Nothing Special   »   [go: up one dir, main page]

KR101835014B1 - A novel Protein interference method and use of the same - Google Patents

A novel Protein interference method and use of the same Download PDF

Info

Publication number
KR101835014B1
KR101835014B1 KR1020160018700A KR20160018700A KR101835014B1 KR 101835014 B1 KR101835014 B1 KR 101835014B1 KR 1020160018700 A KR1020160018700 A KR 1020160018700A KR 20160018700 A KR20160018700 A KR 20160018700A KR 101835014 B1 KR101835014 B1 KR 101835014B1
Authority
KR
South Korea
Prior art keywords
protein
rbx1
delc
vhhgfp4
ser
Prior art date
Application number
KR1020160018700A
Other languages
Korean (ko)
Other versions
KR20170096878A (en
Inventor
황병준
기윤
김예나
김기성
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020160018700A priority Critical patent/KR101835014B1/en
Publication of KR20170096878A publication Critical patent/KR20170096878A/en
Application granted granted Critical
Publication of KR101835014B1 publication Critical patent/KR101835014B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 신규 단백질 인터피어런스 방법 및 그 용도에 관한 것으로, 더욱 상세하게는 기질 단백질에 결합하는 나노바디와 C-말단이 제거된 링-박스 단백질 1(RING-box protein 1)의 복합체를 기질단백질에 처리하여 세포의 핵과 세포질 전체에서 해당 기질 단백질을 분해하는 방법 및 그 방법에 사용되는 조성물에 관한 것으로, 본 발명에서 개발한 방법은 세포 전체에 존재하는 단백질을 분해할 수 있으며 단백질 수준이 감소함으로써 나타나는 세포의 표현형을 시간에 따라서 확인할 수 있다. The present invention relates to a novel protein interference method and a use thereof, and more particularly, to a novel protein interference method and its use, and more particularly, to a novel protein interference method and a method of using the complex of ring-box protein 1 (C- The present invention relates to a method for decomposing a substrate protein in a nucleus and a cytoplasm of a cell by treating the protein with a protein and a composition used in the method. The phenotype of the cell can be confirmed by time.

Description

신규 단백질 인터피어런스 방법 및 그 용도{A novel Protein interference method and use of the same}[0001] The present invention relates to novel protein interference methods and uses thereof,

본 발명은 신규 단백질 인터피어런스 방법 및 그 용도에 관한 것이다. The present invention relates to a novel protein interference method and its use.

인간의 세포는 서로 다른 단백질들로 구성되어 있다. 수많은 단백질들은 화학반응을 일으키는 효소와 호르몬을 생성하는 신호전달물질로써 세포 내부의 조절 기능을 하게 되고 세포 내에 존재하는 단백질을 선택적으로 분해하여 그 기능을 조절하게 된다. 그래서 특정 단백질이 분해될 수 있게 발생하는 기작으로 protein ubiquitination system이 있다. Human cells are composed of different proteins. Numerous proteins are enzymes and hormones that cause chemical reactions. They regulate the function of the cells by selectively degrading the proteins in the cells. Therefore, there is a protein ubiquitination system as a mechanism that causes a specific protein to be degraded.

이러한 기능뿐만 아니라 protein ubiquitination은 번역 후 변형으로 DNA 수선, mRNA export, 세포 cycle 조절, 다양한 신호 전달 기작에서 단백질 간의 상호작용 , protein trafficking, ubiquitination된 단백질이 서로 엉켜서 aggresome을 형성하여 autophagy을 일으켜서 제거 등의 다양한 기능에 관여한다.In addition to these functions, protein ubiquitination is a post-translational modification of DNA repair, mRNA export, regulation of cell cycle, protein interactions in various signal transduction mechanisms, protein trafficking, and ubiquitinated proteins to form aggresome to cause autophagy. It is involved in various functions.

Protein ubiquitination은 ubiquitin에 의해 발생하게 된다. Ubiquitin은 76개의 아미노산으로 이루어진 조절 단백질로 세 가지의 효소들인 E1, E2, 그리고 E3의 순차적인 작용에 의해서 기질 단백질에 결합하게 되는 ubiquitination이 일어나게 된다. E1은 활성효소로 ATP가 있는 조건에서 ubiquitin과 결합하여 ubiquitin C말단의 아실-아데닐화를 촉진시킨다. E1에 결합한 ubiquitin은 conjugating enzyme인 E2로 이동하여 복합체를 형성하고 ligase enzyme인 E3와 결합하게 된다. 그리고 기질에 있는 lysine기의 amine이 ubiquitin의 C 말단에 있는 glycine과 nucleophilic attack을 발생하여 공유결합을 형성함으로써 ubiquitin이 E2에서 기질 단백질로 이동하게 된다. Protein ubiquitination is caused by ubiquitin. Ubiquitin is a regulatory protein consisting of 76 amino acids. Subsequent actions of three enzymes, E1, E2, and E3, lead to ubiquitination, which binds to the substrate protein. E1 catalyzes the acyl-adenylation of ubiquitin C terminus by binding to ubiquitin under conditions with ATP as an active enzyme. Ubiquitin bound to E1 moves to E2, which is a conjugating enzyme, to form a complex and binds to E3, a ligase enzyme. And the amine of the lysine group in the substrate forms a covalent bond with the glycine and nucleophilic attack at the C terminal of ubiquitin, so ubiquitin migrates from E2 to substrate protein.

이러한 단백질 기작은 반복적으로 발생하여 7개의 lysine으로 구성된 ubiquitin이 다른 ubiquitin과 결합을 하여 polyubiquitin chain을 형성하게 된다. Ubiquitin chain의 종류에는 7가지가 있으며, 몇 번째 잔기에 결합을 했는지에 따라서 K6, K11, K27, K29, K33, K48, K63으로 나뉘게 된다. 그리고 단백질에 결합한 ubiquitin chain에 따라 다양한 기능을 한다.(도 1A) This protein mechanism occurs repeatedly and ubiquitin composed of 7 lysines binds to another ubiquitin to form a polyubiquitin chain. There are seven kinds of Ubiquitin chains, and they are divided into K6, K11, K27, K29, K33, K48, and K63 depending on which residue is bonded. And functions in a variety of ways depending on the ubiquitin chain bound to the protein (Figure 1A).

UbiquitinUbiquitin -- ProteasomProteasome System (UPS) System (UPS)

대표적으로 세포 내에서의 단백질의 분해는 lysosome과 proteasome에 의해서 발생하는 기작이 존재한다. 이 두 가지의 기작에는 큰 차이점이 있는데 lysosome에 의한 경우는 선택성이나 조절능력이 없는데 비하여 proteasome에 의한 경우에 있어서는 선택성이나 조절능력을 가지고 있다는 점이다.Typically, the degradation of proteins in cells is mediated by lysosomes and proteasomes. There is a major difference between these two mechanisms: lysosomes do not have selectivity or regulation ability, whereas proteasome has selectivity or control ability.

Proteasome은 핵과 세포질에 존재하고 있으며 ubiquitin chain이 결합한 대부분의 단백질을 분해한다. Proteasome은 2개의 subunit인 19S regulatory particle와 20S core particle로 구성되어 있다. 19S regulatory particle은 ubiquitin chain이 결합한 단백질을 인지하고 20S core particl에 의해서 단백질을 펩티드로 분해되는 것을 유도한다. (도 1A)
Proteasome is present in the nucleus and cytoplasm and degrades most of the proteins bound to the ubiquitin chain. Proteasome consists of two subunits, 19S regulatory particle and 20S core particle. The 19S regulatory particle recognizes proteins bound to the ubiquitin chain and induces degradation of the protein into peptides by 20S core particles. (Figure 1A)

E3E3 ligaseligase

E3 ligase은 E2와 기질 단백질에 모두 결합하여 ubiquitination 과정을 통해 proteasome에 의해서 분해되는 기질 단백질을 결정하는 특이성을 가진다. E3 ligase은 HECT (Homologous to E6-AP Carboxyl Terminus) domain과 RING (Really Interesting New Gene)-finger domain에 따라서 크게 두 종류로 분류한다 (Pintard L, Willems A, Peter M. EMBO J. 2004;23(8):1681-7.). E3 ligase binds both E2 and substrate proteins and has the specificity to determine substrate proteins degraded by proteasome through ubiquitination. E3 ligase is classified into two types according to HECT (Homologous to E6-AP carboxyl terminus) domain and RING (Really Interesting New Gene) -finger domain (Pintard L, Willems A, Peter M. EMBO J. 2004; 8): 1681-7.).

RING-finger E3 ligase는 ubiquitin을 기질 단백질로 전달하기 위해 중간 매개자 역할을 하는 cysteine이 포함된 HECT E3 ligase와 다르게 ubiquitin을 기질 단백질로 중간 매개자 없이 바로 전달시켜준다. RING finger domain은 직접적으로 E2와 결합하여 ligase activity를 갖게 된다. 그리고 cysteine과 histidine가 zinc ion과 결합하여 생성되는 'cross-brace'에 의해 구조적인 안전성을 갖게 된다.Unlike the HECT E3 ligase, which contains cysteine, which acts as an intermediate for transferring ubiquitin to the substrate protein, the RING-finger E3 ligase directly transfers ubiquitin to the substrate protein without an intermediate mediator. The RING finger domain binds directly to E2 and has ligase activity. In addition, cysteine and histidine are structurally safe by 'cross-brace' generated by binding zinc ions.

RING-finger E3 ligase는 단백질들의 상호작용을 통해 기능을 하게 되는데, Skp1, Cullin1, F-box protein로 구성되어 SCF complex와 Rbx1, Cul2, Elongin B, Elongin C, SOCS-box protein으로 구성되어 있는 VHL-CBC complex가 대표적으로 알려져 있다. 또한 BTB domain을 가진 단백질은 서로 결합하여 dimer로 형성하고 C 말단에 Cul3에 결합하여 E3 ubquitin ligase로써 기능한다 (Deshaies RJ, Joazeiro CA. Annu Rev Biochem. 2009;78:399-434.). RING-finger E3 ligase functions through the interaction of proteins. It is composed of Skp1, Cullin1, F-box protein and is composed of SCF complex and Rbx1, Cul2, Elongin B, Elongin C and SOCS- The -CBC complex is well known. Proteins with the BTB domain bind to each other to form dimers, which bind to Cul3 at the C-terminus and function as E3 ubiquitin ligases (Deshaies RJ, Joazeiro CA. Annu Rev Biochem. 2009; 78: 399-434).

1) One) Rbx1Rbx1

Rbx1(RING-box protein 1)은 CRL (cullin-based RING ligase)로 알려진 SCF 복합체를 구성하는 단백질로, E2와 cullin에 결합하여 E3 ligase의 기능을 한다. Rbx1 (RING-box protein 1) is a protein that constitutes the SCF complex known as CRL (cullin-based RING ligase) and binds to E2 and cullin to function as an E3 ligase.

Rbx1에는 zinc ion이 결합해서 구조의 안정화를 주는 RING motif를 가지고 있으며 두 개의 큰 loop와 a-helix 구조인 H3는 E2와 결합하여, 구조를 유지시켜주는 역할을 한다. H3는 C 말단에 존재하여 Rbx1 기능에 중요한 역할을 한다. 또한 N 말단에는 cullin이 결합한다. (Zheng N, Schulman BA, Song L, et al. Nature. 2002;416(6882):703-9, Duda DM, Olszewski JL, Tron AE, et al. Mol Cell. 2012;47(3):371-82.) (도1.(B))Rbx1 has a RING motif that binds to the zinc ions to stabilize the structure. Two large loops and H3, which is an a-helix structure, bind to E2 and play a role in maintaining the structure. H3 exists at the C-terminus and plays an important role in Rbx1 function. In addition, cullin binds to the N-terminus. 47 (3): 371-7. (1999). In this study, we have investigated the effect of a single- 82.) (Fig. 1 (B))

2) 2) SPOPSPOP

SPOP(Speckle-type POZ protein)은 기질 특이적 adaptor로, 기질 단백질이 결합하는 MATH domain과 cullin3 (Cul3)가 결합하는 BTB domain으로 구성되어 있다. BTB domain에는 dimer을 형성하는 부분이 존재하여 BTB domain을 가진 단백질끼리 결합하여 E2에 결합한 ubiquitin을 기질 단백질에 결합시켜 준다. MATH domain은 기질 단백질의 특이성을 결정하고 세포 내에 존재하는 단백질의 양을 조절한다. SPOP의 다양한 기질 단백질은 공통적으로 SPOP과 결합하는 motif을 가지고 있다(Zhuang M, Calabrese MF, Liu J, et al. Mol Cell. 2009;36(1):39-50.). 최근 연구를 통해 MATH domain의 변화가 일어나서 전립선암을 일으키는 원인으로 밝혀졌다 (Gan W et al. 2015). BTB domain에는 SPOP의 dimer 구조를 일으키는 dimer domain(DD)와 subset인 Cul3의 N말단과 결합하는 3-Box가 속한다( 상기 Zhuang M et al. 2009). (도 1C)SPOP (Speckle-type POZ protein) is a substrate-specific adapter consisting of a BTB domain in which a MATH domain and a cullin3 (Cul3) bind to a substrate protein. In the BTB domain, there is a dimer-forming moiety, which binds proteins with the BTB domain and binds ubiquitin bound to E2 to the substrate protein. The MATH domain determines the specificity of the substrate protein and regulates the amount of protein present in the cell. A variety of substrate proteins of SPOP commonly have a motif that binds SPOP (Zhuang M, Calabrese MF, Liu J, et al., Mol Cell. 2009; 36 (1): 39-50). Recent studies have shown that MATH domain changes cause prostate cancer (Gan W et al. 2015). The BTB domain contains a dimer domain (DD) that causes the dimer structure of SPOP and a 3-box that binds to the N terminus of the subset Cul3 (Zhuang M et al. 2009). (Figure 1C)

유전자 편집(genome editing)은 생물체의 유전적 서열 (genotype)을 조작하는 유전 공학의 일종이다. 유전자 편집은 핵산분해효소를 통해 원하는 유전자에 이중가닥절단(double-stranded break)을 하고 세포의 자체적인 기작에 의해 상동재조합(homologous recombination) 또는 비상동말단연결(non-homologous end joining)의 방식으로 유전자를 조작한다. 이 방법을 이용하여 원하는 유전자를 Knock-out하여단백질의 기능을 연구한다. Genome editing is a type of genetic engineering that manipulates the genotype of an organism. Genetic editing involves double-stranded breaks of the gene of interest through nucleic acid degrading enzymes and by homologous recombination or non-homologous end joining by the cell's own machinery Manipulate the gene. This method is used to knock-out the desired gene and study the function of the protein.

유전자 편집은 핵산분해효소를 이용하며 주로 메가핵산분해효소 (meganucleases), ZFNs (Zinc Finger Nucleases), TALENs (Transcription Activator-Like Effector Nucleases) 그리고 CRISPR/Cas system을 사용한다. 메가핵산분해효소는 인식서열이 매우 길어 높은 특이성을 가지고 있지만 유전체 내 모든 서열을 대상으로 하기에는 비용과 시간이 비효율적이다. 반대로 ZFNs와 TALENs는 모든 염기 서열에 제한없이 사용할 수 있지만 낮은 특이성을 가지고, 이에 따라 세포에 대해 독성을 띄는 문제점도 있다. CRISPR/Cas system은 DNA를 자르는 Cas9 단백질과 특정 DNA 염기서열을 인지하는 gRNA를 이용하는 방법으로 특이성이 높다. 마지막으로 많이 사용되는 RNA interference (RNAi) 방법은 siRNA (short interfering RNA)라고 불리는 dsRNA에 의해 서열 특이적으로 유전자 발현이 억제되는 현상을 이용하여 mRNA 상에서 유전자를 조작하기 때문에 실험에는 용이하다. Genetic editing uses nucleic acid degrading enzymes and mainly meganucleases, Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and CRISPR / Cas systems. Mega nucleic acid degrading enzymes have high specificity due to their long recognition sequences, but their cost and time are inefficient to target all sequences in the genome. On the other hand, ZFNs and TALENs can be used in all nucleotide sequences without limitation, but they have low specificity and thus are toxic to cells. The CRISPR / Cas system is highly specific for Cas9 protein that cuts DNA and gRNA which recognizes specific DNA sequence. The most commonly used RNA interference (RNAi) method is easy to experiment because it manipulates genes on mRNA by using sequence-specific inhibition of gene expression by dsRNA called short interfering RNA (siRNA).

하지만 현재까지 사용하는 유전자 편집 방법은 원하는 DNA 염기서열과 비슷한 DNA 염기서열을 절단하는 비특이적 절단 (off target effect) 현상과 세포가 적응기간을 통해서 세포의 표현형이 변하지 않는 경우가 발생하기 때문에 단백질 기능을 연구하는 방법으로 사용하기에는 하기에 부적합하다.However, the gene editing method that is used until now has the function of off target effect which cuts DNA base sequence similar to the desired DNA base sequence and the case that the cell does not change its phenotype through the adaptation period, It is unsuitable for use as a method of study.

최근에 이러한 문제점을 보완하여 Ab-SPOP을 이용하여 핵에 존재하는 단백질을 빠른 시간 안에 분해시켜준다 (Shin YJ, Park SK, Jung YJ, et al. Sci Rep. 2015;5:14269.). Recently, Ab-SPOP has been used to overcome this problem and to rapidly break down the proteins in the nucleus (Shin YJ, Park SK, Jung YJ, et al., Sci.

그러나 핵에서만 작용하기 때문에 세포질에 존재하는 단백질을 연구할 때에는 이 기술을 사용할 수 없다. 또한 빠른 시간 안에 분해되기 때문에 관찰을 할 수 없을 수도 있다. However, this technique can not be used to study proteins present in the cytoplasm, because it acts only in the nucleus. It may also disrupt observation in a short time.

본 발명은 상기의 문제점을 해결하고 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 세포의 핵과 세포질에 전체적으로 존재하는 단백질을 nanobody를 통해 인식하고 특정 조건에서 Knock-down시켜 세포의 표현형을 관찰할 수 있는 Protein interference (Protein-i) 기술을 제공하는 것이다.DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a method of detecting a protein existing entirely in the nucleus and cytoplasm of a cell through nanobody and knocking down the cell under specific conditions (Protein-i) technology that can be used in the future.

상기의 목적을 달성하기 위하여 본 발명은 기질 단백질에 결합하는 나노바디와 C-말단이 제거된 링-박스 단백질 1(RING-box protein 1)의 복합체를 기질단백질에 처리하여 세포의 핵과 세포질 전체에서 해당 기질 단백질을 분해하는 방법을 제공한다.In order to accomplish the above object, the present invention provides a method of treating a substrate protein with a complex of a nano-body binding to a substrate protein and a ring-box protein 1 (C-terminally removed) Thereby providing a method for degrading the substrate protein.

본 발명의 일 구현예에 있어서, 상기 C-말단이 제거된 링-박스 단백질 1(RING-box protein 1)은 서열번호 1의 아미노산 서열로 이루어진 것이 바람직하나 상기 서열에 하나 이상의 치환, 결손 등의 돌연변이를 통하여 본 발명의 효과를 달성하는 모든 돌연변이체도 본 발명의 범위에 포함된다.In one embodiment of the present invention, the C-terminal deleted RING-box protein 1 is preferably composed of the amino acid sequence of SEQ ID NO: 1, but it is preferable that the R- All mutants which achieve the effects of the present invention through mutation are also included within the scope of the present invention.

본 발명의 다른 구현예에 있어서, 상기 기질 단백질은 세포 핵 및/또는 사이토졸에 존재하는 단백질인 것이 바람직하고, 상기 기질 단백질은 형광 단백질인 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the substrate protein is preferably a protein existing in a cell nucleus and / or a cytosol, and the substrate protein is preferably a fluorescent protein, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 나노바디는 세포 핵 또는 사이토졸에 존재하는 단백질에 결합하는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the nanobody binds to a protein existing in a cell nucleus or cytosol, but is not limited thereto.

본 발명의 바람직한 구현예에 있어서, 상기 나노바디와 C-말단이 제거된 링-박스 단백질 1(RING-box protein 1)의 복합체는 과발현되는 것이 바람직하나 이에 한정되지 아니한다.In a preferred embodiment of the present invention, the complex of the nano-body and the C-terminal removed ring-box protein 1 (RING-box protein 1) is preferably overexpressed but not limited thereto.

또 본 발명은 기질 단백질에 결합하는 나노바디 및 C-말단이 제거된 링-박스 단백질 1(RING-box protein 1)의 복합체를 유효 성분으로 포함되는 기질단백질 분해용 조성물을 제공한다.
The present invention also provides a composition for degrading a substrate protein comprising a complex of a nano-body binding to a substrate protein and a ring-box protein 1 (C-terminal removed) as an active ingredient.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명에서는 E3 ubiquitin ligase를 이용하여 세포의 핵과 세포질에 전체적으로 존재하는 단백질을 nanobody를 통해 인식하고 특정 조건에서 Knock-down시켜 세포의 표현형을 관찰할 수 있는 Protein interference (Protein-i) 기술을 개발하였다.In the present invention, a protein interference (Protein-i) technology capable of recognizing proteins existing throughout the nucleus and cytoplasm of a cell through a nanobody using the E3 ubiquitin ligase and knocking down the cell under specific conditions to observe the phenotype of the cell was developed .

본 발명의 용어 "나노바디"는 일반적으로 국제 특허출원 공보 제WO08/020079호 또는 제WO 09/138519호에 정의되어 있으므로, 구체적인 양태에서 일반적으로 VHH, 인간화된 VHH를 의미하거나, 일반적으로 서열 최적화된(예를 들면, 화학적 안정성 및/또는 가용성, 공지된 인간 골격 영역과의 최대 중첩 및 최대 발현에 대해 최적화된) VHH를 의미한다. 용어 나노바디 또는 나노바디들은 아블링크스(Ablynx)의 등록된 상표명이므로, 나노바디®및/또는 나노바디들®로서 지칭될 수도 있다는 것을 인지한다.The term "nanobody" of the present invention is generally defined in International Patent Application Publication No. WO08 / 020079 or WO < RTI ID = 0.0 > 09 / 138,519 & (E. G., Optimized for chemical stability and / or solubility, maximum overlap with known human framework regions and maximal expression). It will be appreciated that the term nanobodies or nanobodies may be referred to as Nanobodies < RTI ID = 0.0 > and / or < / RTI > nanobodies ' because they are registered trade names of Ablynx.

본 발명의 새롭게 개발한 Protein interference (Protein-i)는 원하는 단백질과 결합하는 항체를 이용하여 E3 ubiquitin ligase에 합성하였다. 그래서 원하는 단백질의 항체를 이용하여 특정 조건(doxycycline가 있는 조건)에서 ubiquitination 시켜 표시를 하고 proteasome에 의해서 분해시켜준다. 이 기술은 기존에 존재하는 Knock-down 방법보다 빠르게 작용하며 유전자 조작을 하지 않기 때문에 비특이적 절단 현상과 세포의 적응에 의해 발생하는 문제점을 보완하였다. 개발한 nanobody-SPOP과 다르게 세포 전제에 존재하는 단백질을 분해할 수 있으며 천천히 작용하기 때문에 단백질 수준이 감소함으로써 나타나는 세포의 표현형을 시간에 따라서 확인할 수 있을 것이다. The newly developed protein interference (Protein-i) of the present invention was synthesized on E3 ubiquitin ligase using an antibody that binds to a desired protein. Therefore, by using the antibody of the desired protein, it is labeled by ubiquitination under specific conditions (conditions with doxycycline) and degraded by the proteasome. This technique works faster than existing knock-down methods and does not perform genetic manipulation, so it solves problems caused by nonspecific cleavage and cell adaptation. Unlike the developed nanobody-SPOP, it can decompose the proteins present in the cell precursors, and because it acts slowly, the expression level of the cells that can be seen by decreasing the protein level can be confirmed with time.

도 1은 단백질 유비퀴틴화의 원리를 나타낸 그림. 유비퀴틴화는 세 단계 과정; 유비퀴틴 활성화, 컨쥬게이션 및 라이게이션이 E1, E2, 및 E3에 의하여 수행됨. 이 과정의 결과 기질에 유비퀴틴이 결합하고 이 과정은 수 차례 반복되어 유비퀴틴 체인을 만들고 이 과정은 proteasome을 통한 단백질 분해를 야기.
도 2는 Cullin-RING E3 ligases의 모델. cullin-기반된 ligases는 전체 조성 및 구조를 나타냄.(A) Rbx1는 E2-ubiquitin 및 기질(F-박스 단백질, VHL-box, BTB protein) 복합체에 결합. (B) SPOP는 BTB 및 MATH 도메인으로 구성. BTB 도메인은 Cullin3-Rbx1-ubiquin 복합체에 결합하고 MATH 도메인은 기질에 결합.
도 3은 여러 합성 E3 ligase complex, Rbx1로 트랜지언트하게 트랜스팩션된 GFP/293tetOn 안정 세포주의 FACS 분석. 트랜스팩션 후, 각 후보 및 RFP670는 양방향 TRE 프로모터로부터 doxycycline 처리에 의하여 발현됨. Doxycycline는 36 시간 동안 FACS 분석을 위해 첨가. 트랜스팩션 없는 GFP/293tetOn 안정 세포주. 세포는 RFP670, vhhGFP4-SNoFbox, vhhGFP4-NSlim, vhhGFP4-Rbx1, vhhGFP4 -Rbx1delN, vhhGFP4 -Rbx1delC, vhhGFP4 -Rbx1delNdelC, vhhGFP4mutation -Rbx1delC를 발현.
도 4는 여러 합성 E3 ligase 복합체, Rbx1으로 트랜지언트하게 트랜스팩션된 GFP/293tetOn 안정 세포주의 현미경적 분석. 트랜스팩션 후, 각 캔디데이트 및 TagRFP는 양방향 TRE 프로모터로부터 doxycycline 처리에 의하여 발현. Doxycycline을 현미경 분석을 위하여 24시간 동안 첨가. 각 패널은 GFP(녹색), TagRFP (적색), 및 GFP 및 TagRFP의 결합(황색)을 나타냄.
도 5는 합성 cullin 복합체로 트랜지언트하게 트랜스팩션된 GFP/293tetOn 안정 세포주의 현미경적 분석.나노바디-Cul11 나노바디-Cul31 는 모두 Rbx1 결합 도메인을 삭제. 각 패널은 Hoechst (청색) GFP (녹색), TagRFP (적색), 및 GFP 및 TagRFP의 결합(황색)을 나타냄. Hoechst는 DNA 염색에 사용된 청색 형광 염료.
도 6은 나노바디-합성 E3 ubiquitin ligase 복합체, Ab-Rbx1delC로 트랜지언트하게 트랜스팩션된 여러 GFP 융합 단백질/293tetOn 안정 세포주의 FACS 분석.
도 7은 나노바디-합성 E3 ubiquitin ligase complex, Ab-Rbx1delC 및 Ab-SPOP로 트랜지언트하게 트랜스팩션된 cMycGFP, TAFGFP, CBRGFP, p27GFP /293tetOn 안정 세포주의 현미경 분석.
도 8은 여러 나노바디-합성 E3 ubiquitin ligase complex, Ab-Rbx1delC로 트랜지언트하게 트랜스팩션된 GFP/293tetOn 안정 세포주의 현미경적 분석.
도 9는 Rbx1delC 에 융합된 세 mCherry 나노바디도 활성 합성 E3 ligase를 형성. mCherry를 안정적으로 발현하는 293TetOn 세포는 Ab-Rbx1delC을 발현하는 벡터로 트랜스팩션. GFP의 발현 및 mCherry의 결손을 doxycycline (1μg/ml)을 배지에 첨가한 후 36시간 측정. mCherry의 선택적 결손을 Ab-Rbx1delC으로 트랜스팩션된 세포에서만 관찰. LaM2, LaM3, 및 LaM4는 mCherry 나노바디.
도 10은 나노바디-합성 E3 ubiquitin ligase 복합체, Ab-Rbx1delC 및 Abmutation-Rbx1delC.삽입된 안정 세포주의 현미경 및 FACS 분석.(A) 현미경 분석. Ab-Rbx1delC의 세 후보. Doxycycline을 현미경 분석을 위해 24시간 동안 첨가.각 패널은 GFP(녹색), TagRFP (적색), 및 GFP 및 TagRFP의 결합(황색)을 나타냄. (B) FACS에 의한 GFP의 분석
Figure 1 shows the principle of protein ubiquitination. Ubiquitination is a three-step process; Ubiquitin activation, conjugation and ligation are performed by E1, E2, and E3. As a result of this process, ubiquitin binds to the substrate, and this process is repeated several times to make the ubiquitin chain, which causes proteolysis through the proteasome.
Figure 2 is a model of Cullin-RING E3 ligases. (A) Rbx1 binds to E2-ubiquitin and substrate (F-box protein, VHL-box, BTB protein) complexes. (B) SPOP consists of BTB and MATH domains. The BTB domain binds to the Cullin3-Rbx1-ubiquin complex and the MATH domain binds to the substrate.
Figure 3 shows FACS analysis of GFP / 293tetOn stable cell lines transiently transfected with various synthetic E3 ligase complexes, Rbx1. After transfection, each candidate and RFP670 is expressed by doxycycline treatment from the bidirectional TRE promoter. Doxycycline was added for FACS analysis for 36 h. Transfection-free GFP / 293tetOn stable cell line. Cells RFP670, vhhGFP4-SNoFbox, vhhGFP4- NSlim, vhhGFP4-Rbx1, vhhGFP4 -Rbx1 delN, vhhGFP4 -Rbx1 delC, vhhGFP4 -Rbx1 delNdelC , vhhGFP4mutation -Rbx1 expressing delC .
Figure 4: Microscopic analysis of GFP / 293tetOn stable cell lines transiently transfected with various synthetic E3 ligase complexes, Rbx1. After transfection, each Candidate and TagRFP was expressed from a bidirectional TRE promoter by doxycycline treatment. Doxycycline was added for 24 hours for microscopic analysis. Each panel represents a combination of GFP (green), TagRFP (red), and GFP and TagRFP (yellow).
Figure 5: Microscopic analysis of GFP / 293tetOn stable cell line transiently transfected with a synthetic cullin complex. Nanobody -Cul1 1 And Nanobody -Cul3 1 deletes all Rbx1 binding domains. Each panel represents the combination of Hoechst (blue) GFP (green), TagRFP (red), and GFP and TagRFP (yellow). Hoechst is a blue fluorescent dye used for DNA staining.
Figure 6 shows FACS analysis of several GFP fusion protein / 293tetOn stable cell lines transiently transfected with the nano-body-synthetic E3 ubiquitin ligase complex, Ab-Rbx1 delC .
Figure 7: Microscopic analysis of cMycGFP, TAFGFP, CBRGFP, and p27GFP / 293tetOn stable cell lines transiently transfected with the nano-body-synthetic E3 ubiquitin ligase complex, Ab-Rbx1 delC and Ab-SPOP.
Figure 8 is a microscopic analysis of GFP / 293tetOn stable cell lines transiently transfected with several Nanobody -synthetic E3 ubiquitin ligase complexes, Ab-Rbx1 delC .
Figure 9 shows that three mCherry nanobodies fused to Rbx1 delC also form an active synthetic E3 ligase. 293TetOn cells stably expressing mCherry are transfected as a vector expressing Ab-Rbx1 delC . GFP expression and mCherry defects were measured 36 h after addition of doxycycline (1 μg / ml) to the medium. Selective defects of mCherry were observed only in cells transfected with Ab-Rbx1 delC . LaM2, LaM3, and LaM4 are mCherry nanobodies.
Figure 10 depicts the nanobody-synthetic E3 ubiquitin ligase complex, Ab-Rbx1 delC And Ab mutation -Rbx1 delC . Microscopy and FACS analysis of the inserted stable cell line. (A) Microscopic analysis. Three candidates for Ab-Rbx1 delC . Doxycycline is added for 24 hours for microscopic analysis. Each panel displays the combination of GFP (green), TagRFP (red), and GFP and TagRFP (yellow). (B) Analysis of GFP by FACS

이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재한 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.The present invention will now be described in more detail by way of non-limiting examples. The following examples are intended to illustrate the present invention and the scope of the present invention is not to be construed as being limited by the following examples.

실시예Example 1. 균주 및 배양조건 1. Strain and culture conditions

1)대장균주 및 배양1) Escherichia coli strain and culture

본 발명에서 DNA 재조합 플라스미드를 증폭시키는 competent 세포로 Escherichia coli Top10F'(F'[lacIq Tn10(tetR)] mcrA (mrr-hsdRMS-mcrBC) f80lacZM15 lacX74 deoR nupG recA1 araD139 (ara-leu)7697 galU galK rpsL(StrR), Invitrogen)을 사용하였다. 이 균주는 대부분 LB배지(1% Tryptone, 0.5% yeast extract, 0.5% sodium chloride, Lennox)에 12~15시간동안 37℃에서 배양하였다. 균주를 배양할 때, 플라스미드의 종류에 따라서 항생제인 ampicillin (100 ug/ml)과 kanamycin(25 ug/ml)를 LB배지에 첨가하였다.In the present invention, Escherichia coli Top10F '(F' [lacIq Tn10 (tetR)] mcrA (mrr-hsdRMS-mcrBC) f80lacZM15 lacX74 deoR nupG recA1 araD139 (ara-leu) 7697 galU galK rpsL StrR), Invitrogen) was used. Most of the strains were cultured in LB medium (1% Tryptone, 0.5% yeast extract, 0.5% sodium chloride, Lennox) for 12 to 15 hours at 37 ℃. Amplicillin (100 ug / ml) and kanamycin (25 ug / ml) were added to LB medium depending on the type of plasmid.

2) 동물세포 및 배양2) Animal cells and culture

293TetOn 세포은 10% FBS, 1% penicillin/streptomycin, 1% HEPES을 첨가한 DMEM (with 4.5g/L glucose, L-glutamine, sodium pyruvate) 배지에서 5% CO2와 37℃의 조건으로 배양하였다. 실험에서 주로 사용하는 293TetOn-CMV-GFP 세포은 세포내에서 GFP 형광을 유지시켜주기 위해서 2ug/ml puromycin을 첨가된 DMEM (with 4.5g/L glucose, L-glutamine, sodium pyruvate, [10% FBS, 1% penicillin/streptomycin, 1% HEPES]) 배지에서 배양(5% CO2, 37℃)하였다. 또 293TetOn-CMV-GFP 세포에 pEM791_SRa_HygroB 플라스미드를 이용하여 형질전환된 동물세포는 Hygromycin(100ug/ml)을 첨가하여 DMEM (with 4.5g/L glucose, L-glutamine, sodium pyruvate,[10% FBS, 1% penicillin/streptomycin, 1% HEPES]) 배지에서 배양(5% CO2, 37℃)하였다.
293TetOn cells were cultured in DMEM (with 4.5 g / L glucose, L-glutamine, sodium pyruvate) supplemented with 10% FBS, 1% penicillin / streptomycin and 1% HEPES at 5% CO 2 and 37 ° C. To maintain GFP fluorescence in the cells, 293TetOn-CMV-GFP cells were cultured in DMEM (supplemented with 4.5 g / L glucose, L-glutamine, sodium pyruvate [10% FBS, % penicillin / streptomycin, 1% HEPES]) medium (5% CO 2, 37 ° C). L-glutamine, sodium pyruvate, [10% FBS, 1 [mu] g / ml) was added to 293TetOn-CMV-GFP cells using pEM791_SRa_HygroB plasmid in the presence of Hygromycin % penicillin / streptomycin, 1% HEPES]) medium (5% CO 2, 37 ° C).

실시예Example 2. 벡터 구축 2. Vector construction

1) 동물세포의 발현 벡터 구축1) Expression vector construction of animal cells

pEM791-SRa-HygroB_rtTA3 플라스미드에 양방향으로 발현을 시작하는 TRE( tetracycline response element) 프로모터에 형광 단백질 유전자와 E3 ubiquitin ligase을 재조합하였다. TRE 프로모터를 사용하여 doxycycline이 있는 조건에서만 발현을 하게 되었다.The fluorescent protein gene and the E3 ubiquitin ligase were recombined with the tetracycline response element (TRE) promoter, which initiates bi-directional expression on the pEM791-SRa-HygroB_rtTA3 plasmid. TRE promoter was used to express only in the presence of doxycycline.

그래서 형광 단백질을 분석하는 방법에 따라서 선택적으로 사용하였다. 먼저 현미경을 통해 분석에 필요한 벡터는 TRE프로모터에 형광유전자 TagRFP를 PCR로 증폭시키고 제한효소(BstB/ Sal) 를 처리하여 재조합하였다 (표 1). 그리고 FACS를 통해 분석에 필요한 벡터는 MitoRFP670 (Addgene: 45462)을 구입하여 PCR를 통해 증폭시켜 제한효소(BstB/ Sal) 처리하여 재조합하였다 (표 2). Therefore, it was selectively used according to the method of analyzing the fluorescent protein. First, the vector required for the analysis through a microscope was amplified by PCR with the fluorescent gene TagRFP in the TRE promoter and the restriction enzyme (BstB / Sal) was treated (Table 1). The vector required for the analysis by FACS was purchased from MitoRFP670 (Addgene: 45462), amplified by PCR, and then subjected to restriction enzyme (BstB / Sal) for recombination (Table 2) .

Rbx1의 C 말단 제거(Rbx1delC), N 말단 제거(Rbx1delN), 그리고 C와 N 말단 둘 다 제거(Rbx1delNdelC)한 다양한 E3 ubiquitin ligase에 Flag을 달고 vhhGFP4(deGraFP)를 합성하였다(FLAG-vhhGFP4_Rbx1delN FLAG-vhhGFP4_Rbx1delNdelC FLAG-vhhGFP4_Rbx1 및 FLAG-vhhGFP4_Rbx1delC 서열은 각각 서열번호 2 내지 5에 기재). Negative control로 사용한 벡터는 vhhGFP4에 3개의 CDR을 제거시켜 vhhGFP4mutation을 만들어서 제한효소 (BsiW/Xho) 처리하여 재조합하였다. VhhGFP4 (deGraFP) was synthesized by attaching Flag to various E3 ubiquitin ligases with Rbx1 deletion (Rbx1 delC ), N terminus elimination (Rbx1 delN ), and removal of both C and N terminus (Rbx1 delNdelC ) (FLAG-vhhGFP4_Rbx1 delN FLAG-vhhGFP4_Rbx1 delNdelC FLAG-vhhGFP4_Rbx1 and FLAG-vhhGFP4_Rbx1 delC SEQ ID NOS: 2 to 5, respectively). The vector used for the negative control was vhhGFP4 by removing 3 CDRs to make a vhhGFP4 mutation and then recombining by restriction enzyme (BsiW / Xho) treatment.

실험에 사용한 동물 세포를 형질전환시키기 위해서 PCR을 통해 얻은 GFP와 특정 단백질을 합성시킨 GFP fusion protein (CBRGFP, AIMP2GFP, CD63GFP, CD64GFP, CDK4GFP, cMycGFP, DX2GFP, ELF3GFP, hPin1GFP, p27GFP, TAF9GFP ) 를 제한효소 처리해서 pPuro-CMV lentiviral 벡터에 재조합하였다 (AIMP2GFP,CBRGFP,CD63GFP,CD64GFP,CDK4GFP,cMycGFP,DX2GFP,ELF3GFP,hPIN1GFP,P27GFP,및 TAF9GFP 서열은 각각 서열번호 6 내지 16에 기재).GFP fusion proteins (CBRGFP, AIMP2GFP, CD63GFP, CD64GFP, CDK4GFP, cMycGFP, DX2GFP, ELF3GFP, hPin1GFP, p27GFP, and TAF9GFP) in which GFP obtained by PCR and specific proteins were synthesized were transformed with restriction enzymes (AIMP2GFP, CBRGFP, CD63GFP, CD64GFP , CDK4GFP, cMycGFP, DX2GFP, ELF3GFP, hPIN1GFP, P27GFP, and TAF9GFP sequences are shown in SEQ ID NOS: 6 to 16, respectively).

마지막으로 nanobody의 affinity에 따라서 분류된 LaG과 LaM nanobody를 제한효소 (BsiW/ Xho) 처리하여 재조합하였다 (표 3).Finally, the LaG and LaM nanobodies classified according to the affinity of the nanobody were recombined by restriction enzyme (BsiW / Xho) treatment (Table 3).

벡터vector 특성characteristic -  - pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE__globinUTR _LoxP vhhGFP4-RbxIvhhGFP4-RbxI pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_RbxI_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_RbxI_stop__globinUTR _LoxP vhhGFP4-RbxIdelC vhhGFP4-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delC_stop__globinUTR _LoxP vhhGFP4-RbxIdelN vhhGFP4-RbxI delN pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delN_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delN_stop__globinUTR _LoxP vhhGFP4-RbxIdelN _ delC vhhGFP4-RbxI delN _ delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delN_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delN_delC_stop__globinUTR _LoxP vhhGFP4mut-RbxIdelC vhhGFP4 mut- RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4mutation_RbxI_delN_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4mutation_RbxI_delN_delC_stop__globinUTR _LoxP vhhGFP4-NSlimvhHGFP4-NSlim pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_NSlim_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_NSlim_stop__globinUTR _LoxP vhhGFP4-SNoFboxvhhGFP4-SNoFbox pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_SNoFbox_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_MitoRFP670_UBCPro_TRE_FLAG_vhhGFP4_SNoFbox_stop__globinUTR _LoxP

표 1은 FACS 분석용 벡터
Table 1 shows the FACS analysis vector

VectorVector DescriptionDescription vhhGFP4-RbxIvhhGFP4-RbxI pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_RbxI_stop__globinUTR _LoxP pSRa_ HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_RbxI_stop__globinUTR _LoxP vhhGFP4-RbxIdelC vhhGFP4-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delC_stop__globinUTR _LoxP vhhGFP4-RbxIdelN vhhGFP4-RbxI delN pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delN_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delN_stop__globinUTR _LoxP vhhGFP4-RbxIdelN _ delC vhhGFP4-RbxI delN _ delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delN_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_RbxI_delN_delC_stop__globinUTR _LoxP vhhGFP4mut-RbxIdelC vhhGFP4 mut- RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4mutation_RbxI_delN_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4mutation_RbxI_delN_delC_stop__globinUTR _LoxP vhhGFP4-SPOPvhhGFP4-SPOP pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_SPOP_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_SPOP_stop__globinUTR _LoxP vhhGFP4mut-SPOPvhhGFP4 mut- SPOP pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4mutation_SPOP_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4mutation_SPOP_stop__globinUTR _LoxP vhhGFP4 -Cul1delNdelC1 vhhGFP4 -Cul1 delNdelC1 pEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul1delNdelC_deletion of Rbx1 binding sitepEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul1delNdelC_deletion of Rbx1 binding site vhhGFP4 -Cul3delNdelC1 vhhGFP4 -Cul3 delNdelC1 pEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul3delNdelC_partial deletion of Rbx1 binding sitepEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul3delNdelC_partial deletion of Rbx1 binding site vhhGFP4-Cul1delNdelC1-Rbx1delN vhhGFP4-Cul1 delNdelC1- Rbx1 delN pEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPr ev_UBCPro_TRE_FLAG_vhhGFP4_Cul1delNdelC_deletion of Rbx1 binding site_Rbx1_delNpEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPr ev_UBCPro_TRE_FLAG_vhhGFP4_Cul1delNdelC_deletion of Rbx1 binding site_Rbx1_delN vhhGFP4-Cul3delNdelC1-Rbx1delN vhhGFP4-Cul3 delNdelC1- Rbx1 delN pEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul3delNdelC_partial deletion of Rbx1 binding site_Rbx1_delNpEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul3delNdelC_partial deletion of Rbx1 binding site_Rbx1_delN vhhGFP4-Cul1delNdelC-Rbx1delN vhhGFP4-Cul1 delNdelC- Rbx1 delN pEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul1delNdelC_Rbx1_delNpEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul1delNdelC_Rbx1_delN vhhGFP4-Cul3delNdelC-Rbx1delN vhhGFP4-Cul3 delNdelC- Rbx1 delN pEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul3delNdelC_Rbx1_delNpEM791_SRa_Hygro_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_vhhGFP4_Cul3delNdelC_Rbx1_delN

표 2는 현미경 분석용 벡터
Table 2 shows the vector for microscopic analysis

VectorVector DescriptionDescription GBP1-RbxIdelC GBP1 -RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_GBP1_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_GBP1_RbxI_delC_stop__globinUTR _LoxP GBP2-RbxIdelC GBP2 -RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_GBP2_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_GBP2_RbxI_delC_stop__globinUTR _LoxP GBP6-RbxIdelC GBP6-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_GBP6_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_GBP6_RbxI_delC_stop__globinUTR _LoxP GBP7-RbxIdelC GBP7-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_GBP7_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_GBP7_RbxI_delC_stop__globinUTR _LoxP LaG2-RbxIdelC LaG2-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG2_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG2_RbxI_delC_stop__globinUTR _LoxP LaG9-RbxIdelC LaG9-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG9_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG9_RbxI_delC_stop__globinUTR _LoxP LaG14-RbxIdelC LaG14-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG14_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG14_RbxI_delC_stop__globinUTR _LoxP LaG16-RbxIdelC LaG16-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG16_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG16_RbxI_delC_stop__globinUTR _LoxP LaG18-RbxIdelC LaG18-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG18_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG18_RbxI_delC_stop__globinUTR _LoxP LaG41-RbxIdelC LaG41-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG41_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaG41_RbxI_delC_stop__globinUTR _LoxP LaM2-RbxIdelC LaM2-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaM2_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaM2_RbxI_delC_stop__globinUTR _LoxP LaM3-RbxIdelC LaM3-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaM3_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaM3_RbxI_delC_stop__globinUTR _LoxP LaM4-RbxIdelC LaM4-RbxI delC pSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaM4_RbxI_delC_stop__globinUTR _LoxPpSRa_HygroB_IRES_rtTA3_bGHUTR_SV40UTR_TagRFPrev_UBCPro_TRE_FLAG_LaM4_RbxI_delC_stop__globinUTR _LoxP

표 3은 여러 나노바디 어피니티 용 Rbx1delC 벡터
Table 3 shows Rbx1 delC for various nanobody affinity vector

실시예Example 3. 재조합 벡터의 형질전환  3. Transformation of recombinant vector

1) 대장균의 형질전환1) Transformation of E. coli

DNA클로닝 과정 중 벡터와 삽입 유전자를 연결시킨 mixture은 competent 세포인 Escherichia coli Top10F'와 섞어주고 얼음에 5분간 방치하였다. 그리고 42℃에서 heat shock을 주어 competent 세포 안으로 DNA가 들어가게 하였다. 얼음에 3분간 방치한 후, LB배지를 첨가하여 37℃에 배양하여 세포의 회복기간을 주었다. 마지막으로 필요한 항생제가 들어간 LB 한천배지에서 14~16시간 정도를 배양하였다.During the cloning of DNA, the vector and the inserted gene were ligated into competent cells Escherichia coli Top10F 'and left on ice for 5 minutes. Heat shock was applied at 42 ° C to allow DNA to enter into competent cells. After left on ice for 3 minutes, LB medium was added and incubated at 37 ° C to give a period of recovery of the cells. Finally, LB agar medium containing necessary antibiotics was cultured for about 14 to 16 hours.

2) 동물세포의 형질전환2) Transformation of animal cells

100p plate에서 배양한 동물 세포는 0.25% trypsin 1.5ml을 처리하여 세포를 회수하고 6-well plate에 cells/well의 농도로 접종하였다. 36시간 뒤, 50~60%정도 자란 상태에서 각 well 당 DNA 2ug, Opti-MEM 250ul, 그리고 Polyethylenimine(PEI) 8ug를 섞은 mixture를 상온에서 15분간 방치 후 첨가하였다. 그리고 37℃에서 4시간 배양 후, 배지를 제거하고 2ug doxycycline을 첨가한 DMEM 배지를 각 well 당 2ml씩 넣어주었다.
The cells were cultured on a 100p plate and treated with 0.25% trypsin (1.5 ml). Cells were collected and inoculated at a concentration of cells / well in a 6-well plate. After 36 hours, a mixture of 2 ug of DNA, 250 μl of Opti-MEM, and 8 ug of polyethylenimine (PEI) was inoculated for 15 min at room temperature. After incubation at 37 ° C for 4 hours, the medium was removed and 2 ml of DMEM medium supplemented with 2 ug doxycycline was added to each well.

실시예Example 4. 형광분석 4. Fluorescence Analysis

1) 형광현미경을 이용한 형광 분석1) Fluorescence analysis using fluorescence microscope

본 발명에서 사용한 형광현미경은 pE-2LED가 정착된 Olympus IX71(inverted microscope)으로 GFP와 TagRFP를 관찰하였다. 현미경을 통하여 관찰한 이미지는 Andor Clara CCD camera로 찰영하여 Metamorph (Molecular devices) software를 통하여 분석하였다. 형광 분석할 때, 슬라이드 글라스에 PBS로 풀어준 효모를 떨어뜨려 커버글라스로 덮어준 뒤 분석하였다.형광 분석할 때, 슬라이드 글라스에 PBS로 풀어준 효모를 떨어뜨려 커버글라스로 덮어준 뒤 분석하였다.
The fluorescence microscope used in the present invention was observed with GFP and TagRFP using Olympus IX71 (inverted microscope) in which pE-2 LED was immobilized. Images viewed through a microscope were analyzed with an Andor Clara CCD camera and analyzed using Metamorph (Molecular devices) software. For fluorescence analysis, the slide glass was covered with a cover glass and analyzed with a PBS. The fluorescence analysis was carried out by dropping the yeast on a slide glass with PBS and covering it with a cover glass.

2) Flow cytometer를 이용한 형광 분석2) Fluorescence analysis using flow cytometer

(1) Flow cytometer 분석을 위한 세포 처리(1) Cell treatment for flow cytometer analysis

각 well에 0.25% trypsin 500ul를 처리하여 세포를 회수하였다. 회수한 세포는 1X PBS (Phosphate-buffered saline) 1ml이 있는 BD-Falcon FACS tube에 500ul 중 100ul를 첨가하여 희석하였다.
Cells were harvested by treatment with 0.25% trypsin in each well. The recovered cells were diluted by adding 100 ul of 500 ul to a BD Falcon FACS tube containing 1 ml of 1 × PBS (Phosphate-buffered saline).

(2) Flow cytometer 분석(2) Flow cytometer analysis

FACS 분석은 FACScaliberTM System을 사용하여 GFP(Excitation: / Emission: 509)와 RFP670(Excitation: 643 / Emission: 670) 을 분석하였다. GFP는 488nm laser를 사용하여 excitation 상태를 유도하여 방출한 emission을 FL1(530/30 bandpass filter)로 확인하였다. RFP670은 635nm laser를 사용하여 excitation 상태를 유도하여 방출한 emission을 FL4(661/16 bandpass filter)로 확인하였다. 데이터의 분석에는 Kaluza (Backman coulter) 분석 프로그램을 사용하여 분석하였다.
FACS analysis was performed using GFP (Excitation: / Emission: 509) and RFP670 (Excitation: 643 / Emission: 670) using the FACScaliber TM System. GFP was excited by using a 488nm laser and emission was confirmed by FL1 (530/30 bandpass filter) emission. RFP670 uses a 635nm laser to induce an excitation state and identify the emitted emission with the FL4 (661/16 bandpass filter). Data were analyzed using Kaluza (Backman coulter) analysis program.

실시예Example 5. Western blot 5. Western blot

1) 세포 파쇄액1) Cell lysate

Plate의 media를 제거하고 1.5 ml of ice-cold PBS를 plate에 넣어 풀어준 뒤 1.5ml microfuge tube로 옮겼다. 원심분리(3000 rpm, 5분, 4℃)를 통해 상등액을 제거한 후 세포 pellet을 1.5 ml ice-cold PBS로 풀어주었다. 원심분리(3000 rpm, 1분, 4℃)를 통해 PBS를 제거한 뒤 세포 pellet을 600ul의 lysis buffer에 suspension한 후에 500ul tube로 옮겼다. 그리고 세포 lysate를 cold-room의 tube rotator (capable of end-over-end inversion/ 속도=11)에서 30분동안 incubation하고 원심분리(12000rpm, 15분, 4℃)를 통해 상등액을 얻었다. 이렇게 얻은 sample에 50% GammaBind G sepharose bead slurry (50% GammaBind G sepharose : 10ul Lysis buffer + 10ul GammaBind G sepharose)를 넣고 cold-room의 tube rotator 에 1시간 방치하였다. 그리고 짧게 원심분리(12,000rpm, 4℃) 후, beads를 제외한 sample을 얻었다.
Plate media was removed and 1.5 ml of ice-cold PBS was added to the plate, which was then untied and transferred to a 1.5 ml microfuge tube. The supernatant was removed by centrifugation (3000 rpm, 5 min, 4 ° C) and the cell pellet was resuspended in 1.5 ml of ice-cold PBS. After removing the PBS through centrifugation (3000 rpm, 1 min, 4 ° C), the cell pellet was suspended in 600 μl of lysis buffer and transferred to a 500 μl tube. The cell lysate was incubated in a cold-room tube rotator (capable of end-over-end inversion / speed = 11) for 30 min and the supernatant was obtained via centrifugation (12000 rpm, 15 min, 4 ° C). 50% GammaBind G sepharose bead slurry (50% GammaBind G sepharose: 10ul Lysis buffer + 10ul GammaBind G sepharose) was added to the thus obtained sample and allowed to stand for 1 hour in a cold-room tube rotator. After brief centrifugation (12,000 rpm, 4 ° C), samples were obtained except beads.

2)면역침전2) Immunoprecipitation

PBS에 항체를 희석하여 원심분리 (12,000rpm, 4℃)하여 준비된 세포 lysate에 10% BSA와 함께 넣어주었다. cold-room의 tube rotator 에서 6-10시간동안 incubation하고PBS로 washing 된 50% GammaBind G sepharose bead slurry를 넣었다. The antibody was diluted in PBS, centrifuged (12,000 rpm, 4 ° C), and placed in the prepared cell lysate with 10% BSA. Incubate in a cold-room tube rotator for 6-10 hours and add 50% GammaBind G sepharose bead slurry washed with PBS.

그리고 cold-room의 tube rotator 에서 1시간동안 incubation하고 원심분리 (12,000rpm, 4℃)하여 상등액을 제거하였다. PBS로 충분히 washing을 하여 sample를 준비하였다. Then, the supernatant was removed by incubation in a cold-room tube rotator for 1 hour and centrifugation (12,000 rpm, 4 ° C). The sample was sufficiently washed with PBS to prepare a sample.

3) 트랜스퍼, 블록킹 및 디벨로프3) Transfer, blocking, and development

Sample buffer (1X SDS-PAGE loading buffer, 100mM DTT)에 sample를 넣어 변성 (95℃, 5분)시켜주었다. Spin down 후, sample은 SDS-PAGE gel에 걸어 SDS-PAGE electrophoresis (120V, 90분)로 내려주었다. PVDF membrane은 methanol에 5분동안 활성을 주고 transfer buffer(25mM Tris-Base/ 192mM Glycine/ 0.0375% SDS/ 20% Methanol) 에 10분 이상 적셔놓았다. SDS-PAGE gel에 있는 sample를 PVDF membrane로 Transfer (100V, 1hr) 하여 blocking buffer(5% milk in TBST) 15ml로 membrane을 block(RT, 1시간)하였다. TBST(50 mM pH 8.0 Tris-HCl , 140 mM NaCl, 0.05 % Tween-20) 10ml로 washing 해줘서 milk가 완전히 제거될 수 있도록 하였다. 그리고 Membrane에 1차 항체(in TBST containing 2% BSA (Sigma,A2153-100G))를 cold room에서 overnight하여 붙이고 TBST로 membrane을 washing 하였다. 그 다음 HRP가 붙어있는 2차 항체를 상온에서 1시간정도 붙이고 TBST로 washing하였다. ECL detection reagents (ECL: Peroxide = 1:1)를 membrane 위에 뿌려서 HRP가 형광을 발현하게 만들어 감광하였다.
Sample was added to the sample buffer (1X SDS-PAGE loading buffer, 100 mM DTT) to denature (95 ° C, 5 minutes). After spin-down, the sample was subjected to SDS-PAGE gel and SDS-PAGE electrophoresis (120V, 90 min). The PVDF membrane was immersed in methanol for 5 min and then transferred to transfer buffer (25 mM Tris-Base / 192 mM Glycine / 0.0375% SDS / 20% Methanol) for more than 10 min. The sample in SDS-PAGE gel was transferred (100V, 1 hr) to the PVDF membrane and the membrane was blocked with 15 ml of blocking buffer (5% milk in TBST) for 1 h. The cells were washed with 10 ml of TBST (50 mM pH 8.0 Tris-HCl, 140 mM NaCl, 0.05% Tween-20) to allow complete removal of the milk. The membrane was then incubated overnight in a cold room with a primary antibody (in TBST containing 2% BSA (Sigma, A2153-100G)) and the membrane was washed with TBST. The secondary antibody with HRP was then incubated at room temperature for 1 hour and washed with TBST. ECL detection reagents (ECL: Peroxide = 1: 1) were sprayed onto the membrane to sensitize HRP to fluorescence.

상기의 실시예의 결과는 아래와 같다.
The results of the above embodiment are as follows.

AbAb -- Rbx1Rbx1 delCdelC ligaseligase 는 세포 전체적으로 작용한다.Acts as a whole cell.

Cullin-RING E3 ubiquitin ligase에 속한 Rbx1은 E2-ubiquitin 복합체와 결합하고 Cullin에 결합하여 다리 역할을 한다. Rbx1은 SPOP과는 다르게 직접적으로 기질 단백질에 결합하지 않기 때문에 직접적으로 기질 단백질과 결합할 수 있게 nanobody를 합성시켜 주었다. Nanobody는 항원을 인지하는 variable domain만을 가지고 있는 항체로 일반적인 항체보다 분자량이 매우 작다. 그래서 세포에 영향을 크게 주지 않아 실험에서 사용하였다. Cullin-RING E3 ubiquitin ligase, Rbx1 binds to E2-ubiquitin complex and binds to Cullin and acts as a bridge. Unlike SPOP, Rbx1 does not directly bind to substrate proteins, so it synthesizes nanobodies so that they can bind directly to substrate proteins. Nanobody is an antibody that has only a variable domain that recognizes an antigen. It has a much lower molecular weight than a general antibody. Therefore, it was used in the experiment because it did not give much influence to the cells.

실험에서 기질 단백질로 GFP를 사용하기 때문에 Rbx1의 N 말단에 GFP nanobody인 vhhGFP4를 합성하여 GFP를 발현하는 293tetOn 세포에서 어떻게 작용하는지 알아보았다. N말단을 제거한 Rbx1(vhhGFP4-RbxdelN), C말단을 제거한 Rbx1(vhhGFP4- RbxdelC) , N말단과 C말단을 제거한 Rbx1(vhhGFP4-RbxdelNdelC), GFP를 인지하는 기능이 없는 vhhGFP4-Rbx1(vhhGFP4mut-Rbx1)와 다른 E3 ubiquitin ligase (vhhGFP4-N-Slim, vhhGFP4-SNoFbox)들을 실험하여 비교 분석하였다. SNoFbox는 Skp1-cullin1-F-box E3 ubiquitin ligase 복합체에서 adaptor 단백질이 결합하는 F-box domain을 제거한 NSlim이다. 즉 NSlim의 negative control로 사용하였다.Since GFP is used as a substrate protein in the experiment, we synthesized vhhGFP4, a GFP nanobody at the N terminus of Rbx1, and examined how it functions in 293tetOn cells expressing GFP. Rbx1 (vhhGFP4-Rbx delN) removing the N-terminal, C-terminal to remove Rbx1 (vhhGFP4- Rbx delC), N-terminal and C-terminal to remove Rbx1 (vhhGFP4-Rbx delNdelC), vhhGFP4-Rbx1 not have the ability to recognize GFP ( vhhGFP4mut-Rbx1) and other E3 ubiquitin ligases (vhhGFP4-N-Slim, vhhGFP4-SNoFbox) were compared and analyzed. SNoFbox is an NSlim that removes the F-box domain that the adapter protein binds in the Skp1-cullin1-F-box E3 ubiquitin ligase complex. In other words, it was used as a negative control of NSlim.

먼저 GFP 형광의 세기를 측정하기 위해 재조합 Rbx1과 RFP670이 동시에 발현되는 벡터를 이용하여 FACS로 분석하였다. FACS 데이터의 x축은 GFP의 세기를 , y축은 RFP670을 나타났다. 형질전환된 세포는 RFP670을 발현함으로 RFP670이 발현할 때 GFP 세기가 어떻게 변화하는지 관찰하였다. 그 결과, 오직 vhhGFP4 -RbxdelNdelC만이 GFP 세기가 약해지거나 거의 없어지는 것을 확인할 수 있었다 (도 3).First, to measure the intensity of GFP fluorescence, the recombinant Rbx1 and RFP670 were simultaneously expressed in FACS using a vector. The x-axis of the FACS data represents the intensity of GFP, and the y-axis represents RFP670. The transfected cells expressed RFP670, so we observed how the GFP intensity changed when RFP670 was expressed. As a result, it was confirmed that only vhhGFP4-Rbx delNdelC weakened or almost no GFP intensity (Fig. 3).

현광현미경을 통해 GFP 형광을 눈으로 확인하기 위해 재조합 Rbx1과 TagRFP가 동시에 발현되는 벡터를 이용하여 형광현미경으로 분석하였다. 그 결과, FACS 결과와 동일하게 vhhGFP4-RbxdelC가 GFP를 세포의 핵과 세포질 모두에서 없애는 것을 관찰할 수 있었다 (도 4). In order to visually identify GFP fluorescence through a glow-light microscope, the recombinant Rbx1 and TagRFP were simultaneously analyzed using a fluorescence microscope. As a result, it was observed that vhhGFP4-Rbx delC cleaves GFP from both the nucleus and the cytoplasm of the cells in the same manner as the FACS results (Fig. 4).

Nanobody를 합성한 SPOP은 핵에서만 작용하였다(Shin YJ et al. 2015)고 알려졌는데 반면에 세포의 핵과 세포질 모두 작용할 수 있는 Ab- Rbx1delC을 찾을 수 있었다.
Nanobody-synthesized SPOPs were known to act only in nuclei (Shin YJ et al. 2015), whereas Ab-Rbx1 delC , which can act both on the nucleus and cytoplasm of the cells, was found.

AbAb -- Rbx1Rbx1 delCdelC ligaseligase 는 직접적으로 작용하지 않는다.Do not act directly.

앞선 실험을 통해 nanobody-Rbx1delC가 세포 전제에서 작용하였는데 여기서Rbx1delC는 C 말단이 연장되어 H3와 loop 2, 그리고 S4에 영향을 준다. C 말단은 E2가 결합하는 부분이라고 알려져 있다. 그러나 cullin이 결합하는 N 말단을 제거한 Rbx1은 제대로 작용하지 않는 것을 확인할 수 있었다. 그래서 어떤 변화에 의해서 nanobody-Rbx1 ligase가 세포 전체적으로 영향을 주는지 확인하기 위해 cullin을 이용하여 실험을 하였다. In previous experiments, the nanobody -Rbx1 delC acted on the cell precursor , where Rbx1 delC extends the C-terminus and affects H3, loop 2, and S4. The C-terminus is known to be the part of E2 binding. However, it was confirmed that Rbx1 with the N terminus removed by cullin did not function properly. Therefore, we used cullin to test whether the nanobody-Rbx1 ligase affects the whole cell by any change.

Cullin은 1, 2 ,3 ,4A, 4B, 5, 7, 9로 분류할 수 있고 그 중 Cul1과 Cul3가 Rbx1과 관련있다. Cul1은 SCF(Skp1-Cul1-F_Box protein) 복합체를 구성하는 단백질로 C 말단은 Rbx1과 결합하고 N 말단은 adaptor인 Skp1과 결합하였다. Cul3는 CRL(Cullin-RING ubiquirin ligase) 복합체를 구성하는 단백질로 Rbx1과 결합하고 N 말단에 의해 BTB domain을 가진 단백질과 결합하였다. 그래서 Cul1/Cul3과 Rbx1를 합성시킨 fusion protein을 재조합하여 사용하였다. 실험을 하기 위해 세포 내에 존재하는 Rbx1과 adaptor들이 결합하지 못하게 N 말단과 C 말단, 그리고 Rbx1 결합 부분을 mutaion 시킨 Cul1과 Cul3에 nanobody를 합성(vhhGFP4-Cul1delNdelC1, vhhGFP4 -Cul3delNdelC1)하였다. 이렇게 합성한 Cul1delNdel11과 Cul1delNdel11에 cullin이 결합하지 못하게 N말단을 제거하고 E2가 결합하는 Rbx1 (vhhGFP4-Cul1delNdel11-Rbx1delN, vhhGFP4-Cul3delNdelC1 -Rbx1delN )을 합성시켜 주었다. 또한 N 말단과 C 말단을 제거한 Cul1delNdel1과 Cul3delNdel1에 N말단을 제거한 Rbx1을 합성(vhhGFP4-Cul1delNdelC-Rbx1delN, vhhGFP4-Cul3delNdelC -Rbx1delN)시켜 주었다 . 이렇게 만든 재조합 벡터들을 GFP를 발현하는 세포에 형질전환시켜 어떤 변화가 있는지 확인하였다.Cullin can be classified as 1, 2, 3, 4A, 4B, 5, 7, 9, of which Cul1 and Cul3 are related to Rbx1. Cul1 is a protein that constitutes the SCF (Skp1-Cul1-F_Box protein) complex. The C-terminus binds to Rbx1 and the N-terminus binds to the adapter Skp1. Cul3 is a protein that constitutes the CRL (Cullin-RING ubiquirin ligase) complex and binds to a protein with the BTB domain by its N-terminal. Therefore, fusion protein synthesized with Cul1 / Cul3 and Rbx1 was recombinantly used. In order to perform experiments, we synthesized nanobody (vhhGFP4-Cul1 delNdelC1, vhhGFP4 -Cul3 delNdelC1 ) in Cul1 and Cul3 which mutated N-terminal, C-terminal and Rbx1-binding sites so that Rbx1 and adapters existing in the cell do not bind. Cul1 delNdel11 and Cul1 delNdel11 synthesized in this way were substituted with Rbx1 (vhhGFP4-Cul1 delNdel11- Rbx1 delN , vhhGFP4-Cul3 delNdelC1 -Rbx1 delN ). In addition, Cul1 delNdel1 with N-terminal and C-terminal removed and Rbx1 with N-terminal removed from Cul3 delNdel1 (vhhGFP4-Cul1 delNdelC- Rbx1 delN , vhhGFP4-Cul3 delNdelC -Rbx1 delN ). These recombinant vectors were transfected into GFP-expressing cells to determine what changes were made.

그 결과, vhhGFP4-Cul1delNdelC1 vhhGFP4-Cul1delNdelC11은 세포 내에 존재하는 Rbx1과 adaptor들이 결합하지 못해 이론적으로는 ubiquitination이 일어나지 않지만 형광 현미경 분석으로 핵에서 GFP가 없어지거나 GFP가 뭉치는 현상을 볼 수 있었다. 이런 현상은 vhhGFP가 GFP와 결합하여 핵에서 분해되는 것이 아니라 세포질로 이동하여 나타나는 결과일 수도 있다. 또한 N말단을 없앤 Rbx1이 있는 조건에서도 결과는 달라지지 않았다. As a result, vhhGFP4-Cul1 delNdelC1 and In vhhGFP4-Cul1 delNdelC11, Rbx1 , which is present in the cell, can not bind with adapters. Theoretically, ubiquitination does not occur. However, fluorescence microscopy analysis shows that GFP is lost or aggregated in the nucleus. This phenomenon may result from vhhGFP binding to GFP and not by degradation in the nucleus but by migration to the cytoplasm. Also, the results were not changed even in the presence of Rbx1 with N-terminal removed.

하지만 N말단을 없앤 Rbx1와 합성한 Cul3delNdelC Cul1delNdelC인 경우에는 일부 세포의 핵과 세포질에 존재하는 GFP가 모두 없어지는 현상을 볼 수 있었는데 세포 내에 존재하는 Rbx1가 Cul3에 결합하여 E2-ubiquitin와 연결되어 UPS에 의해 분해될 수도 있기 때문에 일부 세포에서 GFP가 없어지는 현상이 나타난 것 같다. 이 결과를 통해 E2가 결합하지 않는 Rbx1는 cullin이 결합하여 다른 단백질과 결합하고 E2와 연결되어 E3 ligase의 기능을 할 것이라는 추측을 할 수 있다(도 5).
However, Cul3 delNdelC synthesized with Rbx1 without N terminus In the case of Cul1 delNdelC , the GFP present in the nucleus and cytoplasm of some cells was disappeared. Since Rbx1 present in the cell binds to Cul3 and is linked to E2-ubiquitin and may be degraded by UPS, GFP appears to disappear. These results suggest that Rbx1, which E2 does not bind to, binds to cullin, binds to other proteins, and is linked to E2 to function as an E3 ligase (FIG. 5).

AbAb -- Rbx1Rbx1 delCdelC ligaseligase 는 다양한 Various GFPGFP fusion protein를 분해한다.  dissolve the fusion protein.

앞선 실험에서는 GFP만을 발현하는 세포를 가지고 실험을 하였다. 그럼 GFP에 다른 단백질을 합성시킨 fusion protein이 nanobody인 vhhGFP4에 의해서 제거될 수 있는지 확인하여 보았다. 그래서 fusion protein인 CBRGFP, AIMP2GFP, CD63GFP, CD64GFP, CDK4GFP, cMycGFP, DX2GFP, ELFGFP, hPin1GFP 약/강, p27GFP, TAFGFP들을 각각 발현하는 세포에 형질전환시켜 GPF 형광 세기를 FACS로 측정하고 현미경을 통해 눈으로 확인하여 보았다.In the previous experiment, experiments were conducted with cells expressing only GFP. We then examined the ability of the fusion protein, which synthesizes other proteins in GFP, to be removed by the nanobody, vhhGFP4. Thus, cells expressing the fusion proteins CBRGFP, AIMP2GFP, CD63GFP, CD64GFP, CDK4GFP, cMycGFP, DX2GFP, ELFGFP, hPin1GFP mucin / p27GFP and TAFGFP were transfected and the GPF fluorescence intensity was measured by FACS. I checked.

FACS로 분석한 결과, membrane에 발현하는 CD63과 CD64, AIMP2, 그리고 세포 내에 발현하는 DX2도 nanobody-Rbx1delC에 영향을 받지 않았다. 하지만 나머지 fusion protein은 GFP의 세기가 약해진 것을 볼 수 있었고 (도 6), 잘 없어진 CBR, AIMP2, cMyc, p27, TAF를 현미경으로 관찰하였다. nanobody-Rbx1delC와 핵에만 있는 GFP를 분해하는 nanobody-SPOP를 비교하여 얻은 결과, nanobody-SPOP와는 다르게 nanobody-Rbx1delC은 핵과 세포질에 있는 GFP를 없애는 것을 확인할 수 있었다. (도 7)
FACS analysis revealed that the membrane-expressing CD63 and CD64, AIMP2, and DX2 expressed in the cells were not affected by nanobody -Rbx1 delC . However, the remaining fusion proteins showed weak GFP intensity (Fig. 6), and microscopic observation of poorly ablated CBR, AIMP2, cMyc, p27, and TAF. Comparing nanobody -Rbx1 delC with nanobody-SPOP, which degrades GFP only in nuclei, we found that, unlike nanobody-SPOP, nanobody-Rbx1 delC eliminated GFP in nucleus and cytoplasm. (Fig. 7)

NanobodyNanobody -- Rbx1Rbx1 delCdelC ligaseligase 는 affinity에 따라서 영향을 받는다.Is influenced by affinity.

앞선 실험에서 vhhGFP4-Rbx1delC가 GFP와 다양한 단백질을 합성한 fusion protein을 분해한다는 것을 확인할 수 있었다. vhhGFP4와 같이 GFP와 결합하는 nanobody은 많이 존재하는데 GFP와 결합하는 정도(affinity)가 다르다 (표 4). Nanobody의 affinity에 따라서 Rbx1가 GFP를 분해하는데 어떤 영향을 주는지 확인하였다. In the previous experiment, it was confirmed that vhhGFP4-Rbx1 delC degrades GFP and fusion proteins synthesized with various proteins. Like vhhGFP4, there are many nanobodies that bind to GFP but differ in their affinity to GFP (Table 4). We determined the effect of Rbx1 on the degradation of GFP according to the affinity of Nanobody.

실험에서 사용한 nanobody는 GBP1/ GBP2/ GBP6/ GBP7/ LaG2/ LaG9/ LaG14/ LaG16/ LaG18/ LaG42 (Fridy PC et al, 2014)로 vhhGFP4 대신 Rbx1delC에 재조합하였다.The nanobody used in the experiments was recombined into Rbx1 delC instead of vhhGFP4 with GBP1 / GBP2 / GBP6 / GBP7 / LaG2 / LaG9 / LaG14 / LaG16 / LaG18 / LaG42 (Fridy PC et al, 2014).

GBP는 GFP binding protein으로 GFPDP 결합을 잘하는데 GBP1이 가장 높은 affinity을 가지고 있다. vhhGFP4와 비슷한 affinity를 가지고 있어 실험결과도 비슷하게 나왔다. GFP aggregation되는 부분도 있지만 대부분 세포 전체에서 분해되는 것을 확인할 수 있었다. 또한 LaG14. 그리고 LaG16가 합성된 Rbx1delC 세포 전제적으로 GFP를 분해하는 것을 관찰할 수 있었다. 하지만 GBP2, GBP7, LaG18, 그리고 LaG42을 합성한 Rbx1delC는 작용하지 않는 것을 확인하였다. LaG18과 LaG42은 합성한 nanobody 중 affinity가 좋지 않은 것이다. 그런데 GBP6, LaG2, LaG9을 합성한 Rbx1delC은 특이하게 핵에서 존재하는 GFP만을 제거하는지 아니면 세포질로 이동한 것처럼 핵에 GFP가 없는 것을 확인할 수 있었다 (도 8).
GBP is a GFP binding protein that binds well with GFPDP, with GBP1 having the highest affinity. It has an affinity similar to that of vhhGFP4. GFP aggregation was observed, but most of the cells were found to be degraded. Also LaG14. It was also observed that Rbx1 delC synthesized with LaG16 also degranely transfected GFP. But GBP2, GBP7, LaG18, and a Rbx1 delC synthesized LaG42 it was confirmed that no action. LaG18 and LaG42 have poor affinity among synthesized nanobodies. However, it was confirmed that Rbx1 delC synthesizing GBP6, LaG2, and LaG9 specifically excluded GFP existing in the nucleus or did not have GFP in the nucleus as it migrated to the cytoplasm (FIG. 8).

NanobodyNanobody -- Rbx1Rbx1 delCdelC ligaseligase silver nanobodynanobody 에 따라 단백질을 선택적으로 분해한다. To selectively degrade the protein.

여태까지 GFP에 결합하는 nanobody를 이용하여 실험을 진행하였다. 다른 기질 단백질과 결합하는 nanobody를 Rbx1delC에 합성시켜 GFP가 아닌 다른 기질 단백질도 없앨 수 있는지 확인하기 위해서 mCherry와 결합하는 nanobody인 LaM을 사용하여 형광 단백질인 mCherry가 분해되는지 관찰하였다. Rbx1delC에 합성한 LaM nanobody는 LaM2, LaM3, LaM4이며 각각 affinity가 다르다 (표 4). mCherry를 발현하는 세포에서 확인한 결과, LaM3와 Lam4는 천천히 mCherry가 분해되는 것을 확인할 수 있었고 LaM2도 천천히 mCherry가 분해되지만 일부 세포에서 mCherry의 aggregation이 발생하였다(도 9). So far, the experiment has been carried out using a nanobody that binds to GFP. To confirm that the nanobody binding to other substrate proteins could be synthesized in Rbx1 delC and that other substrate proteins other than GFP could be disappeared, we observed that mCherry, a fluorescent protein, was degraded using LaM, a nanobody that combines with mCherry. Rbx1 synthesized in delC The LaM nanobody is LaM2, LaM3, and LaM4, with different affinities (Table 4). In the cells expressing mCherry, it was confirmed that LaM3 and Lam4 slowly degraded mCherry, and LaM2 slowly degraded mCherry but aggregation of mCherry occurred in some cells (Fig. 9).

나노바디Nanobody MV(Da)MV (Da) Kd(nM)K d (nM) LaG2LaG2 15,91915,919 19a, 1619 a , 16 LaG9LaG9 16,06216,062 3.53.5 LaG14LaG14 16,00216,002 1.91.9 LaG16LaG16 16,30616,306 0.70.7 LaG18LaG18 16,45916,459 3,800a 3,800 a LaG42LaG42 15,49015,490 600600 LaM2LaM2 15,15115,151 0.490.49 LaM3LaM3 15,19615,196 1.91.9 LaM4LaM4 14,86614,866 0.180.18

표 4는 GFP 및 mCherry-특이적인 나노바디들의 특성Table 4 shows the properties of GFP and mCherry-specific nanobodies

LaG는 GFP 나노바디이고 LaM은 mCherry 나노바디임. kd 값은 GFP 및 mCherry 결합에 대한 나노바디 어피니티의 정량적 측정값.LaG is a GFP nanobody and LaM is a mCherry nanobody. kd values are quantitative measurements of nanobody affinity for GFP and mCherry binding.

NanobodyNanobody -- Rbx1Rbx1 delCdelC ligaseligase 는 발현 수준에 의해 영향을 받는다.Is affected by the level of expression.

현미경을 통해 nanobody-Rbx1delC가 GFP나 mCherry와 같은 형광 단백질을 분해하거나 aggregation되는 현상을 관찰할 수 있었다. Protein aggregation은 세포에 존재하는 proteasome의 기능이 제대로 일어나지 않아 단백질들이 뭉치는 현상을 말한다. Protein aggregation이 발생하는 많은 경우 중 세포의 세포질세망 (Endoplasmic Reticulum)에서 생성된 misfolded protein이 UPS (ubiquitin -proteasome system)에 의해서 분해되게 되는데 이때 proteasome의 활성이 충분하지 않아 분해되지 않은 misfolded protein이 서로 결합하여 뭉치는 경우가 있다. (Hao R et al. 2013). 그래서 TRE 프로모터에 의해서 과발현하고 있는 nanobody-Rbx1delC에 비해 세포 내에 제한적으로 존재하는 proteasome의 활성이 충분하지 않아 분해되지 않은 GFP가 서로 뭉치면서 aggregation이 일어나는지 확인하기 위해 nanobody-Rbx1delC을 hygromycin을 사용하여 세포의 genome에 삽입하여 발현량을 감소시켰다. 그 결과, nanobody-Rbx1delC 발현할 때, GFP가 세포내에 뭉치지 않고 전체적으로 분해되는 것을 확인할 수 있었다 (도 10A).Microscopy revealed that nanobody -Rbx1 delC degrades or aggregates fluorescent proteins such as GFP and mCherry. Protein aggregation refers to the phenomenon of aggregation of proteins because the function of the proteasome present in the cells does not occur properly. In many cases where protein aggregation occurs, the misfolded protein produced by the endoplasmic reticulum of the cell is degraded by UPS (ubiquitin-proteasome system), where the activity of the proteasome is not sufficient and the unfractionated misfolded protein binds to each other There is a case of bundling. (Hao R et al., 2013). Therefore, in order to confirm that aggregation occurs due to the aggregation of undegraded GFP due to insufficient activity of proteasome, which is limited in the cell, compared to nanobody -Rbx1 delC overexpressed by the TRE promoter, nanobody -Rbx1 delC was used with hygromycin And inserted into the cell genome to decrease the expression level. As a result, nanobody -Rbx1 delC When expressed, it was confirmed that GFP was completely degraded without aggregation in the cells (Fig. 10A).

그리고 FACS로 GFP 세기를 측정한 결과 nanobody-Rbx1delC가 있으므로 원래 세포가 가지고 있는 GFP 세기보다 10배 이상 감소한 것을 볼 수 있었다 (도 10B)As a result of measurement of the GFP intensity by FACS, it was found that the nanobody -Rbx1 delC was decreased by more than 10 times as much as the GFP intensity of the original cell (Fig. 10B)

<110> KNU-Industry Cooperation Foundation <120> A novel Protein interference method and use of the same <130> HY160028 <160> 16 <170> KopatentIn 2.0 <210> 1 <211> 85 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 1 Met Asp Val Asp Thr Pro Ser Gly Thr Asn Ser Gly Ala Gly Lys Lys 1 5 10 15 Arg Phe Glu Val Lys Lys Trp Asn Ala Val Ala Leu Trp Ala Trp Asp 20 25 30 Ile Val Val Asp Asn Cys Ala Ile Cys Arg Asn His Ile Met Asp Leu 35 40 45 Cys Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser Glu Glu Cys 50 55 60 Thr Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe His Cys Ile 65 70 75 80 Ser Arg Trp Leu Lys 85 <210> 2 <211> 199 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 2 Met Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Thr Met Asp Gln Val 1 5 10 15 Gln Leu Val Glu Ser Gly Gly Ala Leu Val Gln Pro Gly Gly Ser Leu 20 25 30 Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Val Asn Arg Tyr Ser Met 35 40 45 Arg Trp Tyr Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Gly 50 55 60 Met Ser Ser Ala Gly Asp Arg Ser Ser Tyr Glu Asp Ser Val Lys Gly 65 70 75 80 Arg Phe Thr Ile Ser Arg Asp Asp Ala Arg Asn Thr Val Tyr Leu Gln 85 90 95 Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Val 100 105 110 Asn Val Gly Phe Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser 115 120 125 Ser Leu Glu Asn Cys Ala Ile Cys Arg Asn His Ile Met Asp Leu Cys 130 135 140 Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser Glu Glu Cys Thr 145 150 155 160 Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe His Cys Ile Ser 165 170 175 Arg Trp Leu Lys Thr Arg Gln Val Cys Pro Leu Asp Asn Arg Glu Trp 180 185 190 Glu Phe Gln Lys Tyr Gly His 195 <210> 3 <211> 180 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 3 Met Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Thr Met Asp Gln Val 1 5 10 15 Gln Leu Val Glu Ser Gly Gly Ala Leu Val Gln Pro Gly Gly Ser Leu 20 25 30 Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Val Asn Arg Tyr Ser Met 35 40 45 Arg Trp Tyr Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Gly 50 55 60 Met Ser Ser Ala Gly Asp Arg Ser Ser Tyr Glu Asp Ser Val Lys Gly 65 70 75 80 Arg Phe Thr Ile Ser Arg Asp Asp Ala Arg Asn Thr Val Tyr Leu Gln 85 90 95 Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Val 100 105 110 Asn Val Gly Phe Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser 115 120 125 Ser Leu Glu Asn Cys Ala Ile Cys Arg Asn His Ile Met Asp Leu Cys 130 135 140 Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser Glu Glu Cys Thr 145 150 155 160 Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe His Cys Ile Ser 165 170 175 Arg Trp Leu Lys 180 <210> 4 <211> 235 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 4 Met Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Thr Met Asp Gln Val 1 5 10 15 Gln Leu Val Glu Ser Gly Gly Ala Leu Val Gln Pro Gly Gly Ser Leu 20 25 30 Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Val Asn Arg Tyr Ser Met 35 40 45 Arg Trp Tyr Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Gly 50 55 60 Met Ser Ser Ala Gly Asp Arg Ser Ser Tyr Glu Asp Ser Val Lys Gly 65 70 75 80 Arg Phe Thr Ile Ser Arg Asp Asp Ala Arg Asn Thr Val Tyr Leu Gln 85 90 95 Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Val 100 105 110 Asn Val Gly Phe Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser 115 120 125 Ser Leu Glu Met Asp Val Asp Thr Pro Ser Gly Thr Asn Ser Gly Ala 130 135 140 Gly Lys Lys Arg Phe Glu Val Lys Lys Trp Asn Ala Val Ala Leu Trp 145 150 155 160 Ala Trp Asp Ile Val Val Asp Asn Cys Ala Ile Cys Arg Asn His Ile 165 170 175 Met Asp Leu Cys Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser 180 185 190 Glu Glu Cys Thr Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe 195 200 205 His Cys Ile Ser Arg Trp Leu Lys Thr Arg Gln Val Cys Pro Leu Asp 210 215 220 Asn Arg Glu Trp Glu Phe Gln Lys Tyr Gly His 225 230 235 <210> 5 <211> 216 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 5 Met Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Thr Met Asp Gln Val 1 5 10 15 Gln Leu Val Glu Ser Gly Gly Ala Leu Val Gln Pro Gly Gly Ser Leu 20 25 30 Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Val Asn Arg Tyr Ser Met 35 40 45 Arg Trp Tyr Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Gly 50 55 60 Met Ser Ser Ala Gly Asp Arg Ser Ser Tyr Glu Asp Ser Val Lys Gly 65 70 75 80 Arg Phe Thr Ile Ser Arg Asp Asp Ala Arg Asn Thr Val Tyr Leu Gln 85 90 95 Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Val 100 105 110 Asn Val Gly Phe Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser 115 120 125 Ser Leu Glu Met Asp Val Asp Thr Pro Ser Gly Thr Asn Ser Gly Ala 130 135 140 Gly Lys Lys Arg Phe Glu Val Lys Lys Trp Asn Ala Val Ala Leu Trp 145 150 155 160 Ala Trp Asp Ile Val Val Asp Asn Cys Ala Ile Cys Arg Asn His Ile 165 170 175 Met Asp Leu Cys Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser 180 185 190 Glu Glu Cys Thr Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe 195 200 205 His Cys Ile Ser Arg Trp Leu Lys 210 215 <210> 6 <211> 1680 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 6 atgccgatgt accaggtaaa gccctatcac gggggcggcg cgcctctccg tgtggagctt 60 cccacctgca tgtaccggct ccccaacgtg cacggcagga gctacggccc agcgccgggc 120 gctggccacg tgcaggaaga gtctaacctg tctctgcaag ctcttgagtc ccgccaagat 180 gatattttaa aacgtctgta tgagttgaaa gctgcagttg atggcctctc caagatgatt 240 caaacaccag atgcagactt ggatgtaacc aacataatcc aagcggatga gcccacgact 300 ttaaccacca atgcgctgga cttgaattca gtgcttggga aggattacgg ggcgctgaaa 360 gacatcgtga tcaacgcaaa cccggcctcc cctcccctct ccctgcttgt gctgcacagg 420 ctgctctgtg agcacttcag ggtcctgtcc acggtgcaca cgcactcctc ggtcaagagc 480 gtgcctgaaa accttctcaa gtgctttgga gaacagaata aaaaacagcc ccgccaagac 540 tatcagctgg gattcacttt aatttggaag aatgtgccga agacgcagat gaaattcagc 600 atccagacga tgtgccccat cgaaggcgaa gggaacattg cacgtttctt gttctctctg 660 tttggccaga agcataatgc tgtcaacgca acccttatag atagctgggt agatattgcg 720 atttttcagt taaaagaggg aagcagtaaa gaaaaagccg ctgttttccg ctccatgaac 780 tctgctcttg ggaagagccc ttggctcgct gggaatgaac tcaccgtagc agacgtggtg 840 ctgtggtctg tactccagca gatcggaggc tgcagtgtga cagtgccagc caatgtgcag 900 aggtggatga ggtcttgtga aaacctggct cctttttcca gcgctaagga tccaccggtc 960 gccaccatgg tgagcaaggg cgaggagctg ttcaccgggg tggtgcccat cctggtcgag 1020 ctggacggcg acgtaaacgg ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc 1080 acctacggca agctgaccct gaagttcatc tgcaccaccg gcaagctgcc cgtgccctgg 1140 cccaccctcg tgaccaccct gacctacggc gtgcagtgct tcagccgcta ccccgaccac 1200 atgaagcagc acgacttctt caagtccgcc atgcccgaag gctacgtcca ggagcgcacc 1260 atcttcttca aggacgacgg caactacaag acccgcgccg aggtgaagtt cgagggcgac 1320 accctggtga accgcatcga gctgaagggc atcgacttca aggaggacgg caacatcctg 1380 gggcacaagc tggagtacaa ctacaacagc cacaacgtct atatcatggc cgacaagcag 1440 aagaacggca tcaaggtgaa cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag 1500 ctcgccgacc actaccagca gaacaccccc atcggcgacg gccccgtgct gctgcccgac 1560 aaccactacc tgagcaccca gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac 1620 atggtcctgc tggagttcgt gaccgccgcc gggatcactc tcggcatgga cgagctgtaa 1680 1680 <210> 7 <211> 2367 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 7 atggtaaagc gtgagaaaaa tgtcatctat ggccctgagc ctctccatcc tttggaggat 60 ttgactgccg gcgaaatgct gtttcgtgct ctccgcaagc actctcattt gcctcaagcc 120 ttggtcgatg tggtcggcga tgaatctttg agctacaagg agttttttga ggcaaccgtc 180 ttgctggctc agtccctcca caattgtggc tacaagatga acgacgtcgt tagtatctgt 240 gctgaaaaca atacccgttt cttcattcca gtcatcgccg catggtatat cggtatgatc 300 gtggctccag tcaacgagag ctacattccc gacgaactgt gtaaagtcat gggtatctct 360 aagccacaga ttgtcttcac cactaagaat attctgaaca aagtcctgga agtccaaagc 420 cgcaccaact ttattaagcg tatcatcatc ttggacactg tggagaatat tcacggttgc 480 gaatctttgc ctaatttcat ctctcgctat tcagacggca acatcgcaaa ctttaaacca 540 ctccacttcg accctgtgga acaagttgca gccattctgt gtagcagcgg tactactgga 600 ctcccaaagg gagtcatgca gacccatcaa aacatttgcg tgcgtctgat ccatgctctc 660 gatccacgct acggcactca gctgattcct ggtgtcaccg tcttggtcta cttgcctttc 720 ttccatgctt tcggctttca tattactttg ggttacttta tggtcggtct ccgcgtgatt 780 atgttccgcc gttttgatca ggaggctttc ttgaaagcca tccaagatta tgaagtccgc 840 agtgtcatca acgtgcctag cgtgatcctg tttttgtcta agagcccact cgtggacaag 900 tacgacttgt cttcactgcg tgaattgtgt tgcggtgccg ctccactggc taaggaggtc 960 gctgaagtgg ccgccaaacg cttgaatctt ccagggattc gttgtggctt cggcctcacc 1020 gaatctacca gtgcgattat ccagactctc ggggatgagt ttaagagcgg ctctttgggc 1080 cgtgtcactc cactcatggc tgctaagatc gctgatcgcg aaactggtaa ggctttgggc 1140 ccgaaccaag tgggcgagct gtgtatcaaa ggccctatgg tgagcaaggg ttatgtcaat 1200 aacgttgaag ctaccaagga ggccatcgac gacgacggct ggttgcattc tggtgatttt 1260 ggatattacg acgaagatga gcatttttac gtcgtggatc gttacaagga gctgatcaaa 1320 tacaagggta gccaggttgc tccagctgag ttggaggaga ttctgttgaa aaatccatgc 1380 attcgcgatg tcgctgtggt cggcattcct gatctggagg ccggcgaact gccttctgct 1440 ttcgttgtca agcagcctgg tacagaaatt accgccaaag aagtgtatga ttacctggct 1500 gaacgtgtga gccatactaa gtacttgcgt ggcggcgtgc gttttgttga ctccatccct 1560 cgtaacgtaa caggcaaaat tacccgcaag gagctgttga aacaattgtt ggtgaaggcc 1620 ggcggtagcg ctaaggatcc accggtcgcc accatggtga gcaagggcga ggagctgttc 1680 accggggtgg tgcccatcct ggtcgagctg gacggcgacg taaacggcca caagttcagc 1740 gtgtccggcg agggcgaggg cgatgccacc tacggcaagc tgaccctgaa gttcatctgc 1800 accaccggca agctgcccgt gccctggccc accctcgtga ccaccctgac ctacggcgtg 1860 cagtgcttca gccgctaccc cgaccacatg aagcagcacg acttcttcaa gtccgccatg 1920 cccgaaggct acgtccagga gcgcaccatc ttcttcaagg acgacggcaa ctacaagacc 1980 cgcgccgagg tgaagttcga gggcgacacc ctggtgaacc gcatcgagct gaagggcatc 2040 gacttcaagg aggacggcaa catcctgggg cacaagctgg agtacaacta caacagccac 2100 aacgtctata tcatggccga caagcagaag aacggcatca aggtgaactt caagatccgc 2160 cacaacatcg aggacggcag cgtgcagctc gccgaccact accagcagaa cacccccatc 2220 ggcgacggcc ccgtgctgct gcccgacaac cactacctga gcacccagtc cgccctgagc 2280 aaagacccca acgagaagcg cgatcacatg gtcctgctgg agttcgtgac cgccgccggg 2340 atcactctcg gcatggacga gctgtaa 2367 <210> 8 <211> 1455 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 8 atggcggtgg aaggaggaat gaaatgtgtg aagttcttgc tctacgtcct cctgctggcc 60 ttttgcgcct gtgcagtggg actgattgcc gtgggtgtcg gggcacagct tgtcctgagt 120 cagaccataa tccagggggc tacccctggc tctctgttgc cagtggtcat catcgcagtg 180 ggtgtcttcc tcttcctggt ggcttttgtg ggctgctgcg gggcctgcaa ggagaactat 240 tgtcttatga tcacgtttgc catctttctg tctcttatca tgttggtgga ggtggccgca 300 gccattgctg gctatgtgtt tagagataag gtgatgtcag agtttaataa caacttccgg 360 cagcagatgg agaattaccc gaaaaacaac cacactgctt cgatcctgga caggatgcag 420 gcagatttta agtgctgtgg ggctgctaac tacacagatt gggagaaaat cccttccatg 480 tcgaagaacc gagtccccga ctcctgctgc attaatgtta ctgtgggctg tgggattaat 540 ttcaacgaga aggcgatcca taaggagggc tgtgtggaga agattggggg ctggctgagg 600 aaaaatgtgc tggtggtagc tgcagcagcc cttggaattg cttttgtcga ggttttggga 660 attgtctttg cctgctgcct cgtgaagagt atcagaagtg gctacgaggt gatgagcgct 720 aaggatccac cggtcgccac catggtgagc aagggcgagg agctgttcac cggggtggtg 780 cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag 840 ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac caccggcaag 900 ctgcccgtgc cctggcccac cctcgtgacc accctgacct acggcgtgca gtgcttcagc 960 cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc cgaaggctac 1020 gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg 1080 aagttcgagg gcgacaccct ggtgaaccgc atcgagctga agggcatcga cttcaaggag 1140 gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa cgtctatatc 1200 atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca caacatcgag 1260 gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg cgacggcccc 1320 gtgctgctgc ccgacaacca ctacctgagc acccagtccg ccctgagcaa agaccccaac 1380 gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat cactctcggc 1440 atggacgagc tgtaa 1455 <210> 9 <211> 1863 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 9 atgtggttct tgacaactct gctcctttgg gttccagttg atgggcaagt ggacaccaca 60 aaggcagtga tcactttgca gcctccatgg gtcagcgtgt tccaagagga aaccgtaacc 120 ttgcattgtg aggtgctcca tctgcctggg agcagctcta cacagtggtt tctcaatggc 180 acagccactc agacctcgac ccccagctac agaatcacct ctgccagtgt caatgacagt 240 ggtgaataca ggtgccagag aggtctctca gggcgaagtg accccataca gctggaaatc 300 cacagaggct ggctactact gcaggtctcc agcagagtct tcacggaagg agaacctctg 360 gccttgaggt gtcatgcgtg gaaggataag ctggtgtaca atgtgcttta ctatcgaaat 420 ggcaaagcct ttaagttttt ccactggaat tctaacctca ccattctgaa aaccaacata 480 agtcacaatg gcacctacca ttgctcaggc atgggaaagc atcgctacac atcagcagga 540 atatctgtca ctgtgaaaga gctatttcca gctccagtgc tgaatgcatc tgtgacatcc 600 ccactcctgg aggggaatct ggtcaccctg agctgtgaaa caaagttgct cttgcagagg 660 cctggtttgc agctttactt ctccttctac atgggcagca agaccctgcg aggcaggaac 720 acatcctctg aataccaaat actaactgct agaagagaag actctgggtt atactggtgc 780 gaggctgcca cagaggatgg aaatgtcctt aagcgcagcc ctgagttgga gcttcaagtg 840 cttggcctcc agttaccaac tcctgtctgg tttcatgtcc ttttctatct ggcagtggga 900 ataatgtttt tagtgaacac tgttctctgg gtgacaatac gtaaagaact gaaaagaaag 960 aaaaagtggg atttagaaat ctctttggat tctggtcatg agaagaaggt aatttccagc 1020 cttcaagaag acagacattt agaagaagag ctgaaatgtc aggaacaaaa agaagaacag 1080 ctgcaggaag gggtgcaccg gaaggagccc cagggggcca cgagcgctaa ggatccaccg 1140 gtcgccacca tggtgagcaa gggcgaggag ctgttcaccg gggtggtgcc catcctggtc 1200 gagctggacg gcgacgtaaa cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat 1260 gccacctacg gcaagctgac cctgaagttc atctgcacca ccggcaagct gcccgtgccc 1320 tggcccaccc tcgtgaccac cctgacctac ggcgtgcagt gcttcagccg ctaccccgac 1380 cacatgaagc agcacgactt cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc 1440 accatcttct tcaaggacga cggcaactac aagacccgcg ccgaggtgaa gttcgagggc 1500 gacaccctgg tgaaccgcat cgagctgaag ggcatcgact tcaaggagga cggcaacatc 1560 ctggggcaca agctggagta caactacaac agccacaacg tctatatcat ggccgacaag 1620 cagaagaacg gcatcaaggt gaacttcaag atccgccaca acatcgagga cggcagcgtg 1680 cagctcgccg accactacca gcagaacacc cccatcggcg acggccccgt gctgctgccc 1740 gacaaccact acctgagcac ccagtccgcc ctgagcaaag accccaacga gaagcgcgat 1800 cacatggtcc tgctggagtt cgtgaccgcc gccgggatca ctctcggcat ggacgagctg 1860 taa 1863 <210> 10 <211> 1650 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 10 atggctacct ctcgatatga gccagtggct gaaattggtg tcggtgccta tgggacagtg 60 tacaaggccc gtgatcccca cagtggccac tttgtggccc tcaagagtgt gagagtcccc 120 aatggaggag gaggtggagg aggccttccc atcagcacag ttcgtgaggt ggctttactg 180 aggcgactgg aggcttttga gcatcccaat gttgtccggc tgatggacgt ctgtgccaca 240 tcccgaactg accgggagat caaggtaacc ctggtgtttg agcatgtaga ccaggaccta 300 aggacatatc tggacaaggc acccccacca ggcttgccag ccgaaacgat caaggatctg 360 atgcgccagt ttctaagagg cctagatttc cttcatgcca attgcatcgt tcaccgagat 420 ctgaagccag agaacattct ggtgacaagt ggtggaacag tcaagctggc tgactttggc 480 ctggccagaa tctacagcta ccagatggca cttacacccg tggttgttac actctggtac 540 cgagctcccg aagttcttct gcagtccaca tatgcaacac ctgtggacat gtggagtgtt 600 ggctgtatct ttgcagagat gtttcgtcga aagcctctct tctgtggaaa ctctgaagcc 660 gaccagttgg gcaaaatctt tgacctgatt gggctgcctc cagaggatga ctggcctcga 720 gatgtatccc tgccccgtgg agcctttccc cccagagggc cccgcccagt gcagtcggtg 780 gtacctgaga tggaggagtc gggagcacag ctgctgctgg aaatgctgac ttttaaccca 840 cacaagcgaa tctctgcctt tcgagctctg cagcactctt atctacataa ggatgaaggt 900 aatccggaga gcgctaagga tccaccggtc gccaccatgg tgagcaaggg cgaggagctg 960 ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg ccacaagttc 1020 agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct gaagttcatc 1080 tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct gacctacggc 1140 gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt caagtccgcc 1200 atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg caactacaag 1260 acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga gctgaagggc 1320 atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa ctacaacagc 1380 cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa cttcaagatc 1440 cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca gaacaccccc 1500 atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcaccca gtccgccctg 1560 agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt gaccgccgcc 1620 gggatcactc tcggcatgga cgagctgtaa 1650 <210> 11 <211> 2103 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 11 atggatttcc tttgggcgtt ggaaaccccg cagacagcca cgacgatgcc cctcaacgtg 60 aacttcacca acaggaacta tgacctcgac tacgactccg tacagcccta tttcatctgc 120 gacgaggaag agaatttcta tcaccagcaa cagcagagcg agctgcagcc gcccgcgccc 180 agtgaggata tctggaagaa attcgagctg cttcccaccc cgcccctgtc cccgagccgc 240 cgctccgggc tctgctctcc atcctatgtt gcggtcgcta cgtccttctc cccaagggaa 300 gacgatgacg gcggcggtgg caacttctcc accgccgatc agctggagat gatgaccgag 360 ttacttggag gagacatggt gaaccagagc ttcatctgcg atcctgacga cgagaccttc 420 atcaagaaca tcatcatcca ggactgtatg tggagcggtt tctcagccgc tgccaagctg 480 gtctcggaga agctggcctc ctaccaggct gcgcgcaaag acagcaccag cctgagcccc 540 gcccgcgggc acagcgtctg ctccacctcc agcctgtacc tgcaggacct caccgccgcc 600 gcgtccgagt gcattgaccc ctcagtggtc tttccctacc cgctcaacga cagcagctcg 660 cccaaatcct gtacctcgtc cgattccacg gccttctctc cttcctcgga ctcgctgctg 720 tcctccgagt cctccccacg ggccagccct gagcccctag tgctgcatga ggagacaccg 780 cccaccacca gcagcgactc tgaagaagag caagaagatg aggaagaaat tgatgtggtg 840 tctgtggaga agaggcaaac ccctgccaag aggtcggagt cgggctcatc tccatcccga 900 ggccacagca aacctccgca cagcccactg gtcctcaaga ggtgccacgt ctccactcac 960 cagcacaact acgccgcacc cccctccaca aggaaggact atccagctgc caagagggcc 1020 aagttggaca gtggcagggt cctgaagcag atcagcaaca accgcaagtg ctccagcccc 1080 aggtcctcag acacggagga aaacgacaag aggcggacac acaacgtctt ggaacgtcag 1140 aggaggaacg agctgaagcg cagctttttt gccctgcgtg accagatccc tgaattggaa 1200 aacaacgaaa aggcccccaa ggtagtgatc ctcaaaaaag ccaccgccta catcctgtcc 1260 attcaagcag acgagcacaa gctcacctct gaaaaggact tattgaggaa acgacgagaa 1320 cagttgaaac acaaactcga acagcttcga aactctggtg caagcgctaa ggatccaccg 1380 gtcgccacca tggtgagcaa gggcgaggag ctgttcaccg gggtggtgcc catcctggtc 1440 gagctggacg gcgacgtaaa cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat 1500 gccacctacg gcaagctgac cctgaagttc atctgcacca ccggcaagct gcccgtgccc 1560 tggcccaccc tcgtgaccac cctgacctac ggcgtgcagt gcttcagccg ctaccccgac 1620 cacatgaagc agcacgactt cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc 1680 accatcttct tcaaggacga cggcaactac aagacccgcg ccgaggtgaa gttcgagggc 1740 gacaccctgg tgaaccgcat cgagctgaag ggcatcgact tcaaggagga cggcaacatc 1800 ctggggcaca agctggagta caactacaac agccacaacg tctatatcat ggccgacaag 1860 cagaagaacg gcatcaaggt gaacttcaag atccgccaca acatcgagga cggcagcgtg 1920 cagctcgccg accactacca gcagaacacc cccatcggcg acggccccgt gctgctgccc 1980 gacaaccact acctgagcac ccagtccgcc ctgagcaaag accccaacga gaagcgcgat 2040 cacatggtcc tgctggagtt cgtgaccgcc gccgggatca ctctcggcat ggacgagctg 2100 taa 2103 <210> 12 <211> 1473 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 12 atgccgatgt accaggtaaa gccctatcac gggggcggcg cgcctctccg tgtggagctt 60 cccacctgca tgtaccggct ccccaacgtg cacggcagga gctacggccc agcgccgggc 120 gctggccacg tgcaggatta cggggcgctg aaagacatcg tgatcaacgc aaacccggcc 180 tcccctcccc tctccctgct tgtgctgcac aggctgctct gtgagcactt cagggtcctg 240 tccacggtgc acacgcactc ctcggtcaag agcgtgcctg aaaaccttct caagtgcttt 300 ggagaacaga ataaaaaaca gccccgccaa gactatcagc tgggattcac tttaatttgg 360 aagaatgtgc cgaagacgca gatgaaattc agcatccaga cgatgtgccc catcgaaggc 420 gaagggaaca ttgcacgttt cttgttctct ctgtttggcc agaagcataa tgctgtcaac 480 gcaaccctta tagatagctg ggtagatatt gcgatttttc agttaaaaga gggaagcagt 540 aaagaaaaag ccgctgtttt ccgctccatg aactctgctc ttgggaagag cccttggctc 600 gctgggaatg aactcaccgt agcagacgtg gtgctgtggt ctgtactcca gcagatcgga 660 ggctgcagtg tgacagtgcc agccaatgtg cagaggtgga tgaggtcttg tgaaaacctg 720 gctccttttt ccagcgctaa ggatccaccg gtcgccacca tggtgagcaa gggcgaggag 780 ctgttcaccg gggtggtgcc catcctggtc gagctggacg gcgacgtaaa cggccacaag 840 ttcagcgtgt ccggcgaggg cgagggcgat gccacctacg gcaagctgac cctgaagttc 900 atctgcacca ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac cctgacctac 960 ggcgtgcagt gcttcagccg ctaccccgac cacatgaagc agcacgactt cttcaagtcc 1020 gccatgcccg aaggctacgt ccaggagcgc accatcttct tcaaggacga cggcaactac 1080 aagacccgcg ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat cgagctgaag 1140 ggcatcgact tcaaggagga cggcaacatc ctggggcaca agctggagta caactacaac 1200 agccacaacg tctatatcat ggccgacaag cagaagaacg gcatcaaggt gaacttcaag 1260 atccgccaca acatcgagga cggcagcgtg cagctcgccg accactacca gcagaacacc 1320 cccatcggcg acggccccgt gctgctgccc gacaaccact acctgagcac ccagtccgcc 1380 ctgagcaaag accccaacga gaagcgcgat cacatggtcc tgctggagtt cgtgaccgcc 1440 gccgggatca ctctcggcat ggacgagctg taa 1473 <210> 13 <211> 1854 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 13 atggctgcaa cctgtgagat tagcaacatt tttagcaact acttcagtgc gatgtacagc 60 tcggaggact ccaccctggc ctctgttccc cctgctgcca cctttggggc cgatgacttg 120 gtactgaccc tgagcaaccc ccagatgtca ttggagggta cagagaaggc cagctggttg 180 ggggaacagc cccagttctg gtcgaagacg caggttctgg actggatcag ctaccaagtg 240 gagaagaaca agtacgacgc aagcgccatt gacttctcac gatgtgacat ggatggcgcc 300 accctctgca attgtgccct tgaggagctg cgtctggtct ttgggcctct gggggaccaa 360 ctccatgccc agctgcgaga cctcacttcc agctcttctg atgagctcag ttggatcatt 420 gagctgctgg agaaggatgg catggccttc caggaggccc tagacccagg gccctttgac 480 cagggcagcc cctttgccca ggagctgctg gacgacggtc agcaagccag cccctaccac 540 cccggcagct gtggcgcagg agccccctcc cctggcagct ctgacgtctc caccgcaggg 600 actggtgctt ctcggagctc ccactcctca gactccggtg gaagtgacgt ggacctggat 660 cccactgatg gcaagctctt ccccagcgat ggttttcgtg actgcaagaa gggggatccc 720 aagcacggga agcggaaacg aggccggccc cgaaagctga gcaaagagta ctgggactgt 780 ctcgagggca agaagagcaa gcacgcgccc agaggcaccc acctgtggga gttcatccgg 840 gacatcctca tccacccgga gctcaacgag ggcctcatga agtgggagaa tcggcatgaa 900 ggcgtcttca agttcctgcg ctccgaggct gtggcccaac tatggggcca aaagaaaaag 960 aacagcaaca tgacctacga gaagctgagc cgggccatga ggtactacta caaacgggag 1020 atcctggaac gggtggatgg ccggcgactc gtctacaagt ttggcaaaaa ctcaagcggc 1080 tggaaggagg aagaggttct ccagagtcgg aacagcgcta aggatccacc ggtcgccacc 1140 atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 1200 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 1260 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 1320 ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 1380 cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 1440 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 1500 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 1560 aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 1620 ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 1680 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 1740 tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 1800 ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtaa 1854 <210> 14 <211> 1230 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 14 atggcggacg aggagaagct gccgcccggc tgggagaagc gcatgagccg cagctcaggc 60 cgagtgtact acttcaacca catcactaac gccagccagt gggagcggcc cagcggcaac 120 agcagcagtg gtggcaaaaa cgggcagggg gagcctgcca gggtccgctg ctcgcacctg 180 ctggtgaagc acagccagtc acggcggccc tcgtcctggc ggcaggagaa gatcacccgg 240 accaaggagg aggccctgga gctgatcaac ggctacatcc agaagatcaa gtcgggagag 300 gaggactttg agtctctggc ctcacagttc agcgactgca gctcagccaa ggccagggga 360 gacctgggtg ccttcagcag aggtcagatg cagaagccat ttgaagacgc ctcgtttgcg 420 ctgcggacgg gggagatgag cgggcccgtg ttcacggatt ccggcatcca catcatcctc 480 cgcactgaga gcgctaagga tccaccggtc gccaccatgg tgagcaaggg cgaggagctg 540 ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg ccacaagttc 600 agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct gaagttcatc 660 tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct gacctacggc 720 gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt caagtccgcc 780 atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg caactacaag 840 acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga gctgaagggc 900 atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa ctacaacagc 960 cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa cttcaagatc 1020 cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca gaacaccccc 1080 atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcaccca gtccgccctg 1140 agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt gaccgccgcc 1200 gggatcactc tcggcatgga cgagctgtaa 1230 <210> 15 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 15 atgtcaaacg tgcgagtgtc taacgggagc cctagcctgg agcggatgga cgccaggcag 60 gcggagcacc ccaagccctc ggcctgcagg aacctcttcg gcccggtgga ccacgaagag 120 ttaacccggg acttggagaa gcactgcaga gacatggaag aggcgagcca gcgcaagtgg 180 aatttcgatt ttcagaatca caaaccccta gagggcaagt acgagtggca agaggtggag 240 aagggcagct tgcccgagtt ctactacaga cccccgcggc cccccaaagg tgcctgcaag 300 gtgccggcgc aggagagcca ggatgtcagc gggagccgcc cggcggcgcc tttaattggg 360 gctccggcta actctgagga cacgcatttg gtggacccaa agactgatcc gtcggacagc 420 cagacggggt tagcggagca atgcgcagga ataaggaagc gacctgcaac cgacgattct 480 tctactcaaa acaaaagagc caacagaaca gaagaaaatg tttcagacgg ttccccaaat 540 gccggttctg tggagcagac gcccaagaag cctggcctca gaagacgtca aacgagcgct 600 aaggatccac cggtcgccac catggtgagc aagggcgagg agctgttcac cggggtggtg 660 cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag 720 ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac caccggcaag 780 ctgcccgtgc cctggcccac cctcgtgacc accctgacct acggcgtgca gtgcttcagc 840 cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc cgaaggctac 900 gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg 960 aagttcgagg gcgacaccct ggtgaaccgc atcgagctga agggcatcga cttcaaggag 1020 gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa cgtctatatc 1080 atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca caacatcgag 1140 gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg cgacggcccc 1200 gtgctgctgc ccgacaacca ctacctgagc acccagtccg ccctgagcaa agaccccaac 1260 gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat cactctcggc 1320 atggacgagc tgtaa 1335 <210> 16 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 16 atggagtctg gcaagatggc gtctcccaag agcatgccga aagatgcaca gatgatggca 60 caaatcctga aggatatggg gattacagaa tatgagccaa gagttataaa tcagatgctg 120 gagtttgcct tccgatatgt gacaacaatt ctagatgatg ctaaaattta ttccagccat 180 gctaagaaag ctactgttga tgcagatgac gtacgactgg caatccagtg ccgtgctgac 240 cagtctttca cttctccacc cccgagagat ttcttattag atattgcacg acaaagaaat 300 caaacccctt tgccactgat caagccatat tcaggtccta gattgccacc tgataggtat 360 tgcttaactg ccccaaacta taggcttaag tctttacaga aaaaggcacc tgctcctgca 420 ggaagaataa cagttccaag gttaagtgtt ggttcagttt ctagtagacc aagtactccc 480 accctaggta caccgactcc acaaaccatg tctgtttcaa ctaaagtagg caccccaatg 540 tccctcacag gacagaggtt tacagtacag atgcctgctt ctcagtcccc tgctgtaaaa 600 gcttctatac ctgcaacatc aacagttcag aatgttctta ttaatccatc gttaattggg 660 tccaaaaaca ttcttattac tactaatatg gtatcacaga atacagccga gtcagcaaat 720 gcactgaaac ggaaacgtag cgctaaggat ccaccggtcg ccaccatggt gagcaagggc 780 gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc 840 cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg 900 aagttcatct gcaccaccgg caagctgccc gtgccctggc ccaccctcgt gaccaccctg 960 acctacggcg tgcagtgctt cagccgctac cccgaccaca tgaagcagca cgacttcttc 1020 aagtccgcca tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc 1080 aactacaaga cccgcgccga ggtgaagttc gagggcgaca ccctggtgaa ccgcatcgag 1140 ctgaagggca tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac 1200 tacaacagcc acaacgtcta tatcatggcc gacaagcaga agaacggcat caaggtgaac 1260 ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgccgacca ctaccagcag 1320 aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca accactacct gagcacccag 1380 tccgccctga gcaaagaccc caacgagaag cgcgatcaca tggtcctgct ggagttcgtg 1440 accgccgccg ggatcactct cggcatggac gagctgtaa 1479 <110> KNU-Industry Cooperation Foundation <120> A novel protein interference method and use of the same <130> HY160028 <160> 16 <170> Kopatentin 2.0 <210> 1 <211> 85 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 1 Met Asp Val Asp Thr Pro Ser Gly Thr Asn Ser Gly Ala Gly Lys Lys   1 5 10 15 Arg Phe Glu Val Lys Lys Trp Asn Ala Val Ala Leu Trp Ala Trp Asp              20 25 30 Ile Val Val Asp Asn Cys Ala Ile Cys Arg Asn His Ile Met Asp Leu          35 40 45 Cys Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser Glu Glu Cys      50 55 60 Thr Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe His Cys Ile  65 70 75 80 Ser Arg Trp Leu Lys                  85 <210> 2 <211> 199 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 2 Met Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Thr Met Asp Gln Val   1 5 10 15 Gln Leu Val Glu Ser Gly Gly Gly Ser Leu              20 25 30 Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Val Asn Arg Tyr Ser Met          35 40 45 Arg Trp Tyr Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Gly      50 55 60 Met Ser Ser Ala Gly Asp Arg Ser Ser Tyr Glu Asp Ser Val Lys Gly  65 70 75 80 Arg Phe Thr Ile Ser Arg Asp Asp Ala Arg Asn Thr Val Tyr Leu Gln                  85 90 95 Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Val             100 105 110 Asn Val Gly Phe Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser         115 120 125 Ser Leu Glu Asn Cys Ala Ile Cys Arg Asn His Ile Met Asp Leu Cys     130 135 140 Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser Glu Glu Cys Thr 145 150 155 160 Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe His Cys Ile Ser                 165 170 175 Arg Trp Leu Lys Thr Arg Gln Val Cys Pro Leu Asp Asn Arg Glu Trp             180 185 190 Glu Phe Gln Lys Tyr Gly His         195 <210> 3 <211> 180 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 3 Met Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Thr Met Asp Gln Val   1 5 10 15 Gln Leu Val Glu Ser Gly Gly Gly Ser Leu              20 25 30 Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Val Asn Arg Tyr Ser Met          35 40 45 Arg Trp Tyr Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Gly      50 55 60 Met Ser Ser Ala Gly Asp Arg Ser Ser Tyr Glu Asp Ser Val Lys Gly  65 70 75 80 Arg Phe Thr Ile Ser Arg Asp Asp Ala Arg Asn Thr Val Tyr Leu Gln                  85 90 95 Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Val             100 105 110 Asn Val Gly Phe Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser         115 120 125 Ser Leu Glu Asn Cys Ala Ile Cys Arg Asn His Ile Met Asp Leu Cys     130 135 140 Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser Glu Glu Cys Thr 145 150 155 160 Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe His Cys Ile Ser                 165 170 175 Arg Trp Leu Lys             180 <210> 4 <211> 235 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 4 Met Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Thr Met Asp Gln Val   1 5 10 15 Gln Leu Val Glu Ser Gly Gly Gly Ser Leu              20 25 30 Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Val Asn Arg Tyr Ser Met          35 40 45 Arg Trp Tyr Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Gly      50 55 60 Met Ser Ser Ala Gly Asp Arg Ser Ser Tyr Glu Asp Ser Val Lys Gly  65 70 75 80 Arg Phe Thr Ile Ser Arg Asp Asp Ala Arg Asn Thr Val Tyr Leu Gln                  85 90 95 Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Val             100 105 110 Asn Val Gly Phe Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser         115 120 125 Ser Leu Glu Met Asp Val Asp Thr Pro Ser Gly Thr Asn Ser Gly Ala     130 135 140 Gly Lys Lys Arg Phe Glu Val Lys Lys Trp Asn Ala Val Ala Leu Trp 145 150 155 160 Ala Trp Asp Ile Val Val Asp Asn Cys Ala Ile Cys Arg Asn His Ile                 165 170 175 Met Asp Leu Cys Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser             180 185 190 Glu Glu Cys Thr Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe         195 200 205 His Cys Ile Ser Arg Trp Leu Lys Thr Arg Gln Val Cys Pro Leu Asp     210 215 220 Asn Arg Glu Trp Glu Phe Gln Lys Tyr Gly His 225 230 235 <210> 5 <211> 216 <212> PRT <213> Artificial Sequence <220> <223> Mutant <400> 5 Met Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser Thr Met Asp Gln Val   1 5 10 15 Gln Leu Val Glu Ser Gly Gly Gly Ser Leu              20 25 30 Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Val Asn Arg Tyr Ser Met          35 40 45 Arg Trp Tyr Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Gly      50 55 60 Met Ser Ser Ala Gly Asp Arg Ser Ser Tyr Glu Asp Ser Val Lys Gly  65 70 75 80 Arg Phe Thr Ile Ser Arg Asp Asp Ala Arg Asn Thr Val Tyr Leu Gln                  85 90 95 Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Val             100 105 110 Asn Val Gly Phe Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser         115 120 125 Ser Leu Glu Met Asp Val Asp Thr Pro Ser Gly Thr Asn Ser Gly Ala     130 135 140 Gly Lys Lys Arg Phe Glu Val Lys Lys Trp Asn Ala Val Ala Leu Trp 145 150 155 160 Ala Trp Asp Ile Val Val Asp Asn Cys Ala Ile Cys Arg Asn His Ile                 165 170 175 Met Asp Leu Cys Ile Glu Cys Gln Ala Asn Gln Ala Ser Ala Thr Ser             180 185 190 Glu Glu Cys Thr Val Ala Trp Gly Val Cys Asn His Ala Phe His Phe         195 200 205 His Cys Ile Ser Arg Trp Leu Lys     210 215 <210> 6 <211> 1680 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 6 atgccgatgt accaggtaaa gccctatcac gggggcggcg cgcctctccg tgtggagctt 60 cccacctgca tgtaccggct ccccaacgtg cacggcagga gctacggccc agcgccgggc 120 gctggccacg tgcaggaaga gtctaacctg tctctgcaag ctcttgagtc ccgccaagat 180 gatattttaa aacgtctgta tgagttgaaa gctgcagttg atggcctctc caagatgatt 240 caaacaccag atgcagactt ggatgtaacc aacataatcc aagcggatga gcccacgact 300 ttaaccacca atgcgctgga cttgaattca gtgcttggga aggattacgg ggcgctgaaa 360 gacatcgtga tcaacgcaaa cccggcctcc cctcccctct ccctgcttgt gctgcacagg 420 ctgctctgtg agcacttcag ggtcctgtcc acggtgcaca cgcactcctc ggtcaagagc 480 gtgcctgaaa accttctcaa gtgctttgga gaacagaata aaaaacagcc ccgccaagac 540 tatcagctgg gattcacttt aatttggaag aatgtgccga agacgcagat gaaattcagc 600 atccagacga tgtgccccat cgaaggcgaa gggaacattg cacgtttctt gttctctctg 660 tttggccaga agcataatgc tgtcaacgca acccttatag atagctgggt agatattgcg 720 atttttcagt taaaagaggg aagcagtaaa gaaaaagccg ctgttttccg ctccatgaac 780 tctgctcttg ggaagagccc ttggctcgct gggaatgaac tcaccgtagc agacgtggtg 840 ctgtggtctg tactccagca gatcggaggc tgcagtgtga cagtgccagc caatgtgcag 900 aggtggatga ggtcttgtga aaacctggct cctttttcca gcgctaagga tccaccggtc 960 gccaccatgg tgagcaaggg cgaggagctg ttcaccgggg tggtgcccat cctggtcgag 1020 ctggacggcg acgtaaacgg ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc 1080 acctacggca agctgaccct gaagttcatc tgcaccaccg gcaagctgcc cgtgccctgg 1140 cccaccctcg tgaccaccct gacctacggc gtgcagtgct tcagccgcta ccccgaccac 1200 atgaagcagc acgacttctt caagtccgcc atgcccgaag gctacgtcca ggagcgcacc 1260 atcttcttca aggacgacgg caactacaag acccgcgccg aggtgaagtt cgagggcgac 1320 accctggtga accgcatcga gctgaagggc atcgacttca aggaggacgg caacatcctg 1380 gggcacaagc tggagtacaa ctacaacagc cacaacgtct atatcatggc cgacaagcag 1440 aagaacggca tcaaggtgaa cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag 1500 ctcgccgacc actaccagca gaacaccccc atcggcgacg gccccgtgct gctgcccgac 1560 aaccactacc tgagcaccca gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac 1620 atggtcctgc tggagttcgt gaccgccgcc gggatcactc tcggcatgga cgagctgtaa 1680                                                                         1680 <210> 7 <211> 2367 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 7 atggtaaagc gtgagaaaaa tgtcatctat ggccctgagc ctctccatcc tttggaggat 60 ttgactgccg gcgaaatgct gtttcgtgct ctccgcaagc actctcattt gcctcaagcc 120 ttggtcgatg tggtcggcga tgaatctttg agctacaagg agttttttga ggcaaccgtc 180 ttgctggctc agtccctcca caattgtggc tacaagatga acgacgtcgt tagtatctgt 240 gctgaaaaca atacccgttt cttcattcca gtcatcgccg catggtatat cggtatgatc 300 gtggctccag tcaacgagag ctacattccc gacgaactgt gtaaagtcat gggtatctct 360 aagccacaga ttgtcttcac cactaagaat attctgaaca aagtcctgga agtccaaagc 420 cgcaccaact ttattaagcg tatcatcatc ttggacactg tggagaatat tcacggttgc 480 gaatctttgc ctaatttcat ctctcgctat tcagacggca acatcgcaaa ctttaaacca 540 ctccacttcg accctgtgga acaagttgca gccattctgt gtagcagcgg tactactgga 600 ctcccaaagg gagtcatgca gacccatcaa aacatttgcg tgcgtctgat ccatgctctc 660 gatccacgct acggcactca gctgattcct ggtgtcaccg tcttggtcta cttgcctttc 720 ttccatgctt tcggctttca tattactttg ggttacttta tggtcggtct ccgcgtgatt 780 atgttccgcc gttttgatca ggaggctttc ttgaaagcca tccaagatta tgaagtccgc 840 agtgtcatca acgtgcctag cgtgatcctg tttttgtcta agagcccact cgtggacaag 900 tacgacttgt cttcactgcg tgaattgtgt tgcggtgccg ctccactggc taaggaggtc 960 gctgaagtgg ccgccaaacg cttgaatctt ccagggattc gttgtggctt cggcctcacc 1020 gaatctacca gtgcgattat ccagactctc ggggatgagt ttaagagcgg ctctttgggc 1080 cgtgtcactc cactcatggc tgctaagatc gctgatcgcg aaactggtaa ggctttgggc 1140 ccgaaccaag tgggcgagct gtgtatcaaa ggccctatgg tgagcaaggg ttatgtcaat 1200 aacgttgaag ctaccaagga ggccatcgac gacgacggct ggttgcattc tggtgatttt 1260 ggatattacg acgaagatga gcatttttac gtcgtggatc gttacaagga gctgatcaaa 1320 tacaagggta gccaggttgc tccagctgag ttggaggaga ttctgttgaa aaatccatgc 1380 attcgcgatg tcgctgtggt cggcattcct gatctggagg ccggcgaact gccttctgct 1440 ttcgttgtca agcagcctgg tacagaaatt accgccaaag aagtgtatga ttacctggct 1500 gt; cgtaacgtaa caggcaaaat tacccgcaag gagctgttga aacaattgtt ggtgaaggcc 1620 ggcggtagcg ctaaggatcc accggtcgcc accatggtga gcaagggcga ggagctgttc 1680 accggggtgg tgcccatcct ggtcgagctg gacggcgacg taaacggcca caagttcagc 1740 gtgtccggcg agggcgaggg cgatgccacc tacggcaagc tgaccctgaa gttcatctgc 1800 accaccggca agctgcccgt gccctggccc accctcgtga ccaccctgac ctacggcgtg 1860 cagtgcttca gccgctaccc cgaccacatg aagcagcacg acttcttcaa gtccgccatg 1920 cccgaaggct acgtccagga gcgcaccatc ttcttcaagg acgacggcaa ctacaagacc 1980 cgcgccgagg tgaagttcga gggcgacacc ctggtgaacc gcatcgagct gaagggcatc 2040 gacttcaagg aggacggcaa catcctgggg cacaagctgg agtacaacta caacagccac 2100 aacgtctata tcatggccga caagcagaag aacggcatca aggtgaactt caagatccgc 2160 cacaacatcg aggacggcag cgtgcagctc gccgaccact accagcagaa cacccccatc 2220 ggcgacggcc ccgtgctgct gcccgacaac cactacctga gcacccagtc cgccctgagc 2280 aaagacccca acgagaagcg cgatcacatg gtcctgctgg agttcgtgac cgccgccggg 2340 atcactctcg gcatggacga gctgtaa 2367 <210> 8 <211> 1455 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 8 atggcggtgg aaggaggaat gaaatgtgtg aagttcttgc tctacgtcct cctgctggcc 60 ttttgcgcct gtgcagtggg actgattgcc gtgggtgtcg gggcacagct tgtcctgagt 120 cagaccataa tccagggggc tacccctggc tctctgttgc cagtggtcat catcgcagtg 180 ggtgtcttcc tcttcctggt ggcttttgtg ggctgctgcg gggcctgcaa ggagaactat 240 tgtcttatga tcacgtttgc catctttctg tctcttatca tgttggtgga ggtggccgca 300 gccattgctg gctatgtgtt tagagataag gtgatgtcag agtttaataa caacttccgg 360 cagcagatgg agaattaccc gaaaaacaac cacactgctt cgatcctgga caggatgcag 420 gcagatttta agtgctgtgg ggctgctaac tacacagatt gggagaaaat cccttccatg 480 tcgaagaacc gagtccccga ctcctgctgc attaatgtta ctgtgggctg tgggattaat 540 ttcaacgaga aggcgatcca taaggagggc tgtgtggaga agattggggg ctggctgagg 600 aaaaatgtgc tggtggtagc tgcagcagcc cttggaattg cttttgtcga ggttttggga 660 attgtctttg cctgctgcct cgtgaagagt atcagaagtg gctacgaggt gatgagcgct 720 aaggatccac cggtcgccac catggtgagc aagggcgagg agctgttcac cggggtggtg 780 cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag 840 ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac caccggcaag 900 ctgcccgtgc cctggcccac cctcgtgacc accctgacct acggcgtgca gtgcttcagc 960 cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc cgaaggctac 1020 gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg 1080 aagttcgagg gcgacaccct ggtgaaccgc atcgagctga agggcatcga cttcaaggag 1140 gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa cgtctatatc 1200 atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca caacatcgag 1260 gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg cgacggcccc 1320 gtgctgctgc ccgacaacca ctacctgagc acccagtccg ccctgagcaa agaccccaac 1380 gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat cactctcggc 1440 atggacgagc tgtaa 1455 <210> 9 <211> 1863 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 9 atgtggttct tgacaactct gctcctttgg gttccagttg atgggcaagt ggacaccaca 60 aaggcagtga tcactttgca gcctccatgg gtcagcgtgt tccaagagga aaccgtaacc 120 ttgcattgtg aggtgctcca tctgcctggg agcagctcta cacagtggtt tctcaatggc 180 acagccactc agacctcgac ccccagctac agaatcacct ctgccagtgt caatgacagt 240 ggtgaataca ggtgccagag aggtctctca gggcgaagtg accccataca gctggaaatc 300 cacagaggct ggctactact gcaggtctcc agcagagtct tcacggaagg agaacctctg 360 gccttgaggt gtcatgcgtg gaaggataag ctggtgaca atgtgcttta ctatcgaaat 420 ggcaaagcct ttaagttttt ccactggaat tctaacctca ccattctgaa aaccaacata 480 agtcacaatg gcacctacca ttgctcaggc atgggaaagc atcgctacac atcagcagga 540 atatctgtca ctgtgaaaga gctatttcca gctccagtgc tgaatgcatc tgtgacatcc 600 ccactcctgg aggggaatct ggtcaccctg agctgtgaaa caaagttgct cttgcagagg 660 cctggtttgc agctttactt ctccttctac atgggagag agaccctgcg aggcaggaac 720 acatcctctg aataccaaat actaactgct agaagagaag actctgggtt atactggtgc 780 gaggctgcca cagaggatgg aaatgtcctt aagcgcagcc ctgagttgga gcttcaagtg 840 cttggcctcc agttaccaac tcctgtctgg tttcatgtcc ttttctatct ggcagtggga 900 ataatgtttt tagtgaacac tgttctctgg gtgacaatac gtaaagaact gaaaagaaag 960 aaaaagtggg atttagaaat ctctttggat tctggtcatg agaagaaggt aatttccagc 1020 cttcaagaag acagacattt agaagaagag ctgaaatgtc aggaacaaaa agaagaacag 1080 ctgcaggaag gggtgcaccg gaaggagccc cagggggcca cgagcgctaa ggatccaccg 1140 gtcgccacca tggtgagcaa gggcgaggag ctgttcaccg gggtggtgcc catcctggtc 1200 ggctggacg gcgacgtaaa cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat 1260 gccacctacg gcaagctgac cctgaagttc atctgcacca ccggcaagct gcccgtgccc 1320 tggcccaccc tcgtgaccac cctgacctac ggcgtgcagt gcttcagccg ctaccccgac 1380 cacatgaagc agcacgactt cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc 1440 accatcttct tcaaggacga cggcaactac aagacccgcg ccgaggtgaa gttcgagggc 1500 gacaccctgg tgaaccgcat cgagctgaag ggcatcgact tcaaggagga cggcaacatc 1560 ctggggcaca agctggagta caactacaac agccacaacg tctatatcat ggccgacaag 1620 cagaagaacg gcatcaaggt gaacttcaag atccgccaca acatcgagga cggcagcgtg 1680 cagctcgccg accactacca gcagaacacc cccatcggcg acggccccgt gctgctgccc 1740 gacaaccact acctgagcac ccagtccgcc ctgagcaaag accccaacga gaagcgcgat 1800 cacatggtcc tgctggagtt cgtgaccgcc gccgggatca ctctcggcat ggacgagctg 1860 taa 1863 <210> 10 <211> 1650 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 10 atggctacct ctcgatatga gccagtggct gaaattggtg tcggtgccta tgggacagtg 60 tacaaggccc gtgatcccca cagtggccac tttgtggccc tcaagagtgt gagagtcccc 120 aatggaggag gaggtggagg aggccttccc atcagcacag ttcgtgaggt ggctttactg 180 aggcgactgg aggcttttga gcatcccaat gttgtccggc tgatggacgt ctgtgccaca 240 tcccgaactg accgggagat caaggtaacc ctggtgtttg agcatgtaga ccaggaccta 300 aggacatatc tggacaaggc acccccacca ggcttgccag ccgaaacgat caaggatctg 360 atgcgccagt ttctaagagg cctagatttc cttcatgcca attgcatcgt tcaccgagat 420 ctgaagccag agaacattct ggtgacaagt ggtggaacag tcaagctggc tgactttggc 480 ctggccagaa tctacagcta ccagatggca cttacacccg tggttgttac actctggtac 540 cgagctcccg aagttcttct gcagtccaca tatgcaacac ctgtggacat gtggagtgtt 600 ggctgtatct ttgcagagat gtttcgtcga aagcctctct tctgtggaaa ctctgaagcc 660 gaccagttgg gcaaaatctt tgacctgatt gggctgcctc cagaggatga ctggcctcga 720 gatgtatccc tgccccgtgg agcctttccc cccagagggc cccgcccagt gcagtcggtg 780 gtacctgaga tggaggagtc gggagcacag ctgctgctgg aaatgctgac ttttaaccca 840 cacaagcgaa tctctgcctt tcgagctctg cagcactctt atctacataa ggatgaaggt 900 aatccggaga gcgctaagga tccaccggtc gccaccatgg tgagcaaggg cgaggagctg 960 ttcaccgggg tggtgcccat cctggtcgag ctggacggcg acgtaaacgg ccacaagttc 1020 agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct gaagttcatc 1080 tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct gacctacggc 1140 gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt caagtccgcc 1200 atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg caactacaag 1260 acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga gctgaagggc 1320 atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa ctacaacagc 1380 cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa cttcaagatc 1440 cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca gaacaccccc 1500 atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcaccca gtccgccctg 1560 agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt gaccgccgcc 1620 gggatcactc tcggcatgga cgagctgtaa 1650 <210> 11 <211> 2103 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 11 atggatttcc tttgggcgtt ggaaaccccg cagacagcca cgacgatgcc cctcaacgtg 60 aacttcacca acaggaacta tgacctcgac tacgactccg tacagcccta tttcatctgc 120 gacgaggaag agaatttcta tcaccagcaa cagcagagcg agctgcagcc gcccgcgccc 180 agtgaggata tctggaagaa attcgagctg cttcccaccc cgcccctgtc cccgagccgc 240 cgctccgggc tctgctctcc atcctatgtt gcggtcgcta cgtccttctc cccaagggaa 300 gacgatgacg gcggcggtgg caacttctcc accgccgatc agctggagat gatgaccgag 360 ttacttggag gagacatggt gaaccagagc ttcatctgcg atcctgacga cgagaccttc 420 atcaagaaca tcatcatcca ggactgtatg tggagcggtt tctcagccgc tgccaagctg 480 gtctcggaga agctggcctc ctaccaggct gcgcgcaaag acagcaccag cctgagcccc 540 gcccgcgggc acagcgtctg ctccacctcc agcctgtacc tgcaggacct caccgccgcc 600 gcgtccgagt gcattgaccc ctcagtggtc tttccctacc cgctcaacga cagcagctcg 660 cccaaatcct gtacctcgtc cgattccacg gccttctctc cttcctcgga ctcgctgctg 720 tcctccgagt cctccccacg ggccagccct gagcccctag tgctgcatga ggagacaccg 780 cccaccacca gcagcgactc tgaagaagag caagaagatg aggaagaaat tgatgtggtg 840 tctgtggaga agaggcaaac ccctgccaag aggtcggagt cgggctcatc tccatcccga 900 ggccacagca aacctccgca cagcccactg gtcctcaaga ggtgccacgt ctccactcac 960 cagcacaact acgccgcacc cccctccaca aggaaggact atccagctgc caagagggcc 1020 aagttggaca gtggcagggt cctgaagcag atcagcaaca accgcaagtg ctccagcccc 1080 aggtcctcag acacggagga aaacgacaag aggcggacac acaacgtctt ggaacgtcag 1140 aggaggaacg agctgaagcg cagctttttt gccctgcgtg accagatccc tgaattggaa 1200 aacaacgaaa aggcccccaa ggtagtgatc ctcaaaaaag ccaccgccta catcctgtcc 1260 attcaagcag acgagcacaa gctcacctct gaaaaggact tattgaggaa acgacgagaa 1320 cagttgaaac acaaactcga acagcttcga aactctggtg caagcgctaa ggatccaccg 1380 gtcgccacca tggtgagcaa gggcgaggag ctgttcaccg gggtggtgcc catcctggtc 1440 ggctggacg gcgacgtaaa cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat 1500 gccacctacg gcaagctgac cctgaagttc atctgcacca ccggcaagct gcccgtgccc 1560 tggcccaccc tcgtgaccac cctgacctac ggcgtgcagt gcttcagccg ctaccccgac 1620 cacatgaagc agcacgactt cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc 1680 accatcttct tcaaggacga cggcaactac aagacccgcg ccgaggtgaa gttcgagggc 1740 gacaccctgg tgaaccgcat cgagctgaag ggcatcgact tcaaggagga cggcaacatc 1800 ctggggcaca agctggagta caactacaac agccacaacg tctatatcat ggccgacaag 1860 cagaagaacg gcatcaaggt gaacttcaag atccgccaca acatcgagga cggcagcgtg 1920 cagctcgccg accactacca gcagaacacc cccatcggcg acggccccgt gctgctgccc 1980 gacaaccact acctgagcac ccagtccgcc ctgagcaaag accccaacga gaagcgcgat 2040 cacatggtcc tgctggagtt cgtgaccgcc gccgggatca ctctcggcat ggacgagctg 2100 taa 2103 <210> 12 <211> 1473 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 12 atgccgatgt accaggtaaa gccctatcac gggggcggcg cgcctctccg tgtggagctt 60 cccacctgca tgtaccggct ccccaacgtg cacggcagga gctacggccc agcgccgggc 120 gctggccacg tgcaggatta cggggcgctg aaagacatcg tgatcaacgc aaacccggcc 180 tcccctcccc tctccctgct tgtgctgcac aggctgctct gtgagcactt cagggtcctg 240 tccacggtgc acacgcactc ctcggtcaag agcgtgcctg aaaaccttct caagtgcttt 300 ggagaacaga ataaaaaaca gccccgccaa gactatcagc tgggattcac tttaatttgg 360 aagaatgtgc cgaagacgca gatgaaattc agcatccaga cgatgtgccc catcgaaggc 420 gaagggaaca ttgcacgttt cttgttctct ctgtttggcc agaagcataa tgctgtcaac 480 gcaaccctta tagatagctg ggtagatatt gcgatttttc agttaaaaga gggaagcagt 540 ccgctgttc gctgggaatg aactcaccgt agcagacgtg gtgctgtggt ctgtactcca gcagatcgga 660 ggctgcagtg tgacagtgcc agccaatgtg cagaggtgga tgaggtcttg tgaaaacctg 720 gctccttttt ccagcgctaa ggatccaccg gtcgccacca tggtgagcaa gggcgaggag 780 ctgttcaccg gggtggtgcc catcctggtc gagctggacg gcgacgtaaa cggccacaag 840 ttcagcgtgt ccggcgaggg cgagggcgat gccacctacg gcaagctgac cctgaagttc 900 atctgcacca ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac cctgacctac 960 ggcgtgcagt gcttcagccg ctaccccgac cacatgaagc agcacgactt cttcaagtcc 1020 gccatgcccg aaggctacgt ccaggagcgc accatcttct tcaaggacga cggcaactac 1080 aagacccgcg ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat cgagctgaag 1140 ggcatcgact tcaaggagga cggcaacatc ctggggcaca agctggagta caactacaac 1200 agccacaacg tctatatcat ggccgacaag cagaagaacg gcatcaaggt gaacttcaag 1260 atccgccaca acatcgagga cggcagcgtg cagctcgccg accactacca gcagaacacc 1320 cccatcggcg acggccccgt gctgctgccc gacaaccact acctgagcac ccagtccgcc 1380 ctgagcaaag accccaacga gaagcgcgat cacatggtcc tgctggagtt cgtgaccgcc 1440 gccgggatca ctctcggcat ggacgagctg taa 1473 <210> 13 <211> 1854 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 13 atggctgcaa cctgtgagat tagcaacatt tttagcaact acttcagtgc gatgtacagc 60 tcggaggact ccaccctggc ctctgttccc cctgctgcca cctttggggc cgatgacttg 120 gtactgaccc tgagcaaccc ccagatgtca ttggagggta cagagaaggc cagctggttg 180 ggggaacagc cccagttctg gtcgaagacg caggttctgg actggatcag ctaccaagtg 240 gagaagaaca agtacgacgc aagcgccatt gacttctcac gatgtgacat ggatggcgcc 300 accctctgca attgtgccct tgaggagctg cgtctggtct ttgggcctct gggggaccaa 360 ctccatgccc agctgcgaga cctcacttcc agctcttctg atgagctcag ttggatcatt 420 gagctgctgg agaaggatgg catggccttc caggaggccc tagacccagg gccctttgac 480 cagggcagcc cctttgccca ggagctgctg gacgacggtc agcaagccag cccctaccac 540 cccggcagct gtggcgcagg agccccctcc cctggcagct ctgacgtctc caccgcaggg 600 actggtgctt ctcggagctc ccactcctca gactccggtg gaagtgacgt ggacctggat 660 cccactgatg gcaagctctt ccccagcgat ggttttcgtg actgcaagaa gggggatccc 720 aagcacggga agcggaaacg aggccggccc cgaaagctga gcaaagagta ctgggactgt 780 ctcgagggca agaagagcaa gcacgcgccc agaggcaccc acctgtggga gttcatccgg 840 gacatcctca tccacccgga gctcaacgag ggcctcatga agtgggagaa tcggcatgaa 900 ggcgtcttca agttcctgcg ctccgaggct gtggcccaac tatggggcca aaagaaaaag 960 aagacca tgacctacga gaagctgagc cgggccatga ggtactacta caaacgggag 1020 atcctggaac gggtggatgg ccggcgactc gtctacaagt ttggcaaaaa ctcaagcggc 1080 tggaaggagg aagaggttct ccagagtcgg aacagcgcta aggatccacc ggtcgccacc 1140 atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 1200 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 1260 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 1320 ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 1380 cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 1440 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 1500 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 1560 aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 1620 ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 1680 gccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 1740 tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 1800 ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtaa 1854 <210> 14 <211> 1230 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 14 atggcggacg aggagaagct gccgcccggc tgggagaagc gcatgagccg cagctcaggc 60 cgagtgtact acttcaacca catcactaac gccagccagt gggagcggcc cagcggcaac 120 agcagcagtg gtggcaaaaa cgggcagggg gagcctgcca gggtccgctg ctcgcacctg 180 ctggtgaagc acagccagtc acggcggccc tcgtcctggc ggcaggagaa gatcacccgg 240 accaaggagg aggccctgga gctgatcaac ggctacatcc agaagatcaa gtcgggagag 300 gaggactttg agtctctggc ctcacagttc agcgactgca gctcagccaa ggccagggga 360 gacctgggtg ccttcagcag aggtcagatg cagaagccat ttgaagacgc ctcgtttgcg 420 ctgcggacgg gggagatgag cgggcccgtg ttcacggatt ccggcatcca catcatcctc 480 cgcactgaga gcgctaagga tccaccggtc gccaccatgg tgagcaaggg cgaggagctg 540 ctggcggcg agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct gaagttcatc 660 tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccaccct gacctacggc 720 gtgcagtgct tcagccgcta ccccgaccac atgaagcagc acgacttctt caagtccgcc 780 atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg caactacaag 840 acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga gctgaagggc 900 atcgacttca aggaggacgg caacatcctg gggcacaagc tggagtacaa ctacaacagc 960 cacaacgtct atatcatggc cgacaagcag aagaacggca tcaaggtgaa cttcaagatc 1020 cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca gaacaccccc 1080 atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcaccca gtccgccctg 1140 agcaaagacc ccaacgagaa gcgcgatcac atggtcctgc tggagttcgt gaccgccgcc 1200 gggatcactc tcggcatgga cgagctgtaa 1230 <210> 15 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 15 cgccaggcag 60 gcggagcacc ccaagccctc ggcctgcagg aacctcttcg gcccggtgga ccacgaagag 120 ttaacccggg acttggagaa gcactgcaga gacatggaag aggcgagcca gcgcaagtgg 180 aatttcgatt ttcagaatca caaaccccta gagggcaagt acgagtggca agaggtggag 240 aagggcagct tgcccgagtt ctactacaga cccccgcggc cccccaaagg tgcctgcaag 300 gtgccggcgc aggagagcca ggatgtcagc gggagccgcc cggcggcgcc tttaattggg 360 gctccggcta actctgagga cacgcatttg gtggacccaa agactgatcc gtcggacagc 420 cagacggggt tagcggagca atgcgcagga ataaggaagc gacctgcaac cgacgattct 480 tctactcaaa acaaaagagc caacagaaca gaagaaaatg tttcagacgg ttccccaaat 540 gccggttctg tggagcagac gcccaagaag cctggcctca gaagacgtca aacgagcgct 600 aaggatccac cggtcgccac catggtgagc aagggcgagg agctgttcac cggggtggtg 660 cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag 720 ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac caccggcaag 780 ctgcccgtgc cctggcccac cctcgtgacc accctgacct acggcgtgca gtgcttcagc 840 cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc cgaaggctac 900 gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg 960 aagttcgagg gcgacaccct ggtgaaccgc atcgagctga agggcatcga cttcaaggag 1020 gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa cgtctatatc 1080 atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca caacatcgag 1140 gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg cgacggcccc 1200 gtgctgctgc ccgacaacca ctacctgagc acccagtccg ccctgagcaa agaccccaac 1260 gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat cactctcggc 1320 atggacgagc tgtaa 1335 <210> 16 <211> 1479 <212> DNA <213> Artificial Sequence <220> <223> Mutant <400> 16 atggagtctg gcaagatggc gtctcccaag agcatgccga aagatgcaca gatgatggca 60 caaatcctga aggatatggg gattacagaa tatgagccaa gagttataaa tcagatgctg 120 gagtttgcct tccgatatgt gacaacaatt ctagatgatg ctaaaattta ttccagccat 180 gctaagaaag ctactgttga tgcagatgac gtacgactgg caatccagtg ccgtgctgac 240 cagtctttca cttctccacc cccgagagat ttcttattag atattgcacg acaaagaaat 300 caaacccctt tgccactgat caagccatat tcaggtccta gattgccacc tgataggtat 360 tgcttaactg ccccaaacta taggcttaag tctttacaga aaaaggcacc tgctcctgca 420 ggaagaataa cagttccaag gttaagtgtt ggttcagttt ctagtagacc aagtactccc 480 accctaggta caccgactcc acaaaccatg tctgtttcaa ctaaagtagg caccccaatg 540 tccctcacag gacagaggtt tacagtacag atgcctgctt ctcagtcccc tgctgtaaaa 600 gcttctatac ctgcaacatc aacagttcag aatgttctta ttaatccatc gttaattggg 660 tccaaaaaca ttcttattac tactaatatg gtatcacaga atacagccga gtcagcaaat 720 gcactgaaac ggaaacgtag cgctaaggat ccaccggtcg ccaccatggt gagcaagggc 780 gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc 840 cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg 900 aagttcatct gcaccaccgg caagctgccc gtgccctggc ccaccctcgt gaccaccctg 960 acctacggcg tgcagtgctt cagccgctac cccgaccaca tgaagcagca cgacttcttc 1020 aagtccgcca tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc 1080 aactacaaga cccgcgccga ggtgaagttc gagggcgaca ccctggtgaa ccgcatcgag 1140 ctgaagggca tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac 1200 tacaacagcc acaacgtcta tatcatggcc gacaagcaga agaacggcat caaggtgaac 1260 ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgccgacca ctaccagcag 1320 aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca accactacct gagcacccag 1380 tccgccctga gcaaagaccc caacgagaag cgcgatcaca tggtcctgct ggagttcgtg 1440 accgccgccg ggatcactct cggcatggac gagctgtaa 1479

Claims (11)

서열번호 1의 C-말단이 제거된 링-박스 단백질 1(RING-box protein 1)과 나노바디가 번역 융합(translational fusion)된 구축물(constructs)을 기질단백질에 처리하여 세포의 핵과 세포질 전체에서 해당 기질 단백질을 분해하는 방법.The R-box protein 1 and the translational fusion constructs in which the C-terminal of SEQ ID NO: 1 is removed are treated with a substrate protein, A method for degrading a substrate protein. 삭제delete 제1항에 있어서, 상기 기질 단백질은 세포 핵 또는 사이토졸에 존재하는 단백질인 것을 특징으로 하는 방법.2. The method according to claim 1, wherein the substrate protein is a protein existing in a cell nucleus or cytosol. 제1항에 있어서, 상기 기질 단백질은 형광 단백질인 것을 특징으로 하는 방법.The method of claim 1, wherein the substrate protein is a fluorescent protein. 제1항에 있어서, 상기 나노바디는 세포 핵 또는 사이토졸에 존재하는 단백질에 결합하는 것을 특징으로 하는 방법.2. The method of claim 1, wherein the nanobody binds to a protein present in a cell nucleus or cytosol. 제1항에 있어서, 상기 나노바디와 C-말단이 제거된 링-박스 단백질 1(RING-box protein 1)의 복합체는 과발현되는 것을 특징으로 하는 방법.2. The method of claim 1, wherein the complex of the nanobodies and the C-terminal removed ring-box protein 1 is overexpressed. 서열번호 1의 C-말단이 제거된 링-박스 단백질 1(RING-box protein 1)과 나노바디가 번역 융합(translational fusion)된 구축물(constructs)을 유효 성분으로 포함되는 기질단백질 분해용 조성물.A composition for degrading a substrate protein comprising a ring-box protein 1 (RING-box protein 1) having a C-terminal removed in SEQ ID NO: 1 and translational fusion constructs of a nano-body. 삭제delete 제7항에 있어서, 상기 기질 단백질은 세포 핵 또는 사이토졸에 존재하는 단백질인 것을 특징으로 하는 조성물.8. The composition of claim 7, wherein the substrate protein is a protein present in a cell nucleus or cytosol. 제7항에 있어서, 상기 기질 단백질은 형광 단백질인 것을 특징으로 하는 조성물.8. The composition of claim 7, wherein the substrate protein is a fluorescent protein. 제7항에 있어서, 상기 나노바디는 세포 핵 또는 사이토졸에 존재하는 단백질에 결합하는 것을 특징으로 하는 조성물.
8. The composition of claim 7, wherein the nanobody binds to a protein present in a cell nucleus or cytosol.
KR1020160018700A 2016-02-17 2016-02-17 A novel Protein interference method and use of the same KR101835014B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160018700A KR101835014B1 (en) 2016-02-17 2016-02-17 A novel Protein interference method and use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160018700A KR101835014B1 (en) 2016-02-17 2016-02-17 A novel Protein interference method and use of the same

Publications (2)

Publication Number Publication Date
KR20170096878A KR20170096878A (en) 2017-08-25
KR101835014B1 true KR101835014B1 (en) 2018-03-06

Family

ID=59761501

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160018700A KR101835014B1 (en) 2016-02-17 2016-02-17 A novel Protein interference method and use of the same

Country Status (1)

Country Link
KR (1) KR101835014B1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Accelerated Neuronal Cell Recovery from Botulinum Neurotoxin Intoxication by Targeted Ubiquitination [PLoS One. 2011;6(5):e20352.]
Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins [Sci Rep. 2015 Sep 16;5:14269.
Small RING Finger Proteins RBX1 and RBX2 of SCF E3 Ubiquitin Ligases: The Role in Cancer and as Cancer Targets [Genes Cancer. 2010 Jul;1(7):700-7.]

Also Published As

Publication number Publication date
KR20170096878A (en) 2017-08-25

Similar Documents

Publication Publication Date Title
US12139816B2 (en) Protease-resistant systems for polypeptide display and methods of making and using thereof
US8679753B2 (en) Methods for making and using molecular switches involving circular permutation
EP3046932B1 (en) Evolved sortases and uses thereof
EP2670847A1 (en) Methods and materials for enhancing functional protein expression in bacteria
CN101849005A (en) Hybrid fusion reporter and uses thereof
EP1183347A1 (en) Interaction-activated proteins
US9150897B2 (en) Expression and purification of fusion protein with multiple MBP tags
JP2001514849A (en) Polypeptides containing coiled coils and additional sites
KR101835014B1 (en) A novel Protein interference method and use of the same
Ouyang et al. Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10
KR101981199B1 (en) Recombinant polynucleotide encoding polypeptide including reporter moiety, substrate moiety and destabilization moiety, host cell including the same and use thereof
US20040038317A1 (en) Breakpoint fusion fragment complementation system
WO2015115661A1 (en) Method for producing peptides having azole-derived skeleton
WO2004016748A2 (en) Biotinylation of proteins
EP1670940B1 (en) Method for identification of suitable fragmentation sites in a reporter protein
KR101067328B1 (en) Expression vector for fission yeast, Gateway expression vector for fission yeast, and method for producing same
Meurs et al. An in vitro assay of MCTS1-DENR-dependent re-initiation and ribosome profiling uncover the activity of MCTS2 and distinct function of eIF2D
JP5359155B2 (en) Novel Gaussia luciferase mutant with cysteine introduced
Hill Targeted Charging of Ubiquitin to E2: A New Approach to Study Ubiquitination in Cells
Lips Mechanisms of priming and elongation during ubiquitin chain formation
CN112538469A (en) Restriction endonuclease DpnI preparation and preparation method thereof
Wang Tuning Strength and Specificity in the N-end Rule
Vincent Designed degradation of a specific protein in the cell

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160217

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170808

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20180226

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20180227

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20180227

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20210208

Start annual number: 4

End annual number: 4

PC1903 Unpaid annual fee
PR0401 Registration of restoration

Patent event code: PR04011E01D

Patent event date: 20220926

Comment text: Registration of Restoration

PR1001 Payment of annual fee

Payment date: 20220926

Start annual number: 5

End annual number: 5

R401 Registration of restoration
PR1001 Payment of annual fee

Payment date: 20230209

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20241226

Start annual number: 8

End annual number: 8