KR101864674B1 - Patterned nanostructures by using stimuli-responsive soft nanoparticles and method for manufacturing the same - Google Patents
Patterned nanostructures by using stimuli-responsive soft nanoparticles and method for manufacturing the same Download PDFInfo
- Publication number
- KR101864674B1 KR101864674B1 KR1020160018328A KR20160018328A KR101864674B1 KR 101864674 B1 KR101864674 B1 KR 101864674B1 KR 1020160018328 A KR1020160018328 A KR 1020160018328A KR 20160018328 A KR20160018328 A KR 20160018328A KR 101864674 B1 KR101864674 B1 KR 101864674B1
- Authority
- KR
- South Korea
- Prior art keywords
- poly
- salt
- hydrogel
- nanoparticles
- substrate
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 150000003839 salts Chemical class 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims description 51
- 239000012266 salt solution Substances 0.000 claims description 36
- 239000000017 hydrogel Substances 0.000 claims description 27
- 239000013078 crystal Substances 0.000 claims description 26
- 239000002356 single layer Substances 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 239000010703 silicon Substances 0.000 claims description 15
- -1 NaNO 3 Chemical compound 0.000 claims description 13
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 12
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 229910021293 PO 4 Inorganic materials 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 claims description 8
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000005977 Ethylene Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 claims description 6
- 229920001504 poly(N-isopropylacrylamide-co-acrylic acid) Polymers 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Substances OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims description 5
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 239000006059 cover glass Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 4
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 claims description 4
- 230000008961 swelling Effects 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- OVHHHVAVHBHXAK-UHFFFAOYSA-N n,n-diethylprop-2-enamide Chemical compound CCN(CC)C(=O)C=C OVHHHVAVHBHXAK-UHFFFAOYSA-N 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims 7
- 239000011159 matrix material Substances 0.000 claims 3
- 229920000642 polymer Polymers 0.000 claims 3
- WASIEWIFBAFRSZ-UHFFFAOYSA-N 2-methylbut-2-enoic acid terephthalic acid Chemical compound CC=C(C(=O)O)C.C(C1=CC=C(C(=O)O)C=C1)(=O)O WASIEWIFBAFRSZ-UHFFFAOYSA-N 0.000 claims 2
- 229920002292 Nylon 6 Polymers 0.000 claims 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 12
- 239000012528 membrane Substances 0.000 abstract description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004630 atomic force microscopy Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000000089 atomic force micrograph Methods 0.000 description 3
- 229940093476 ethylene glycol Drugs 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010190 AFM image analysis Methods 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001749 colloidal lithography Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229920001977 poly(N,N-diethylacrylamides) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002174 soft lithography Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000002122 magnetic nanoparticle Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920001501 poly(N-isopropylacrylamide-co-methacrylic acid) Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Substances CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02601—Nanoparticles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
-
- H01L29/0665—
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Thin Film Transistor (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
본 발명은 외부자극응답성 연성 나노입자를 이용한 패턴화된 나노구조체 및 이의 제조방법에 관한 것이다. 본 발명에 따르면, 수중에서의 온도 또는 염의 종류 및 농도에 따라 연성 나노입자 결정단층막을 구성하는 외부자극응답성 연성 나노입자의 크기가 가역적으로 수축 또는 팽창하여 패턴의 크기, 형태 및 간격을 가역적으로 조절할 수 있는바, 다양한 크기, 형태와 간격을 가진 패턴을 구현할 수 있다. 또한 본 발명에 따른 패턴화된 나노구조체는 복잡한 공정 없이도 패턴에 사용되는 입자의 특성에 따라 패턴의 크기, 형태 및 간격을 나노수준으로 조절할 수 있는바, 유/무기 패턴 기술을 필요로 하는 바이오, 전자산업, 에너지 산업 등 다양한 분야에 효율적으로 활용될 수 있다.The present invention relates to a patterned nanostructure using external stimulus-responsive soft nanoparticles and a method of manufacturing the same. According to the present invention, the size of the external stimulus-responsive soft nanoparticles constituting the single-layered soft nanoparticle membrane reversibly shrinks or expands depending on the temperature in water or the type and concentration of the salt, thereby reversibly changing the size, Adjustable bars, patterns with various sizes, shapes and spacings can be implemented. In addition, the patterned nanostructure according to the present invention can control the size, shape and spacing of the pattern to a nanometer level according to the characteristics of particles used in the pattern without complicated processes, Electronic industry, and energy industry.
Description
본 발명은 외부자극응답성 연성 나노입자를 이용한 패턴화된 나노구조체 및 이의 제조방법에 관한 것이다.The present invention relates to a patterned nanostructure using external stimulus-responsive soft nanoparticles and a method of manufacturing the same.
반도체 및 전자부품 제작을 위한 회로설계에 있어서 핵심은 마이크로 혹은 나노패턴 공정에 있는데, 1960년대부터 전자부품 생산을 위한 기판의 회로 설계에 포토리소그래피 (photolithography)공정을 도입한 이후 이를 중심으로 패턴 기술이 발달되기 시작하였다. 최근 들어서는 마이크로수준 뿐만 아니라 나노수준의 리소그래피를 이용한 패턴공정도 개발되었으며, 최근까지도 전자부품 제작에서 핵심적인 기술로 널리 사용되고 있다.In the circuit design for semiconductor and electronic parts manufacturing, the key is micro or nano pattern process. Since 1960, photolithography process has been introduced to circuit design of substrate for electronic parts production. It began to develop. In recent years, a pattern process using nano-level lithography as well as a micro level has been developed, and until recently, it has been widely used as a core technology in the production of electronic parts.
그러나 포토리소그래피 공정은 복잡한 과정을 포함하고 있고 포토레지스트 및 부가적인 화학물질을 사용하여야 하는 단점이 있는바, 포토리소그래피의 제한적인 조건에서 탈피하여 다양한 산업분야의 목적을 충족시킬 수 있는 새로운 패턴제조 기술에 대한 요구가 증가하였다.However, the photolithography process involves a complicated process, and there is a disadvantage that a photoresist and an additional chemical substance must be used. Therefore, a new pattern manufacturing technique .
이에, poly(dimethyl siloxane) (PDMS)을 soft stamp (도장) 로 사용하여 다양한 유기물 및 무기물을 패턴할 수 있는 소프트 리소그래피(soft lithography)기술이 개발되었는데(비특허문헌 1-3), 이는 마스터(master)를 바탕으로 제작한 PDMS 도장과 다양한 유무기 화합물을 이른바 “도장밥”으로 사용하여 도장이 가지고 있는 패턴을 완벽하게 유지하며 도장밥이 다른 기판에 옮기는 것을 가능하도록 하였으며, 유기 및 무기 화합물뿐만 아니라 다양한 입자들의 패턴 제조를 확립하여, 전자소자의 제작 및 다양한 바이오 시스템으로의 응용가능성을 제시한바 있다.Soft lithography techniques have been developed to pattern various organic and inorganic materials using poly (dimethyl siloxane) (PDMS) as a soft stamp (non-patent document 1-3) master ") and PDMS paint and various organic and inorganic compounds as so-called" coatings ", it is possible to move the paintings to different substrates while maintaining the patterns of the paintings perfectly. In addition to organic and inorganic compounds The fabrication of the pattern of particles has been established, and the possibility of making electronic devices and applying them to various biosystems has been suggested.
최근에는 나노기술의 발달로 나노수준까지 기판을 패턴할 수 있는 다양한 기술들이 개발되었으며, 일례로 딥펜 리소그래피(dip pen lithography) 공정은 atomic force microscopy에서 사용되는 다양한 특성의 probe tip을 활용하여 기판을 미세하게 패턴할 수 있다고 보고되고 있다(비특허문헌 4). 또한, 블록 공중합체를 활용한 패턴 제조의 경우 블록 공중합체의 조성에 따라 sphere, cylinder, lamellar, gyroid 형태로 내부구조를 형성 가능하다는 것을 이용하여 한쪽 블록만 선택적으로 etching되거나 무기화합물들이 축적될 수 있는 조합들을 선정하여 다양한 유, 무기(나노입자) 패턴기판을 형성할 수 있다고 보고되고 있다(비특허문헌 5-7).In recent years, a variety of techniques have been developed for patterning substrates to the nano level through the development of nanotechnology. For example, dip pen lithography processes utilize various types of probe tips used in atomic force microscopy, (Non-Patent Document 4). Also, in the case of pattern production using a block copolymer, one block may be selectively etched or inorganic compounds may be accumulated using the fact that the internal structure can be formed in the form of sphere, cylinder, lamellar, and gyroid depending on the composition of the block copolymer (Nanoparticle) pattern substrate can be formed by selecting a combination of the organic and inorganic nanoparticles (Non-Patent Document 5-7).
종래 보고된 유/무기 입자 패턴기술은 상기 언급한 포토리소그래피, 소프트 리소그래피 또는 딥펜 리소그래피 기술들 이외에도, 잉크젯 프린팅 기술, 콜로이드 리소그래피(Colloidal lithgraphy) 기술들이 있으며, 특히 콜로이드 리소그래피의 경우 나노입자들로 구성된 2차원 결정단층막 혹은 3차원 입자 결정 다층막을 형성시킨 후, 이를 기반으로 다양한 패턴을 얻는 방법들이 보고되고 있다(비특허문헌 8-13).Conventional organic / inorganic particle patterning techniques include, in addition to photolithography, soft lithography or dip pen lithography techniques mentioned above, inkjet printing techniques, colloidal lithography techniques, and in particular colloidal lithography, Dimensional crystalline mono-layer film or a three-dimensional crystal grain multilayer film, and then various patterns are obtained on the basis thereof (Non-Patent Document 8-13).
그러나, 딥펜 리소그래피(Dip pen lithography)의 경우 마스크의 제작 없이도 나노수준의 패턴이 가능하지만 AFM (atomic force microscopy)이라는 장비를 사용해야 한다는 단점이 있으며, 콜로이달 리소그래피의 경우 패턴구조의 변화를 위해 ion beam 에칭 등의 부가적인 공법을 사용해야 한다는 단점이 있다.However, dip pen lithography has a disadvantage in that it is necessary to use an atomic force microscopy (AFM) apparatus, although a nano-level pattern can be formed without forming a mask. In the case of collimated lithography, It is disadvantageous to use an additional method such as etching.
한편, 최근에는 이러한 패턴공정들을 다양한 산업 및 기술분야에 적용하기 위하여 마이크로/나노입자들을 패턴하는 기술들이 등장하기 시작하였으며, 예를 들어 바이오/환경 산업에서 다양한 화학물질을 한 기판에서 동시에 검출할 수 있는 기술을 확립하기 위해 패턴 내 나노입자의 배열을 통해 검출강도를 향상시키거나, 전자산업 분야에서 무기/금속 나노입자를 연성기판 상에 패턴화시켜 다양한 전자기적, 광학적 특성을 부여할 수 있는 소재의 개발, 에너지 산업 분야에서 플라즈몬 나노입자의 회합 및 벌크 물질을 규칙적으로 패턴화시킨 구조체를 이용하여 플라즈모닉 성질의 변화를 유도할 수 있는 메타 물질의 제조 등에서 마이크로/나노입자의 패턴 기술을 적용하기 위해 많은 연구가 진행되고 있다.In recent years, techniques for patterning micro / nano particles have begun to apply these pattern processes to various industrial and technical fields. For example, in the bio / environmental industry, various chemical substances can be simultaneously detected on one substrate In order to improve the detection strength through the arrangement of nanoparticles in the pattern to establish the technology, or to make inorganic / metal nanoparticles patterned on the flexible substrate in the electronic industry field, materials capable of imparting various electromagnetic and optical characteristics The application of micro / nano particle pattern technology in the production of metamaterials which can induce the change of plasmonic properties by using structures that regularly pattern bulk materials and association of plasmon nanoparticles in the energy industry Much research is under way.
따라서, 상술한 종래의 유/무기 패턴 기술의 단점을 해결함과 동시에, 복잡한 공정 없이도 패턴에 사용되는 입자의 특성에 따라 패턴 형태를 나노수준으로 조절할 수 있는 새로운 유/무기 패턴 제조기술에 대한 연구 개발이 절실히 필요한 상황이다.Accordingly, there is a need to solve the disadvantages of the conventional organic / inorganic patterning technique described above, and to develop a novel oil / inorganic pattern manufacturing technology capable of adjusting the pattern shape to the nano level according to the characteristics of the particles used in the pattern, It is in urgent need of development.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 외부자극응답성 연성 나노입자를 이용하여 수중에서의 온도 변화 혹은 염의 종류 및 농도에 따라 패턴의 형태 및 간격을 가역적으로 조절할 수 있는 패턴화된 나노구조체 및 이의 제조방법을 제공하고자 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a multi- And a method for producing the same.
본 발명은 상기 과제를 해결하기 위하여,In order to solve the above problems,
기판; 상기 기판 상에 형성된 외부자극응답성 연성 나노입자를 포함하는 연성 나노입자 결정단층막;을 포함하고, 상기 외부자극응답성 연성 나노입자는 온도의 변화 또는 염의 농도에 따라 가역적으로 수축 또는 팽창하여 상기 기판상에 연성 나노입자 패턴을 형성하는 것을 특징으로 하는 패턴화된 나노구조체를 제공한다.Board; Wherein the external stimulus-responsive soft nanoparticles are reversibly shrunk or expanded according to a temperature change or a concentration of the salt, and the external stimulus-responsive soft nanoparticles are formed on the substrate, There is provided a patterned nanostructure characterized by forming a soft nanoparticle pattern on a substrate.
이때, 상기 연성 나노입자 패턴은 상기 외부자극응답성 연성 나노입자가 동일 또는 상이한 간격으로 반복되어 형성된 것일 수 있고, 상기 외부자극응답성 연성 나노입자의 간격은 온도의 변화 또는 염의 농도에 따라 가역적으로 변화할 수 있다. Here, the soft nanoparticle pattern may be formed by repeating the external stimulus-responsive soft nanoparticles at the same or different intervals, and the interval of the external stimulus-responsive soft nanoparticles may be reversibly changed according to temperature change or salt concentration It can change.
본 발명의 일 실시예에 의하면, 상기 온도는 0 내지 100 ℃의 범위에서 변화할 수 있다.According to one embodiment of the present invention, the temperature may vary in the range of 0 to 100 占 폚.
본 발명의 다른 일 실시예에 의하면, 상기 염은 Na3citrate, Na2CO3, Na2SO4, Na2S2O3, NaH2PO4, NaF, NaCl, NaBr, NaNO3, NaI, NaClO4 및 NaSCN으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.According to another embodiment of the present invention, the salt is selected from the group consisting of Na 3 citrate, Na 2 CO 3 , Na 2 SO 4 , Na 2 S 2 O 3 , NaH 2 PO 4 , NaF, NaCl, NaBr, NaNO 3 , NaI, NaClO 4 and NaSCN.
본 발명의 또 다른 일 실시예에 의하면, 상기 염의 농도는 0.001 내지 1 M의 범위일 수 있다.According to another embodiment of the present invention, the concentration of the salt may be in the range of 0.001 to 1 M. [
본 발명의 또 다른 일 실시예에 의하면, 상기 외부자극응답성 연성 나노입자의 직경은 10 nm 내지 5 ㎛의 범위일 수 있다.According to another embodiment of the present invention, the diameter of the external stimulus-responsive soft nanoparticles may be in a range of 10 nm to 5 占 퐉.
본 발명의 또 다른 일 실시예에 의하면, 상기 기판은 실리콘 웨이퍼, 규소/규소산화물 재질의 유리, 석영 커버글라스, indium tin oxide, ZnO, TiO2 금속산화물 층, poly(dimethylsiloxane), polyethylene, polypropylene, poly(methyl methacrylate), polystyrene, poly(ethylene terephtalate) 또는 이들의 공중합체와 같은 고분자 기질로 이루어진 군에서 선택되는 어느 하나일 수 있다.According to another embodiment of the present invention, the substrate may be a silicon wafer, glass of silicon / silicon oxide, quartz cover glass, indium tin oxide, ZnO, TiO 2 metal oxide layer, poly (dimethylsiloxane) and polymeric substrates such as poly (methyl methacrylate), polystyrene, poly (ethylene terephthalate), and copolymers thereof.
본 발명의 또 다른 일 실시예에 의하면, 상기 외부자극응답성 연성 나노입자는 폴리(N-이소프로필 아크릴아미드)[poly(N-isopropylacrylamide), pNIPAM], 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isopropyl acrylamide-co-allylamine), poly(NIPAM-co-AA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 메타아크릴레이트)[poly(N-isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 아크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필 아크릴아미드-co-아크릴산)[poly(N-isopropyl acrylamide-co-acrylic acid), poly(NIPAM-co-AAc)], 폴리(N-이소프로필 아크릴아미드-co-메타아크릴산)[poly(N-isopropyl acrylamide-co-methacrylic acid), poly(NIPAM-co-MAAc)], 폴리(N,N-디에틸아크릴아미드)[poly(N,N-diethylacrylamide)], 폴리(N-비닐카프롤락탐)[poly(N-vinlycaprolactam)], 폴리(에틸렌 글리콜)[poly(ethylene glycol)], 폴리(에틸렌 글리콜-b-프로필렌 글리콜-b-에틸렌 글리콜)[poly(ethylene glycol-b-propylene glycol-b-ethylene glycol)]로 이루어진 군에서 선택되는 어느 하나일 수 있다.According to another embodiment of the present invention, the external stimulus-responsive soft nanoparticles may be poly (N-isopropylacrylamide), pNIPAM, poly (N-isopropylacrylamide-co (N-isopropyl acrylamide-co-allylamine), poly (NIPAM-co-AA), poly (N-isopropylacrylamide-co- 2- (dimethylamino) ethyl methacrylate) poly (N-isopropylacrylamide-co-2- (dimethylamino) ethyl methacrylate), poly (NIPAM-co- DMAEMA) (N-isopropyl acrylamide-co-2- (dimethylamino) ethyl acrylate), poly (NIPAM-co-DMAEA) acrylic acid, poly (NIPAM-co-AAc), poly (N-isopropyl acrylamide-co-methacrylic acid) ], Poly (N, N-diethylacrylamide) [p (N, N-diethylacrylamide), poly (N-vinylcaprolactam), poly (ethylene glycol), poly (ethylene glycol-b-propylene glycol) (ethylene glycol-b-propylene glycol-b-ethylene glycol)] may be used.
또한, 본 발명은 (a) 기판에 외부자극응답성 연성 나노입자를 포함하는 연성 나노입자 결정단층막을 형성하는 단계; 및 (b) 상기 연성 나노입자 결정단층막이 형성된 기판의 온도를 조절하거나, 상기 연성 나노입자 결정단층막이 형성된 기판을 염 용액으로 처리하여 상기 기판 상에 연성 나노입자 패턴을 형성하는 단계;를 포함하는 패턴화된 나노구조체의 제조방법을 제공한다.The present invention also provides a method of manufacturing a semiconductor device, comprising the steps of: (a) forming a soft monocrystalline nanocrystal crystal monolayer including external stimulus-responsive soft nanoparticles on a substrate; And (b) forming a soft nanoparticle pattern on the substrate by adjusting a temperature of the substrate on which the soft nanoparticle crystal monolayer is formed, or treating the substrate on which the soft nanoparticle crystal monolayer is formed with a salt solution, A method for producing a patterned nanostructure is provided.
본 발명에 따르면, 수중에서의 온도 또는 염의 종류 및 농도에 따라 연성 나노입자 단층막을 구성하는 외부자극응답성 연성 나노입자의 크기가 가역적으로 팽창 또는 수축하여 패턴의 크기, 형태 및 간격을 가역적으로 조절할 수 있는바, 다양한 크기, 형태와 간격을 가진 패턴을 구현할 수 있다.According to the present invention, the size of the external stimulus-responsive soft nanoparticles constituting the soft nanoparticle single layer membrane can be reversibly expanded or contracted depending on the temperature in water or the type and concentration of the salt, thereby reversibly controlling the size, As far as possible, patterns with different sizes, shapes and spacings can be implemented.
또한 본 발명에 따른 패턴화된 나노구조체는 복잡한 공정 없이도 패턴에 사용되는 입자의 특성에 따라 패턴의 크기, 형태 및 간격을 나노수준으로 조절할 수 있는바, 유/무기 패턴 기술을 필요로 하는 바이오, 전자산업, 에너지 산업 등 다양한 분야에 효율적으로 활용될 수 있다.In addition, the patterned nanostructure according to the present invention can control the size, shape and spacing of the pattern to a nanometer level according to the characteristics of particles used in the pattern without complicated processes, Electronic industry, and energy industry.
도 1은 본 발명의 연성 나노입자 결정단층막을 구성하는 외부자극응답성 연성 나노입자가 수중에서 온도 변화에 따라 수축 또는 팽창하는 모습을 개념적으로 나타낸 단면도이다.
도 2는 본 발명의 연성 나노입자 결정단층막을 구성하는 외부자극응답성 연성 나노입자의 온도 변화에 따른 수중에서의 크기 변화를 나타낸 도면이다.
도 3은 본 발명에 따른 패턴화된 나노구조체를 제조하는 과정을 나타낸 것으로, 연성 나노입자 결정단층막이 형성된 기판을 염 용액으로 처리시, 외부자극응답성 연성 나노입자가 수축하면서 개별입자로 분리되어 입자 간의 간격이 변화하는 것을 개념적으로 나타낸 도면이다.
도 4는 염 용액의 종류 및 농도(0.3 M)에 따른 기판 상에 형성된 연성 나노입자 패턴의 모양을 나타낸 고배율 SEM 이미지이다.
도 5는 0.1M의 Na3citrate 염 용액 처리시, 기판 상에 형성된 연성 나노입자 패턴의 모양을 나타낸 고배율 SEM 이미지이다.
도 6은 PDMS 기판 상에 연성 나노입자 결정단층막 형성 후, 0.3 M의 Phosphate 염 용액 처리 전과 후의 기판 상에 형성된 연성 나노입자 패턴의 모양을 나타낸 SEM 이미지이다.
도 7은 본 발명에 따른 패턴화된 나노구조체의 가역적인 패턴 조절을 확인하기 위하여, 수중에서의 온도 변화(25 ℃에서 55℃, 55 ℃에서 25℃)에 따른 기판 상에 형성된 연성 나노입자 패턴의 모양을 나타낸 SEM 이미지 및 AFM 이미지이다.FIG. 1 is a cross-sectional view conceptually showing a state in which external stimulus-responsive soft nanoparticles constituting the single-layered soft nanoparticle crystal of the present invention are shrunk or expanded in accordance with a change in temperature in water.
FIG. 2 is a graph showing changes in size of external stimulus-responsive soft nanoparticles constituting the single-layered soft nanoparticle crystalline nanocrystal according to the present invention. FIG.
FIG. 3 shows a process for producing a patterned nanostructure according to the present invention. When a substrate on which a single-layered soft nanoparticle crystal is formed is treated with a salt solution, the external stimulus-responsive soft nanoparticles are shrunk and separated into individual particles And the intervals between the particles are changed.
4 is a high-magnification SEM image showing the shape of the soft nanoparticle pattern formed on the substrate according to the kind and concentration (0.3 M) of the salt solution.
FIG. 5 is a high-magnification SEM image showing the shape of the soft nanoparticle pattern formed on the substrate when the 0.1 M Na3citrate salt solution is treated. FIG.
6 is an SEM image showing the shape of the soft nanoparticle pattern formed on the substrate before and after the 0.3 M phosphoric salt solution treatment after the formation of the soft monocrystalline monocrystalline layer on the PDMS substrate.
FIG. 7 is a graph showing the results of measurement of the soft nanoparticle pattern formed on a substrate according to temperature changes in water (at 25 DEG C at 55 DEG C, 55 DEG C at 25 DEG C) to confirm the reversible pattern control of the patterned nanostructure according to the present invention. And SEM image and AFM image showing the shape of the AFM.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 종래 유/무기 패턴 기술들의, 마스크 제작, AFM (atomic force microscopy) 사용, ion beam 에칭 등의 복잡한 공정과 고가의 장비들을 필요로 하는 단점을 해결하고, 패턴에 사용되는 입자의 특성을 활용하여 패턴 형태를 나노수준으로 손쉽게 조절할 수 있는 새로운 유/무기 패턴 제조기술을 제공하고자 한다.The present invention solves the disadvantages of conventional organic / inorganic pattern technologies that require complicated processes such as mask fabrication, atomic force microscopy (AFM), ion beam etching, and expensive equipment, And to provide a new oil / inorganic pattern manufacturing technology that can easily control the pattern shape to the nano level.
이에, 본 발명은 기판; 상기 기판 상에 형성된 외부자극응답성 연성 나노입자를 포함하는 연성 나노입자 결정단층막;을 포함하고, 상기 외부자극응답성 연성 나노입자는 온도의 변화 또는 염의 농도에 따라 가역적으로 수축 또는 팽창하여 상기 기판상에 연성 나노입자 패턴을 형성하는 것을 특징으로 하는 패턴화된 나노구조체를 제공한다. Accordingly, the present invention provides a semiconductor device comprising: a substrate; Wherein the external stimulus-responsive soft nanoparticles are reversibly shrunk or expanded according to a temperature change or a concentration of the salt, and the external stimulus-responsive soft nanoparticles are formed on the substrate, There is provided a patterned nanostructure characterized by forming a soft nanoparticle pattern on a substrate.
이때, 상기 연성 나노입자 결정단층막을 구성하는 외부자극응답성 연성 나노입자는 수중에서 온도의 변화에 따라 가역적으로 수축 또는 팽창하여 크기가 변화할 수 있고, 이때, 상기 온도는 0 내지 100 ℃의 범위에서 변화할 수 있으며, 특히 생체온도(32-40 ℃) 부근에서 급격한 입자 변화가 생기는 것을 특징으로 한다(도 1, 2). 또한, 상기 외부자극응답성 연성 나노입자는 상기 온도 변화뿐만 아니라, 염 용액으로 처리 시 염석 효과에 의하여 가역적으로 수축 또는 팽창하여 크기가 변화하게 되며(도 3), 염 용액의 농도에 따라 크기 변화의 정도가 변화하게 되어 입자 간의 간격이 가역적으로 변화하게 된다.At this time, the external stimulus-responsive soft nanoparticles constituting the single-layered soft nanoparticle crystal may undergo reversible shrinkage or swelling due to changes in temperature in water, and the size may be changed. In this case, the temperature may range from 0 to 100 ° C And in particular, abrupt particle change occurs near the living body temperature (32-40 DEG C) (Figs. 1 and 2). In addition, the external stimulus-responsive soft nanoparticles reversibly shrink or expand due to the salting-out effect in the treatment with the salt solution as well as the temperature change (FIG. 3), and the size changes depending on the concentration of the salt solution And the interval between the particles reversibly changes.
따라서, 본 발명에 따른 상기 연성 나노입자 패턴은 상기 외부자극응답성 연성 나노입자가 동일 또는 상이한 간격으로 반복되어 형성되며, 이때 상기 외부자극응답성 연성 나노입자의 간격은 온도의 변화, 염의 종류 또는 염의 농도에 따라 가역적으로 변화할 수 있다. 결론적으로, 본 발명에 따른 나노구조체는 패턴에 사용된 물질인 외부자극응답성 연성 나노입자의 온도 및 염 용액의 종류, 염용액의 농도에 따라 가역적으로 수축 또는 팽창하게 되는 특성에 의해 패턴의 크기, 형태, 간격을 가역적으로 조절할 수 있다.Accordingly, the soft nanoparticle pattern according to the present invention is formed by repeating the external stimulus-responsive soft nanoparticles at the same or different intervals, wherein the interval of the external stimulus-responsive soft nanoparticles varies depending on a change in temperature, It can be reversibly changed depending on the concentration of the salt. In conclusion, the nanostructure according to the present invention is capable of reversibly shrinking or expanding depending on the temperature of the external stimulus-responsive soft nanoparticles, the type of the salt solution, and the concentration of the salt solution, , Shape, and spacing can be reversibly adjusted.
또한, 본 발명은 하기의 단계들로 구성된 패턴화된 나노구조체의 제조방법을 제공한다. The present invention also provides a method for producing a patterned nanostructure comprising the following steps.
(a) 기판에 외부자극응답성 연성 나노입자를 포함하는 연성 나노입자 결정단층막을 형성하는 단계; 및 (b) 상기 연성 나노입자 결정단층막이 형성된 기판의 온도를 조절하거나, 상기 연성 나노입자 결정단층막이 형성된 기판을 염 용액으로 처리하여 상기 기판 상에 연성 나노입자 패턴을 형성하는 단계;(a) forming a soft monocrystalline nanocrystalline crystal monolayer including external stimulus-responsive soft nanoparticles on a substrate; And (b) forming a soft nanoparticle pattern on the substrate by adjusting a temperature of the substrate on which the soft nanoparticle crystal monolayer is formed, or treating the substrate on which the soft nanoparticle crystal monolayer is formed with a salt solution;
이때, 상기 온도는 이에 제한되는 것은 아니지만 0 내지 100 ℃의 범위에서 변화할 수 있다.At this time, the temperature is not limited thereto, but it may vary in the range of 0 to 100 ° C.
또한, 상기 염 용액은 연성 나노입자를 수축 또는 팽창시킬 수 있는 염이라면 모두 가능하며, 예를 들어 호프마이스터 계열(Hofmeister series)에 속하는 염으로서 Na3citrate, Na2CO3, Na2SO4, Na2S2O3, NaH2PO4, NaF, NaCl, NaBr, NaNO3, NaI, NaClO4 및 NaSCN으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있으며, 이때 하기 실시예의 결과로부터 알 수 있는 바와 같이 상기 염 용액의 농도는 0.001 내지 1 M의 범위를 만족하는 염 용액인 것이 바람직하다.The salt solution may be any salt capable of shrinking or expanding the soft nanoparticles. For example, salts such as Na 3 citrate, Na 2 CO 3 , Na 2 SO 4 , Na 2 S 2 O 3 , NaH 2 PO 4 , NaF, NaCl, NaBr, NaNO 3 , NaI, NaClO 4 and NaSCN. As can be seen from the results of the following Examples The concentration of the salt solution is preferably in the range of 0.001 to 1 M.
또한, 상기 연성 나노입자 결정단층막을 구성하는 외부자극응답성 연성 나노입자는 직경이 수 ㎚-수 ㎛인 것을 사용할 수 있으나, 더욱 바람직하게는 직경 10 nm 내지 5 ㎛ 범위의 나노입자를 사용할 수 있다.The external stimulus-responsive soft nanoparticles constituting the soft magnetic nanoparticle single crystal layer may have a diameter of several nanometers to several micrometers, and more preferably, nanoparticles having a diameter ranging from 10 nm to 5 micrometers may be used .
또한, 상기 기판은 외부자극응답성 연성 나노입자 결정단층막을 형성시킬 수 있는 모든 기질이 가능한데, 예를 들어, 실리콘 웨이퍼, 규소/규소산화물 재질의 유리, 석영 커버글라스, indium tin oxide, ZnO, TiO2 금속산화물 층, poly(dimethylsiloxane), polyethylene, polypropylene, poly(methyl methacrylate), polystyrene, poly(ethylene terephtalate) 혹은 공중합체와 같은 고분자 기질로 이루어진 군에서 선택하여 사용가능하다.For example, the substrate may be a silicon wafer, a glass of silicon / silicon oxide, a quartz cover glass, indium tin oxide, ZnO, TiO 2, 2 metal oxide layer, a polymer substrate such as poly (dimethylsiloxane), polyethylene, polypropylene, poly (methyl methacrylate), polystyrene, poly (ethylene terephthalate) or copolymer.
또한, 상기 외부자극응답성 연성 나노입자는 수용액상에서 온도에 따라 가역적으로 수축 또는 팽창하는 특성을 제공하는 천연 및 합성 고분자 기반의 수화겔 나노입자들은 모두 가능하며, 예를 들어 폴리(N-이소프로필 아크릴아미드)[poly(N-isopropylacrylamide), pNIPAM], 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isopropyl acrylamide-co-allylamine), poly(NIPAM-co-AA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 메타아크릴레이트)[poly(N-isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 아크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필 아크릴아미드-co-아크릴산)[poly(N-isopropyl acrylamide-co-acrylic acid), poly(NIPAM-co-AAc)], 폴리(N-이소프로필 아크릴아미드-co-메타아크릴산)[poly(N-isopropyl acrylamide-co-methacrylic acid), poly(NIPAM-co-MAAc)], 폴리(N,N-디에틸아크릴아미드)[poly(N,N-diethylacrylamide)], 폴리(N-비닐카프롤락탐)[poly(N-vinlycaprolactam)], 폴리(에틸렌 글리콜)[poly(ethylene glycol)], 폴리(에틸렌 글리콜-b-프로필렌 글리콜-b-에틸렌 글리콜)[poly(ethylene glycol-b-propylene glycol-b-ethylene glycol)]로 이루어진 군에서 선택되는 어느 하나일 수 있다.Also, the external stimulus-responsive soft nanoparticles can be both natural and synthetic polymer-based hydrogel nanoparticles that provide a property of reversibly shrinking or expanding depending on the temperature in an aqueous solution. For example, poly (N-isopropyl acrylate Poly (N-isopropyl acrylate), poly (N-isopropyl acrylamide), poly (N-isopropyl acrylamide-co-allylamine) Poly (N-isopropylacrylamide-co-2- (dimethylamino) ethyl methacrylate), poly (NIPAM-co-DMAEMA)] and poly (N-isopropylacrylamide- Poly (N-isopropyl acrylamide-co-2- (dimethylamino) ethyl acrylate), poly (NIPAM-co-DMAEA) Poly (N-isopropyl acrylamide-co-acrylic acid), poly (NIPAM-co-AAc) Poly (N, N-diethylacrylamide) [poly (N, N-dimethylaminopropyl) acrylamide-co-methacrylic acid] poly (ethylene glycol)], poly (ethylene glycol-b-propylene glycol-b-ethyleneglycol), poly (N-vinylcaprolactam) (ethylene glycol-b-propylene glycol-b-ethylene glycol)] may be used.
이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments and the like. It will be apparent to those skilled in the art, however, that these examples are provided for further illustrating the present invention and that the scope of the present invention is not limited thereto.
제조예Manufacturing example 1. One. 기판 상에On the substrate 형성된 외부자극응답성 연성 나노입자를 포함하는 연성 나노입자 결정 A soft nanoparticle crystal comprising an outer stimulus-responsive soft nanoparticle formed 단층막의Monolayer 제조 Produce
(1) 연성 나노입자 콜로이드(폴리(N-이소프로필아크릴아미드-co-알릴아민)) 합성(1) Synthesis of soft nanoparticle colloid (poly (N-isopropylacrylamide-co-allylamine))
N-이소프로필아크릴아미드(1.0 g)과 N,N'-메틸렌 비스(아크릴아미드)(0.08 g)을 탈이온수 100 g을 혼합하여 얻은 수용액에 70 ㎕의 알릴아민과 2 ㎖의 과황산칼륨 수용액(0.025 g/㎖)을 순차적으로 첨가하면서 85 ℃, 300 rpm으로 가열 및 교반하였다. 2-4 시간 동안 반응을 수행한 후 반응을 종료시켜 1 wt%의 폴리(N-이소프로필아크릴아미드-co-알릴아민) 수용액을 합성하였다.To an aqueous solution obtained by mixing N-isopropyl acrylamide (1.0 g) and N, N'-methylenebis (acrylamide) (0.08 g) in deionized water (100 g), 70 μL of allylamine and 2 mL of an aqueous solution of potassium persulfate (0.025 g / ml) were sequentially added thereto, followed by heating and stirring at 85 캜 and 300 rpm. After the reaction was carried out for 2-4 hours, the reaction was terminated to synthesize a 1 wt% aqueous solution of poly (N-isopropylacrylamide-co-allylamine).
(2) 연성 나노입자 결정단층막용 연성 나노입자 용액의 제조(2) Preparation of a soft nanoparticle solution for a soft single-layered soft nanoparticle
상기 (1)에서 제조한 1 wt%의 폴리(N-이소프로필아크릴아미드-co-알릴아민) 수용액 8 ㎖를 각 1 ㎖씩 1.5 ㎖ 원심분리용 tube에 담은 후, 원심분리(7000 rpm, 30분)한 후, 상층액을 제거하고 IPA에 재분산 시켰다.8 ml of the 1 wt% aqueous solution of poly (N-isopropylacrylamide-co-allylamine) prepared in (1) above was placed in a 1.5 ml centrifuge tube in an amount of 1 ml each and centrifuged (7000 rpm, 30 Min), the supernatant was removed and redispersed in IPA.
(3) 기판상에 형성된 연성 나노입자 결정단층막의 제조(3) Preparation of a soft nanoparticle crystal monolayer film formed on a substrate
1.5 cm × 1.5 cm 크기의 실리콘 웨이퍼(Si wafer)를 에탄올에 담그어 30 분간 bath형 초음파 세척기(sonicator)를 이용하여 세척한 후, 충분히 말려주었다. 이후, 페트리 접시(직경 5.2 cm)에 물을 가득채우고, 잔잔한 물의 표면 위에 상기 (2)를 통해 제조한 용액을 물의 표면을 모두 채우도록 떨어뜨려 상기 용액에 분산된 연성 나노입자들을 규칙적인 육방 격자(hexagonal lattice)형태로 자기조립(self-assembly)시켰다. 다음으로 세척한 실리콘 웨이퍼의 한쪽 모서리 끝을 집게로 잡고 연성 나노입자들이 자기조립되어 있는 물속 깊이 담그어 물 표면 위에 떠있는 결정단층막을 떠낸 후, 건조하여 연성 나노입자 결정단층막을 제조하였다.The silicon wafer (1.5 cm × 1.5 cm) was immersed in ethanol, washed with a sonicator for 30 minutes, and sufficiently dried. Thereafter, the Petri dish (5.2 cm in diameter) was filled with water and the solution prepared in (2) above was dropped on the surface of the still water so as to fill the surface of the water, thereby dispersing the soft nanoparticles dispersed in the solution in a regular hexagonal lattice (hexagonal lattice) in the form of self-assembly. Then, the silicon nanoparticles were immersed in the self-assembled water to remove the crystalline monolayer floating on the surface of the water, and dried to prepare a soft monocrystalline nanoparticle crystal monolayer.
제조예Manufacturing example 2. 2.
상기 제조예 1의 (3)에서 실리콘 웨이퍼 대신 폴리디메틸실록산 기판을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 기판상에 형성된 연성 나노입자 결정단층막을 제조하였다.A single-layered soft nano-particle crystal film formed on a substrate was prepared in the same manner as in Preparation Example 1, except that a polydimethylsiloxane substrate was used instead of the silicon wafer in (3) of Production Example 1.
실시예Example 1. One. NaNa 33 citratecitrate 염 용액 처리를 통한 연성 나노입자 패턴의 형성 Formation of soft nanoparticle pattern through salt solution treatment
상기 제조예 1에 따라 실리콘 웨이퍼 기판 상에 외부자극응답성 연성 나노입자 결정단층막이 형성된 구조체에 각각 0.1, 0.2, 0.3 M 농도의 Na3citrate 염 용액을 처리하여 연성 나노입자 패턴이 형성된 패턴화된 나노구조체를 제조하였다.According to Preparation Example 1, a structure in which an external stimulus-responsive soft nanoparticle crystal monolayer film was formed on a silicon wafer substrate was treated with a Na 3 citrate salt solution having concentrations of 0.1, 0.2, and 0.3 M, respectively, Nanostructures were prepared.
실시예Example 2. 2. NaNa 22 SOSO 44 염 용액 처리를 통한 연성 나노입자 패턴의 형성 Formation of soft nanoparticle pattern through salt solution treatment
상기 제조예 1에 따라 실리콘 웨이퍼 기판 상에 외부자극응답성 연성 나노입자 결정단층막이 형성된 구조체에 각각 0.1, 0.2, 0.3 M 농도의 Na2SO4 염 용액을 처리하여 연성 나노입자 패턴이 형성된 패턴화된 나노구조체를 제조하였다.According to Preparation Example 1, a structure having an external stimulus-responsive soft nanoparticle crystal monolayer formed on a silicon wafer substrate was treated with a Na 2 SO 4 salt solution having a concentration of 0.1, 0.2, and 0.3 M, respectively, Was prepared.
실시예Example 3. 3. NaHNaH 22 POPO 44 염 용액 처리를 통한 연성 나노입자 패턴의 형성 Formation of soft nanoparticle pattern through salt solution treatment
상기 제조예 1에 따라 실리콘 웨이퍼 기판 상에 외부자극응답성 연성 나노입자 결정단층막이 형성된 구조체에 각각 0.1, 0.2, 0.3 M 농도의 NaH2PO4 염 용액을 처리하여 연성 나노입자 패턴이 형성된 패턴화된 연성 나노구조체를 제조하였다.According to Preparation Example 1, a structure in which an external stimulus-responsive soft nanoparticle crystal monolayer film was formed on a silicon wafer substrate was treated with a NaH 2 PO 4 salt solution having concentrations of 0.1, 0.2, and 0.3 M, respectively, To prepare a soft nanostructure.
실시예Example 4. NaCl 염 용액 처리를 통한 연성 나노입자 패턴의 형성 4. Formation of the soft nanoparticle pattern by treatment with NaCl salt solution
상기 제조예 1에 따라 실리콘 웨이퍼 기판 상에 외부자극응답성 연성 나노입자 결정단층막이 형성된 구조체에 각각 0.1, 0.2, 0.3 M 농도의 NaCl 염 용액을 처리하여 연성 나노입자 패턴이 형성된 패턴화된 연성 나노구조체를 제조하였다.According to Preparation Example 1, a structure in which an external stimulus-responsive soft nanocrystalline single crystal film was formed on a silicon wafer substrate was treated with NaCl salt solutions of 0.1, 0.2, and 0.3 M concentrations, respectively, to form a patterned soft nano- Structure.
실시예Example 5. 5. NaNONaNO 33 염 용액 처리를 통한 연성 나노입자 패턴의 형성 Formation of soft nanoparticle pattern through salt solution treatment
상기 제조예 1에 따라 실리콘 웨이퍼 기판 상에 외부자극응답성 연성 나노입자 결정단층막이 형성된 구조체에 각각 0.1, 0.2, 0.3 M 농도의 NaNO3 염 용액을 처리하여 연성 나노입자 패턴이 형성된 패턴화된 나노구조체를 제조하였다.According to Preparation Example 1, a structure having an external stimulus-responsive soft nanoparticle crystal monolayer formed on a silicon wafer substrate was treated with NaNO 3 salt solutions of 0.1, 0.2, and 0.3 M concentrations, respectively, to form patterned nano- Structure.
시험예Test Example 1. 염 용액의 종류 및 농도에 따른 연성 나노입자 패턴의 1. The soft nanoparticle pattern according to the type and concentration of the salt solution SEMSEM 이미지 분석 Image analysis
상기 실시예 1 내지 5의 나노구조체에 형성된 연성 나노입자 패턴을 주사전자현미경(Scaning Electron Microscope, SEM)을 이용하여 분석하였으며 그 결과를 하기 도 4, 및 도 5에 나타내었다. 이를 통해 염 용액 처리시 연성 나노입자 결정단층막을 구성하는 외부자극응답성 연성 나노입자가 개별 입자로 분리되며, 염 용액의 종류와 염 용액의 농도에 따라 외부자극응답성 연성 나노입자의 수축 정도 및 수축되는 모양이 달라지는 것을 확인할 수 있는바, 본 발명에 따른 연성 나노구조체는 염 용액의 종류와 염 용액의 농도를 조절하여 패턴의 크기, 형태 및 패턴의 간격을 가역적으로 조절할 수 있음을 확인하였다.The soft nanoparticle patterns formed on the nanostructures of Examples 1 to 5 were analyzed using a scanning electron microscope (SEM). The results are shown in FIG. 4 and FIG. The external stimulus-responsive soft nanoparticles, which constitute the monolayer of soft nanoparticles, are separated into individual particles during salt solution treatment. The degree of shrinkage of external stimulus-responsive soft nanoparticles depends on the type of salt solution and the concentration of the salt solution. It was confirmed that the shape of the pattern was varied. It was confirmed that the soft nanostructure according to the present invention was able to reversibly control the size, shape, and interval of the pattern by controlling the type of the salt solution and the concentration of the salt solution.
시험예Test Example 2. 연성 기판에서의 염 용액 처리 시 연성 나노입자 패턴의 2. In the treatment of salt solution on a flexible substrate, the soft nanoparticle pattern SEMSEM 이미지 및 Images and AFMAFM 이미지 분석 Image analysis
연성 기판에의 적용 가능성 여부를 확인하기 위하여, 상기 제조예 2에 따라 연성 기판인 PDMS 기판상에 연성 나노입자 결정단층막이 형성된 구조체에 0.3 M 농도의 NaH2PO4 염 용액을 처리하기 전의 SEM 이미지 및 염 용액 처리 후의 원자현미경(Atomic Force Microscope) 이미지를 분석하였으며 그 결과를 하기 도 6에 나타내었다.In order to confirm the applicability to the flexible substrate, SEM image before the treatment of the 0.3 M concentration NaH 2 PO 4 salt solution on the structure having the soft nanocrystalline monocrystalline single layer film formed on the PDMS substrate, And atomic force microscope images after the salt solution treatment were analyzed. The results are shown in FIG. 6.
이를 통해, 연성 기판인 PDMS 기판을 사용한 경우에도, 염 용액 처리시 외부자극응답성 연성 나노입자가 개별 입자로 분리되며, 입자의 형태 및 간격이 변화된 연성 나노입자 패턴이 형성된 것을 확인하였는바, 본 발명은 연성 기판에서도 패턴의 형태와 간격을 자유롭게 조절할 수 있음을 확인하였다.As a result, it was confirmed that the external stimulus-responsive soft nanoparticles were separated into individual particles and the soft nanoparticle pattern in which the shapes and the intervals of the particles were changed during the salt solution treatment, even when the PDMS substrate was used as the flexible substrate. It has been confirmed that the invention can freely adjust the pattern shape and spacing even on a flexible substrate.
시험예Test Example 3. 수중에서의 온도 변화에 따른 연성 나노입자 패턴의 3. The soft nanoparticle pattern according to the temperature change in water SEMSEM 이미지 및 Images and AFMAFM 이미지 분석 Image analysis
수중에서의 온도 변화에 따른 연성 나노입자 패턴의 가역적인 변화를 확인하기 위하여, 상기 실시예 3(염 용액의 농도 0.3 M)에 따라 NaH2PO4 염 용액을 처리하여 연성 나노입자 패턴을 형성시킨 후, 온도 변화(25 ℃에서 55℃, 55 ℃에서 25℃)에 따른 패턴의 SEM 이미지 및 AFM 이미지를 분석하였으며 그 결과를 하기 도 7에 나타내었다. In order to confirm the reversible change of the soft nanoparticle pattern according to the temperature change in water, NaH 2 PO 4 salt solution was treated according to Example 3 (0.3 M of salt solution) to form a soft nanoparticle pattern SEM image and AFM image of the pattern according to temperature change (25 ° C at 55 ° C and 55 ° C at 25 ° C) were analyzed and the results are shown in FIG.
이를 통해, 염 용액을 이용하여 연성 나노입자 패턴을 형성한 후, 패턴이 형성된 기판을 물에 담그고 수중에서의 온도 변화시, 연성 나노입자 결정단층막을 구성하는 외부자극응답성 연성 나노입자가 가역적으로 수축 및 팽창하여 입자의 크기 및 모양이 달라지는 것을 확인하였는바, 본 발명에 따른 나노구조체는 수중에서의 온도를 조절하여 패턴의 형태 및 패턴의 간격을 가역적으로 조절할 수 있음을 확인하였다.Thus, a soft nanoparticle pattern is formed using a salt solution, and then the patterned substrate is immersed in water. When temperature changes in water, external stimulus-responsive soft nanoparticles constituting the single-layered soft nanoparticle membrane are reversibly It was confirmed that the size and shape of the particles were varied by shrinkage and expansion. It was confirmed that the nanostructure according to the present invention was able to reversibly control the pattern shape and pattern interval by controlling the temperature in water.
Claims (16)
상기 기판 상에 형성된 10 nm 내지 5 ㎛ 직경의 수화겔 나노입자를 포함하는 수화겔 나노입자 결정단층막, 상기 수화겔 나노입자 결정단층막은 육방 격자 형태로 자기조립된 형태를 가짐;
을 포함하는 패턴화된 나노구조체로서,
(i) 상기 수화겔 나노입자는 수중에서의 온도가 증가함에 따라 수축되는 한편, 온도가 감소함에 따라 팽창하는 방식으로 상기 기판 상에 수화겔 나노입자 패턴을 형성하고, 상기 수화겔 나노입자의 수축 또는 팽창은 수중에서의 온도의 증가 또는 감소에 따라 가역적으로 이루어짐, 또한
(ii) 상기 수화겔 나노입자는 염 용액의 처리 시 염의 농도가 증가함에 따라 수축되는 한편, 염의 농도가 감소함에 따라 팽창하는 방식으로 상기 기판 상에 수화겔 나노입자 패턴을 형성하고, 상기 수화겔 나노입자의 수축 또는 팽창은 염의 농도의 증가 또는 감소에 따라 가역적으로 이루어짐, 그리고,
상기 염은 호프마이스터 계열(Hofmeister series)에 속하는 염인 것을 특징으로 하는 패턴화된 나노구조체.Board; And
A hydrogel nanoparticle crystal monolayer having hydrogel nanoparticles of 10 nm to 5 탆 diameter formed on the substrate, the hydrogel nanoparticle crystal monolayer having a self-assembled form in hexagonal lattice form;
≪ / RTI > wherein the patterned nanostructure comprises:
(i) the hydrogel nanoparticles form a hydrogel nanoparticle pattern on the substrate in such a manner that the hydrogel nanoparticles contract as the temperature in water increases and expand as the temperature decreases, and the shrinkage or swelling of the hydrogel nanoparticles is Is reversibly made with increasing or decreasing temperature in water, and
(ii) the hydrogel nanoparticles are formed by forming a hydrogel nanoparticle pattern on the substrate in such a manner that the hydrogel nanoparticles contract as the concentration of the salt increases in the treatment of the salt solution while expanding as the concentration of the salt decreases, The shrinkage or swelling is reversible as the salt concentration increases or decreases,
Wherein the salt is a salt belonging to the Hofmeister series.
상기 수화겔 나노입자 패턴은 상기 수화겔 나노입자가 동일 또는 상이한 간격으로 반복되어 형성된 것을 특징으로 하고,
상기 수화겔 나노입자의 간격은 온도의 변화 또는 염의 농도에 따라 가역적으로 변화하는 것을 특징으로 하는 패턴화된 나노구조체.The method according to claim 1,
The hydrogel nanoparticle pattern is characterized in that the hydrogel nanoparticles are repeatedly formed at the same or different intervals,
Wherein the spacing of the hydrogel nanoparticles is reversibly changed according to a temperature change or a salt concentration.
상기 온도는 0 내지 100 ℃의 범위에서 변화하는 것을 특징으로 하는 패턴화된 나노구조체.The method according to claim 1,
Lt; RTI ID = 0.0 > 0 C < / RTI > to < RTI ID = 0.0 > 100 C. < / RTI >
상기 염은 Na3citrate, Na2CO3, Na2SO4, Na2S2O3, NaH2PO4, NaF, NaCl, NaBr, NaNO3, NaI, NaClO4 및 NaSCN으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 패턴화된 나노구조체.The method according to claim 1,
Wherein the salt is selected from the group consisting of Na 3 citrate, Na 2 CO 3 , Na 2 SO 4 , Na 2 S 2 O 3 , NaH 2 PO 4 , NaF, NaCl, NaBr, NaNO 3 , NaI, NaClO 4 and NaSCN Wherein at least one of the at least two nanostructured nanostructures is a nanostructure.
상기 염의 농도는 0.001 내지 1 M의 범위인 것을 특징으로 하는 패턴화된 나노구조체.The method according to claim 1,
Wherein the concentration of the salt is in the range of 0.001 to 1 M. < RTI ID = 0.0 > 1. < / RTI >
상기 기판은 실리콘 웨이퍼, 규소/규소산화물 재질의 유리, 석영 커버글라스, indium tin oxide, ZnO, TiO2 금속산화물 층, poly(dimethylsiloxane), polyethylene, polypropylene, poly(methyl methacrylate), polystyrene, poly(ethylene terephtalate) 또는 이들의 공중합체와 같은 고분자 기질로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 패턴화된 나노구조체.The method according to claim 1,
The substrate may be a silicon wafer, glass of silicon / silicon oxide, quartz cover glass, indium tin oxide, ZnO, TiO 2 metal oxide layer, poly (dimethylsiloxane), polyethylene, polypropylene, poly (methyl methacrylate) terephthalate, or a copolymer thereof. The patterned nanostructure according to claim 1,
상기 수화겔 나노입자는 폴리(N-이소프로필 아크릴아미드)[poly(N-isopropylacrylamide), pNIPAM], 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isopropyl acrylamide-co-allylamine), poly(NIPAM-co-AA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 메타아크릴레이트)[poly(N-isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 아크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필 아크릴아미드-co-아크릴산)[poly(N-isopropyl acrylamide-co-acrylic acid), poly(NIPAM-co-AAc)], 폴리(N-이소프로필 아크릴아미드-co-메타아크릴산)[poly(N-isopropyl acrylamide-co-methacrylic acid), poly(NIPAM-co-MAAc)], 폴리(N,N-디에틸아크릴아미드)[poly(N,N-diethylacrylamide)], 폴리(N-비닐카프롤락탐)[poly(N-vinlycaprolactam)], 폴리(에틸렌 글리콜)[poly(ethylene glycol)], 폴리(에틸렌 글리콜-b-프로필렌 글리콜-b-에틸렌 글리콜)[poly(ethylene glycol-b-propylene glycol-b-ethylene glycol)]로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 패턴화된 나노구조체.The method according to claim 1,
The hydrogel nanoparticles may be selected from the group consisting of poly (N-isopropylacrylamide), pNIPAM, poly (N-isopropyl acrylamide-co-allylamine) ), poly (NIPAM-co-AA), poly (N-isopropylacrylamide-co-2- (dimethylamino) ethyl methacrylate ), poly (NIPAM-co-DMAEMA), poly (N-isopropyl acrylamide-co-2- (dimethylamino) ethyl acrylate) ), poly (NIPAM-co-DMAEA), poly (N-isopropyl acrylamide-co-acrylic acid) (N-isopropyl acrylamide-co-methacrylic acid), poly (NIPAM-co-MAAc) (N, N-diethylacrylamide)], poly (N-vinylcaprolactam) [poly caprolactam), poly (ethylene glycol), poly (ethylene glycol-b-propylene glycol-b-ethylene glycol) Wherein the patterned nanostructure is one selected from the group consisting of:
(b) (i) 상기 수화겔 나노입자 결정단층막이 형성된 기판의 수중에서의 온도가 증가함에 따라 수축되는 한편, 온도가 감소함에 따라 팽창하는 방식으로 상기 기판 상에 수화겔 나노입자 패턴을 형성하거나, 또는 (ii) 상기 수화겔 나노입자 결정단층막이 형성된 기판의 염 용액의 처리 시 염의 농도가 증가함에 따라 수축되는 한편, 염의 농도가 감소함에 따라 팽창하는 방식으로 상기 기판 상에 수화겔 나노입자 패턴을 형성하는 단계;
를 포함하는 패턴화된 나노구조체의 제조방법으로서,
상기 수화겔 나노입자의 수축 또는 팽창은 수중에서의 온도의 증가 또는 감소에 따라 가역적으로 이루어지고, 또한 염의 농도의 증가 또는 감소에 따라 가역적으로 이루어지며, 그리고
상기 염은 호프마이스터 계열(Hofmeister series)에 속하는 염인 것을 특징으로 하는 패턴화된 나노구조체의 제조방법.Forming a hydrogel nanoparticle crystal monolayer having hydrogel nanoparticles having a diameter of 10 nm to 5 탆 on a substrate, the hydrogel nanoparticle crystal monolayer having a self-assembled form in a hexagonal lattice form; And
(b) forming a hydrogel nanoparticle pattern on the substrate in such a manner that (i) the substrate having the hydrogel nanoparticle crystal monolayer formed therein contracts as the temperature in water increases, and expands as the temperature decreases, or (ii) forming a hydrogel nanoparticle pattern on the substrate by shrinking as the salt concentration increases while the salt concentration of the hydrogel nanoparticle crystal monolayer film is formed, and expanding as the concentration of the salt decreases; and ;
A method for producing a patterned nanostructure comprising:
The shrinkage or swelling of the hydrogel nanoparticles is reversibly performed in accordance with an increase or decrease in the temperature in water and is reversible in accordance with an increase or decrease in the concentration of the salt,
Wherein the salt is a salt belonging to the Hofmeister series.
상기 수화겔 나노입자 패턴은 상기 수화겔 나노입자가 동일 또는 상이한 간격으로 반복되어 형성된 것을 특징으로 하고,
상기 수화겔 나노입자의 간격은 온도의 변화 또는 염의 농도에 따라 가역적으로 변화하는 것을 특징으로 하는 패턴화된 나노구조체의 제조방법.10. The method of claim 9,
The hydrogel nanoparticle pattern is characterized in that the hydrogel nanoparticles are repeatedly formed at the same or different intervals,
Wherein the spacing of the hydrogel nanoparticles is reversibly changed according to a temperature change or a salt concentration.
상기 온도는 0 내지 100 ℃의 범위에서 변화하는 것을 특징으로 하는 패턴화된 나노구조체의 제조방법.10. The method of claim 9,
Wherein the temperature varies between 0 and 100 < 0 > C.
상기 염은 Na3citrate, Na2CO3, Na2SO4, Na2S2O3, NaH2PO4, NaF, NaCl, NaBr, NaNO3, NaI, NaClO4 및 NaSCN으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 패턴화된 나노구조체의 제조방법.10. The method of claim 9,
Wherein the salt is selected from the group consisting of Na 3 citrate, Na 2 CO 3 , Na 2 SO 4 , Na 2 S 2 O 3 , NaH 2 PO 4 , NaF, NaCl, NaBr, NaNO 3 , NaI, NaClO 4 and NaSCN Wherein the nanostructured nanostructure is one or more nanostructured nanostructures.
상기 염의 농도는 0.001 내지 1 M의 범위인 것을 특징으로 하는 패턴화된 나노구조체의 제조방법.10. The method of claim 9,
Wherein the concentration of the salt is in the range of 0.001 to 1 M.
상기 기판은 실리콘 웨이퍼, 규소/규소산화물 재질의 유리, 석영 커버글라스, indium tin oxide, ZnO, TiO2 금속산화물 층, poly(dimethylsiloxane), polyethylene, polypropylene, poly(methyl methacrylate), polystyrene, poly(ethylene terephtalate) 또는 이들의 공중합체와 같은 고분자 기질로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 패턴화된 나노구조체의 제조방법.10. The method of claim 9,
The substrate may be a silicon wafer, glass of silicon / silicon oxide, quartz cover glass, indium tin oxide, ZnO, TiO 2 metal oxide layer, poly (dimethylsiloxane), polyethylene, polypropylene, poly (methyl methacrylate) terephthalate, or a copolymer thereof. The method according to claim 1, wherein the polymer matrix is selected from the group consisting of a polymer matrix and a polymer matrix.
상기 수화겔 나노입자는 폴리(N-이소프로필 아크릴아미드)[poly(N-isopropylacrylamide), pNIPAM], 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isopropyl acrylamide-co-allylamine), poly(NIPAM-co-AA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 메타아크릴레이트)[poly(N-isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate), poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필 아크릴아미드-co-2-(디메틸아미노)에틸 아크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필 아크릴아미드-co-아크릴산)[poly(N-isopropyl acrylamide-co-acrylic acid), poly(NIPAM-co-AAc)], 폴리(N-이소프로필 아크릴아미드-co-메타아크릴산)[poly(N-isopropyl acrylamide-co-methacrylic acid), poly(NIPAM-co-MAAc)], 폴리(N,N-디에틸아크릴아미드)[poly(N,N-diethylacrylamide)], 폴리(N-비닐카프롤락탐)[poly(N-vinlycaprolactam)], 폴리(에틸렌 글리콜)[poly(ethylene glycol)], 폴리(에틸렌 글리콜-b-프로필렌 글리콜-b-에틸렌 글리콜)[poly(ethylene glycol-b-propylene glycol-b-ethylene glycol)]로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 패턴화된 나노구조체의 제조방법.10. The method of claim 9,
The hydrogel nanoparticles may be selected from the group consisting of poly (N-isopropylacrylamide), pNIPAM, poly (N-isopropyl acrylamide-co-allylamine) ), poly (NIPAM-co-AA), poly (N-isopropylacrylamide-co-2- (dimethylamino) ethyl methacrylate ), poly (NIPAM-co-DMAEMA), poly (N-isopropyl acrylamide-co-2- (dimethylamino) ethyl acrylate) ), poly (NIPAM-co-DMAEA), poly (N-isopropyl acrylamide-co-acrylic acid) (N-isopropyl acrylamide-co-methacrylic acid), poly (NIPAM-co-MAAc) (N, N-diethylacrylamide)], poly (N-vinylcaprolactam) [poly caprolactam), poly (ethylene glycol), poly (ethylene glycol-b-propylene glycol-b-ethylene glycol) Wherein the nanostructured nanostructure is one selected from the group consisting of nanostructured nanostructures.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160018328A KR101864674B1 (en) | 2016-02-17 | 2016-02-17 | Patterned nanostructures by using stimuli-responsive soft nanoparticles and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160018328A KR101864674B1 (en) | 2016-02-17 | 2016-02-17 | Patterned nanostructures by using stimuli-responsive soft nanoparticles and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170096731A KR20170096731A (en) | 2017-08-25 |
KR101864674B1 true KR101864674B1 (en) | 2018-06-05 |
Family
ID=59761469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160018328A KR101864674B1 (en) | 2016-02-17 | 2016-02-17 | Patterned nanostructures by using stimuli-responsive soft nanoparticles and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101864674B1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101446619B1 (en) * | 2006-11-30 | 2014-10-01 | 미츠비시 가가쿠 엔지니어링 가부시키가이샤 | A method for adjusting the concentration of the developer, a manufacturing apparatus and a developer |
US8470035B2 (en) * | 2007-12-21 | 2013-06-25 | Microvention, Inc. | Hydrogel filaments for biomedical uses |
KR100922232B1 (en) * | 2008-02-13 | 2009-10-16 | 연세대학교 산학협력단 | Direct patterning method and apparatus of living cells using electrohydraulic printing technique |
KR20140099695A (en) * | 2013-02-04 | 2014-08-13 | 삼성전자주식회사 | Draw solute for forward osmosis, forward osmosis water treatment device, and forward osmosis method for water treatment |
KR101554067B1 (en) * | 2013-08-01 | 2015-09-17 | 한국과학기술원 | Method for controlling block copolymer self-assembly using immersion annealing and the nanostructures obtained by the method |
-
2016
- 2016-02-17 KR KR1020160018328A patent/KR101864674B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20170096731A (en) | 2017-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100930966B1 (en) | Nanostructures of block copolymers formed on surface patterns of shapes inconsistent with the nanostructures of block copolymers and methods for manufacturing the same | |
Gao et al. | Characterisation of surface wettability based on nanoparticles | |
Yan et al. | Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces | |
EP2419479B1 (en) | Method of creating colored materials by fixing ordered structures of magnetite nanoparticles within a solid media | |
Xu et al. | A review on colloidal self-assembly and their applications | |
US8753526B2 (en) | Porous thin film having holes and a production method therefor | |
JP5668052B2 (en) | Method for producing printed matter on which aligned fine particles are printed | |
TWI415735B (en) | Modification of surface wetting properties of a substrate | |
KR101910378B1 (en) | Two dimensional hybrid nanopatternd structures through spontaneous self-assembly of plasmonic nanoparticles on a hydrogel colloidal crystal monolayer | |
Wu et al. | A facile approach for artificial biomimetic surfaces with both superhydrophobicity and iridescence | |
US7713753B2 (en) | Dual-level self-assembled patterning method and apparatus fabricated using the method | |
KR101148208B1 (en) | Nano Structure of Block Copolymer Having Patternized Structure and Method for Preparing the Same | |
KR20110132758A (en) | Surface with superhydrophobic and superhydrophilic regions | |
KR100928057B1 (en) | Super water-repellent surface modification method using ultrafast laser | |
Hiltl et al. | A one-step screening process for optimal alignment of (soft) colloidal particles | |
KR20170094926A (en) | Patterining of nanocomposite colloids comprising plasmon nanoparticles and hydrogel nanoparticles, and Patterned hybrid nanostructures which can reversibly modulate optical signal and surface enhanced Raman scattering(SERS) signals | |
Laurenti et al. | How micropatterning and surface functionalization affect the wetting behavior of ZnO nanostructured surfaces | |
Jambhulkar et al. | Nanoparticle Assembly: From Self‐Organization to Controlled Micropatterning for Enhanced Functionalities | |
KR101093204B1 (en) | Orientation Controlled Blockcopolymer Nanostructures Using Organic Compound Photoresist Cross Patterns and Method for Preparing the Same | |
Schweikart et al. | Controlled wrinkling as a novel method for the fabrication of patterned surfaces | |
KR101864674B1 (en) | Patterned nanostructures by using stimuli-responsive soft nanoparticles and method for manufacturing the same | |
Wang et al. | Fabrication of surface-patterned and free-standing ZnO nanobowls | |
Kameya et al. | Fabrication of micropillar TiO2 photocatalyst arrays using nanoparticle-microprinting method | |
Grolman et al. | Dual imprinted polymer thin films via pattern directed self-organization | |
KR101389933B1 (en) | MANUFACTURING METHOD OF ALIGNED ZnO NANOWIRE AND ZnO NANOWIRE BY THESAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20160217 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20161122 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20170613 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20180323 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20170613 Comment text: Notification of reason for refusal Patent event code: PE06011S01I Patent event date: 20161122 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20180323 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20170221 Comment text: Amendment to Specification, etc. |
|
PX0701 | Decision of registration after re-examination |
Patent event date: 20180528 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20180515 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20180323 Comment text: Decision to Refuse Application Patent event code: PX07011S01I Patent event date: 20170221 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20180530 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20180530 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20210518 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20220502 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20240403 Start annual number: 7 End annual number: 7 |