예에 따른 에피 웨이퍼 제조 방법을 설명하기 위한 공정 흐름도이고, 도 2 내지 도 4는 실시예에 따른 에피 웨이퍼 제조 방법을 설명하기 위한 서셉터의 분해 사시도, 사시도 및 단면도를 도시한 도면이다.
도 1을 참조하면 실시예에 따른 에피 웨이퍼 제조 방법은, 서셉터 내에 웨이퍼를 준비하는 단계(ST10); 및 웨이퍼 상에 에피층을 성장시키는 단계(ST20)를 포함한다.
상기 서셉터 내에 웨이퍼를 준비하는 단계(ST10)에서는, 챔버 내에 위치하는 상기 서셉터 내에 상기 웨이퍼를 위치시킬 수 있다. 이때, 상기 웨이퍼는 탄화규소 웨이퍼일 수 있다. 즉, 실시예에 따른 에피 웨이퍼 제조 방법은 탄화규소 에피 웨이퍼 제조 방법일 수 있다.
이어서, 상기 웨이퍼 상에 에피층을 성장시키는 단계(ST20)에서는, 상기 서셉터 내에 원료를 투입하여 상기 웨이퍼 상에 탄화규소 에피층을 성장시킬 수 있다.
상기 웨이퍼 상에 에피층을 성장시키는 단계(ST20)는 2가지 공정으로 구분된다. 자세하게, 상기 웨이퍼 상에 에피층을 성장시키는 단계(ST20)는 상기 서셉터 내에 제 1 투입량으로 원료를 투입하는 제 1 공정; 및 상기 서셉터 내에 제 2 투입량으로 원료를 투입하는 제 2 공정을 포함한다.
상기 제 1 공정과 상기 제 2 공정은 상기 서셉터 내에 투입되는 원료의 양에 따라 분리될 수 있다. 즉, 상기 제 1 공정과 상기 제 2 공정에서 상기 서셉터 내에 투입되는 원료의 양은 서로 다를 수 있다. 자세하게, 상기 제 1 공정에서 투입되는 원료의 양은 상기 제 2 공정에서 투입되는 원료의 양보다 작을 수 있다. 더 자세하게, 상기 제 1 공정에서 투입되는 원료의 양은 상기 제 2 공정에서 투입되는 원료의 양의 1/10 이하일 수 있다. 즉, 상기 제 1 공정에서 투입되는 원료의 유량(flux)은 상기 제 2 공정에서 투입되는 원료의 유량(flux)의 1/10 이하일 수 있다. 더 자세하게, 상기 제 1 공정에서 투입되는 원료의 유량은 상기 제 2 공정에서 투입되는 원료의 유량의 1/10 내지 1/2일 수 있다.
상기 제 1 공정과 상기 제 2 공정은 연속적으로 수행될 수 있다. 즉, 상기 제 1 공정과 상기 제 2 공정은 분리되는 공정이 아닌 연속 공정으로 진행될 수 있다.
상기 서셉터 내에 투입되는 원료는 탄소, 규소, 염소 및 수소를 포함할 수 있다. 자세하게, 상기 연료는 탄소와 규소를 포함하는 액상, 기상 또는 고상 원료를 포함할 수 있다. 상기 액상 원료는 메틸트리크로로실란(methyltrichlorosilane, MTS) 또는 트리클로로실란(trichlorosilane, TCS)을 포함할 수 있다. 또한, 상기 기상 원료는 실란(SiH4), 에틸렌(C2H4) 및 염화수소(HCl) 또는 실란, 프로판(C3H8) 및 염화수소를 포함할 수 있다. 또한, 캐리어 가스로서 수소(H2)를 더 포함할 수 있다.
상기 제 1 공정에서는 상기 서셉터 내에 투입되는 원료의 비가 일정하게 조절된다. 즉, 상기 제 1 공정에서는 상기 제 1 투입량의 유량으로 상기 서셉터 내에 원료가 투입되고, 상기 서셉터 내로 투입되어 이온화되는 원료들의 각각의 원자 및/또는 분자의 비는 일정하게 조절된다 자세하게, 상기 제 1 공정에서는 상기 탄소 원자 개수와 상기 규소 원자 개수의 비(C/Si ratio)가 0.7 이하일 수 있다. 또한, 상기 규소 원자와 상기 수소 분자의 백분율(Si/H2)은 0.01 이하일 수 있다.
또한, 상기 제 2 공정에서는 상기 탄소 원자 개수와 상기 규소 원자 개수의 비(C/Si ratio)가 0.7 내지 1.5 일 수 있다. 또한, 상기 규소 원자와 상기 수소 분자의 백분율(Si/H2)은 0.1% 이상일 수 있다.
상기 제 1 공정과 상기 제 2 공정에서 상기 서셉터 내에 투입되는 상기 제 1 투입량 및 상기 제 2 투입량에 따라, 상기 제 1 공정과 상기 제 2 공정의 성장 속도가 달라질 수 있다. 자세하게, 상기 제 1 공정은 상기 제 2 공정에 비해 성장 속도가 작을 수 있다. 더 자세하게, 상기 제 1 공정의 성장 속도는 상기 제 2 공정의 성장 속도의 1/20 내지 1/2일 수 있다.
실시예에 따른 에피 웨이퍼 제조 방법은, 상기 서셉터 내부에 투입되는 원료의 양을 조절하여 상기 제 1 공정과 상기 제 2 공정의 성장 속도를 달리할 수 있다. 자세하게, 상기 제 1 공정의 원료 투입량을 상기 제 2 공정의 원료 투입량에 비해 1/10 이하로 하여, 상기 제 1 공정의 성장 속도를 상기 제 2 공정의 성장 속도에 비해 1/20 내지 1/2의 범위로 할 수 있다.
상기 제 1 공정에서는, 상기 웨이퍼에 존재하는 표면 결함을 감소시킬 수 있다. 일반적으로 탄화규소 웨이퍼 상에는 BPD, EPD, MPD 등의 결함이 존재한다. 이러한 결함은 상기 웨이퍼 상에 에피층을 성장시 에피층 표면에 결함을 생성하는 원인이 되므로 최종적인 탄화규소 에피 웨이퍼의 품질을 저하시키고, 전력 소자 등에 적용시 효율을 저하시키는 원인이 되었다.
이에 따라, 실시예에 따른 에피 웨이퍼 제조 방법은, 제 1 공정에서 일반적인 성장 공정에 비해 연료의 투입량을 작게하여 성장 속도를 낮추어, 웨이퍼의 표면 상에 존재하는 표면 결함을 감소시킬 수 있다. 바람직하게는, 상기 웨이퍼의 표면 결함을 약 1 ea/㎠ 이하로 감소시킬 수 있다. 이어서, 상기 제 2 성장 속도에서 에피층을 증착하여 최종적인 탄화규소 에피 웨이퍼에 존재하는 표면 결함을 감소시킬 수 있다.
따라서, 실시예에 따른 에피 웨이퍼 제조 방법에 따라 제조되는 최종적으로 제조되는 탄화규소 에피 웨이퍼는 표면 결함을 감소하여 고품질의 탄화규소 에피 웨이퍼를 제조할 수 있다.
상기 제 2 공정에서는, 상기 웨이퍼 상에 존재하는 표면 결함을 제거한 후, 상기 웨이퍼 상에 탄화규소 에피층을 증착할 수 있다.
상기 웨이퍼 상에 에피층을 증착하는 단계는 서셉터를 포함하는 증착 장치를 통해 상기 웨이퍼 상에 에피층을 증착할 수 있다.
도 2 내지 도 4는 실시예에 따른 에피 웨이퍼 제조 방법을 설명하기 위한 서셉터의 분해 사시도, 사시도 및 단면도를 도시한 도면이다.
도 2 내지 도 4를 참조하면, 상기 증착 장치는, 챔버(10), 서셉터(20), 소스 기체 라인(40), 웨이퍼 홀더(30) 및 유도 코일(50)을 포함한다.
상기 챔버(10)는 원통형 튜브 형상을 가질 수 있다. 이와는 다르게, 상기 챔버(10)는 사각 박스 형상을 가질 수 있다. 상기 챔버(10)는 상기 서셉터(20), 상기 소스 기체 라인(40) 및 상기 웨이퍼 홀더(30)를 수용할 수 있다.
또한, 상기 챔버(10)의 양 끝단들은 밀폐되고, 상기 챔버(10)는 외부의 기체유입을 막고 진공도를 유지할 수 있다. 상기 챔버(10)는 기계적 강도가 높고, 화학적 내구성이 우수한 석영(quartz)을 포함할 수 있다. 또한, 상기 챔버(10)는 향상된 내열성을 가진다.
또한, 상기 챔버(10) 내에 단열부(60)가 더 구비될 수 있다. 상기 단열부(60)는 상기 챔버(10) 내의 열을 보존하는 기능을 수행할 수 있다. 상기 단열부로 사용되는 물질의 예로서는 질화물 세라믹, 탄화물 세라믹 또는 흑연 등을 들 수 있다.
상기 서셉터(20)는 상기 챔버(10) 내에 배치된다. 상기 서셉터(20)는 상기 소스 기체 라인(40) 및 상기 웨이퍼 홀더(30)를 수용한다. 또한, 상기 서셉터(20)는 상기 웨이퍼(W) 등과 같은 기판을 수용한다. 또한, 상기 소스 기체 라인(40)을 통하여, 상기 서셉터(20) 내부로 상기 반응 기체가 유입된다.
도 2에 도시된 바와 같이, 상기 서셉터(20)는 서셉터 상판(21), 서셉터 하판(22) 및 서셉터 측판(23)들을 포함할 수 있다. 또한, 서셉터 상판(21)과 서셉터 하판(22)은 서로 마주보며 위치한다.
상기 서셉터(20)는 상기 서셉터 상판(21)과 상기 서셉터 하판(22)을 위치시키고 양 옆에 상기 서셉터 측판(23)들을 위치시킨 후 합착하여 제조할 수 있다.
그러나 실시예가 이에 한정되는 것은 아니므로, 직육면체의 서셉터(20)에 가스 통로를 위한 공간을 내어 제조할 수 있다.
상기 서셉터(20)는 고온 등의 조건에서 견딜 수 있도록 내열성이 높고 가공이 용이한 흑연(graphite)를 포함할 수 있다. 또한, 상기 서셉터(20)는 흑연 몸체에 탄화규소가 코팅된 구조를 가질 수 있다. 또한, 상기 서셉터(20)는 자체로 유도가열될 수 있다.
상기 서셉터(20)에 공급되는 연료 즉, 반응 기체는 열에 의해서, 중간 화합물로 분해되고, 이 상태에서, 상기 웨이퍼(W) 등에 증착될 수 있다. 예를 들어, 상기 연료는 탄소와 규소를 포함하는 액상, 기상 또는 고상 원료를 포함할 수 있다. 상기 액상 원료는 메틸트리크로로실란(methyltrichlorosilane, MTS) 또는 트리클로로실란(trichlorosilane, TCS)을 포함할 수 있다. 또한, 상기 기상 원료는 실란(SiH4), 에틸렌(C2H4) 및 염화수소(HCl) 또는 실란, 프로판(C3H8) 및 염화수소를 포함할 수 있다. 또한, 캐리어 가스로서 수소(H2)를 더 포함할 수 있다.
상기 원료는 규소, 탄소 또는 염소를 포함하는 라디칼로 분해되고, 상기 웨이퍼(W) 상에는 탄화규소 에피층이 성장될 수 있다. 더 자세하게, 상기 라디칼은 CH3·, SiCl·, SiCl2·, SiHCl·, SiHCl2·등을 포함하는 CHx·(1≤x<4) 또는 SiClx·(1≤x<4) 일 수 있다.
상기 소스 기체 라인(40)은 사각 튜브 형상을 가질 수 있다. 상기 소스 기체 라인(40)으로 사용되는 물질의 예로서는 석영 등을 들 수 있다.
상기 웨이퍼 홀더(30)는 상기 서셉터(20) 내에 배치된다. 더 자세하게, 상기 웨이퍼 홀더(30)는 상기 소스 기체가 흐르는 방향을 기준으로, 상기 서셉터(20)의 후미에 배치될 수 있다. 상기 웨이퍼 홀더(30)는 상기 웨이퍼(W)를 지지한다. 상기 웨이퍼 홀더(30)로 사용되는 물질의 예로서는 탄화규소 또는 흑연 등을 들 수 있다.
상기 유도 코일(50)은 상기 챔버(10) 외측에 배치된다. 더 자세하게, 상기 유도 코일(50)은 상기 챔버(10)의 외주면을 둘러쌀 수 있다. 상기 유도 코일(50)은 전자기 유도를 통하여, 상기 서셉터(20)를 유도 발열시킬 수 있다. 상기 유도 코일(50)은 상기 챔버(10)의 외주면을 감을 수 있다.
상기 서셉터(20)는 상기 유도 코일(50)에 의해서, 약 1500℃ 내지 약 1700℃의 온도로 가열될 수 있다. 즉, 상기 서셉터(20)는 상기 유도 코일(50)에 의해 에피층 성장 온도까지 가열할 수 있다. 이후, 1500℃ 내지 1700℃의 온도에서 상기 소스 기체는 중간 화합물로 분해되고, 상기 서셉터 내부로 유입되어 상기 웨이퍼(W)에 분사된다. 상기 웨이퍼(W)에 분사된 라디칼에 의해서, 상기 웨이퍼(W) 상에 탄화규소 에피층이 형성된다.
이와 같이, 실시예에 따른 탄화규소 에피층 성장장치는 상기 웨이퍼(W) 등의 기판 상에 상기 에피층과 같은 박막을 형성하고, 남은 기체는 상기 서셉터(20)의 끝단에 배치되는 배출 라인을 통하여, 외부로 배출될 수 있다.
앞서 설명하였듯이, 실시예에 따른 에피 웨이퍼 제조 방법은, 제 1 공정에서 일반적인 성장 공정에 비해 연료의 투입량을 작게 하여 성장 속도를 낮추어, 웨이퍼의 표면 상에 존재하는 표면 결함을 감소시킬 수 있다. 바람직하게는, 상기 웨이퍼의 표면 결함을 약 1 ea/㎠ 이하로 감소시킬 수 있다. 이어서, 상기 제 2 성장 속도에서 에피층을 증착하여 최종적인 탄화규소 에피 웨이퍼에 존재하는 표면 결함을 감소시킬 수 있다.
따라서, 실시예에 따른 에피 웨이퍼 제조 방법에 따라 제조되는 최종적으로 제조되는 탄화규소 에피 웨이퍼는 표면 결함을 감소하여 고품질의 탄화규소 에피 웨이퍼를 제조할 수 있다.
이하, 실시예들 및 비교예들에 따른 탄화규소 에피 웨이퍼 제조 방법을 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 제조예는 본 발명을 좀더 상세하게 설명하기 위하여 예시로 제시한 것에 불과하다. 따라서 본 발명이 이러한 제조예에 한정되는 것은 아니다.
실시예
서셉터 내에 탄화규소 웨이퍼를 배치시킨 후, 상기 서셉터 내에 소스가스로서, 실란, 프로판, 염화수소 및 수소를 투입하였다. 이때, 첫 번째 단계에서는, 약 1570℃의 온도에서 진행되고, 두 번째 단계에서는, 약 1600℃의 온도에서 진행하여 에피 웨이퍼를 제조하였다.
이때, 첫 번째 단계에서는, 탄소 원자 개수와 규소 원자 개수의 비(C/Si ratio)가 0.7이고, 규소 원자와 수소 분자의 백분율(Si/H2)는 0.01%이었다.
또한, 첫 번째 단계에서의 원료 투입량은 두 번째 단계에서의 원료 투입량의 1/10이었다.
비교예
첫 번째 단계를 거치지 않았다는 점을 제외하고는, 실시예 1과 동일한 방법으로 탄화규소 에피 웨이퍼를 제조하였다.
구분 표면 결함(ea/㎠)
실시예 1 미만
비교예 1 초과
표 1을 참조하면, 비교예에 따른 탄화규소 에피 웨이퍼에 비해 실시예에 따른 탄화규소 에피 웨이퍼의 표면 결함이 더 낮은 것을 알 수 있다. 즉, 실시예에 따른 탄화규소 에피 웨이퍼는 상기 탄화규소 에피 웨이퍼의 표면에 존재하는 표면 결함이 1 ea/㎠ 미만으로서, 거의 존재하지 않는 것을 알 수 있다.
즉, 실시예에 따른 탄화규소 에피 웨이퍼 제조 방법 및 이에 의해 제조되는 탄화규소 에피 웨이퍼는 제조시, 원료의 투입량을 달리하여 상기 웨이퍼 상에 존재하는 표면 결함을 감소시킨 후, 상기 웨이퍼 상에 에피층을 성장시키므로, 최종적으로 제조되는 탄화규소 에피 웨이퍼는 표면 결함이 거의 존재하지 않아 고품질 및 고효율을 가질 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. 서셉터 내에 탄화규소 웨이퍼를 준비하는 단계; 및
    상기 탄화규소 웨이퍼 상에 에피층을 성장시키는 단계를 포함하고,
    상기 탄화규소 웨이퍼 상에 에피층을 성장시키는 단계는,
    상기 서셉터 내에 제 1 투입량으로 원료를 투입하는 제 1 공정; 및
    상기 서셉터 내에 제 2 투입량으로 원료를 투입하는 제 2 공정을 포함하고,
    상기 제 1 투입량은 상기 제 2 투입량의 1/10 내지 1/2이고,
    상기 제 1 공정의 에피층 성장 속도는 상기 제 2 공정의 에피층 성장 속도의 1/20 내지 1/2이고,
    상기 제 1 공정에 의해 상기 탄화규소 웨이퍼의 표면 결함이 1 ea/㎠ 이하로 감소되고,
    상기 제 2 공정은 상기 탄화규소 웨이퍼의 표면 결함이 1 ea/㎠ 이하로 감소된 후 진행되는 탄화규소 에피 웨이퍼 제조 방법.
  2. 제 1항에 있어서,
    상기 제 1 공정의 공정 온도는 상기 제 2 공정의 공정 온도보다 작은 탄화규소 에피 웨이퍼 제조 방법.
  3. 제 1항에 있어서,
    상기 원료는 탄소(C) 및 규소(Si)를 포함하는 탄화규소 에피 웨이퍼 제조 방법.
  4. 제 3항에 있어서,
    상기 제 1 공정에서는 탄소 원자 개수와 규소 원자 개수의 비(C/Si ratio)가 0.7 이하인 탄화규소 에피 웨이퍼 제조 방법.
  5. 제 4항에 있어서,
    상기 제 1 공정에서는 규소 원자와 수소 분자의 백분율(Si/H2 ratio)은 0.01% 이하인 탄화규소 에피 웨이퍼 제조 방법.
  6. 제 5항에 있어서,
    상기 제 2 공정의 탄소 원자 개수와 규소 원자 개수의 비(C/Si ratio)는 상기 제 1 공정의 탄소 원자 개수와 규소 원자 개수의 비(C/Si ratio)보다 크고,
    상기 제 2 공정의 규소 원자와 수소 분자의 백분율(Si/H2 ratio)은 상기 제 1 공정의 규소 원자와 수소 분자의 백분율(Si/H2 ratio)보다 큰 탄화규소 에피 웨이퍼 제조 방법.
  7. 제 6항에 있어서,
    상기 제 2 공정에서는 탄소 원자 개수와 규소 원자 개수의 비(C/Si ratio)가 0.7 내지 1.5이고,
    상기 제 2 공정에서는 규소 원자와 수소 분자의 백분율(Si/H2 ratio)은 0.1% 이상인 탄화규소 에피 웨이퍼 제조 방법.
  8. 제 1항에 있어서,
    상기 탄화규소 웨이퍼 상에 에피층을 성장하는 단계는,
    상기 서셉터 내에 원료를 투입하여 중간 화합물을 생성하는 단계; 및
    상기 원료와 상기 탄화규소 웨이퍼가 반응하여 상기 탄화규소 웨이퍼 상에 탄화규소 에피층을 형성하는 단계를 포함하는 탄화규소 에피 웨이퍼 제조 방법.
  9. 제 8항에 있어서,
    상기 중간 화합물은 CHx·(1≤x<4) 또는 SiClx·(1≤x<4)를 포함하는 탄화규소 에피 웨이퍼 제조 방법.
  10. 제 1항에 있어서,
    상기 에피층은 탄화규소를 포함하는 탄화규소 에피 웨이퍼 제조 방법.
  11. 제 1항 내지 제 10항 중 어느 한 항의 제조방법에 의해 제조되는 탄화규소 에피 웨이퍼
  12. 삭제
KR1020120058854A 2012-05-31 2012-05-31 탄화규소 에피 웨이퍼 및 이의 제조 방법 KR101926678B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020120058854A KR101926678B1 (ko) 2012-05-31 2012-05-31 탄화규소 에피 웨이퍼 및 이의 제조 방법
PCT/KR2013/004757 WO2013180485A1 (ko) 2012-05-31 2013-05-30 탄화규소 에피 웨이퍼 및 이의 제조 방법
US14/404,462 US20150144963A1 (en) 2012-05-31 2013-05-30 Silicon carbide epi-wafer and method of fabricating the same
CN201380035035.2A CN104395986A (zh) 2012-05-31 2013-05-30 碳化硅外延晶片及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120058854A KR101926678B1 (ko) 2012-05-31 2012-05-31 탄화규소 에피 웨이퍼 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
KR20130134938A KR20130134938A (ko) 2013-12-10
KR101926678B1 true KR101926678B1 (ko) 2018-12-11

Family

ID=49673614

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120058854A KR101926678B1 (ko) 2012-05-31 2012-05-31 탄화규소 에피 웨이퍼 및 이의 제조 방법

Country Status (4)

Country Link
US (1) US20150144963A1 (ko)
KR (1) KR101926678B1 (ko)
CN (1) CN104395986A (ko)
WO (1) WO2013180485A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130107001A (ko) * 2012-03-21 2013-10-01 엘지이노텍 주식회사 증착 장치
CN107275209B (zh) * 2017-06-17 2019-08-23 东莞市天域半导体科技有限公司 一种SiC超高压PiN二极管器件材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181627A1 (en) 2002-03-19 2005-08-18 Isaho Kamata Method for preparing sic crystal and sic crystal
JP2009256138A (ja) 2008-04-17 2009-11-05 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
JP2012051795A (ja) * 2011-10-25 2012-03-15 Showa Denko Kk SiCエピタキシャルウェハ
WO2012067112A1 (ja) 2010-11-17 2012-05-24 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403404A4 (en) * 2001-06-04 2007-08-01 New Ind Res Organization SINGLE CRYSTAL SILICON CARBIDE AND PROCESS FOR PRODUCING THE SAME
US20060249073A1 (en) * 2003-03-10 2006-11-09 The New Industry Research Organization Method of heat treatment and heat treatment apparatus
CN100433256C (zh) * 2004-03-18 2008-11-12 克里公司 减少堆垛层错成核位置的顺序光刻方法和具有减少的堆垛层错成核位置的结构
US7109521B2 (en) * 2004-03-18 2006-09-19 Cree, Inc. Silicon carbide semiconductor structures including multiple epitaxial layers having sidewalls
JP4293165B2 (ja) * 2005-06-23 2009-07-08 住友電気工業株式会社 炭化ケイ素基板の表面再構成方法
JP4946202B2 (ja) * 2006-06-26 2012-06-06 日立金属株式会社 炭化珪素半導体エピタキシャル基板の製造方法。
US8410488B2 (en) * 2006-09-14 2013-04-02 Cree, Inc. Micropipe-free silicon carbide and related method of manufacture
KR20090017074A (ko) * 2007-08-14 2009-02-18 주식회사 실트론 에피층 성장방법
US8536582B2 (en) * 2008-12-01 2013-09-17 Cree, Inc. Stable power devices on low-angle off-cut silicon carbide crystals
TWI410537B (zh) * 2009-08-27 2013-10-01 Nippon Steel & Sumitomo Metal Corp Silicon carbide single crystal wafer and its manufacturing method
JP4959763B2 (ja) * 2009-08-28 2012-06-27 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
JP4887418B2 (ja) * 2009-12-14 2012-02-29 昭和電工株式会社 SiCエピタキシャルウェハの製造方法
JP5693946B2 (ja) * 2010-03-29 2015-04-01 エア・ウォーター株式会社 単結晶3C−SiC基板の製造方法
JP4850960B2 (ja) * 2010-04-07 2012-01-11 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板の製造方法
JP4880052B2 (ja) * 2010-05-11 2012-02-22 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板及びその製造方法
WO2013036376A2 (en) * 2011-09-10 2013-03-14 Semisouth Laboratories, Inc. Methods for the epitaxial growth of silicon carbide
DE112013002107B4 (de) * 2012-04-20 2019-04-04 Toyota Jidosha Kabushiki Kaisha SiC-Einkristall-Herstellungsverfahren
KR101926694B1 (ko) * 2012-05-30 2018-12-07 엘지이노텍 주식회사 탄화규소 에피 웨이퍼 및 이의 제조 방법
KR101897062B1 (ko) * 2012-05-31 2018-09-12 엘지이노텍 주식회사 탄화규소 에피 웨이퍼 및 이의 제조 방법
JP2014154666A (ja) * 2013-02-07 2014-08-25 Sumitomo Electric Ind Ltd 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181627A1 (en) 2002-03-19 2005-08-18 Isaho Kamata Method for preparing sic crystal and sic crystal
JP2009256138A (ja) 2008-04-17 2009-11-05 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
WO2012067112A1 (ja) 2010-11-17 2012-05-24 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板の製造方法
JP2012051795A (ja) * 2011-10-25 2012-03-15 Showa Denko Kk SiCエピタキシャルウェハ

Also Published As

Publication number Publication date
WO2013180485A1 (ko) 2013-12-05
CN104395986A (zh) 2015-03-04
US20150144963A1 (en) 2015-05-28
KR20130134938A (ko) 2013-12-10

Similar Documents

Publication Publication Date Title
KR101897062B1 (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
US9165768B2 (en) Method for deposition of silicon carbide and silicon carbide epitaxial wafer
KR101926694B1 (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
KR101936171B1 (ko) 탄화규소 에피 웨이퍼 제조 방법 및 탄화규소 에피 웨이퍼
KR101926678B1 (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
CN103556219A (zh) 一种碳化硅外延生长装置
JP2015198213A (ja) エピタキシャル炭化珪素ウェハの製造方法及びそれに用いる炭化珪素単結晶基板のホルダー
KR101942536B1 (ko) 탄화규소 에피 웨이퍼 제조 방법
KR101916289B1 (ko) 탄화규소 증착 방법
KR101936170B1 (ko) 탄화규소 에피 웨이퍼 제조 방법
KR101976600B1 (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
KR20130134937A (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
KR101916226B1 (ko) 증착 장치 및 증착 방법
KR101942514B1 (ko) 탄화규소 증착 방법 및 탄화규소 에피 웨이퍼
KR20170006799A (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
CN106605302B (zh) 碳化硅外延晶片及其制造方法
KR20130065945A (ko) 탄화규소 증착 방법
KR20130065482A (ko) 탄화규소 증착 방법
KR101971613B1 (ko) 증착 장치
KR101829800B1 (ko) 증착 장치 및 증착 방법
KR102417484B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR101931188B1 (ko) 증착 장치 및 증착 방법
KR20130073695A (ko) 탄화규소 증착 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant