KR101794948B1 - 태양 전지 모듈 - Google Patents
태양 전지 모듈 Download PDFInfo
- Publication number
- KR101794948B1 KR101794948B1 KR1020140079260A KR20140079260A KR101794948B1 KR 101794948 B1 KR101794948 B1 KR 101794948B1 KR 1020140079260 A KR1020140079260 A KR 1020140079260A KR 20140079260 A KR20140079260 A KR 20140079260A KR 101794948 B1 KR101794948 B1 KR 101794948B1
- Authority
- KR
- South Korea
- Prior art keywords
- semiconductor substrate
- interconnectors
- solar cell
- electrode
- width
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 100
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 239000012535 impurity Substances 0.000 claims description 9
- 230000005684 electric field Effects 0.000 claims description 8
- 230000000052 comparative effect Effects 0.000 description 32
- 238000004088 simulation Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical class N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229910004205 SiNX Inorganic materials 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910004286 SiNxOy Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000001152 differential interference contrast microscopy Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0508—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
- H01L31/02005—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
- H01L31/02008—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
- H01L31/0201—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022433—Particular geometry of the grid contacts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
본 발명은 태양 전지 모듈에 관한 것이다.
본 발명의 일례에 따른 태양 전지 모듈은 반도체 기판, 반도체 기판과 p-n 접합을 형성하는 에미터부, 에미터부에 연결되는 제1 전극 및 반도체 기판의 후면에 연결되는 제2 전극을 포함하는 복수의 태양 전지; 및 복수의 태양 전지를 전기적으로 서로 직렬 연결하기 위하여 제1 전극 또는 제2 전극에 접속하는 복수의 인터커넥터;를 포함하고, 복수의 태양 전지 각각에서 하나의 태양 전지에 구비된 제1 전극 또는 제2 전극에 접속되는 복수의 인터커넥터의 개수는 10개 내지 18개 사이이다.
본 발명의 일례에 따른 태양 전지 모듈은 반도체 기판, 반도체 기판과 p-n 접합을 형성하는 에미터부, 에미터부에 연결되는 제1 전극 및 반도체 기판의 후면에 연결되는 제2 전극을 포함하는 복수의 태양 전지; 및 복수의 태양 전지를 전기적으로 서로 직렬 연결하기 위하여 제1 전극 또는 제2 전극에 접속하는 복수의 인터커넥터;를 포함하고, 복수의 태양 전지 각각에서 하나의 태양 전지에 구비된 제1 전극 또는 제2 전극에 접속되는 복수의 인터커넥터의 개수는 10개 내지 18개 사이이다.
Description
본 발명은 태양 전지 모듈에 관한 것이다.
최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고, 이에 따라 태양 에너지로부터 전기 에너지를 생산하는 태양 전지가 주목받고 있다.
일반적인 태양 전지는 p형과 n형처럼 서로 다른 도전성 타입(conductive type)에 의해 p-n 접합을 형성하는 반도체부, 그리고 서로 다른 도전성 타입의 반도체부에 각각 연결된 전극을 구비한다.
이러한 태양 전지에 빛이 입사되면 반도체부에서 복수의 전자-정공 쌍이 생성되고, 생성된 전자-정공 쌍은 전하인 전자와 정공으로 각각 분리되어, 전자는 n형의 반도체부 쪽으로 이동하고 정공은 p형의 반도체부 쪽으로 이동한다. 이동한 전자와 정공은 각각 n형의 반도체부와 p형의 반도체부에 연결된 서로 다른 전극에 의해 수집되고 이 전극들을 전선으로 연결함으로써 전력을 얻는다.
이와 같은 태양 전지는 인터커넥터에 의해 서로 연결될 수 있다.
본 발명은 광전 변환 효율이 향상된 태양 전지 모듈을 제공하는데 그 목적이 있다.
본 발명의 일례에 따른 태양 전지 모듈은 반도체 기판, 반도체 기판과 p-n 접합을 형성하는 에미터부, 에미터부에 연결되는 제1 전극 및 반도체 기판의 후면에 연결되는 제2 전극을 포함하는 복수의 태양 전지; 및 복수의 태양 전지를 전기적으로 서로 직렬 연결하기 위하여 제1 전극 또는 제2 전극에 접속하는 복수의 인터커넥터;를 포함하고, 복수의 태양 전지 각각에서 하나의 태양 전지에 구비된 제1 전극 또는 제2 전극에 접속되는 복수의 인터커넥터의 개수는 10개 내지 18개 사이이다.
여기서, 복수의 인터커넥터의 폭은 0.24mm 내지 0.53mm 사이일 수 있고, 보다 바람직하게는 복수의 인터커넥터의 폭이 0.3mm 내지 0.38mm 사이일 수 있다.
여기서, 복수의 제1 전극은 서로 이격되어 제1 방향으로 길게 뻗어 위치할 수 있다.
또한, 복수의 태양 전지 각각은 복수의 제1 전극이 공통 연결되도록 제1 방향과 교차하는 제2 방향으로 길게 형성되는 버스바 전극을 포함하지 않을 수 있다.
또한, 복수의 태양 전지는 제1 방향과 교차하는 제2 방향으로 배열되고, 복수의 인터커넥터는 제2 방향으로 복수의 태양 전지를 서로 직렬 연결될 수 있다.
이때, 복수의 인터커넥터는 와이어 형태를 가질 수 있으며, 복수의 인터커넥터 각각의 단면은 곡면을 포함할 수 있다.
보다 구체적으로, 복수의 인터커넥터 각각의 단면은 원형, 타원형, 반원형, 직사각형, 또는 사다리꼴 중 적어도 하나일 수 있다.
여기서, 제2 전극은 반도체 기판의 후면에 위치하는 후면 전극층을 포함하거나, 제2 전극은 반도체 기판의 후면에 전면 핑거와 동일한 방향으로 길게 위치하는 후면 핑거를 포함할 수 있다.
아울러, 제2 전극은 반도체 기판의 후면에 전면 핑거와 교차하는 제2 방향으로 길게 형성되는 후면 버스바를 더 포함할 수 있다.
본 발명에 따른 태양 전지 모듈은 하나의 태양 전지에 구비된 상기 제1 전극 또는 상기 제2 전극에 접속되는 복수의 인터커넥터의 개수를 10개 내지 18개 사이로 한정하여, 태양 전지 모듈의 효율을 보다 향상시키고 모듈의 제조 비용을 보다 절감할 수 있다.
도 1은 본 발명에 따른 태양 전지 모듈의 일례를 설명하기 위한 도이다.
도 2는 도 1에 도시된 태양 전지 모듈에 적용되는 태양 전지의 일례를 설명하기 위한 일부 사시도이다.
도 3은 도 2에서 CS3-CS3 라인에 따른 단면이다.
도 4는 도 1에 도시된 인터커넥터(IC)의 저항에 따른 태양 전지 모듈의 출력 감소량을 나타낸 그래프이다.
도 5는 도 1에 도시된 인터커넥터(IC)에 의해 가려지는 쉐이딩 면적을 제외한 나머지 발전 가능한 면적에 의한 모듈 출력을 시뮬레이션한 그래프이다.
도 6은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.25mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이다.
도 7은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.3mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이다.
도 8은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.2mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이다.
도 9는 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위한 인터커넥터(IC)의 재료비와 그림자(shadowing) 면적을 각각 비교예와 비교한 그래프이다.
