KR101843268B1 - Method for manufacturing silver nanowire film using 1,8-diazabicycloundec-7-ene and silver nanowire film made by the same - Google Patents
Method for manufacturing silver nanowire film using 1,8-diazabicycloundec-7-ene and silver nanowire film made by the same Download PDFInfo
- Publication number
- KR101843268B1 KR101843268B1 KR1020160086688A KR20160086688A KR101843268B1 KR 101843268 B1 KR101843268 B1 KR 101843268B1 KR 1020160086688 A KR1020160086688 A KR 1020160086688A KR 20160086688 A KR20160086688 A KR 20160086688A KR 101843268 B1 KR101843268 B1 KR 101843268B1
- Authority
- KR
- South Korea
- Prior art keywords
- silver nanowire
- dbu
- nanowire film
- silver
- coating
- Prior art date
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 94
- 239000002042 Silver nanowire Substances 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- VSTXCZGEEVFJES-UHFFFAOYSA-N 1-cycloundecyl-1,5-diazacycloundec-5-ene Chemical compound C1CCCCCC(CCCC1)N1CCCCCC=NCCC1 VSTXCZGEEVFJES-UHFFFAOYSA-N 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 32
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 claims description 112
- 238000000576 coating method Methods 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 17
- 239000002070 nanowire Substances 0.000 claims description 16
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 16
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 16
- -1 polyethylene terephthalate Polymers 0.000 claims description 8
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 229920001230 polyarylate Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 238000003618 dip coating Methods 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 238000009718 spray deposition Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 15
- 238000012545 processing Methods 0.000 abstract description 8
- 230000002401 inhibitory effect Effects 0.000 abstract description 7
- 230000035699 permeability Effects 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 44
- 239000000243 solution Substances 0.000 description 23
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 8
- 239000010409 thin film Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229920005570 flexible polymer Polymers 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/002—Processes for applying liquids or other fluent materials the substrate being rotated
- B05D1/005—Spin coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/26—Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/303—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
- H01B3/306—Polyimides or polyesterimides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/42—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
- H01B3/421—Polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/42—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
- H01B3/421—Polyesters
- H01B3/426—Polycarbonates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
본 발명은 DBU(1,8-디아자비시클로운데크-7-엔)를 이용하는 간단한 방법으로 투과도 저해 없이 전도도를 향상시킴으로써, 고온의 열처리를 통한 별도 공정 없이 간단한 공정으로 열에 약한 플렉서블 기판을 은 나노와이어 필름으로 사용할 수 있는 은 나노와이어 필름의 제조방법 및 그에 의해 제조된 은 나노와이어 필름에 관한 것이다.The present invention improves the conductivity without inhibiting the permeability by a simple method using DBU (1,8-diazabicyclo deck-7-ene), so that a flexible substrate susceptible to heat in a simple process without additional processing through high- To a method of manufacturing a silver nanowire film usable as a wire film, and to a silver nanowire film produced thereby.
Description
본 발명은 DBU(1,8-디아자비시클로운데크-7-엔) 용액을 이용한 은 나노와이어 필름의 제조방법 및 그에 의해 제조된 은 나노와이어 필름에 관한 것으로, DBU 용액을 이용하는 간단한 방법으로 투과도 저해 없이 전도도를 향상시킴으로써, 고온의 열처리를 통한 별도 공정 없이 간단한 공정으로 열에 약한 플렉서블 기판을 은 나노와이어 필름으로 사용할 수 있는 은 나노와이어 필름의 제조방법 및 그에 의해 제조된 은 나노와이어 필름에 관한 것이다.The present invention relates to a method for producing a silver nanowire film using a DBU (1,8-diazabicyclooldec-7-ene) solution and a silver nanowire film produced by the method. In a simple method using a DBU solution, A silver nanowire film which can be used as a silver nanowire film by using a flexible substrate susceptible to heat in a simple process without any process through high temperature heat treatment by improving the conductivity without inhibiting the silver nanowire film and a silver nanowire film produced thereby .
현재 정보통신기기들은 과학기술이 급속도로 발달해 가면서 점점 소형화, 경량화되고 있으며, 유연성 및 그 외에도 다양한 기능을 갖춘 기기들이 요구되고 있다. 플렉서블 디스플레이, 터치패널, 태양전지, 트랜지스터 등과 같은 유연한 전자기기를 제작하기 위해서는 투명하면서 유연성을 갖는 전극을 사용해야 한다. 이러한 전극은 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET), 폴리에테르설폰(polyethersulfone, PES) 등과 같은 유연성을 가진 기판 위에 박막을 형성하여 높은 전도도와 가시광 영역에서 우수한 투과도를 나타내야 한다.Currently, information and communication devices are becoming increasingly smaller and lighter as science and technology are rapidly developed, and devices with various functions and flexibility are required. To fabricate flexible electronic devices such as flexible displays, touch panels, solar cells, and transistors, transparent and flexible electrodes must be used. These electrodes must form a thin film on a flexible substrate such as polyethylene terephthalate (PET), polyethersulfone (PES), etc., and exhibit high conductivity and good transmittance in the visible region.
현재 가장 보편적으로 사용되는 투명전극으로는 인듐주석산화물(indium tin oxide, ITO) 박막이 있으나, ITO 박막은 유연하지 못하다는 단점과 자원적인 한계를 갖고 있으므로, 미래의 전자기기에서 유연한 소재로서, 사용되기에는 어려운 실정이다. 이에 ITO 박막의 한계를 극복하기 위해 다양한 물질들을 이용한 대체 재료 개발이 활발히 연구되고 있다. 그 대체 재료로는 투명 전도성 산화물(transparent conducting oxide, TCO), 금속 나노와이어(metallic nanowire), 탄소나노튜브(carbon nanotube, CNT), 그래핀(graphene), 전도성 고분자(conducting polymer) 등이 있으며, 이들은 유연한 투명전극으로 사용 가능한 차세대 소재로서, 미래 디스플레이 산업의 성장과 함께 경쟁적으로 연구가 진행되고 있다. Indium tin oxide (ITO) thin films are the most commonly used transparent electrodes, but ITO thin films are not flexible and have resource limitations. Therefore, they are used as flexible materials in future electronic devices. It is difficult to become a reality. Therefore, in order to overcome the limitation of ITO thin film, development of alternative materials using various materials is actively studied. The alternative materials include transparent conducting oxide (TCO), metallic nanowire, carbon nanotube (CNT), graphene, and conducting polymer, They are the next generation materials that can be used as flexible transparent electrodes, and research is under way along with the growth of the future display industry.
한편, 제조 공정의 간소화를 위해 전극박막을 형성하는 방법을 기존 고온과 진공 조건이 아닌 잉크젯 프린팅, 스프레이, 그라비아, 슬롯다이 코팅 등과 같은 상온, 상압 조건에서 롤투롤 공정을 적용하여 투명전극을 제작하는 연구도 활발히 진행되고 있다. In order to simplify the manufacturing process, the electrode thin film is formed by applying a roll-to-roll process under normal temperature and normal pressure conditions such as inkjet printing, spraying, gravure, slot die coating, Research is also under way.
소재 제작 시 랜덤 네트워크 형태를 이룰 수 있는 금속 나노와이어의 경우, 전극필름을 저렴한 비용으로 제조할 수 있으며, 용액을 이용하여 롤투롤 공정을 통해 박막필름을 제조할 수 있어, 최근 들어 투명전극의 대체재로서 활발히 연구 중에 있는 차세대 소재이다. 특히 은 나노와이어(silver nanowires, Ag NWs)는 우수한 광학적 특성, 유연성과 높은 전도성을 나타내어 투명 전도체로의 사용에 대한 잠재력이 매우 큰 물질로 각광받고 있다. 은 나노와이어는 다른 재료들에 비해 표면 거칠기가 좋지 못하고, 탁도(haze)가 높은 반면, 은 나노와이어의 밀도를 조절하여 다양한 면저항을 구현할 수 있으므로 그 적용범위가 다양하다. 그러나, 면저항이 낮아질수록 은 나노와이어의 밀도가 증가하여 투과도가 낮아지는 단점이 있으므로, 투과도 저해 없이 전도도를 향상시키기 위한 후처리 공정으로 열처리를 필요로 한다. 하지만, 열처리를 할 경우 고온(150℃)에 견딜 수 있는 기판을 사용해야함으로, 열에 약한 유연한 고분자 기판을 이용할 수 없다는 한계점이 있다.In the case of metal nanowires that can form a random network in the production of a material, electrode films can be manufactured at low cost and thin films can be manufactured through a roll-to-roll process using a solution. In recent years, Is a next-generation material under active research. In particular, silver nanowires (Ag NWs) are attracting attention as materials with high potential for use as transparent conductors because of their excellent optical properties, flexibility and high conductivity. Silver nanowires are not as good in surface roughness and haze as other materials, but they can be applied to various sheet resistances by controlling the density of silver nanowires. However, the lower the sheet resistance, the disadvantage is that the density of the nanowires increases and the transmittance is lowered. Therefore, the post treatment process is required to improve the conductivity without inhibiting the permeability. However, since heat treatment requires the use of a substrate that can withstand high temperatures (150 ° C), there is a limitation in that a flexible polymer substrate that is weak to heat can not be used.
따라서, 은 나노와이어를 이용한 투명전극의 높은 투과도와 높은 전도도를 동시에 확보하기 위하여, 고온의 열처리 공정을 대체할 수 있는 처리공정에 대한 연구가 필요한 실정이다.Therefore, in order to secure high transparency and high conductivity of transparent electrode using silver nanowire, it is necessary to study a treatment process that can replace high temperature heat treatment process.
본 발명은 은 나노와이어를 DBU 용액으로 처리하는 간단한 방법으로 은 나노와이어 필름의 전도도를 투과도 저해 없이 향상시킬 수 있는 은 나노와이어 필름의 제조방법 및 그에 의해 제조된 은 나노와이어 필름을 제공하는 것을 목적으로 한다.The present invention provides a silver nanowire film manufacturing method capable of improving the conductivity of a silver nanowire film without inhibiting the permeability by a simple method of treating the silver nanowire with a DBU solution and a silver nanowire film produced thereby .
상기의 목적을 달성하기 위한 본 발명에 따른 은 나노와이어 필름의 제조방법은, 은 나노와이어를 기판에 코팅하는 코팅단계; 및 상기 코팅된 은 나노와이어를 DBU로 처리하는 DBU 처리단계를 포함할 수 있다.According to an aspect of the present invention, there is provided a method of manufacturing a silver nanowire film, including: coating a silver nanowire on a substrate; And a DBU processing step of treating the coated silver nanowire with DBU.
상기 은 나노와이어는 직경 10 내지 100㎚, 길이 2 내지 100㎛일 수 있다.The silver nanowire may have a diameter of 10 to 100 nm and a length of 2 to 100 탆.
상기 기판은 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리에틸렌(PE), 폴리에테르설폰(PES), 폴리카보네이트(PC), 폴리아릴레이트(PAR), 및 폴리이미드(PI) 중 적어도 하나를 포함할 수 있다.The substrate may be at least one of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE), polyether sulfone (PES), polycarbonate (PC), polyarylate (PAR), and polyimide One can be included.
상기 코팅단계는 바코팅, 스핀코팅, 스프레이코팅, 캐스팅, 및 딥코팅 중 어느 하나로 수행될 수 있다.The coating step may be performed by any one of bar coating, spin coating, spray coating, casting, and dip coating.
상기 DBU 처리단계는, 1,8-디아자비시클로[5.4.0]운데크-7-엔(DBU) 단독, 또는 DBU와 1종 이상의 유기용매를 혼합한 DBU 용액을 이용하여 수행될 수 있다. The DBU treatment step may be carried out using DBU solution containing 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) alone or a mixture of DBU and at least one organic solvent.
상기 DBU 처리단계는 1분 내지 1시간 동안 수행될 수 있다.The DBU processing step may be performed for 1 minute to 1 hour.
본 발명은 상기 제조방법에 따라 제조된 은 나노와이어 필름을 제공할 수 있다. 상기 은 나노와이어 필름은 면저항값이 65 내지 90Ω/sq일 수 있다.The present invention can provide a silver nanowire film produced according to the above-described manufacturing method. The silver nanowire film may have a sheet resistance value of 65 to 90? / Sq.
또한, 본 발명은 상기 은 나노와이어 필름을 포함하는 투명전극을 제공할 수 있다.In addition, the present invention can provide a transparent electrode including the silver nanowire film.
본 발명에 따른 은 나노와이어 필름의 제조방법은, 은 나노와이어를 DBU 처리하는 간단한 방법으로 고온의 열처리 과정을 대체할 수 있으므로, 간단한 공정을 통해 은 나노와이어 필름의 전도도를 투과도 저해 없이 향상시킬 수 있는 장점이 있다.The silver nanowire film manufacturing method according to the present invention can replace the heat treatment process at a high temperature by a simple method of DBU treatment of silver nanowires, so that the conductivity of the silver nanowire film can be improved without inhibiting the permeability through a simple process There is an advantage.
또한, 고온의 열처리 없이 은 나노와이어 필름을 제조할 수 있으므로, 제조 공정의 간소화와 공정원가를 절약할 수 있는 장점이 있다.In addition, since silver nanowire films can be produced without heat treatment at a high temperature, the manufacturing process can be simplified and the process cost can be saved.
또한, 본 발명의 은 나노와이어 필름은 플렉서블 기판에 적용가능하므로, 유연 투명전극 제조에 이용될 수 있는 장점이 있다.In addition, since the silver nanowire film of the present invention can be applied to a flexible substrate, there is an advantage that it can be used for manufacturing a transparent transparent electrode.
도 1은 은 나노와이어와 DBU의 반응을 나타낸 모식도이다.
도 2는 본 발명의 일 실시예에 따라 반응 시간별 DBU 처리에 의한 은 나노와이어 필름의 면저항(a) 및 투과도(b)를 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 따라 DBU로 처리된 은 나노와이어 필름의 미세구조를 나타낸 SEM 사진이다.FIG. 1 is a schematic diagram showing the reaction between a silver nanowire and a DBU. FIG.
2 is a graph showing sheet resistance (a) and transmittance (b) of a silver nanowire film by DBU treatment according to an embodiment of the present invention.
FIG. 3 is a SEM photograph showing the microstructure of a silver nanowire film treated with a DBU according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 구체예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 구체예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 구체예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless defined otherwise, all terms (including technical and scientific terms) used herein may be used in a sense commonly understood by one of ordinary skill in the art to which this invention belongs. In addition, commonly used predefined terms are not ideally or excessively interpreted unless explicitly defined otherwise.
본 발명은 DBU 처리를 통한 은 나노와이어 필름의 제조방법 및 그에 의해 제조된 은 나노와이어 필름에 관한 것으로, 기판 위에 코팅된 은 나노와이어를 DBU 단독 또는 DBU 용액으로 처리하여 투과도 저해 없이 전도도를 향상시킴으로써, 은 나노와이어 필름의 전도도 향상을 위한 후속 공정인 고온 열처리를 대체할 수 있는 은 나노와이어 필름의 제조방법 및 그에 의해 제조된 은 나노와이어 필름을 제공할 수 있다.The present invention relates to a method of manufacturing a silver nanowire film by DBU treatment and a silver nanowire film produced thereby, by treating silver nanowires coated on a substrate with DBU alone or DBU solution to improve conductivity without inhibiting permeability The silver nanowire film can be substituted for a high temperature heat treatment, which is a subsequent process for improving the conductivity of the nanowire film, and a silver nanowire film produced thereby.
먼저, 은 나노와이어 필름의 제조방법은, 은 나노와이어를 기판에 코팅하는 코팅단계; 및 상기 코팅된 은 나노와이어를 DBU로 처리하는 DBU 처리단계를 포함할 수 있다.First, a method of manufacturing a silver nanowire film includes: a coating step of coating a silver nanowire on a substrate; And a DBU processing step of treating the coated silver nanowire with DBU.
상기 코팅단계는 은 나노와이어를 기판 위에 코팅함으로써, 은 나노와이어의 적어도 한 지점 이상이 다른 은 나노와이어와 접합 또는 교차되어 연결되는 형태로 그물망처럼 네트워크를 형성하여, 기판이 전극으로 사용될 수 있도록 전도성을 부여하는 단계이다.Wherein the coating step comprises coating the silver nanowire on the substrate such that at least one point of the silver nanowire is joined or crossed with the other silver nanowire to form a network like a net, .
은(silver, Ag)은 금속 중에서도 전도성이 가장 우수한 물질로서, 자체 저항값이 80 내지 120Ω으로, 200 내지 400Ω인 ITO보다 낮아 대형화에 유리하고, 곡면 제작이 가능하여 플렉서블 디스플레이에 적용할 수 있는 장점이 있다.Silver is the most conductive material among metals and has a self-resistance value of 80 to 120 Ω, which is lower than that of ITO having a thickness of 200 to 400 Ω, which is advantageous for enlarging and can be used for a flexible display .
상기 은 나노와이어의 직경은 10 내지 100㎚일 수 있으며, 바람직하게는 15 내지 70㎚일 수 있다. 은 나노와이어의 직경이 10㎚ 미만인 경우 기계적 안정성이 저하되고, 100㎚를 초과하는 경우 광 투과도가 저하되는 문제가 있다.The diameter of the silver nanowire may be 10 to 100 nm, preferably 15 to 70 nm. When the diameter of the nanowire is less than 10 nm, the mechanical stability is deteriorated. When the diameter is more than 100 nm, the light transmittance is deteriorated.
또한, 상기 은 나노와이어의 길이는 2 내지 100㎛일 수 있으며, 바람직하게는 5 내지 50㎛일 수 있다. 은 나노와이어의 길이가 2㎛ 미만인 경우 은 나노와이어의 길이가 너무 짧아 다른 은 나노와이어와 접합 또는 교차되기 어려워 전기적 특성이 저하되고, 100㎛를 초과하는 경우 기판 상에 은 나노와이어의 코팅시 잘 끊어지며, 광 투과도가 저하되는 문제가 있다.Further, the length of the silver nanowire may be 2 to 100 mu m, preferably 5 to 50 mu m. When the length of the nanowire is less than 2 탆, the length of the nanowire is too short, so that the other silver is difficult to be joined or crossed with the nanowire. Thus, the electrical characteristics of the nanowire are deteriorated. When the length exceeds 100 탆, And the light transmittance is lowered.
상기 은 나노와이어는 분산용액을 형성하여 기판 상에 코팅될 수 있으며, 상기 분산용액은 은 나노와이어 외에 물, 알코올류 또는 휘발성 유기용제류 등으로 형성되는 용매 및 분산제를 더 포함할 수 있다.The silver nanowire may be coated on a substrate by forming a dispersion solution. The dispersion solution may further include a solvent and a dispersant, which are formed from water, alcohol, volatile organic solvents, etc. in addition to silver nanowires.
상기 은 나노와이어 분산용액에 있어서, 은 나노와이어의 함량은 분산용액의 전체 중량을 기준으로 0.5∼1중량%인 것이 바람직한데, 0.5중량% 미만이면 전도도가 너무 낮을 수 있어 바람직하지 않고, 1중량%를 초과하면 투과도가 너무 낮아질 수 있어 바람직하지 않다.In the silver nanowire dispersion solution, the content of the silver nanowires is preferably 0.5 to 1 wt% based on the total weight of the dispersion solution. If the silver nanowire is less than 0.5 wt%, the conductivity may be too low, %, The transmittance may become too low, which is undesirable.
본 발명에서 사용되는 기판은 은 나노와이어를 코팅할 수 있는 플렉서블 기판이면 특별한 제한 없이 사용될 수 있으며, 바람직하게는 플렉서블 고분자 기판으로 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리에틸렌(PE), 폴리에테르설폰(PES), 폴리카보네이트(PC), 폴리아릴레이트(PAR), 및 폴리이미드(PI) 중 적어도 하나를 포함할 수 있으며, 더욱 바람직하게는 폴리에틸렌테레프탈레이트(PET)일 수 있다.The substrate to be used in the present invention can be any flexible substrate that can be coated with silver nanowires without any particular limitation. Preferably, the substrate is a flexible polymer substrate such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE) (PET), polyether sulfone (PES), polycarbonate (PC), polyarylate (PAR), and polyimide (PI), and more preferably polyethylene terephthalate (PET).
상기 은 나노와이어를 상기 기판에 코팅하는 방법은 용액을 코팅할 수 있는 코팅방법이라면 제한 없이 사용될 수 있으나, 바람직하게는 바코팅, 스핀코팅, 스프레이코팅, 캐스팅, 및 딥코팅 중 어느 하나, 더욱 바람직하게는 바코팅일 수 있다. 바코팅은 별도의 장비 없이 간단한 공정으로 균일하게 코팅할 수 있는 장점이 있다.The method of coating the silver nanowire on the substrate may be any method as long as it is a coating method capable of coating a solution, but it is preferably one of a bar coating, a spin coating, a spray coating, a casting and a dip coating, It may be a bar coating. The bar coating is advantageous in that it can be uniformly coated with a simple process without additional equipment.
다음으로, DBU 처리단계는 기판 위에 코팅된 상기 은 나노와이어를 DBU 단독 또는 DBU 용액으로 처리함으로써, 은 나노와이어와 DBU를 반응시키는 단계로서, 상기 은 나노와이어와 DBU의 반응식은 하기와 같다.Next, the DBU processing step is a step of reacting the silver nanowire with DBU by treating the silver nanowire coated on the substrate with DBU alone or DBU solution, and the reaction formula of the silver nanowire and DBU is as follows.
[반응식 1][Reaction Scheme 1]
구체적으로는, 은 나노와이어의 표면에는 산화막(Ag2O)이 존재하는데, 이 산화막은 은 나노와이어 간의 접촉을 방해하여 은 나노와이어 필름의 전도도를 저하시키게 된다. 이 산화막은 DBU와 반응하여 물에 잘 녹는 착화합물을 형성하므로(RSC Advances, 2012, 2, 2923-2929), 이 반응을 이용하여 본 발명에서는 은 나노와이어에 DBU를 처리함으로써, 산화막 제거에 의해 은 나노와이어 간의 접촉 증가로 전도도를 향상시킴에 따라, 투과도 저해 없이 전도도를 향상시키기 위한 종래 고온 열처리 공정을 대체할 수 있다.Specifically, there is an oxide film (Ag 2 O) on the surface of the silver nanowire, which interferes with the contact between the silver nanowires, thereby lowering the conductivity of the silver nanowire film. This reaction is used in the present invention to treat silver nanowires with DBU by removing the oxide film to form silver (Ag) Increasing contact between the nanowires improves conductivity, which can replace the conventional high temperature heat treatment process to improve conductivity without inhibiting permeability.
본 발명에서 사용되는 DBU 처리 단계에서, 은 나노와이어를 DBU와 반응시킴으로써, 은 나노와이어 표면의 산화막을 제거할 수 있다. 상기 DBU 처리단계에서는 DBU 단독, 또는 DBU와 1종 이상의 유기용매를 혼합한 DBU 용액을 사용할 수 있다.In the DBU processing step used in the present invention, the silver nanowire reacts with the DBU to remove the oxide film on the silver nanowire surface. In the DBU processing step, a DBU solution may be used, or a DBU solution in which DBU and at least one organic solvent are mixed.
상기 유기용매는 특별히 한정이 없고, 예를 들면 아세톤 등이 있다.The organic solvent is not particularly limited and includes, for example, acetone.
상기 DBU 용액을 사용할 경우, 용액 중의 DBU의 농도는 85중량% 이상인 것이 바람직하고, 그 보다 저농도의 DBU 용액을 사용할 경우, 면저항이 높아지는 문제가 있다. When the DBU solution is used, the concentration of DBU in the solution is preferably 85 wt% or more, and when the DBU solution is used at a lower concentration, the sheet resistance is increased.
상기 DBU는 은 나노와이어가 손상되지 않는 시간 내에서 처리될 수 있으며, 바람직하게는 1분 내지 1시간 동안, 더욱 바람직하게는 1분 내지 30분 동안 처리될 수 있다. 상기 범위를 벗어나는 경우 면저항이 높아지고, 은 나노와이어가 손상되는 문제가 있다.The DBU can be treated within a time when silver nanowires are not damaged, and can be treated for preferably 1 minute to 1 hour, more preferably 1 minute to 30 minutes. If the thickness is out of the above range, the surface resistance is increased and silver nanowires are damaged.
이와 같이 기판에 코팅된 은 나노와이어를 DBU로 처리함으로써, DBU 처리 전 면저항(Ω/sq)이 약 1,000에서 처리 후에는 90 이하로 감소되어, 은 나노와이어 필름의 전기 전도도가 향상된다.By treating the silver nanowires coated on the substrate with DBU, the sheet resistance (Ω / sq) before DBU treatment is reduced from about 1,000 to less than 90 after the treatment, thereby improving the electrical conductivity of the silver nanowire film.
따라서, 본 발명에 따른 DBU로 처리하는 경우, 고온의 열처리 없이 간단한 방법으로 열에 약한 플렉서블 기판에 코팅된 은 나노와이어 필름의 전도도를 향상시킬 수 있다.Therefore, when the DBU according to the present invention is processed, the conductivity of the silver nanowire film coated on the flexible substrate susceptible to heat can be improved by a simple method without high temperature heat treatment.
즉, 본 발명의 은 나노와이어 필름의 제조방법은 DBU를 처리하여 종래 고온의 열처리과정을 대체함으로써, 경제적이며 제조공정의 간소화 및 안전성을 높일 수 있다.That is, the method of manufacturing the silver nanowire film of the present invention is economical and can simplify the manufacturing process and enhance safety by replacing the conventional high temperature heat treatment process by treating the DBU.
본 발명은 상기 제조방법으로 제조된 은 나노와이어 필름을 제공할 수 있다. 상기 은 나노와이어 필름은 면저항값이 65 내지 90Ω/sq일 수 있으며, 바람직하게는 70 내지 85Ω/sq, 더욱 바람직하게는 70 내지 80Ω/sq일 수 있다.The present invention can provide a silver nanowire film produced by the above manufacturing method. The silver nanowire film may have a sheet resistance value of 65 to 90? / Sq, preferably 70 to 85? / Sq, and more preferably 70 to 80? / Sq.
또한, 본 발명은 상기 은 나노와이어 필름을 포함하는 투명전극을 제공할 수 있다. 상기 투명전극은 디스플레이, 태양전지, 터치패널, 트랜지스터 등과 같은 유연한 전자기기의 투명전극으로 적용할 수 있다.In addition, the present invention can provide a transparent electrode including the silver nanowire film. The transparent electrode can be applied as a transparent electrode of a flexible electronic device such as a display, a solar cell, a touch panel, or a transistor.
이하, 본 발명의 구체적인 내용을 하기 실시예를 통하여 상세히 설명하고자 하나 이는 본 발명의 예시목적을 위한 것으로, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, which should not be construed as limiting the scope of protection defined by the appended claims.
<< 실시예Example 1> 1>
이소프로필 알코올(isopropyl alcohol)에 은 나노와이어(길이 10㎛, 직경 40㎚) 0.2중량%가 분산되어 있는 분산용액을 PET 기판에 10㎜/sec 속도로 바코팅하였다. 바코팅에 사용된 바코터는 길이 400㎜, 두께 6.35㎜, 및 감긴와이어 두께 13.7㎛였다. 은 나노와이어가 코팅된 기판을 DBU로 1분간 반응시킨 다음, 디클로로메탄, 아세톤 및 증류수로 순서대로 세정하여 은 나노와이어 필름을 제조하였다.A dispersion solution in which 0.2 wt% of silver nanowires (10 m in length and 40 nm in diameter) was dispersed in isopropyl alcohol was bar-coated on the PET substrate at a rate of 10 mm / sec. The bar coater used for the bar coating was 400 mm in length, 6.35 mm in thickness, and 13.7 μm in wound wire thickness. The nanowire-coated substrate was reacted with DBU for 1 minute, and washed sequentially with dichloromethane, acetone, and distilled water to prepare a silver nanowire film.
<< 실시예Example 2> 2>
은 나노와이어가 코팅된 기판을 90중량%의 DBU 아세톤 용액에서 최대 1시간 반응시킨 것을 제외하고는 실시예 1과 동일하게 수행하였다.Was carried out in the same manner as in Example 1, except that the nanowire-coated substrate was reacted in a 90 wt% DBU acetone solution for a maximum of 1 hour.
<< 비교예Comparative Example 1> 1>
실시예 1과 동일한 방법으로 PET 기판에 은 나노와이어를 코팅한 후, 은 나노와이어가 코팅된 기판을 DBU로 30초 동안 반응시킨 다음, 디클로로메탄, 아세톤 및 증류수로 순서대로 세정하여 은 나노와이어 필름을 제조하였다.In the same manner as in Example 1, the silver nanowires were coated on the PET substrate, and then the substrate coated with the silver nanowires was reacted with DBU for 30 seconds and then washed with dichloromethane, acetone and distilled water in order, .
<< 비교예Comparative Example 2> 2>
실시예 1과 동일한 방법으로 PET 기판에 은 나노와이어를 코팅한 후, 은 나노와이어가 코팅된 기판을 80중량%의 DBU 아세톤 용액에서 2시간 동안 반응시킨 다음, 디클로로메탄, 아세톤 및 증류수로 순서대로 세정하여 은 나노와이어 필름을 제조하였다.In the same manner as in Example 1, the silver nanowires were coated on the PET substrate, and then the silver nanowire-coated substrate was reacted in an 80 wt% DBU acetone solution for 2 hours. Then, dichloromethane, acetone and distilled water To prepare a silver nanowire film.
<< 비교예Comparative Example 3> 3>
실시예 1과 동일한 방법으로 PET 기판에 은 나노와이어를 코팅한 후, 은 나노와이어가 코팅된 기판을 30중량%의 암모니아 수용액에서 150초간 동안 반응시킨 다음, 디클로로메탄, 아세톤 및 증류수로 순서대로 세정하여 은 나노와이어 필름을 제조하였다.Silver nanowires were coated on the PET substrate in the same manner as in Example 1, and then the substrate coated with the silver nanowires was reacted in an aqueous ammonia solution of 30 wt% for 150 seconds, and then washed with dichloromethane, acetone and distilled water A silver nanowire film was prepared.
상기 실시예 1, 2 및 비교예 1 내지 3에 따라 제조된 은 나노와이어 필름의 최저 면저항값(Ω/sq)은 하기 표 1에 나타내었으며, 실시예 1 및 실시예 2의 은 나노와이어 필름 제조시 DBU 처리 시간에 따른 면저항(Ω/sq), 투과도, 및 은 나노와이어의 미세구조를 도 2 및 도 3에 각각 나타내었다.The minimum sheet resistance (Ω / sq) of the silver nanowire films prepared according to Examples 1 and 2 and Comparative Examples 1 to 3 is shown in Table 1 below, and the silver nanowire film manufacturing methods of Examples 1 and 2 The sheet resistance (Ω / sq), the transmittance, and the microstructure of the silver nanowires according to the DBU treatment time are shown in FIG. 2 and FIG. 3, respectively.
고온 열처리된 은 나노와이어 필름은, 실시예 1과 동일하게 은 나노와이어로 코팅한 PET 기판을 170℃에서 열처리한 것으로, 열처리 전 면저항값이 1000Ω/sq에서 열처리 1분 후 최저 면저항값인 71Ω/sq에 도달하였다.The high-temperature heat-treated silver nanowire film was obtained by heat-treating the nanowire-coated PET substrate at 170 ° C in the same manner as in Example 1. The sheet resistance before the heat treatment was 1000 Ω / sq and the minimum sheet resistance value was 71 Ω / sq.
실시예들의 경우, 초기 면저항 1000Ω/sq이 처리시간에 따라 변하는 것이 관찰되었다. 특히, 1분 내지 1시간 DBU를 처리했을 때 면저항이 최저에 도달하는 것이 관찰되었다(도 2a). SEM으로 미세구조를 분석하였고, 그 결과를 도 3에 나타내었다. 따라서, DBU를 1분 내지 1시간 처리하는 경우, 은 나노와이어 표면의 산화막만 제거되어 면저항이 감소하였고, 또한, 이는 도 2(b)에서 보듯이 투과도도 감소하지 않음을 확인할 수 있었다.For embodiments, it has been observed that the
반면, DBU를 30초 처리한 비교예 1의 경우, 실시예 1 및 실시예 2 보다 최저 면저항값이 훨씬 높고, 저농도 DBU 아세톤 용액을 2시간 처리한 비교예 2의 경우, 실시예 1 및 실시예 2 보다 최저 면저항값이 높고, 최저 면저항에 도달하는 시간이 더 오래 걸리는 것을 관찰할 수 있었고, 30중량%의 암모니아 수용액으로 처리한 비교예 3의 경우, 150초로 매우 짧은 시간 반응시켰음에도 불구하고 면저항이 500(Ω/sq)으로 매우 높아진 결과를 나타내었는데, 이는 암모니아 수용액으로 처리하였을 경우, 초단위로 산화막을 제거함과 동시에 은 나노와이어에도 손상을 입힘을 알 수 있다.On the other hand, in the case of Comparative Example 1 in which the DBU was treated for 30 seconds, in Comparative Example 2 in which the lowest sheet resistance values were much higher than those in Examples 1 and 2, and the low DBU acetone solution was treated for 2 hours, 2, and the time required for reaching the minimum sheet resistance was longer. In the case of Comparative Example 3 treated with 30 wt% aqueous ammonia solution, even though the reaction was performed for 150 seconds in a very short time, the sheet resistance (500 Ω / sq), which indicates that the treatment with ammonia aqueous solution removes the oxide film in seconds and damages the silver nanowire.
따라서, 상기 실시예 1 및 2의 DBU 처리가, 효과적인 면에서 고온의 열처리를 대체할 수 있으며, 최저 면저항에 도달하는 시간 또한 고온 열처리시보다 짧으므로 비용면에서 경제적임을 확인할 수 있었다.Therefore, the DBU treatment of Examples 1 and 2 can replace the high-temperature heat treatment in an effective aspect, and the time required to reach the minimum sheet resistance is also shorter than that in the high-temperature heat treatment, which is economical in cost.
본 발명의 구성은 상기의 실시예를 통해 그 우수성이 입증되었지만 상기의 구성에 의해서만 반드시 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변경 및 변형이 가능하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.Although the configuration of the present invention has been proven by the above embodiments, the present invention is not necessarily limited to the above configuration, and various permutations, modifications, and variations are possible without departing from the technical idea of the present invention. Therefore, the above description does not limit the scope of the present invention, which is defined by the limitations of the following claims.
Claims (8)
상기 코팅된 은 나노와이어를 90 내지 100 중량%의 1,8-디아자비시클로[5.4.0]운데크-7-엔(DBU)으로 1분 내지 1시간 동안 처리하는 DBU 처리단계를 포함하는 은 나노와이어 필름의 제조방법.
A coating step of coating the nanowire on the substrate; And
Treating the coated silver nanowire with 90 to 100 wt% 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) for 1 minute to 1 hour. A method of manufacturing a nanowire film.
상기 은 나노와이어는 직경 10 내지 100㎚, 길이 2 내지 100㎛인 은 나노와이어 필름의 제조방법.
The method according to claim 1,
Wherein the silver nanowire has a diameter of 10 to 100 nm and a length of 2 to 100 탆.
상기 기판은 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리에틸렌(PE), 폴리에테르설폰(PES), 폴리카보네이트(PC), 폴리아릴레이트(PAR), 및 폴리이미드(PI) 중 적어도 하나를 포함하는 것인 은 나노와이어 필름의 제조방법.
The method according to claim 1,
The substrate is at least one of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE), polyethersulfone (PES), polycarbonate (PC), polyarylate (PAR), and polyimide Gt; a < / RTI > nanowire film.
상기 코팅단계는 바코팅, 스핀코팅, 스프레이코팅, 캐스팅, 및 딥코팅 중 어느 하나로 수행되는 은 나노와이어 필름의 제조방법.
The method according to claim 1,
Wherein the coating step is performed by any one of bar coating, spin coating, spray coating, casting, and dip coating.
5. A silver nanowire film produced by the method according to any one of claims 1 to 4 and having a sheet resistance value of from 65 to 90? / Sq.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160086688A KR101843268B1 (en) | 2016-07-08 | 2016-07-08 | Method for manufacturing silver nanowire film using 1,8-diazabicycloundec-7-ene and silver nanowire film made by the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160086688A KR101843268B1 (en) | 2016-07-08 | 2016-07-08 | Method for manufacturing silver nanowire film using 1,8-diazabicycloundec-7-ene and silver nanowire film made by the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180006070A KR20180006070A (en) | 2018-01-17 |
KR101843268B1 true KR101843268B1 (en) | 2018-03-29 |
Family
ID=61025951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160086688A KR101843268B1 (en) | 2016-07-08 | 2016-07-08 | Method for manufacturing silver nanowire film using 1,8-diazabicycloundec-7-ene and silver nanowire film made by the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101843268B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014072041A (en) * | 2012-09-28 | 2014-04-21 | Jnc Corp | Method for producing transparent conductive film, transparent conductive film and device element |
-
2016
- 2016-07-08 KR KR1020160086688A patent/KR101843268B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014072041A (en) * | 2012-09-28 | 2014-04-21 | Jnc Corp | Method for producing transparent conductive film, transparent conductive film and device element |
Also Published As
Publication number | Publication date |
---|---|
KR20180006070A (en) | 2018-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9422628B2 (en) | Process for improving the electrical and optical performance of a transparent electrically conductive material based on silver nanowires | |
Im et al. | Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability | |
KR102376788B1 (en) | Metal Nanostructured Networks and Transparent Conductive Material | |
CN106941019B (en) | Electrical conductor, method of making the same, and electronic device including the same | |
CN103069502A (en) | Etch patterning of nanostructure transparent conductors | |
KR101485858B1 (en) | Method of patterning a transparent electrode metal nanowires and a transparent electrode patterned metal nanowires thereby | |
CN103794265A (en) | Composite material of graphene and nanowires and preparation method thereof | |
CN107331445A (en) | A kind of method of the electric conductivity and inoxidizability of modified nano silver wire nesa coating and raising nano silver wire nesa coating | |
EP3509988B1 (en) | Multi-doped graphene and method for preparing the same | |
JP6633525B2 (en) | Method of patterning metal nanowire-based transparent conductive film through surface treatment | |
KR20160117905A (en) | Composition for forming copper nanowire network by light sintering, method for preparing copper nanowire network, and transparent electrode including the same | |
US10811162B2 (en) | Method for healing defect of conductive layer, method for forming metal-carbon compound layer, 2D nano materials, transparent electrode and method for manufacturing the same | |
CN105355272A (en) | Double-faced-conducting transparent conducting thin film and preparation method thereof | |
KR101843268B1 (en) | Method for manufacturing silver nanowire film using 1,8-diazabicycloundec-7-ene and silver nanowire film made by the same | |
KR101815351B1 (en) | Method for manufacturing silver nanowire film by ammonia treatment and silver nanowire film made by the same | |
KR20140075502A (en) | Method of preparation of complex electrode with multi layered structure | |
KR101328427B1 (en) | Complex conductive thin film using metal nano wire and cnt, method of manufacturing thereof | |
KR20170016145A (en) | Methods of preparing conductors, conductors prepared therefrom, and electronic devices including the same | |
KR20150075173A (en) | Transparent electrode comprising transparent conductive oxide and Ag nanowire and the fabrication method thereof | |
KR101465071B1 (en) | A flexible transparent electrode using cesium and a flexible transparent electrode produced thereby | |
KR101272713B1 (en) | Manufacturing method of 2 Layer Hybrid transparent electrode | |
KR101761995B1 (en) | Method of fabricating for Zn doped tin oxide | |
KR101163940B1 (en) | Method for forming conducting polymer electrode containing metal nano particle and the electrode material | |
KR101840938B1 (en) | Method for transparent electrode with improved work function | |
US20150060119A1 (en) | Conductive structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20160708 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20170718 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20180125 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20170718 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20180125 Comment text: Decision to Refuse Application |
|
PX0701 | Decision of registration after re-examination |
Patent event date: 20180316 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20180219 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20180125 Comment text: Decision to Refuse Application Patent event code: PX07011S01I |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20180322 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20180322 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20210322 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20220303 Start annual number: 5 End annual number: 5 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20240102 |