KR101848280B1 - Cold hardening epoxy resin using the composition and prepreg, and prepreg to make it into a layer of polymer composite - Google Patents
Cold hardening epoxy resin using the composition and prepreg, and prepreg to make it into a layer of polymer composite Download PDFInfo
- Publication number
- KR101848280B1 KR101848280B1 KR1020160118415A KR20160118415A KR101848280B1 KR 101848280 B1 KR101848280 B1 KR 101848280B1 KR 1020160118415 A KR1020160118415 A KR 1020160118415A KR 20160118415 A KR20160118415 A KR 20160118415A KR 101848280 B1 KR101848280 B1 KR 101848280B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- epoxy resin
- fiber
- compound
- modified
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/20—Carboxylic acid amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/21—Urea; Derivatives thereof, e.g. biuret
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/315—Compounds containing carbon-to-nitrogen triple bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/315—Compounds containing carbon-to-nitrogen triple bonds
- C08K5/3155—Dicyandiamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/07—Parts immersed or impregnated in a matrix
- B32B2305/076—Prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2321/00—Characterised by the use of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명의 실시 예에 따른 저온 경화형 에폭시 수지 조성물은, 고형 에폭시 수지(modified solid epoxy resin) 50∼80중량%; 액상 비스페놀 A 에폭시 수지(liquid bisphenol-A type epoxy resin) 5∼20중량%; 개질 라버(modified rubber) 0.1∼10중량%; 경화제(dicyandiamide) 0.1∼8중량%; 촉진제(two methyl urea derivatives) 0.1∼5중량%; 및 탄소나노튜브(CNT) 0.1∼3중량%를 포함하여 구성된 것이다.The low temperature curable epoxy resin composition according to an embodiment of the present invention comprises 50 to 80% by weight of a modified solid epoxy resin; 5 to 20% by weight of a liquid bisphenol-A type epoxy resin; 0.1 to 10% by weight of modified rubber; 0.1 to 8 wt% dicyandiamide; 0.1 to 5% by weight of two methyl urea derivatives; And carbon nanotubes (CNT) in an amount of 0.1 to 3% by weight.
Description
본 발명은 스키 재료로 사용되는 스키 제조용 저온 경화형 에폭시 수지 조성물에 관한 것으로, 더욱 상세하게는 통상의 에폭시 수지에 비해 탄성율이 좋고 저온으로 갈수록 강도가 높아지며 정전기 방지와 함께 접착력과 진동 감쇄 및 충격 흡수에 뛰어난 스키 제조용 저온 경화형 에폭시 수지 조성물과 이에 의해 제조된 스키 제조용 프리프레그 및 이를 이용한 섬유 강화 고분자 복합재료에 관한 것이다.More particularly, the present invention relates to a low-temperature curing epoxy resin composition for ski making, which has a higher elastic modulus than ordinary epoxy resins and has a higher strength as it goes down to lower temperatures. In addition to preventing static electricity, Temperature curing type epoxy resin composition for excellent ski making, a prepreg for ski making manufactured thereby, and a fiber reinforced polymer composite material using the same.
공지의 섬유강화 플라스틱(FRP) 복합재료는 섬유와 열경화성 수지를 혼합하여 경화시킨 복합재료이다. FRP 복합재료는 부식에 대한 저항성인 내식성이 대단히 우수하며 알루미늄보다 가볍고 철보다 비강도(specific strength)가 높은 소재로 건축, 석유화학, 레저, 자동차, 환경산업뿐 아니라 첨단산업까지 거의 모든 산업분야별 공정에 널리 사용하고 있다.A known fiber-reinforced plastic (FRP) composite material is a composite material obtained by curing fibers and a thermosetting resin. FRP composites are very resistant to corrosion and have excellent corrosion resistance. They are lighter than aluminum and have a higher specific strength than iron. They are used in almost all industrial fields such as construction, petrochemical, leisure, .
FRP 복합재료는 경량성, 우수한 강성, 절연성, 낮은 열변형률 등을 우수한 물성으로 꼽을 수 있다. 또한 이온용출이 없으며 단열성이 탁월해 저장탱크, 수상레저 용품 등에 적합하며, 전기접합 단자부의 봉입용 등에도 적합한데, 반도체 칩의 봉지제로 사용하는 EMC(epoxy molding compound)도 절연성 및 낮은 열변형률 때문에 가능한 것이다.FRP composites have excellent properties such as light weight, excellent rigidity, insulation, and low thermal strain. It is also suitable for storage tanks, water leasing products, etc. It is also suitable for sealing of electrical junction terminals. EMC (epoxy molding compound) used as a sealing agent of semiconductor chip is also excellent in insulating property and low heat distortion It is possible.
FRP 복합재료를 사용하는 대표적인 대형 구조물로는 요트(yacht) 및 풍력발전 회전날개(wind turbine blade)를 꼽을 수 있다. 현재 제작되고 있는 요트 및 풍력발전 회전날개는 수지 주입 방식(resin infusion process)으로 제작하고 있는데 유리섬유 직조물(mat)을 성형틀(mold)에 위치시킨 후 점도가 낮은 불포화 폴리에스터(unsaturated polyester) 수지를 진공 분위기 하에서 침투시켜 제작하는 방식이다.Typical large structures using FRP composites include yachts and wind turbine blades. The currently manufactured yacht and wind turbine rotor blades are manufactured by a resin infusion process. After the glass fiber mat is placed in a mold, unsaturated polyester resin with low viscosity In a vacuum atmosphere.
이러한 방식은 우수한 물성 및 경량화를 요구하는 고급 요트 및 풍력발전 회전날개 제작에는 사용이 어려우며 품질이 떨어지므로 고부가가치의 제품에는 경쟁력이 약하다.This method is difficult to use in making high-quality yachts and wind turbine blades that require excellent physical properties and light weight, and is poor in high-value-added products because of poor quality.
품질 향상과 아울러 대형화에 따른 내구성을 높이기 위해서는 프리프레그(prepreg)를 적층하여 제조하는 방식이 바람직하므로 점차 프리프레그를 사용하는 방식이 증가하고 있다.In order to improve the quality and durability due to the enlargement, a method of laminating prepregs is preferable, so that the method of using the prepreg gradually increases.
하지만 일반적인 프리프레그는 125℃ 이상에서 경화시켜야 하므로 오토클레이브(autoclave)의 공간보다 큰 대형구조물은 제작이 불가능하다.However, since a typical prepreg must be cured above 125 ° C, large structures larger than the space of an autoclave can not be manufactured.
따라서, 저온 경화형 프리프레그가 개발된다면 오토클레이브 대신 열풍기 혹은 가열 금형(heating mold)을 사용하여 열에너지를 공급할 수 있으므로 대형구조물 제작이 가능하다.Therefore, if a low-temperature curing type prepreg is developed, heat energy can be supplied by using a hot air blower or a heating mold instead of an autoclave, so that a large structure can be manufactured.
세계적인 풍력발전 회전날개 제조회사들은 주로 VARTM (vacuum-assisted resin transfer molding) 방식을 채택하고 있는데 블레이드의 대형화에 따른 내구성을 높이기 위해 프리프레그 방식으로 대체하고 있는 추세이다. 고품질의 대형 구조물을 제작하기 위해서는 저온 경화형 수지와 프리프레그의 개발이 요구된다.Worldwide wind turbine manufacturers are adopting vacuum-assisted resin transfer molding (VARTM) method, and they are replacing with the prepreg method in order to increase the durability of the blades. In order to produce high-quality large-scale structures, it is required to develop low-temperature curable resins and prepregs.
본 발명은 전술한 바와 같은 종래기술의 문제점을 해결하기 위해서 안출된 것으로서, 종래의 에폭시 수지에 비해 탄성율이 좋고 저온으로 갈수록 강도가 높아지며 정전기 방지와 함께 접착력과 진동 감쇄 및 충격 흡수에 뛰어난 스키 제조용 저온 경화형 에폭시 수지 조성물과 이에 의한 제조된 스키 제조용 프리프레그, 및 이를 이용한 섬유 강화 고분자 복합재료를 제공하는 데 목적이 있다.Disclosure of the Invention The present invention has been conceived to solve the problems of the prior art as described above, and it is an object of the present invention to provide an epoxy resin composition which is superior in elasticity to a conventional epoxy resin, A cured epoxy resin composition, a prepreg for ski making prepared therefrom, and a fiber-reinforced polymer composite material using the same.
전술한 바와 같은 목적을 해결하기 위한 수단으로 본 발명은 다음과 같은 구성으로 이루어질 수 있다.As a means for solving the above-mentioned object, the present invention can be configured as follows.
본 발명의 실시 예에 따른 스키 제조용 저온 경화형 에폭시 수지 조성물은, 고형 에폭시 수지(modified solid epoxy resin) 60∼80중량%; 액상 비스페놀 A 에폭시 수지(liquid bisphenol-A type epoxy resin) 10∼20중량%; 개질 라버(modified rubber) 2∼6중량%; 경화제(dicyandiamide) 0.1∼5중량%; 촉진제(two methyl urea derivatives) 0.1∼5중량%; 및 탄소나노튜브(CNT) 1.3∼3중량%를 포함하여 구성될 수 있다.A low-temperature curing epoxy resin composition for ski making according to an embodiment of the present invention comprises: 60 to 80% by weight of a modified solid epoxy resin; 10 to 20% by weight of a liquid bisphenol-A type epoxy resin; 2-6% by weight of modified rubber; 0.1 to 5% by weight of a dicyandiamide; 0.1 to 5% by weight of two methyl urea derivatives; And 1.3 to 3 wt% of carbon nanotubes (CNTs).
본 발명에 따른 저온 경화형 에폭시 수지 조성물에서, 경화제는 무수물, 카복실산, 아민 화합물, 페놀 화합물, 폴리올, 또는 이들의 혼합물 중에서 선택되는 하나 이상이다.In the low temperature curable epoxy resin composition according to the present invention, the curing agent is at least one selected from anhydrides, carboxylic acids, amine compounds, phenol compounds, polyols, and mixtures thereof.
본 발명에 따른 저온 경화형 에폭시 수지 조성물에서, 촉진제는 우레아계 화합물, 인계 화합물, 아민계 화합물, 제4급 암모늄 염, 이미다졸류, 붕소 화합물, 변성 우레아 화합물, 변성 아민 화합물, 이미다졸 화합물 중에서 선택되는 하나 이상이다.In the low temperature curable epoxy resin composition according to the present invention, the accelerator is selected from a urea compound, a phosphorus compound, an amine compound, a quaternary ammonium salt, an imidazole compound, a boron compound, a modified urea compound, a modified amine compound, Is more than one.
본 발명에 따른 저온 경화형 에폭시 수지 조성물에서, 탄소나노튜브(CNT)는 직경이 5∼10㎚이고, 길이가 5∼20㎛이다.In the low temperature curable epoxy resin composition according to the present invention, the carbon nanotube (CNT) has a diameter of 5 to 10 nm and a length of 5 to 20 탆.
본 발명에 따른 섬유 강화 프리프레그는, 위와 같은 저온 경화형 수지 조성물에 의해 제조된 저온 경화형 에폭시 수지에 섬유나 직물 또는 매트를 함침시켜 겔화시킨 것이다.The fiber-reinforced prepreg according to the present invention is obtained by impregnating a low-temperature curable epoxy resin prepared by the above-mentioned low-temperature curable resin composition with fibers, a fabric or a mat to gel.
본 발명에 따른 섬유 강화 프리프레그에서, 섬유는, 탄소섬유, 유리섬유, 아라미드 섬유, 붕소 섬유로 이루어진 군에서 선택되는 1종 이상의 섬유이다.In the fiber-reinforced prepreg according to the present invention, the fiber is at least one fiber selected from the group consisting of carbon fiber, glass fiber, aramid fiber and boron fiber.
본 발명에 따른 섬유 강화 고분자 복합재료는, 위와 같이 제조된 섬유 강화 프리프레그를 중합 가열하여 적층시켜 경화시킨 것이다.The fiber-reinforced polymer composite material according to the present invention is obtained by polymerizing and heating the fiber-reinforced prepreg prepared as above, and laminating and curing.
본 발명에 따른 섬유 강화 고분자 복합재료에서, 적층된 섬유 강화 프리프레그는 50∼120℃에서 경화된다. 바람직하게는 적층된 섬유 강화 프리프레그는, 50℃에서 경화가 시작되어 80∼120℃에서 경화된다.In the fiber-reinforced polymer composite according to the present invention, the laminated fiber-reinforced prepreg is cured at 50 to 120 캜. Preferably, the laminated fiber-reinforced prepreg begins to cure at < RTI ID = 0.0 > 50 C < / RTI >
본 발명에 의하면 스키 제조시 구조재료로 활용할 수 있는 저온 경화형 에폭시 수지 조성물에 의해 제조된 에폭시 수지에 섬유를 함침시켜 겔화시킨 섬유 강화 프리프레그는 통상의 에폭시 수지에 비해, 탄성율은 15% 이상 효과적이고, 강도면에서 저온으로 갈수록 꾸준히 다른 에폭시 수지보다 15% 이상 물성이 높으며, 특히 탄소나노튜브가 첨가됨으로써, 접착력과 진동 감쇄, 충격 흡수에 대한 효과가 대단히 뛰어나며, 정전기 방지에도 효과적이다.According to the present invention, a fiber-reinforced prepreg obtained by impregnating and gelling a fiber with an epoxy resin prepared by a low-temperature curing epoxy resin composition which can be used as a structural material in skis production is more effective than an ordinary epoxy resin by 15% or more , The strength is 15% or more higher than other epoxy resins as it goes from low temperature to low temperature. Especially, addition of carbon nanotubes is very effective for adhesion, vibration damping and impact absorption, and is also effective for preventing static electricity.
도 1 및 도 2는 저온 수지 즉, 섬유 강화 프리프레그의 온도변화에 따른 탄성율 및 강도의 변화를 보여주는 그래프.
도 3은 본 발명에 의한 조성물의 수지 플로우를 보여주는 그래프.
도 4 및 도 5는 탄소나노튜브를 포함하는 본 발명에 의한 섬유 강화 프리프레그의 배합비를 보여주는 그래프.
도 6은 본 발명에 의한 저온 수지의 FT/IR 분석결과를 보여주는 그래프.
도 7a 및 도 7 b는 온도변화에 따른 DSC 및 Tg의 변화를 보여주는 그래프.FIGS. 1 and 2 are graphs showing changes in modulus of elasticity and strength of a low-temperature resin, that is, a fiber-reinforced prepreg according to a temperature change.
3 is a graph showing the resin flow of the composition according to the present invention.
FIGS. 4 and 5 are graphs showing mixing ratios of fiber-reinforced prepregs according to the present invention including carbon nanotubes. FIG.
6 is a graph showing FT / IR analysis results of the low-temperature resin according to the present invention.
7A and 7B are graphs showing changes in DSC and Tg as a function of temperature.
이하, 본 발명을 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in detail.
본 발명에 따르는 스키 제조용 저온 경화형 에폭시 수지 조성물은, 고형 에폭시 수지(modified solid epoxy resin) 60∼80중량%; 액상 비스페놀 A 에폭시 수지(liquid bisphenol-A type epoxy resin) 10∼20중량%; 개질 라버(modified rubber) 2∼6중량%; 경화제(dicyandiamide) 0.1∼5중량%; 촉진제(two methyl urea derivatives) 0.1∼5중량%; 및 탄소나노튜브(CNT) 1.1∼3중량%로 구성될 수 있다.The low temperature curing type epoxy resin composition for ski making according to the present invention comprises 60 to 80% by weight of a modified solid epoxy resin; 10 to 20% by weight of a liquid bisphenol-A type epoxy resin; 2-6% by weight of modified rubber; 0.1 to 5% by weight of a dicyandiamide; 0.1 to 5% by weight of two methyl urea derivatives; And 1.1-3% by weight of carbon nanotubes (CNTs).
고형 에폭시 수지(modified solid epoxy resin)는 화학식이,A modified solid epoxy resin has the formula:
인 것으로서, 이는 분자량이 크고, 저온시 수축이 적어 안정적이며 수지 골격을 이루어 충격에 강하게 하며, 너무 과도 함량일 때에는 잘 부러지는(brittle) 성질을 갖게 된다. , Which has a high molecular weight and low shrinkage at low temperature, is stable, has a resin skeleton to make it strong against impact, and has a brittle property when it is too high in content.
액상 비스페놀 A 에폭시 수지(liquid bisphenol-A type epoxy resin)는 화학식이,A liquid bisphenol-A type epoxy resin has the formula:
인 것으로서, 이는 고형 에폭시 수지와 혼용이 되어 수축을 보완해 주는 역할을 하며, 저온에서 잘 부러지는 성질을 갖게 되는 경향을 잡아준다. 20중량% 초과시에는 오히려 저온 수축 경향이 심하여 점착성 등과 같은 물성이 저하된다. , Which is mixed with a solid epoxy resin to compensate for shrinkage and tends to have a property of breaking at low temperatures. When the amount is more than 20% by weight, the low temperature shrinkage tendency is rather severe and physical properties such as adhesiveness are lowered.
개질 라버(modified rubber)는 화학식이,Modified rubbers have the formula:
인 것으로서, 저온 충격강도에는 열가소성 폴리머(CTBN, 페놀시 등)가 사용되는데, 이중 개질 라버가 가장 효과적이며, 10중량% 이상 초과시 경화에 영향을 주어 미경화처럼 너무 유연한 성질(flexible)을 갖게 된다. Thermoplastic polymer (CTBN, phenol, etc.) is used as the low-temperature impact strength. The double-modified rubber is most effective and affects the curing when it is more than 10% by weight, .
경화제(dicyandiamide)는 화학식이, 인 것으로서, 무수물, 카복실산, 아민 화합물, 페놀 화합물, 폴리올, 또는 이들의 혼합물 중에서 선택되는데, 대부분 에폭시 수지엔 이 아민류 경화제를 쓰며 가용시간(pot life) 측면에서 가장 효과적이다.The dicyandiamide has the formula: And is selected from anhydrides, carboxylic acids, amine compounds, phenol compounds, polyols, and mixtures thereof. Most epoxy resins use amine curing agents and are most effective in terms of pot life.
촉진제(two methyl urea derivatives)는 화학식이, Two methyl urea derivatives have the formula:
인 것으로서, 우레아계 화합물, 인계 화합물, 아민계 화합물, 제4급 암모늄 염, 이미다졸류, 붕소 화합물, 변성 우레아 화합물, 변성 아민 화합물, 이미다졸 화합물 중에서 선택되는데, 이 역시 아민계 경화제와 혼용하게 되면 경화시 70∼80℃에서 경화를 촉진시키는 효과가 있으며 중온에서 수지 흐름을 환하게 하며 생산공정에서의 로스(loss)를 효과적으로 줄일 수 있다. Is selected from a urea compound, a phosphorus compound, an amine compound, a quaternary ammonium salt, imidazoles, a boron compound, a modified urea compound, a modified amine compound and an imidazole compound. It has the effect of accelerating the curing at 70 ~ 80 ℃ when curing and brightening the resin flow at the middle temperature, and it is possible to effectively reduce the loss in the production process.
탄소나노튜브(CNT)는 강도를 좋게 할 뿐만 아니라 접착력 향상, 진동 감쇄, 충격 흡수 효율을 위해 첨가되는 것으로서, 직경이 5∼10㎚이고, 길이가 5∼20㎛인 것이 바람직하다. 이는 미세 입자 역할과 침상결정에 의한 표면적이 상대적으로 증가하여 접착제 표면을 증가시켜서 접착강도를 상승시키고, 전기전도도가 휠씬 높기 때문에 저온, 저습시 정전기 발생을 쉽게 제거할 수 있는 장점이 있다.Carbon nanotubes (CNTs) are added not only to improve strength but also to improve adhesion, vibration damping and shock absorption efficiency, and preferably have a diameter of 5 to 10 nm and a length of 5 to 20 μm. This is because the fine particles and the surface area due to the needle crystals are relatively increased, thereby increasing the surface of the adhesive to increase the bonding strength and the electroconductivity is much higher, so that it is possible to easily remove the generation of static electricity at low temperature and low humidity.
고형 에폭시 수지 65g, 액상 비스페놀 A 에폭시 수지 12g, 개질 라버 5g, 경화제 3g, 촉진제 2g, 탄소나노튜브 1g를 혼합하여 스키 제조용 저온 경화형 에폭시 수지 조성물을 제조하였다(아래의 표 1 참조).A low temperature curing epoxy resin composition for ski making was prepared by mixing 65 g of solid epoxy resin, 12 g of liquid bisphenol A epoxy resin, 5 g of modified rubber, 3 g of curing agent, 2 g of accelerator and 1 g of carbon nanotubes (see Table 1 below).
고형 에폭시 수지 65g, 액상 비스페놀 A 에폭시 수지 12g, 개질 라버 5g, 경화제 2g, 촉진제 3g, 탄소나노튜브 1g를 혼합하여 스키 제조용 저온 경화형 에폭시 수지 조성물을 제조하였다(아래의 표 1 참조).A low temperature curing epoxy resin composition for ski making was prepared by mixing 65 g of solid epoxy resin, 12 g of liquid bisphenol A epoxy resin, 5 g of modified rubber, 2 g of curing agent, 3 g of accelerator and 1 g of carbon nanotubes (see Table 1 below).
- 비교예 1- Comparative Example 1
고형 에폭시 수지 65g, 액상 비스페놀 A 에폭시 수지 12g, 개질 라버 5g, 촉진제 2g, 탄소나노튜브 1g를 혼합하여 스키 제조용 저온 경화형 에폭시 수지 조성물을 제조하였다(아래의 표 1 참조).A low temperature curing type epoxy resin composition for ski making was prepared by mixing 65 g of solid epoxy resin, 12 g of liquid bisphenol A epoxy resin, 5 g of modified rubber, 2 g of accelerator and 1 g of carbon nanotubes (see Table 1 below).
- 비교예 2- Comparative Example 2
고형 에폭시 수지 65g, 액상 비스페놀 A 에폭시 수지 12g, 개질 라버 5g, 경화제 3g, 탄소나노튜브 1g를 혼합하여 스키 제조용 저온 경화형 에폭시 수지 조성물을 제조하였다(아래의 표 1 참조).A low temperature curing epoxy resin composition for ski making was prepared by mixing 65 g of solid epoxy resin, 12 g of liquid bisphenol A epoxy resin, 5 g of modified rubber, 3 g of curing agent and 1 g of carbon nanotubes (see Table 1 below).
- 비교예 3- Comparative Example 3
고형 에폭시 수지 65g, 액상 비스페놀 A 에폭시 수지 12g, 개질 라버 5g, 경화제 3g, 촉진제 2g를 혼합하여 스키 제조용 저온 경화형 에폭시 수지 조성물을 제조하였다(아래의 표 1 참조).A low temperature curing type epoxy resin composition for ski making was prepared by mixing 65 g of solid epoxy resin, 12 g of liquid bisphenol A epoxy resin, 5 g of modified rubber, 3 g of curing agent and 2 g of accelerator (see Table 1 below).
위와 같은 실시예 1, 2 및 비교예 1 내지 3의 조성물을 가열하여 저온 수지를 만들고, 이에 섬유를 함침시켜 스키 제조용 섬유 강화 프리프레그를 제조하였다. 이를 이용하여 복합재료를 만들었다. 이때 저온 수지는 70∼80℃에서 경화를 시작하여 120℃에서 경화가 완료되었다.The compositions of Examples 1 and 2 and Comparative Examples 1 to 3 were heated to produce a low-temperature resin and impregnated with the fibers to prepare a fiber-reinforced prepreg for ski making. A composite material was made using this. At this time, the low-temperature resin was cured at 70 to 80 ° C and cured at 120 ° C.
특히, 접착강도 시험을 통해 탄소나노튜브의 첨가로 프리프레그 층간 접착강도가 상승하고, 또한 기포 발생이 적어져 접착강도가 상승되었음이 확인되었다.Particularly, it was confirmed through the adhesion strength test that the addition of the carbon nanotubes increased the adhesive strength between the prepreg layers, and the generation of bubbles was reduced, thereby increasing the bonding strength.
위의 고형 에폭시 수지, 액상 비스페놀 A 수지, 개질 라버, 경화제, 촉진제 및 탄소나노튜브를 UD 기계에서 일정하게 UD 프리프레그를 제조, 즉 섬유를 저온수지에 함침시켜 섬유 강화 프리프레그를 제조하여, 위의 표에서와 같이 조성비를 맞춰 물성 테스트를 하였다.UD prepregs are prepared uniformly on the UD machine, that is, the fibers are impregnated with the low-temperature resin to prepare the fiber-reinforced prepregs, and the above epoxy resin, liquid bisphenol A resin, modified rubber, hardener, accelerator, The results are shown in Table 1. The results are shown in Table 1 below.
이때 함침온도는 70∼80℃에서 함침이 되고, 이 프리프레그가 경화될 때는 120∼130℃에서 30∼40분간 완전경화가 된다.At this time, the impregnation temperature is impregnated at 70 to 80 ° C, and when the prepreg is cured, it is completely cured at 120 to 130 ° C for 30 to 40 minutes.
위와 같은 본 발명에 따른 개발된 스키 제조용 저온 수시 조성물은 스키를 포함한 스포츠 용품뿐만 아니라 각종 구조재료로 활용할 수 있는 것으로서, 도 1 및 도 2에 도시한 바와 같이, 일반 에폭시 수지에 비해 탄성율이 15% 이상 효과적이고, 강도면에서 저온으로 갈수록 꾸준히 일반 에폭시 수지보다 물성이 15% 이상 좋다. 특히, 탄소나노튜브가 첨가됨으로써, 접착력과 진동 감쇄 및 충격흡수에 뛰어날 뿐만 아니라 정전기 방지에도 효과적이다.As shown in FIGS. 1 and 2, the low temperature occasional composition for ski making according to the present invention can be applied not only to sporting goods including skis but also to various structural materials, and has a modulus of elasticity of 15% It is more effective than epoxy resin and the property is consistently more than 15% higher than general epoxy resin as the temperature is lowered. Particularly, the addition of carbon nanotubes not only excelles in adhesion, vibration damping and shock absorption, but also is effective in preventing static electricity.
본 발명에 의한 스키 제조용 섬유 강화 프리프레그의 Tg(유리 전이 온도)는 일반 에폭시 수지와 150℃ 이하로 비슷하며, 이 섬유 강화 프리프레그에 함침된 반경화물인 프리프래그가 경화과정을 통해 성형품이 되기 위해, The Tg (glass transition temperature) of the fiber-reinforced prepreg for ski fabrication according to the present invention is similar to that of ordinary epoxy resin at 150 ° C or less, and the prepreg, which is a radial cargo impregnated in the fiber-reinforced prepreg, for,
가열시Upon heating
- 수지의 흐름(resin flow), - resin flow,
- 프리프레그의 유연성- Flexibility of prepreg
- 프리프레그의 점착성(tackmess)- tackmess of the prepreg
- pot life 등을 동시에 생산에 맞게 조건에 부합해야 한다.- The pot life must meet the conditions for production at the same time.
이 수지의 열간 흐름이 비교적 넓은 분포에서 경화가 시작되는 점이 현장에서 이용하기 좋은 프리프레그이다.The fact that the hot flow of the resin starts to harden in a relatively wide distribution is a prepreg suitable for use in the field.
이 수지의 수지 플로우는 도 3과 같다.The resin flow of this resin is shown in Fig.
다시 말하면, 도 3에서와 같이, 스키 제조용 섬유 강화 프리프레그를 적층시켜 섬유 강화 고분자 복합재료를 성형할 때, 50℃ 부근에서부터(몰드 예열온도) 점도가 낮아지다가 80℃ 부근에서 급격히 경화가 시작되는 곡선을 나타내고 있다. 이러한 프리프레그는 50℃부터 서서히 경화되고 즉 온도 범위가 넓어 실제 상황에서 크게 온도 조절을 실수하지 않은 한 잘 경화가 될 수 있음을 보여주고 있다.In other words, as shown in Fig. 3, when the fiber-reinforced polymer composite material is formed by laminating the fiber-reinforced polymer composite material for ski making, the viscosity is lowered from about 50 deg. C (mold preheating temperature), and then rapidly hardened at about 80 deg. Respectively. These prepregs are slowly cured from 50 ° C, that is, they have a wide temperature range, indicating that they can be well cured unless the temperature control is largely mistaken in actual situations.
고형 에폭시 수지를 용탕에서 녹이고, 액상 비스페놀 에폭시 수지와 함께 균일히 50℃이내에서 완전히 녹인 후 이 에폭시 수지 혼합물에 개질 라버, 경화제, 촉진제 및 탄소나노튜브는 3번 롤라에 다시 믹싱(mixing)한 후 UD 기계 수지에 넣어 일방향 직물인 UD를 제조하였다.The solid epoxy resin was melted in a molten liquid and completely dissolved with the liquid bisphenol epoxy resin at 50 ° C or less. The modified rubber, the curing agent, the accelerator and the carbon nanotubes were mixed again in the third roll of the epoxy resin mixture UD, which is a unidirectional fabric, was put into machine resin.
위와 같이 제조된 본 발명의 따른 저온 수지 조성물은 경화제, 촉진제 및 탄소나노튜브의 량에 따라 점성과 유연성이 좌우되므로, 이들의 비율을 최적화하여 점성(tacky)과 함께 유연성(flexibility)을 가지도록 함으로써, 여러 장, 특히 50장 이상을 쌓아 경화시켜 섬유 강화 고분자 복합재료를 성형할 때, 각각의 프리프레그가 잘 접착됨은 물론이고, 각 프리프레그 사이에 기공(void)이 들어가는 것을 방지할 수 있다.Since the low temperature resin composition according to the present invention manufactured as described above is dependent on the viscosity and flexibility depending on the amounts of the curing agent, the promoter and the carbon nanotube, by optimizing the ratio thereof, it is possible to have flexibility with tackiness , And when a plurality of, especially 50 or more, sheets are stacked and cured to form a fiber-reinforced polymer composite material, not only the respective prepregs are well adhered but also voids are prevented from entering between the prepregs.
특히, 스키 제조용 섬유 강화 프리프레그는 도 4 및 도 5와 같은 배합비로 탄소나노튜브가 첨가됨으로써, 접착력 및 점착성(tackness)이 높기 때문에 섬유 강화 프리프레그의 물성을 높일 수 있다.In particular, the fiber-reinforced prepreg for ski fabrication can increase the physical properties of the fiber-reinforced prepreg because the carbon nanotubes are added at the blending ratios shown in FIGS. 4 and 5, and the adhesive strength and the tackness are high.
도 6은 본 발명에 의한 섬유 강화 프리프레그의 FT/IR 분석결과를 보여주는 그래프이다.6 is a graph showing FT / IR analysis results of the fiber-reinforced prepreg according to the present invention.
위와 같은 본 발명에 따른 스키 제조용 저온 수지 조성물로 제작된 프리프레그는 도 7a 및 도 7b에서 보이는 바와 같이, 일반 에폭시 수지의 20∼30% 이상의 접착력과 인장 강도, 탄성율이 높다. 즉 인장강도는 25∼30℃일 때 155 Mpa이고, 굴곡강도는 160 Mpa이며, 신률은 30%이내를 보여주고 있다.As shown in FIGS. 7A and 7B, the prepreg made of the low-temperature resin composition for ski making according to the present invention has a high adhesive strength, tensile strength and elastic modulus of 20 to 30% or more of the general epoxy resin. That is, the tensile strength is 155 MPa at 25 to 30 ° C, the flexural strength is 160 MPa, and the elongation is within 30%.
또한, 이 프리프레그의 저장기간(pot life)은 25℃일 때, 30일, 0℃일 때 5개월, -25℃일 때 1년을 사용할 수 있는 기간이다.The pot life of the prepreg is 5 days at 25 ° C, 30 days at 0 ° C, and 1 year at -25 ° C.
본 발명의 일 실시예에 다른 저온 수지 조성물의 Tg 그래프는 도 7a 및 도 7b에서와 같이 150℃ 전후임을 보여주고 있다.The Tg graph of the low-temperature resin composition according to one embodiment of the present invention shows that it is around 150 캜 as shown in Figs. 7A and 7B.
이상에서는 첨부된 도면들을 참조하면서 본 발명에 따른 스키 제조용 저온 경화형 에폭시 수지 조성물과 이에 의한 제조된 스키 제조용 프리프레그, 및 이를 이용한 섬유 강화 고분자 복합재료의 몇 실시예에 대해서 설명하였다. 이러한 실시예들은 본 발명의 특허청구범위에 기재된 기술 사상에 포함되는 것이다. 또한, 이러한 실시 예들은 예시적인 것에 불과한 것으로, 본 발명의 특허청구범위를 해석함에 있어 한정 해석해서는 아니 된다.Hereinabove, a low temperature curing epoxy resin composition for ski making according to the present invention, a prepreg for ski making prepared therefrom, and a fiber reinforced polymer composite material using the same are described with reference to the accompanying drawings. These embodiments are included in the technical idea described in the claims of the present invention. Furthermore, these embodiments are merely illustrative and should not be construed as limiting in interpreting the claims of the present invention.
Claims (9)
액상 비스페놀 A 에폭시 수지(liquid bisphenol-A type epoxy resin) 10∼20중량%;
개질 라버(modified rubber) 2∼6중량%;
무수물, 카복실산, 아민 화합물, 페놀 화합물, 폴리올, 또는 이들의 혼합물 중에서 선택되는 하나 이상의 경화제(dicyandiamide) 0.1∼5중량%;
우레아계 화합물고형·인계 화합물·아민계 화합물·제4급 암모늄 염·이미다졸류·붕소 화합물·변성 우레아 화합물·변성 아민 화합물·이미다졸 화합물 중에서 선택되는 하나 이상인 촉진제(two methyl urea derivatives) 0.1∼5중량%; 및
직경이 5∼10㎚에 길이가 5∼20㎛인 탄소나노튜브(CNT) 1.3∼3중량%의 비율로 혼합 조성된 스키 제조용 저온 경화형 에폭시 수지 조성물.60 to 80% by weight of a modified solid epoxy resin;
10 to 20% by weight of a liquid bisphenol-A type epoxy resin;
2-6% by weight of modified rubber;
0.1 to 5% by weight of at least one dicyandiamide selected from anhydrides, carboxylic acids, amine compounds, phenol compounds, polyols, or mixtures thereof;
Urea compound, two-methyl urea derivatives of at least one selected from solid, phosphorous, amine, quaternary ammonium, imidazole, boron, modified urea, modified amine and imidazole compounds, 5% by weight; And
(CNT) having a diameter of 5 to 10 nm and a length of 5 to 20 占 퐉 at a ratio of 1.3 to 3% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160118415A KR101848280B1 (en) | 2016-09-13 | 2016-09-13 | Cold hardening epoxy resin using the composition and prepreg, and prepreg to make it into a layer of polymer composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160118415A KR101848280B1 (en) | 2016-09-13 | 2016-09-13 | Cold hardening epoxy resin using the composition and prepreg, and prepreg to make it into a layer of polymer composite |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180029805A KR20180029805A (en) | 2018-03-21 |
KR101848280B1 true KR101848280B1 (en) | 2018-04-12 |
Family
ID=61900458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160118415A KR101848280B1 (en) | 2016-09-13 | 2016-09-13 | Cold hardening epoxy resin using the composition and prepreg, and prepreg to make it into a layer of polymer composite |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101848280B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220049711A (en) | 2020-10-15 | 2022-04-22 | (주)에스모터스 | Method for manufacturing the quick hardening epoxy resin prepreg |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109385906B (en) * | 2018-10-10 | 2021-03-19 | 河海大学 | Preparation method of magnetic-orientation carbon nanotube-reinforced glass fiber epoxy composite material |
-
2016
- 2016-09-13 KR KR1020160118415A patent/KR101848280B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220049711A (en) | 2020-10-15 | 2022-04-22 | (주)에스모터스 | Method for manufacturing the quick hardening epoxy resin prepreg |
Also Published As
Publication number | Publication date |
---|---|
KR20180029805A (en) | 2018-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228853B2 (en) | Epoxy resin composition, fiber reinforced composite material, and production method thereof | |
RU2561094C2 (en) | Coated reinforcing member (versions), use of reinforcing member, method of making fibre-reinforced product | |
US9809689B2 (en) | Fibre reinforced composite moulding | |
EP1973971A1 (en) | Resinous materials, articles made therewith and methods of producing same | |
KR20140127867A (en) | Fiber-reinforced composite material | |
KR20160052638A (en) | Fiber-reinforced resin and method for producing same, and molded article | |
KR101767699B1 (en) | Multifunctional additives in engineering thermoplastics | |
KR101790112B1 (en) | Resin composition for high speed curing prepreg for car body parts through press method and a prepreg product containing the same | |
WO2016104314A1 (en) | Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same | |
KR101848280B1 (en) | Cold hardening epoxy resin using the composition and prepreg, and prepreg to make it into a layer of polymer composite | |
JP4894339B2 (en) | Epoxy resin composition for fiber reinforced composite materials | |
JP2013159618A (en) | Epoxy resin composition, fiber reinforced composite material, and method for producing them | |
JP2018502195A (en) | Resin composition | |
JP2013181112A (en) | Binder composition, reinforcing fiber base material, preform, fiber-reinforced composite material and method for producing the same | |
EP3233960B1 (en) | Epoxy-based resin composition for composite materials | |
JP2010163573A (en) | Epoxy resin composition and fiber-reinforced composite material using the same | |
KR101951632B1 (en) | A hybrid prepreg excellent in interfacial adhesion and abrasion resistance and a method for producing the same | |
JP2005194456A (en) | Preform forming binder composition, reinforcing fiber base material, method for producing preform and fiber reinforced composite material | |
KR102108053B1 (en) | Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same | |
KR20190061662A (en) | Preparation method of quasi-isotropic chopped prepreg sheet and composite materials formed using the same for shock absorption and damping effect | |
KR101790110B1 (en) | Prepreg of high speed curing system and fiber reinforced composites for compression molding | |
JP2020050833A (en) | Prepreg and molded article thereof | |
KR101923083B1 (en) | Prepreg and composite for wind-blade using the low temperature curing epoxy resin composition | |
WO2021152957A1 (en) | Composite prepreg, preform and fiber reinforced composite material bonded body using said prepreg, and method for producing said prepreg | |
KR101790109B1 (en) | Prepreg of high speed curing system and fiber reinforced composites for compression molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
N231 | Notification of change of applicant |