도 10은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 11개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 11은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 13개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 12은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 15개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 13은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 17개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 14 내지 도 16는 도 1에 도시된 본 발명에 따른 태양 전지 모듈에 적용될 수 있는 태양 전지의 다른 일례를 설명하기 위한 도이다.
도 2는 도 1에 도시된 태양 전지 모듈에 적용되는 태양 전지의 일례를 설명하기 위한 일부 사시도이다.
도 3은 도 2에서 CS3-CS3 라인에 따른 단면이다.
도 4는 도 1에 도시된 인터커넥터(IC)의 저항에 따른 태양 전지 모듈의 출력 감소량을 나타낸 그래프이다.
도 5는 도 1에 도시된 인터커넥터(IC)에 의해 가려지는 쉐이딩 면적을 제외한 나머지 발전 가능한 면적에 의한 모듈 출력을 시뮬레이션한 그래프이다.
도 6은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.25mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이다.
도 7은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.3mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이다.
도 8은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.2mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이다.
도 9는 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위한 인터커넥터(IC)의 재료비와 그림자(shadowing) 면적을 각각 비교예와 비교한 그래프이다.
도 10은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 11개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 11은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 13개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 12은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 15개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 13은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 17개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 14 내지 도 16는 도 1에 도시된 본 발명에 따른 태양 전지 모듈에 적용될 수 있는 태양 전지의 다른 일례를 설명하기 위한 도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한 어떤 부분이 다른 부분 위에 “전체적”으로 형성되어 있다고 할 때에는 다른 부분의 전체 면에 형성되어 있는 것뿐만 아니라 가장 자리 일부에는 형성되지 않은 것을 뜻한다.
이하에서, 전면이라 함은 직사광이 입사되는 반도체 기판의 일면일 수 있으며, 후면이라 함은 직사광이 입사되지 않거나, 직사광이 아닌 반사광이 입사될 수 있는 반도체 기판의 반대면일 수 있다.
아울러, 이하의 설명에서, 서로 다른 두 구성 요소의 길이나 폭이 동일하다는 의미는 10%의 오차 범위 이내에서 서로 동일한 것을 의미한다.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 태양 전지 모듈에 대하여 설명한다.
도 1은 본 발명에 따른 태양 전지 모듈의 일례를 설명하기 위한 도이고, 구체적으로, 도 1에서 (a)는 본 발명에 따른 태양 전지 모듈을 전면에서 바라본 형상이고, (b)는 CS1-CS1 라인에 따른 단면, (c)는 CS2-CS2 라인에 따른 단면이다.
아울러, 도 2는 도 1에 도시된 태양 전지 모듈에 적용되는 태양 전지의 일례를 설명하기 위한 일부 사시도이고, 도 3은 도 2에서 CS3-CS3 라인에 따른 단면이다.
도 1의 (a) 내지 (C)에 도시된 바와 같이, 본 발명에 따른 태양 전지 모듈은 복수의 태양 전지(C1, C2)와 각각의 태양 전지(C1, C2)에 접속되는 복수의 인터커넥터(IC)를 포함한다.
여기서, 본 발명에 따른 태양 전지 모듈에 적용되는 태양 전지의 일례는 도 2 및 도 3에 도시된 바와 같이, 반도체 기판(110), 에미터부(120), 반사 방지막(130), 복수의 제1 전극(140), 후면 전계부(back surface field, BSF)(172), 그리고 제2 전극(150)을 구비할 수 있다.
여기서, 후면 전계부(172)는 생략될 수도 있으나, 후면 전계부(172)가 있는 경우 태양 전지의 효율이 더 향상되므로, 이하에서는 후면 전계부(172)가 포함되는 것을 일례로 설명한다.
반도체 기판(110)은 제1 도전성 타입, 예를 들어 p형 도전성 타입을 가질 수 있으며, 이와 같은 반도체 기판(110)은 단결정 실리콘, 다결정 실리콘 또는 비정질 실리콘 중 어느 하나의 형태로 이루어질 수 있다. 일례로, 반도체 기판(110)은 결정질 실리콘 웨이퍼로 형성될 수 있다.
반도체 기판(110)이 p형의 도전성 타입을 가질 경우, 붕소(B), 갈륨, 인듐 등과 같은 3가 원소의 불순물이 반도체 기판(110)에 도핑(doping)된다. 하지만, 이와는 달리, 반도체 기판(110)은 n형 도전성 타입일 수 있다. 반도체 기판(110)이 n형의 도전성 타입을 가질 경우, 인(P), 비소(As), 안티몬(Sb) 등과 같이 5가 원소의 불순물이 반도체 기판(110)에 도핑될 수 있다.
이러한 반도체 기판(110)의 전면은 복수의 요철면을 갖는다. 편의상 도 2에서, 반도체 기판(110)의 가장자리 부분만 요철면으로 도시하여 그 위에 위치하는 에미터부(120)) 역시 그 가장자리 부분만 요철면으로 도시한다. 하지만, 실질적으로 반도체 기판(110)의 전면 전체가 요철면을 갖고 있으며, 이로 인해 반도체 기판(110)의 전면 위에 위치한 에미터부(120) 역시 요철면을 갖는다.
복수의 요철을 갖고 있는 반도체 기판(110)의 전면 쪽으로 입사되는 빛은 에미터부(120)와 반도체 기판(110)의 표면에 형성된 복수의 요철에 의해 복수 회의 반사 동작이 발생하면서 반도체 기판(110) 내부로 입사된다. 이로 인해, 반도체 기판(110)의 전면에서 반사되는 빛의 양이 감소하여 반도체 기판(110) 내부로 입사되는 빛의 양이 증가한다. 또한, 요철 표면으로 인해, 빛이 입사되는 반도체 기판(110)과 에미터부(120)의 표면적이 증가하여 반도체 기판(110)으로 입사되는 빛의 양 또한 증가한다.
에미터부(120)는 도 2 및 도 3에 도시된 바와 같이, 제 1 도전성 타입의 반도체 기판(110)의 입사면인 전면에 형성되며, 제 1 도전성 타입과 반대인 제 2 도전성 타입, 예를 들어, n형의 도전성 타입의 불순물이 반도체 기판(110)에 도핑된 영역으로, 빛이 입사되는 면, 즉, 반도체 기판(110)의 전면 내부에 위치할 수 있다. 따라서 제2 도전성 타입의 에미터부(120)는 반도체 기판(110) 중 제1 도전성 타입 부분과 p-n 접합을 이룬다.
이와 같은 반도체 기판(110)에 입사된 빛은 전자와 정공으로 분리되어 전자는 n형 쪽으로 이동하고 정공은 p형 쪽으로 이동할 수 있다. 따라서, 반도체 기판(110)이 p형이고 에미터부(120)가 n형일 경우, 분리된 정공은 반도체 기판(110) 후면 쪽으로 이동하고 분리된 전자는 에미터부(120) 쪽으로 이동할 수 있다.
에미터부(120)는 반도체 기판(110), 즉, 반도체 기판(110)의 제1 도전성 부분과 p-n접합을 형성하므로, 본 실시예와 달리, 반도체 기판(110)이 n형의 도전성 타입을 가질 경우, 에미터부(120)는 p형의 도전성 타입을 가질 수 있다. 이 경우, 분리된 전자는 반도체 기판(110) 후면 쪽으로 이동하고 분리된 정공은 에미터부(120)쪽으로 이동할 수 있다.
에미터부(120)가 n형의 도전성 타입을 가질 경우, 에미터부(120)는 5가 원소의 불순물을 반도체 기판(110)에 도핑하여 형성될 수 있고, 반대로 p형의 도전성 타입을 가질 경우, 3가 원소의 불순물을 반도체 기판(110)에 도핑하여 형성될 수 있다.
반사 방지막(130)은 반도체 기판(110)의 입사면에 상부에 위치하며, 도 2 및 도 3에 도시된 바와 같이, 에미터부(120)가 반도체 기판(110)의 입사면에 위치하는 경우, 반사 방지막(130)은 에미터부(120) 상부에 위치할 수 있다.
이와 같은 반사 방지막(130)은 수소화된 실리콘 질화막(SiNx:H), 수소화된 실리콘 산화막(SiOx:H), 수소화된 실리콘 질화산화막(SiNxOy:H), 및 수소화된 비정질실리콘(a-Si:H) 중 적어도 어느 하나를 포함할 수 있다.
이와 같은 반사 방지막(130)은 반사 방지막(130)에 포함되는 수소(H)로 인하여, 반도체 기판(110)의 표면 및 그 근처에 주로 존재하는 댕글링 결합(dangling bond)과 같은 결함(defect)을 안정한 결합으로 바꾸어 결함에 의해 반도체 기판(110)의 표면 쪽으로 이동한 전하가 소멸되는 것을 감소시키는 패시베이션 기능(passivation function)을 수행한다. 따라서, 결함에 의해 반도체 기판(110)의 표면이나 그 근처에서 손실되는 전하의 양을 감소시킨다.
이와 같은 반사 방지막(130)은 반도체 기판(110)이 요철 표면을 갖는 경우, 반도체 기판(110)과 유사하게 하게 복수의 요철을 구비한 요철 표면을 갖게 된다.
일반적으로 결함은 반도체 기판(110)의 표면이나 그 근처에 주로 많이 존재하므로, 실시예의 경우에서와 같이 반사 방지막(130)이 반도체 기판(110)의 표면에 직접 접해 있으면 패시베이션 기능이 더욱 향상된다.
또한, 이와 같은 반사 방지막(130)은 전술한 수소화된 실리콘 질화막(SiNx:H), 수소화된 실리콘 산화막(SiOx:H), 수소화된 실리콘 질화산화막(SiNxOy:H), 수소화된 실리콘 산화질화막(SiOxNy:H), 수소화된 비정질실리콘(a-Si:H) 중 적어도 어느 하나가 복수의 층으로 형성될 수도 있다.
예를 들어, 반사 방지막(130)은 수소화된 실리콘 질화막(SiNx:H)이 두 개의 층으로 형성될 수도 있는 것이다.
이와 같이 함으로써, 반사 방지막(130)의 패시베이션 기능을 보다 강화할 수 있어 태양 전지의 광전 효율을 더욱 향상시킬 수 있다.
복수의 제1 전극(140)은 도 2 및 도 3에 도시된 바와 같이 반도체 기판(110)의 전면에 위치하며, 반도체 기판(110)의 전면 위에 서로 이격되어 위치하며, 각각이 제1 방향(x)으로 길게 뻗어 위치할 수 있다.
이와 같이, 반도체 기판(110)의 전면에 서로 이격되어 제1 방향(x)으로 길게 뻗어 위치하는 전극을 전면 핑거라고 명명할 수 있다.
이때, 복수의 제1 전극(140)은 반사 방지막(130)을 통과하여 에미터부(120)에 연결될 수 있다.
이에 따라, 복수의 제1 전극(140)은 은(Ag)과 같은 적어도 하나의 도전성 물질로 이루어져, 에미터부(120) 쪽으로 이동한 전하, 예를 들면, 전자를 수집할 수 있다.
이때, 본 발명에 따른 태양 전지는 복수의 제1 전극(140)이 공통 연결되도록 제1 방향(x)과 교차하는 제2 방향(y)으로 길게 형성되는 버스바 전극을 포함하지 않을 수 있다.
통상적으로 버스바 전극에는 복수의 태양 전지(C1, C2)를 서로 연결하는 인터커넥터(IC)가 접속되는데, 본 발명에 따른 태양 전지에서는 이와 같은 버스바 전극을 구비하지 않는 대신, 인터커넥터(IC)가 전술한 복수의 제1 전극(140) 각각에 직접 접속될 수 있다.
후면 전계부(172)는 반도체 기판(110)의 전면의 반대면인 후면에 위치할 수 있으며, 반도체 기판(110)과 동일한 도전성 타입의 불순물이 반도체 기판(110)보다 고농도로 도핑된 영역, 예를 들면, P+ 영역이다.
이러한 반도체 기판(110)의 제1 도전성 영역과 후면 전계부(172)간의 불순물 농도 차이로 인해 전위 장벽이 형성되고, 이로 인해, 정공의 이동 방향인 후면 전계부(172) 쪽으로 전자 이동을 방해하는 반면, 후면 전계부(172) 쪽으로의 정공 이동을 용이하게 한다. 따라서, 반도체 기판(110)의 후면 및 그 부근에서 전자와 정공의 재결합으로 손실되는 전하의 양을 감소시키고 원하는 전하(예, 정공)의 이동을 가속화시켜 제2 전극(150)으로의 전하 이동량을 증가시킨다.
제2 전극(150)은 후면 전극층(151)과 복수의 후면 버스바(152)를 구비할 수 있다. 후면 전극층(151)은 반도체 기판(110)의 후면에 위치한 후면 전계부(172)와 접촉하고 있고, 반도체 기판(110)의 후면 가장 자리와 후면 버스바(152)가 위치한 부분을 제외하면 실질적으로 반도체 기판(110)의 후면 전체에 위치할 수 있다.
후면 전극층(151)은 알루미늄(Al)과 같은 도전성 물질을 함유하고 있다.
이러한 후면 전극층(151)은 후면 전계부(172)쪽으로부터 이동하는 전하, 예를 들어 정공을 수집한다.
이때, 후면 전극층(151)이 반도체 기판(110)보다 높은 불순물 농도로 유지하는 후면 전계부(172)와 접촉하고 있으므로, 반도체 기판(110), 즉 후면 전계부(172)와 후면 전극층(151) 간의 접촉 저항이 감소하여 반도체 기판(110)으로부터 후면 전극층(151)으로의 전하 전송 효율이 향상된다.
복수의 후면 버스바(152)는 후면 전극층(151)이 위치하지 않는 반도체 기판(110)의 후면 위에 위치하며 인접한 후면 전극층(151)과 연결되어 있다.
이와 같은 복수의 후면 버스바(152)는 후면 전극층(151)으로부터 전달되는 전하를 수집할 수 있다.
복수의 후면 버스바(152)에는 인터커넥터(IC)가 접속되어, 복수의 후면 버스바(152)에 의해 수집된 전하(예, 정공)는 인터커넥터(IC)를 통하여 인접한 다른 태양 전지로 전달될 수 있다.
이러한 복수의 후면 버스바(152)는 후면 전극층(151)보다 양호한 전도도를 갖는 물질로 이루어질 수 있고, 예를 들어, 은(Ag)과 같은 적어도 하나의 도전성 물질을 함유할 수 있다.
이와 같은 복수의 후면 버스바(152) 각각에는 각각의 인터커넥터(IC)가 접속될 수 있다.
이와 같은 구조를 갖는 본 실시예에 따른 태양 전지의 동작은 다음과 같다.
태양 전지로 빛이 조사되어 에미터부(120)를 통해 반도체부인 에미터부(120)와 반도체 기판(110)으로 입사되면 빛 에너지에 의해 반도체부에서 전자-정공 쌍이 발생한다. 이때, 반도체 기판(110)의 요철 표면과 에미터부(120)에 의해 반도체 기판(110)으로 입사되는 빛의 반사 손실이 줄어들어 반도체 기판(110)으로 입사되는 빛의 양이 증가한다.
이들 전자-정공 쌍은 반도체 기판(110)과 에미터부(120)의 p-n 접합에 의해 서로 분리되어 전자와 정공은, 예를 들어, n형의 도전성 타입을 갖는 에미터부(120)과 p형의 도전성 타입을 갖는 반도체 기판(110) 쪽으로 각각 이동한다. 이처럼, 에미터부(120) 쪽으로 이동한 전자는 복수의 제1 전극(140)에 의해 수집되어 인터커넥터(IC)로 전달되고, 반도체 기판(110) 쪽으로 이동한 정공은 인접한 후면 전극층(151)와 복수의 후면 버스바(152)에 의해 수집되어 인터커넥터(IC)로 전달된다.
지금까지의 도 2 및 도 3에서는 반도체 기판(110)을 중심으로 제1 전극(140)이 반도체 기판(110)의 전면에 위치하고, 제2 전극(150)이 반도체 기판(110)의 후면에 위치하는 컨벤셔널 태양 전지의 구조를 일례로 설명하였지만, 본 발명에 따른 태양 전지 모듈에는 반도체 기판(110)의 후면에 제1 전극(140)과 제2 전극(150)이 위치하는 구조를 갖는 태양 전지도 적용이 가능하다.
아울러, 도 2 및 도 3에서는 반도체 기판(110)의 후면에 후면 버스바(152)가 포함하는 경우를 일례로 도시하였지만, 이와 다르게 후면 버스바(152)가 생략되는 것도 가능하다. 즉, 제2 전극(150)이 후면 전극층(151)만으로도 형성되는 것도 가능하다.
아울러, 본 발명의 태양 전지 모듈에 적용되는 태양 전지의 일례는 이 외에도 다양한 형태가 가능한데, 이에 대해서는 본 발명에 따른 태양 전지 모듈에 적용되는 인터커넥터(IC)의 개수와 폭에 대해 먼저 설명한 뒤에, 도 14 내지 도 16에서 설명한다.
이하에서는 설명의 편의상 도 2 및 도 3에 도시된 태양 전지의 구조를 갖는 경우를 일례로 설명한다.
다음, 다시 도 1의 (a)에 도시된 바와 같이, 본 발명에 따른 태양 전지 모듈은 복수의 태양 전지(C1, C2) 각각의 제1 전극(140)의 길이 방향이 제1 방향(x)으로 배치되며, 복수의 태양 전지(C1, C2)는 제1 방향(x)과 교차하는 제2 방향(y)으로 배열될 수 있다.
이때, 도 1의 (a) 내지 (c)에 도시된 바와 같이, 복수의 인터커넥터(IC)가 복수의 태양 전지(C1, C2)를 전기적으로 서로 직렬 연결하기 위하여 제1 전극(140) 또는 제2 전극(150)에 접속할 수 있다.
보다 구체적으로, 도 1의 (b)에 도시된 바와 같이, 본 발명에 다른 태양 전지 모듈에서 복수의 인터커넥터(IC)는 제2 방향(y)으로 길게 배치되어, 제1 태양 전지의 제1 전극(140)과 제2 태양 전지의 제2 전극(150)을 서로 직렬 연결할 수 있다.
이때, 본 발명에 따른 복수의 인터커넥터(IC)는 와이어 형태를 가질 수 있다. 이때, 도 1의 (a)에 도시된 바와 같이, 복수의 인터커넥터(IC) 각각의 단면이 곡면을 포함할 수 있다. 즉, 도 1의 (a)에서는 복수의 인터커넥터(IC) 각각의 단면이 원형인 경우를 일례로 도시하였으나, 복수의 인터커넥터(IC) 각각의 단면은 타원형, 반원형, 직사각형, 또는 사다리꼴 중 어느 하나를 포함할 수 있다.
이에 따라, 외부에서 입사되는 빛이 인터커넥터(IC)의 경사면에 의해 반사되어 반도체 기판(110) 쪽으로 입사되거나 복수의 태양 전지(C1, C2)의 전면에 위치하는 투명 기판에 재반사되거나 반도체 기판(110) 쪽으로 입사되도록 하여, 태양 전지로 입사되는 빛의 양을 극대화시킬 수 있다.
이와 같은 복수의 인터커넥터(IC)는 태양 전지의 제1 전극(140)이나 제2 전극(150)에 주석(Sn)과 같은 금속 물질을 함유하는 솔더 페이스트 또는 도전성 금속 입자가 절연성 수지 내에 포함되는 도전성 패이스트(conductive paste)나 도전성 접착 필름(conductive adhesive film)과 같은 도전성 재질이 등이 이용될 수 있다.
한편, 본 발명의 태양 전지 모듈에서 복수 개의 인터커넥터(IC)의 개수(NIC)와 폭(WIC)은 특정한 값으로 한정될 수 있다.
즉, 복수 개의 인터커넥터(IC)의 저항, 복수 개의 인터커넥터(IC)에 의해 가려지는 쉐이딩(shading) 면적, 및 태양 전지의 출력을 고려하여, 본 발명의 태양 전지 모듈의 복수의 태양 전지(C1, C2) 각각에서, 하나의 태양 전지에 구비된 제1 전극(140) 또는 제2 전극(150)에 접속되는 복수의 인터커넥터(IC)의 개수(NIC)는 10개 내지 18개 사이일 수 있고, 인터커넥터(IC)의 폭(WIC)은 0.24mm 내지 0.53mm 사이일 수 있다.
여기서, 본 발명에 따른 태양 전지 모듈에서 인터커넥터(IC)의 개수(NIC)를 한정한 이유에 대해 살펴보면 다음과 같다.
참고로, 도 4 내지 도 5의 그래프에서 나타내는 모듈의 출력값들은 예시적인 것으로, 절대적인 값은 아니며, 각 태양 전지의 구성이나 모듈에 적용되는 태양 전지의 개수나 다른 조건에 의해 달라질 수 있음을 전제로 한다.
도 4는 도 1에 도시된 인터커넥터(IC)의 저항에 따른 태양 전지 모듈의 출력 감소량을 나타낸 그래프이다.
도 4에서는 인터커넥터(IC)에 의해 반도체 기판(110)이 가려지는 쉐이딩(shading) 면적에 대한 고려없이, 순수하게 인터커넥터(IC)의 저항과 태양 전지 모듈의 출력이 감소되는 출력 감소량과의 관계를 시뮬레이션한 결과를 도시하였다.
도 4를 참조하면, 인터커넥터(IC)의 폭(WIC)과 개수(NIC)가 증가함에 따라 태양 전지 모듈의 출력 감소량이 감소하는 것을 확인할 수 있다.
보다 구체적으로, 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 감소할수록 인터커넥터(IC)의 저항이 증가하고, 이에 따라 태양 전지 모듈의 출력 감소량이 커지는 것을 확인할 수 있다. 즉, 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 증가할수록 인터커넥터(IC)에 의한 저항이 향상되어, 출력 감소량이 감소하는 것을 확인할 수 있다.
아울러, 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 어느 정도 이상 증가하더라도 태양 전지 모듈의 출력 감소량은 대략 0.05W로 수렴하는 것을 확인할 수 있다.
결국, 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 증가할수록 저항이 감소하여 태양 전지 모듈의 출력이 증가하는 것을 확인할 수 있고, 아울러, 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 어느 정도 이상 증가한 이후부터는 모듈의 출력 증가가 둔화되는 것을 확인할 수 있다.
이는 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 증가할수록 인터커넥터(IC)의 저항이 감소하고, 인터커넥터(IC)의 저항이 어느 정도 수준 이하로 향상되면, 태양 전지 모듈의 출력이 각 태양 전지에 의해 가능한 출력의 극대치에 도달하는 것으로 해석할 수 있다.
이때, 인터커넥터(IC)의 폭(WIC)이 상대적으로 작은 경우(일례로, 폭(WIC)이 0.15mm인 경우), 인터커넥터(IC)의 개수(NIC)에 의한 출력 감소량의 차이가 상대적으로 크게 나타나고, 인터커넥터(IC)의 폭(WIC)이 상대적으로 큰 경우(일례로, 폭(WIC)이 0.4mm인 경우), 인터커넥터(IC)의 개수(NIC)에 의한 출력 감소량의 차이가 상대적으로 작게 나타나는 것을 확인할 수 있다.
도 5는 도 1에 도시된 인터커넥터(IC)에 의해 가려지는 쉐이딩 면적을 제외한 나머지 발전 가능한 면적에 의한 모듈 출력을 시뮬레이션한 그래프이다.
이와 같은 도 5에 도시된 그래프는 인터커넥터(IC)의 저항에 의한 영향을 제외한 값이다.
도 5에서는 인터커넥터(IC)가 없는 경우, 태양 전지 모듈에서 각 셀의 최대 출력이 5W인 경우를 일례로 설정한 상태에서 모듈에 적용되는 인터커넥터(IC)의 개수(NIC)와 폭(WIC)을 조절함에 따라 출력되는 태양 전지의 출력값을 시뮬레이션하였다.
도 5에 도시된 바와 같이, 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 증가할수록 인터커넥터(IC)에 의한 쉐이딩 면적이 증가하여 태양 전지의 출력이 감소되는 것을 확인할 수 있다.
이때, 인터커넥터(IC)의 폭(WIC)이 작아지는 경우에는 인터커넥터(IC)의 개수(NIC)가 많거나 작더라도 태양 전지의 출력 변화량이 상대적으로 작은 것으로 나타나고, 인터커넥터(IC)의 폭(WIC)이 증가하는 경우에는 인터커넥터(IC)의 개수(NIC)에 영향을 상대적으로 많이 받아, 태양 전지의 출력이 크게 달라지는 것을 확인할 수 있다.
즉, 인터커넥터(IC)의 개수(NIC)가 증가할수록 인터커넥터(IC)의 폭(WIC)에 의한 영향이 상대적으로 증가하여 태양 전지의 출력이 상대적으로 크게 저하되는 것을 확인할 수 있다.
따라서, 인터커넥터(IC)의 폭(WIC)이 0.15mm인 경우, 인터커넥터(IC)의 개수(NIC)가 7개에서 21개 사이로 변화하더라도 인터커넥터(IC)에 의해 가려지는 쉐이딩 면적의 증가가 크지 않기 때문에 태양 전지의 출력이 크게 감소하지는 않는다.
그러나, 인터커넥터(IC)의 폭(WIC)이 0.4mm인 경우, 인터커넥터(IC)의 개수(NIC)가 7개에서 21개까지 증가하는 경우, 인터커넥터(IC)에 의해 가려지는 쉐이딩 면적이 크게 증가하여 태양 전지의 출력이 크게 감소하는 것을 확인할 수 있다.
이와 같이, 도 4 및 도 5와 같은 시뮬레이션 결과에 의해 알 수 있는 것은 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 증가하는 경우, 인터커넥터(IC)에 의한 저항이 감소하지만 인터커넥터(IC)에 의해 가려지는 쉐이딩 면적이 증가하여 태양 전지의 출력에 영향을 미치고, 인터커넥터(IC)의 개수(NIC)와 폭(WIC)이 감소하는 경우, 저항이 증가하지만 쉐이딩 면적이 상대적으로 감소하여 태양 전지의 출력에 영향을 미치는 것을 확인할 수 있다.
따라서, 인터커넥터(IC)의 개수(NIC)와 폭(WIC)을 적절하게 결정하면 모듈에 적용되는 각 태양 전지의 출력을 보다 극대화시킬 수 있는 것을 확인할 수 있다.
따라서, 본 발명에서는 먼저 적절한 인터커넥터(IC)의 개수(NIC)를 찾기 위해, 먼저 인터커넥터(IC)의 폭(WIC)을 임의로 설정하여, 각 폭(WIC)에서 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션 해 보았다.
도 6은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.25mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이고, 도 7은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.3mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이고, 도 8은 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위해, 도 1에 도시된 인터커넥터(IC)의 폭(WIC)이 0.2mm인 경우, 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력을 시뮬레이션한 결과이다.
참고로, 도 6 내지 도 8의 그래프에서 나타내는 모듈의 출력값들은 예시적인 것으로, 절대적인 값은 아니며, 각 태양 전지의 구성이나 모듈에 적용되는 태양 전지의 개수나 다른 조건에 의해 달라질 수 있음을 전제로 한다.
도 6 내지 도 8에서는 일례로, 각 태양 전지의 허용 가능한 최대 출력이 5W이고, 하나의 태양 전지 모듈에 60개의 태양 전지가 적용되는 경우를 일례로 하였다. 따라서, 하나의 태양 전지 모듈에서 출력 가능한 최대 출력은 300W이다.
아울러, 도 6 내지 도 8에서 비교예는 도 1에 도시된 바와 같은 태양 전지 모듈에서 인터커넥터(IC)의 개수(NIC)가 3개이고, 폭(WIC)이 1.5mm인 경우, 태양 전지 모듈의 출력을 시뮬레이션한 결과이다. 이때, 태양 전지 모듈의 출력은 285.4W이다.
아울러, 도 6 내지 도 8에서는 인터커넥터(IC)의 개수(NIC)에 따른 모듈 출력은 인터커넥터(IC)의 저항과 쉐이딩 면적을 모두 고려한 시뮬레이션 결과이다.
먼저, 도 6에 도시된 바와 같이, 인터커넥터(IC)의 폭(WIC)이 0.25mm인 경우, 인터커넥터(IC)의 개수(NIC)가 1개에서 9개까지는 비교예보다 낮은 출력값을 가지고, 10개부터 28개까지는 비교예보다 높은 출력을 가지며, 29개 초과부터는 비교예보다 낮은 출력값을 가지는 것을 확인할 수 있다. 이때, 모듈의 최고 출력은 인터커넥터(IC)의 개수(NIC)가 17개일 때이고, 출력값은 비교예의 출력값보다 대략 2W정도 높은 287.5W이었다.
아울러, 도 7에 도시된 바와 같이, 인터커넥터(IC)의 폭(WIC)이 0.3mm인 경우, 인터커넥터(IC)의 개수(NIC)가 1개에서 7개 미만까지는 비교예보다 낮은 출력값을 가지고, 7개부터 26개까지는 비교예보다 높은 출력을 가지며, 27개 초과부터는 비교예보다 낮은 출력값을 가지는 것을 확인할 수 있다. 이때, 모듈의 최고 출력은 인터커넥터(IC)의 개수(NIC)가 13개일 때이고, 출력값은 비교예의 출력값보다 대략 3.2W정도 높은 288.6W이었다.
또한, 도 8에 도시된 바와 같이, 인터커넥터(IC)의 폭(WIC)이 0.2mm인 경우, 인터커넥터(IC)의 개수(NIC)가 1개에서 19개 미만까지는 비교예보다 낮은 출력값을 가지고, 19개부터 32개까지는 비교예보다 높은 출력을 가지며, 32개 초과부터는 비교예보다 낮은 출력값을 가지는 것을 확인할 수 있다. 이때, 모듈의 최고 출력은 인터커넥터(IC)의 개수(NIC)가 24개일 때이고, 출력값은 비교예의 출력값보다 대략 0.63W 높은 286.03W이었다.
여기서, 시뮬레이션 결과, 인터커넥터(IC)의 폭(WIC)이 0.2mm인 경우에는 비교예와 비교하여 최대 출력값이 1W 미만으로, 의미있는 출력값의 차이가 아니므로 본 발명의 인터커넥터(IC) 개수(NIC)를 설정하는 근거에서 제외하고, 도 6과 도 7을 근거로 설정하였다.
도 6과 도 7에서, 비교예보다 항상 높은 출력값을 가지는 인터커넥터(IC)의 개수(NIC)는 10개 ~ 26개 사이인 것을 확인할 수 있다.
아울러, 이와 같이 비교예보다 높은 출력값을 가지는 인터커넥터(IC)의 개수(NIC) 범위에 본 발명은 인터커넥터(IC)의 재료비와 그림자 면적을 비교예의 경우와 비교하여 보았다.
도 9는 본 발명에 따른 인터커넥터(IC)의 개수(NIC)를 설정하기 위한 인터커넥터(IC)의 재료비와 그림자(shadowing) 면적을 각각 비교예와 비교한 그래프이다.
여기서, 비교예는 인터커넥터(IC)의 개수(NIC)가 3개이고, 폭(WIC)이 1.5mm인 경우이고, 본 발명에 따른 인터커넥터(IC)는 폭(WIC)이 0.25mm인 경우를 일례로 설정하였다.
도 9의 (a)에 도시된 바와 같이, 인터커넥터(IC)의 재료비는 각 셀당 인터커넥터(IC)의 개수(NIC)가 32개인 경우, 비교예와 동일한 재료비가 소비되는 것을 확인할 수 있다.
따라서, 인터커넥터(IC)가 32개 이하인 경우, 본 발명에 따른 인터커넥터(IC)의 재료비가 비교예보다 더 절감되는 것을 확인할 수 있다.
아울러, 도 9의 (b)에 도시된 바와 같이, 폭(WIC)이 0.25mm인 경우 인터커넥터(IC)의 개수(NIC)가 18개인 경우, 비교예와 동일한 그림자 면적을 가지는 것을 알 수 있고, 인터커넥터(IC)의 개수(NIC)가 18개를 넘어서는 경우 비교예보다 그림자 면적이 증가하는 것을 확인할 수 있다.
따라서, 앞선 도 6 내지 도 8의 시뮬레이션 결과와 도 9의 그래프를 고려하면, 인터커넥터(IC)의 개수(NIC)가 18개를 넘지 않는 경우, 인터커넥터(IC)의 재료비가 보다 절감되고, 그림자 면적이 비교예 이하인 것을 알 수 있다.
따라서, 도 6과 도 7에 의한 도출된 10개 ~ 26개에서 도 9를 고려하면, 인터커넥터(IC)의 개수(NIC)가 10개 ~ 18개 사이가 보다 효율적이고 저렴한 것임을 확인할 수 있다.
따라서, 이와 같은 도 6 내지 도 9를 고려하여, 본 발명에 따른 태양 전지 모듈에서 인터커넥터(IC)의 개수(NIC)는 10개 내지 18개 사이인 것으로 결정하였다.
아울러, 본 발명에 따른 인터커넥터(IC)의 폭(WIC)은 전술한 바와 같은 인터커넥터(IC)의 개수(NIC)가 결정된 상태에서, 몇 개의 케이스에 대해 시뮬레이션하여 최적의 모듈 출력을 갖는 인터커넥터(IC)의 폭(WIC)을 설정하였다.
다음의 도 10 내지 도 13은 시뮬레이션 결과 그래프는 인터커넥터(IC)의 개수(NIC)가 11개, 13개, 15개, 17개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈 출력에 대한 시뮬레이션 결과 그래프이다.
구체적으로, 도 10은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 11개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이고, 도 11은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 13개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이고, 도 12은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 15개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이고, 도 13은 도 1에 도시된 인터커넥터(IC)의 개수(NIC)가 17개일 때, 인터커넥터(IC)의 폭(WIC)에 따른 모듈의 출력값에 대한 시뮬레이션 결과 그래프이다.
도 10 내지 도 13의 그래프에서 나타내는 모듈의 출력값들은 예시적인 것으로, 절대적인 값은 아니며, 각 태양 전지의 구성이나 모듈에 적용되는 태양 전지의 개수 등 다른 조건에 의해 달라질 수 있음을 전제로 한다.
도 10 내지 도 13에서는 일례로, 각 태양 전지의 허용 가능한 최대 출력이 5W이고, 하나의 태양 전지 모듈에 60개의 태양 전지가 적용되는 경우를 일례로 하였다. 따라서, 하나의 태양 전지 모듈에서 출력 가능한 최대 출력은 300W이다.
여기서, 비교예는 인터커넥터(IC)의 개수(NIC)가 3개이고, 폭(WIC)이 1.5mm인 경우이고, 이때, 비교예에 따른 태양 전지 모듈의 출력값은 285.4W이다.
먼저, 도 10에 도시된 바와 같이, 인터커넥터(IC)의 개수(NIC)가 11개일 때, 인터커넥터(IC)의 폭(WIC)이 0.24mm 내지 0.85mm일 때 본 발명에 따른 태양 전지 모듈의 출력이 비교예에 따른 태양 전지 모듈의 출력보다 나은 것을 확인할 수 있고, 더 나아가 인터커넥터(IC)의 폭(WIC)이 0.3mm 내지 0.67mm일 때 본 발명에 따른 태양 전지 모듈의 출력이 288W 이상으로 양호한 것을 확인할 수 있다.
이때, 태양 전지 모듈의 최대 출력은 인터커넥터(IC)의 폭(WIC)이 0.4mm일 때이고, 출력값은 289.4W로 비교예의 출력값보다 4W정도 높은 것으로 나타났다.
다음, 도 11에 도시된 바와 같이, 인터커넥터(IC)의 개수(NIC)가 13개일 때, 인터커넥터(IC)의 폭(WIC)이 0.24mm 내지 0.72mm일 때 본 발명에 따른 태양 전지 모듈의 출력이 비교예에 따른 태양 전지 모듈의 출력보다 나은 것을 확인할 수 있고, 더 나아가 인터커넥터(IC)의 폭(WIC)이 0.28mm 내지 0.54mm일 때 본 발명에 따른 태양 전지 모듈의 출력이 288W 이상으로 양호한 것을 확인할 수 있다.
이때, 태양 전지 모듈의 최대 출력은 인터커넥터(IC)의 폭(WIC)이 0.38mm일 때이고, 출력값은 289.3W로 비교예의 출력값보다 3.9W정도 높은 것으로 나타났다.
다음, 도 12에 도시된 바와 같이, 인터커넥터(IC)의 개수(NIC)가 15개일 때, 인터커넥터(IC)의 폭(WIC)이 0.22mm 내지 0.62mm일 때 본 발명에 따른 태양 전지 모듈의 출력이 비교예에 따른 태양 전지 모듈의 출력보다 나은 것을 확인할 수 있고, 더 나아가 인터커넥터(IC)의 폭(WIC)이 0.28mm 내지 0.45mm일 때 본 발명에 따른 태양 전지 모듈의 출력이 288W 이상으로 양호한 것을 확인할 수 있다.
이때, 태양 전지 모듈의 최대 출력은 인터커넥터(IC)의 폭(WIC)이 0.35mm일 때이고, 출력값은 288.7W로 비교예의 출력값보다 3.3W정도 높은 것으로 나타났다.
다음, 도 13에 도시된 바와 같이, 인터커넥터(IC)의 개수(NIC)가 17개일 때, 인터커넥터(IC)의 폭(WIC)이 0.21mm 내지 0.53mm일 때 본 발명에 따른 태양 전지 모듈의 출력이 비교예에 따른 태양 전지 모듈의 출력보다 나은 것을 확인할 수 있고, 더 나아가 인터커넥터(IC)의 폭(WIC)이 0.28mm 내지 0.38mm일 때 본 발명에 따른 태양 전지 모듈의 출력이 288W 이상으로 양호한 것을 확인할 수 있다.
이때, 태양 전지 모듈의 최대 출력은 인터커넥터(IC)의 폭(WIC)이 0.3mm일 때이고, 출력값은 288.7W로 비교예의 출력값보다 3.3W정도 높은 것으로 나타났다.
따라서, 도 10 내지 도 13에 따른 시뮬레이션 결과 그래프를 고려하면, 인터커넥터(IC)의 개수(NIC)가 10개 내지 18개 사이일 때, 본 발명과 같이, 인터커넥터(IC)의 폭(WIC)이 0.24mm 내지 0.53mm 사이인 경우, 태양 전지 모듈의 출력값이 비교예보다 더 나은 것을 확인할 수 있다.
아울러, 인터커넥터(IC)의 개수(NIC)가 10개 내지 18개 사이일 때, 본 발명에 따른 본 발명에 따른 인터커넥터(IC)의 폭(WIC)은 0.3mm 내지 0.38mm 사이일 수 있다. 이때, 전술한 도 10 내지 도 13과 같이, 태양 전지 모듈의 출력값이 비교예보다 훨씬 더 나은 것을 확인할 수 있다.
이하의 도 14 내지 도 16에서는 도 1에 도시된 본 발명에 따른 태양 전지 모듈에 적용될 수 있는 태양 전지의 다른 일례에 대해 설명한다.
이하의 도 14 내지 도 16에서는 도 2 및 도 3에 기재된 내용과 중복되는 내용에 대한 상세한 설명은 생략하고, 다른 점을 위주로 설명한다.
도 1에 도시된 본 발명에 따른 태양 전지 모듈에 적용될 수 있는 태양 전지의 다른 일례는 도 14에 도시된 바와 같이, 도 2 및 도 3과 다르게, 제1 전극(140)이 제1 방향(x)으로 길게 뻗은 전면 핑거(141)뿐만 아니라, 전면 핑거(141)의 길이 방향과 교차하는 방향인 제2 방향(y)으로 길게 뻗은 전면 버스바(142)를 구비할 수도 있다.
이와 같은 경우, 도 1 및 도 4 내지 도 13에서 전술한 인터커넥터(IC)가 전면 버스바(142)에 접속할 수 있다.
이때, 전면 버스바(142)의 개수는 인터커넥터(IC)의 개수가 동일하고, 전면 버스바(142)의 폭은 인터커넥터(IC)의 폭과 동일하거나 더 작을 수 있다. 즉, 일례로, 15개의 인터커넥터(IC)가 0.3mm의 폭으로 반도체 기판(110)의 전면에 접속되는 경우, 전면 버스바(142)도 15개가 0.3mm의 폭으로 반도체 기판(110)의 전면에 형성될 수 있다.
이와 같이, 전면 버스바(142)가 형성되는 경우, 인터커넥터(IC)와 제1 전극(140) 사이의 접속 면적이 증가되어, 접촉 저항 및 접촉력을 더욱 향상시킬 수 있다.
아울러, 후면 버스바(152)의 개수는 인터커넥터(IC)의 개수가 동일하고, 후면 버스바(152)의 폭은 인터커넥터(IC)의 폭과 동일하거나 더 작을 수 있다. 그러나, 도 2 및 도 3에서 전술한 바와 같이, 후면 버스바(152)가 생략되는 것도 가능하다.
또한, 여기서, 도 15에 도시된 바와 같이, 후면 버스바(152)가 제2 방향(y)으로 길게 형성되되, 각각의 전면 핑거(141)마다 접속하고, 전면 핑거(141) 사이에서 서로 이격되어 있는 아일랜드(island) 구조의 형태를 가지는 것도 가능하다.
또한, 제2 전극(150)의 패턴도 전술한 바와 다르게, 후면 전극층(151) 대신에 반도체 기판(110)의 후면에 전면 핑거(141)과 동일한 방향으로 길게 위치하는 후면 핑거(151’)가 구비된 상태에서 전술한 후면 버스바(152)가 구비될 수 있다.
이와 같은 경우, 태양 전지가 bi-facial 구조를 갖는 경우, 반도체 기판(110)의 후면으로도 빛을 수광할 수 있어, 태양 전지의 효율이 더욱 향상될 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
Claims (12)
- 반도체 기판, 상기 반도체 기판과 p-n 접합을 형성하는 에미터부, 상기 에미터부에 연결되는 제1 전극 및 상기 반도체 기판의 후면에 연결되는 제2 전극을 포함하는 복수의 태양 전지; 및
상기 복수의 태양 전지를 전기적으로 서로 직렬 연결하기 위하여 상기 제1 전극 또는 상기 제2 전극에 접속하는 복수의 인터커넥터;를 포함하고,
상기 복수의 태양 전지 각각에서 하나의 태양 전지에 구비된 상기 제1 전극 또는 상기 제2 전극에 접속되는 상기 복수의 인터커넥터의 개수는 10개 내지 18개 사이이고,
상기 제1 전극은 상기 반도체 기판의 전면에 서로 이격되어 제1 방향으로 뻗어 있는 전면 핑거와 상기 전면 핑거와 교차하는 제2 방향으로 뻗어 있는 전면 버스바를 구비하고,
제2 전극은 상기 반도체 기판의 후면에 상기 전면 핑거와 동일한 방향으로 뻗어 있는 후면 핑거와 상기 후면 핑거와 교차하는 제2 방향으로 뻗어 있는 후면 버스바를 포함하고,
상기 반도체 기판의 후면에서 상기 후면 핑거가 위치하는 부분에는 상기 반도체 기판과 동일한 도전형을 가지며, 불순물의 도핑 농도가 더 높은 후면 전계부가 위치하고,
상기 반도체 기판의 후면에서 상기 후면 버스바가 위치하는 부분에는 상기 후면 전계부가 형성되지 않는 영역을 포함하는 태양 전지 모듈. - 제1 항에 있어서,
상기 복수의 인터커넥터의 폭은 0.24mm 내지 0.53mm 사이인 태양 전지 모듈. - 제1 항에 있어서,
상기 복수의 인터커넥터의 폭은 0.3mm 내지 0.38mm 사이인 태양 전지 모듈. - 삭제
- 삭제
- 제1 항에 있어서,
상기 복수의 태양 전지는 상기 제1 방향과 교차하는 제2 방향으로 배열되고,
상기 복수의 인터커넥터는 상기 제2 방향으로 상기 복수의 태양 전지를 서로 직렬 연결시키는 태양 전지 모듈. - 제6 항에 있어서,
상기 복수의 인터커넥터는 와이어 형태를 갖는 태양 전지 모듈. - 제6 항에 있어서,
상기 복수의 인터커넥터 각각의 단면은 곡면을 포함하는 태양 전지 모듈. - 제6 항에 있어서,
상기 복수의 인터커넥터 각각의 단면은 원형, 타원형, 반원형, 직사각형, 또는 사다리꼴 중 어느 하나인 태양 전지 모듈. - 삭제
- 삭제
- 삭제
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140079260A KR101794948B1 (ko) | 2014-06-26 | 2014-06-26 | 태양 전지 모듈 |
EP15001892.7A EP2960946B1 (en) | 2014-06-26 | 2015-06-25 | Solar cell module |
JP2015127897A JP6139602B2 (ja) | 2014-06-26 | 2015-06-25 | 太陽電池モジュール |
EP22152710.4A EP4009383A1 (en) | 2014-06-26 | 2015-06-25 | Solar cell module |
EP18184974.6A EP3410493B1 (en) | 2014-06-26 | 2015-06-25 | Solar cell module |
EP20202221.6A EP3800671B1 (en) | 2014-06-26 | 2015-06-25 | Solar cell module |
CN201710975923.2A CN107768449B (zh) | 2014-06-26 | 2015-06-26 | 太阳能电池模块 |
CN201510363766.0A CN105226120B (zh) | 2014-06-26 | 2015-06-26 | 太阳能电池模块 |
US14/752,561 US10164130B2 (en) | 2014-06-26 | 2015-06-26 | Solar cell module |
JP2016165439A JP6272964B2 (ja) | 2014-06-26 | 2016-08-26 | 太陽電池モジュール |
US15/270,127 US10170646B2 (en) | 2014-06-26 | 2016-09-20 | Solar cell module |
US16/179,613 US11201252B2 (en) | 2014-06-26 | 2018-11-02 | Solar cell module |
US17/522,085 US11522092B2 (en) | 2014-06-26 | 2021-11-09 | Solar cell module |
US17/938,245 US20230028427A1 (en) | 2014-06-26 | 2022-10-05 | Solar cell module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140079260A KR101794948B1 (ko) | 2014-06-26 | 2014-06-26 | 태양 전지 모듈 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170049226A Division KR101819731B1 (ko) | 2017-04-17 | 2017-04-17 | 태양 전지 모듈 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160001226A KR20160001226A (ko) | 2016-01-06 |
KR101794948B1 true KR101794948B1 (ko) | 2017-11-07 |
Family
ID=55165141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140079260A KR101794948B1 (ko) | 2014-06-26 | 2014-06-26 | 태양 전지 모듈 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101794948B1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017171287A2 (en) * | 2016-03-28 | 2017-10-05 | Lg Electronics Inc. | Solar cell panel |
KR101964968B1 (ko) * | 2016-03-28 | 2019-04-03 | 엘지전자 주식회사 | 태양 전지 패널 |
WO2018070636A1 (ko) * | 2016-10-13 | 2018-04-19 | 현대중공업그린에너지 주식회사 | 태양전지 모듈 |
WO2020233839A1 (en) * | 2019-05-23 | 2020-11-26 | Alpha Assembly Solutions Inc. | Solder paste for module fabrication of solar cells |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110253191A1 (en) | 2010-04-16 | 2011-10-20 | Solarworld Innovations Gmbh | Method for fitting contact wires to a surface of a photovoltaic cell, photovoltaic cell, photovoltaic module, arrangement for fitting contact wires to a surface of a photovoltaic cell |
JP2012156297A (ja) * | 2011-01-26 | 2012-08-16 | Shin Etsu Chem Co Ltd | 太陽電池モジュール |
JP2014063978A (ja) | 2013-04-26 | 2014-04-10 | Noritake Co Ltd | 太陽電池モジュールおよびその製造方法 |
-
2014
- 2014-06-26 KR KR1020140079260A patent/KR101794948B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110253191A1 (en) | 2010-04-16 | 2011-10-20 | Solarworld Innovations Gmbh | Method for fitting contact wires to a surface of a photovoltaic cell, photovoltaic cell, photovoltaic module, arrangement for fitting contact wires to a surface of a photovoltaic cell |
JP2012156297A (ja) * | 2011-01-26 | 2012-08-16 | Shin Etsu Chem Co Ltd | 太陽電池モジュール |
JP2014063978A (ja) | 2013-04-26 | 2014-04-10 | Noritake Co Ltd | 太陽電池モジュールおよびその製造方法 |
Non-Patent Citations (1)
Title |
---|
Johann Walter et al., "Multi-wire interconnection of busbar-free solar cells", Energy Procedia, Vol.55, pp.380-388 (2014.03.25.)* |
Also Published As
Publication number | Publication date |
---|---|
KR20160001226A (ko) | 2016-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11056598B2 (en) | Solar cell | |
US11522092B2 (en) | Solar cell module | |
KR101199424B1 (ko) | 태양 전지 | |
KR101699299B1 (ko) | 양면 수광형 태양전지 | |
US20110139226A1 (en) | Selective emitter solar cell | |
US20110155210A1 (en) | Solar cell module | |
US9577132B2 (en) | Solar cell module | |
EP2642525B1 (en) | Solar cell | |
US20180204964A1 (en) | Solar cell and solar cell panel including the same | |
US20140373911A1 (en) | Solar cell | |
EP2757595B1 (en) | Solar cell and method for manufacturing the same | |
KR101794948B1 (ko) | 태양 전지 모듈 | |
KR102065170B1 (ko) | 태양 전지 모듈 | |
KR20160149067A (ko) | 태양 전지 모듈 | |
KR101819731B1 (ko) | 태양 전지 모듈 | |
KR101983361B1 (ko) | 양면 수광형 태양전지 | |
KR102474476B1 (ko) | 태양 전지 모듈 | |
KR101190751B1 (ko) | 태양 전지 | |
KR102394105B1 (ko) | 태양 전지 모듈 | |
KR20130080662A (ko) | 태양전지 모듈 | |
KR20160063130A (ko) | 태양 전지 및 태양 전지 모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
A107 | Divisional application of patent | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |