KR101782354B1 - 공진 전력 전송 및 수신 장치 및 방법 - Google Patents
공진 전력 전송 및 수신 장치 및 방법 Download PDFInfo
- Publication number
- KR101782354B1 KR101782354B1 KR1020100084084A KR20100084084A KR101782354B1 KR 101782354 B1 KR101782354 B1 KR 101782354B1 KR 1020100084084 A KR1020100084084 A KR 1020100084084A KR 20100084084 A KR20100084084 A KR 20100084084A KR 101782354 B1 KR101782354 B1 KR 101782354B1
- Authority
- KR
- South Korea
- Prior art keywords
- resonant power
- resonator
- signal
- source
- power receiving
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 122
- 238000000034 method Methods 0.000 title claims abstract description 49
- 230000004044 response Effects 0.000 claims abstract description 37
- 230000008878 coupling Effects 0.000 claims description 20
- 238000010168 coupling process Methods 0.000 claims description 20
- 238000005859 coupling reaction Methods 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 17
- 238000003491 array Methods 0.000 claims description 2
- 230000002618 waking effect Effects 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 description 175
- 239000003990 capacitor Substances 0.000 description 53
- 239000000463 material Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 230000035699 permeability Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 7
- 230000005684 electric field Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/04—Regulating voltage or current wherein the variable is ac
- G05F3/06—Regulating voltage or current wherein the variable is ac using combinations of saturated and unsaturated inductive devices, e.g. combined with resonant circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/50—Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
- H02J50/502—Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices the energy repeater being integrated together with the emitter or the receiver
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H3/04—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
- H03H2003/0414—Resonance frequency
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
무선 전력을 전송할 때, 무선 전력 전송의 타겟을 선택할 수 있는 장치 및 방법에 관한 것으로, 공진 전력 전송 장치는 AC 전력을 공진 전력 수신 장치로 전달하는 복수의 소스 공진기들을 포함하는 소스 어레이 공진부, 상기 AC 전력이 상기 복수의 소스 공진기들로 순차적으로 전달되도록 스위칭하는 경로 다중화부, 상기 AC 전력을 이용하여 적어도 하나의 공진 전력 수신 장치를 웨이크 업(wake-up) 시키는 웨이크 업 신호를 생성하고, 상기 웨이크 업 신호에 대한 응답 신호에 기초하여 상기 적어도 하나의 공진 전력 수신 장치를 검출하는 검출부 및 상기 검출된 적어도 하나의 공진 전력 수신 장치로 상기 AC 전력을 전달하도록 상기 경로 다중화부를 제어하는 소스 제어부를 포함한다.
Description
기술분야는 무선 전력을 전송할 때, 무선 전력 전송의 타겟을 선택할 수 있는 장치 및 방법에 관한 것이다.
무선 전력전송에 대한 연구는 휴대기기를 포함한 다양한 전기기기의 폭발적 증가로 인한 유선전력공급의 불편함 증가 및 기존 battery 용량의 한계 봉착 등을 극복하기 위해 시작되었다. 무선 전력 전송 기술들 중 하나는 RF 소자들의 공진(resonance) 특성을 이용한다. 공진 특성을 이용하는 무선 전력 전송 시스템은 전력을 공급하는 소스와 전력을 공급받는 타겟을 포함할 수 있다.
일 측면에 있어서, 공진 전력 전송 장치는 AC 전력을 공진 전력 수신 장치로 전달하는 복수의 소스 공진기들을 포함하는 소스 어레이 공진부, 상기 AC 전력이 상기 복수의 소스 공진기들로 순차적으로 전달되도록 스위칭하는 경로 다중화부, 상기 AC 전력을 이용하여 적어도 하나의 공진 전력 수신 장치를 웨이크 업(wake-up) 시키는 웨이크 업 신호를 생성하고, 상기 웨이크 업 신호에 대한 응답 신호에 기초하여 상기 적어도 하나의 공진 전력 수신 장치를 검출하는 검출부 및 상기 검출된 적어도 하나의 공진 전력 수신 장치로 상기 AC 전력을 전달하도록 상기 경로 다중화부를 제어하는 소스 제어부를 포함한다.
상기 소스 제어부는 기 설정된 시간 동안 상기 적어도 하나의 공진 전력 수신장치에 순차적으로 상기 웨이크 업 신호가 전달되도록 스위칭 신호를 제어하고, 상기 적어도 하나의 공진 전력 수신 장치로부터 소정의 시간 동안 수신되는 신호에 따라 해당 소스 공진기를 제어할 수 있다.
상기 소스 제어부는 상기 적어도 하나의 공진 전력 수신 장치가 검출되면, 상기 검출된 적어도 하나의 공진 전력 수신 장치와 상기 검출된 적어도 하나의 공진 전력 수신 장치에 대응되는 적어도 하나의 소스 공진기간에, 임피던스가 매칭되도록 상기 임피던스를 제어할 수 있다.
상기 소스 제어부는 상기 적어도 하나의 공진 전력 수신 장치가 검출되면, 상기 검출된 적어도 하나의 공진 전력 수신 장치와 대응되는 적어도 하나의 소스 공진기에 대하여, 상기 AC 전력을 일정 운행 사이클(duty cycle)을 가지고 상기 검출된 적어도 하나의 공진 전력 수신 장치에 전달하도록, 스위칭 신호를 제어할 수 있다.
상기 소스 제어부는 상기 검출된 적어도 하나의 공진 전력 수신 장치에 대응하는 소스 공진기가 상기 AC 전력을 전달하도록 상기 소스 공진기를 제어할 수 있다.
다른 일 측면에 있어서, 공진 전력 전송 장치는 상기 적어도 하나의 공진 전력 수신 장치로부터 웨이크 업 신호에 대한 응답신호, 상기 적어도 하나의 공진 전력 수신 장치에 포함된 공진기의 아이디(ID) 및 상기 적어도 하나의 공진 전력 수신 장치의 아이디(ID)에 대한 정보를 수신하는 통신부를 더 포함할 수 있다.
상기 통신부는 상기 검출된 적어도 하나의 공진 전력 수신 장치로부터, 소스 공진기와 상기 검출된 적어도 하나의 공진 전력 수신 장치간의 임피던스 매칭에 필요한 정보를 인 밴드(In-Band) 또는 아웃 밴드(Out Band)를 통하여 획득할 수 있다.
상기 소스 어레이 공진부는 일정 영역에 대해서 공진 전력을 전송하는 복수개의 소스 공진기가 어레이를 형성하여 구비될 수 있다.
일 측면에 있어서, 공진 전력 수신 장치는 마그네틱 커플링을 통하여 공진 전력 전송 장치로부터 AC 전력 또는 웨이크 업(wake-up) 신호를 수신하는 타겟 공진부, 상기 웨이크 업 신호에 의하여 웨이크 업 되었는지 여부 및 충전 필요 여부를 판단하는 전력 판단부, 상기 공진 전력 전송 장치의 아이디(ID), 상기 공진 전력 전송 장치에 포함된 소스 공진기의 아이디, 상기 웨이크 업 신호에 대한 응답 신호, 충전 요청 신호, 웨이크 업 된 타겟 공진기의 아이디 및 웨이크 업 된 공진 전력 수신 장치의 아이디에 대한 정보를 송수신하는 통신부 및 상기 소스 공진기와 상기 웨이크 업 된 타겟 공진기간의 임피던스를 매칭시키기 위해 상기 임피던스를 제어하는 타겟 제어부를 포함한다.
상기 타겟 공진부는 상기 공진 전력 전송 장치로부터 마그네틱 커플링을 통하여 상기 AC 전력을 일정 운행 사이클(duty cycle) 동안 수신할 수 있다.
일 측면에 있어서, 공진 전력 전송 방법은 전원 공급기로부터 공급된 AC 전력이 복수의 소스 공진기들에 순차적으로 전달되도록 스위칭하는 단계, 상기 AC 전력을 이용하여 적어도 하나의 공진 전력 수신 장치를 웨이크 업(wake-up) 시키는 웨이크 업 신호를 생성하는 단계, 상기 웨이크 업 신호에 대한 응답 신호에 기초하여 상기 적어도 하나의 공진 전력 수신 장치를 검출하는 단계 및 상기 검출된 적어도 하나의 공진 전력 수신 장치로 상기 AC 전력을 전달하는 단계를 포함한다.
다른 일 측면에 있어서, 공진 전력 전송 방법은 기 적어도 하나의 공진 전력 수신 장치로부터 소정의 시간 동안 수신되는 신호에 따라 상기 적어도 하나의 공진 전력 수신 장치에 대응하는 소스 공진기를 제어하는 단계를 더 포함할 수 있다.
다른 일 측면에 있어서, 공진 전력 전송 방법은 상기 검출된 적어도 하나의 공진 전력 수신 장치와 상기 검출된 적어도 하나의 공진 전력 수신 장치에 대응되는 적어도 하나의 소스 공진기간에, 임피던스가 매칭되도록 상기 임피던스를 제어하는 단계를 더 포함할 수 있다.
다른 일 측면에 있어서, 공진 전력 전송 방법은 상기 검출된 적어도 하나의 공진 전력 수신 장치와 대응되는 적어도 하나의 소스 공진기에 대하여, 상기 AC 전력을 일정 운행 사이클(duty cycle)을 가지고 상기 검출된 적어도 하나의 공진 전력 수신 장치에 전달하도록, 스위칭 신호를 제어하는 단계를 더 포함할 수 있다.
다른 일 측면에 있어서, 공진 전력 전송 방법은 상기 적어도 하나의 공진 전력 수신 장치로부터 웨이크 업 신호에 대한 응답 신호를 수신하는 단계, 상기 응답신호를 수신하면, 상기 적어도 하나의 공진 전력 수신 장치에 관한 정보 요청 신호 및 상기 웨이크 업 신호에 대한 응답 신호를 수신한 소스 공진기의 아이디(ID)를 전송하는 단계 및 상기 정보 요청 신호에 대한 에크(Ack) 신호, 상기 적어도 하나의 공진 전력 수신 장치에 포함된 공진기의 아이디(ID) 및 상기 적어도 하나의 공진 전력 수신 장치의 아이디(ID)에 대한 정보를 수신하는 단계를 더 포함할 수 있다.
다른 일 측면에 있어서, 공진 전력 전송 방법은 상기 검출된 적어도 하나의 공진 전력 수신 장치로부터, 소스 공진기와 상기 검출된 적어도 하나의 공진 전력 수신 장치간의 임피던스 매칭에 필요한 정보를 인 밴드(In-Band) 또는 아웃 밴드(Out Band)를 통하여 획득하는 단계를 더 포함할 수 있다.
일 측면에 있어서, 공진 전력 수신 방법은 마그네틱 커플링을 통하여 공진 전력 전송 장치로부터 AC 전력 또는 웨이크 업(wake-up) 신호를 수신하는 단계, 상기 웨이크 업 신호에 의하여 웨이크 업 되었는지 여부 및 충전 필요 여부를 판단하는 단계, 상기 공진 전력 전송 장치의 아이디(ID), 상기 공진 전력 전송 장치에 포함된 소스 공진기의 아이디, 상기 웨이크 업 신호에 대한 응답 신호, 충전 요청 신호, 웨이크 업 된 타겟 공진기의 아이디 및 웨이크 업 된 공진 전력 수신 장치의 아이디에 대한 정보를 송수신하는 단계 및 상기 소스 공진기와 상기 웨이크 업 된 타겟 공진기간의 임피던스를 매칭시키기 위해 상기 임피던스를 제어하는 단계를 포함한다.
상기 AC 전력 또는 웨이크 업(wake-up) 신호를 수신하는 단계는 상기 공진 전력 전송 장치로부터 마그네틱 커플링을 통하여 상기 AC 전력을 일정 운행 사이클(duty cycle)동안 수신할 수 있다.
소스 어레이 공진기를 이용하여 선택적으로 타겟 디바이스에 공진 전력을 전송함으로써 전자기 간섭의 발생을 감소시킬 수 있다.
또한, 소스 어레이 공진기를 이용하여 일정한 운행 사이클(duty cycle)동안 교대로 공진 전력을 전송함으로써 복수개의 타겟 디바이스를 효율적으로 충전할 수 있다.
또한, 경로 다중화부를 이용하여 일정한 운행 사이클로 공진 전력을 교대로 전송함으로써 상대적으로 작은 전력으로 복수개의 타겟 디바이스를 충전할 수 있다.
또한, 상대적으로 작은 전력을 이용하여 타겟 디바이스를 충전함으로써, 전력 증폭기에서 발생하는 고조파(harmonic) 발생을 최소화 할 수 있다.
또한, 상대적으로 작은 전력을 이용하여 타겟 디바이스를 충전함으로써, 공진 전력 전송 장치의 온도 상승을 억제할 수 있고, 따라서, 전력 손실을 줄일 수 있다.
또한, 인 밴드(In-Band) 또는 아웃 밴드(Out-Band) 통신을 통하여 소스 공진기와 타겟 공진기간에 임피던스 매칭을 수행함으로써, 임피던스의 부조화(mismatching)로 발생하는 전력 손실을 최소화 할 수 있다.
도 1은 예시적인 실시 예에 따른 무선 전력 전송 시스템을 나타낸다.
도 2는 일실시예에 따른 공진 전력 전송 장치의 블록도이다.
도 3은 일실시예에 따른 소스 어레이 공진부를 나타낸 도면이다.
도 4는 일실시예에 따른 경로 다중화부의 구체적 일 예를 나타낸 도면이다.
도 5는 일실시예에 따른 공진 전력 수신 장치의 검출 과정을 나타낸 도면이다.
도 6은 일실시예에 따른 소스 공진기와 타겟 공진기간에 임피던스가 매칭되는 과정을 나타낸 도면이다.
도 7은 일실시예에 따른 일실시예에 따른 AC 전력을 일정 운행 사이클(duty cycle) 동안 전송하는 과정을 나타낸 도면이다.
도 8은 일실시예에 따른 공진 전력 수신 장치의 블록도이다.
도 9는 일실시예에 따른 2 차원 구조의 공진기를 나타낸 도면이다.
도 10은 일실시예에 따른 3 차원 구조의 공진기를 나타낸 도면이다.
도 11은 bulky type으로 설계된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 12는 Hollow type으로 설계된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 13은 parallel-sheet이 적용된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 14는 분산된 커패시터를 포함하는 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 15는 2 차원 구조의 공진기 및 3 차원 구조의 공진기에서 사용되는 매칭기들의 예들을 나타낸 도면이다.
도 16은 도 9에 도시된 무선 전력 전송을 위한 공진기의 등가 회로를 나타낸 도면이다.
도 17은 일실시예에 따른 공진 전력 전송 방법을 설명하기 위한 흐름도이다.
도 18은 일실시예에 따른 공진 전력 수신 방법을 설명하기 위한 흐름도이다.
도 2는 일실시예에 따른 공진 전력 전송 장치의 블록도이다.
도 3은 일실시예에 따른 소스 어레이 공진부를 나타낸 도면이다.
도 4는 일실시예에 따른 경로 다중화부의 구체적 일 예를 나타낸 도면이다.
도 5는 일실시예에 따른 공진 전력 수신 장치의 검출 과정을 나타낸 도면이다.
도 6은 일실시예에 따른 소스 공진기와 타겟 공진기간에 임피던스가 매칭되는 과정을 나타낸 도면이다.
도 7은 일실시예에 따른 일실시예에 따른 AC 전력을 일정 운행 사이클(duty cycle) 동안 전송하는 과정을 나타낸 도면이다.
도 8은 일실시예에 따른 공진 전력 수신 장치의 블록도이다.
도 9는 일실시예에 따른 2 차원 구조의 공진기를 나타낸 도면이다.
도 10은 일실시예에 따른 3 차원 구조의 공진기를 나타낸 도면이다.
도 11은 bulky type으로 설계된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 12는 Hollow type으로 설계된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 13은 parallel-sheet이 적용된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 14는 분산된 커패시터를 포함하는 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 15는 2 차원 구조의 공진기 및 3 차원 구조의 공진기에서 사용되는 매칭기들의 예들을 나타낸 도면이다.
도 16은 도 9에 도시된 무선 전력 전송을 위한 공진기의 등가 회로를 나타낸 도면이다.
도 17은 일실시예에 따른 공진 전력 전송 방법을 설명하기 위한 흐름도이다.
도 18은 일실시예에 따른 공진 전력 수신 방법을 설명하기 위한 흐름도이다.
이하, 일측에 따른 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 예시적인 실시 예에 따른 무선 전력 전송 시스템을 나타낸다.
도 1의 예에서, 무선 전력 전송 시스템을 통해 전송되는 무선 전력은 공진 전력(resonance power)이라 가정한다.
도 1을 참조하면, 무선 전력 전송 시스템은 소스와 타겟으로 구성되는 소스-타겟 구조이다. 즉, 무선 전력 전송 시스템은 소스에 해당하는 공진 전력 전송 장치(110)와 타겟에 해당하는 공진 전력 수신 장치(120)를 포함한다.
공진 전력 전송 장치(110)는 외부의 전압 공급기로부터 에너지를 수신하여 공진 전력을 발생시키는 소스부(111) 및 소스 공진기(115)를 포함한다. 또한, 공진 전력 전송 장치(110)는 공진주파수 또는 임피던스 매칭을 수행하는 매칭 제어부(Matching control)(113)를 더 포함하여 구성될 수 있다.
소스부(111)는 외부의 전압 공급기로부터 에너지를 수신하여 공진 전력을 발생시킨다. 소스부(111)는 외부 장치로부터 입력되는 교류 신호의 신호 레벨을 원하는 레벨로 조정하기 위한 AC-AC Converter, AC-AC Converter로부터 출력되는 교류 신호를 정류함으로써 일정 레벨의 DC 전압을 출력하는 AC-DC Converter, AC-DC Converter에서 출력되는 DC 전압을 고속 스위칭함으로써 수 MHz ~ 수십MHz 대역의 AC 신호를 생성하는 DC-AC Inverter를 포함할 수 있다.
매칭 제어부(Matching control)(113)는 소스 공진기(115)의 공진 대역폭(Resonance Bandwidth) 또는 소스 공진기(115)의 임피던스 매칭 주파수를 설정한다. 매칭 제어부(Matching control)(113)는 소스 공진 대역폭 설정부(도시 되지 않음) 또는 소스 매칭 주파수 설정부(도시 되지 않음) 중 적어도 하나를 포함한다. 소스 공진 대역폭 설정부는 소스 공진기(115)의 공진 대역폭(Resonance Bandwidth)을 설정한다. 소스 매칭 주파수 설정부는 소스 공진기(115)의 임피던스 매칭 주파수를 설정한다. 이때, 소스 공진기의 공진 대역폭(Resonance Bandwidth) 또는 소스 공진기의 임피던스 매칭 주파수 설정에 따라서 소스 공진기(115)의 Q-factor가 결정될 수 있다.
소스 공진기(115)는 전자기(electromagnetic) 에너지를 타겟 공진기로 전달(transferring)한다. 즉, 소스 공진기(115)는 타겟 공진기(121)와의 마그네틱 커플링(101)을 통해 공진 전력을 타겟 장치(120)로 전달한다. 이때, 소스 공진기(115)는 설정된 공진 대역폭 내에서 공진한다.
공진 전력 수신 장치(120)는 타겟 공진기(121), 공진주파수 또는 임피던스 매칭을 수행하는 Matching control부(123) 및 수신된 공진 전력을 부하로 전달하기 위한 타겟부(125)를 포함한다.
타겟 공진기(121)는 소스 공진기(115)로부터 전자기(electromagnetic) 에너지를 수신한다. 이때, 타겟 공진기(121)는 설정된 공진 대역폭 내에서 공진한다.
Matching control부(123)는 타겟 공진기(121)의 공진 대역폭(Resonance Bandwidth) 또는 타겟 공진기(121)의 임피던스 매칭 주파수 중 적어도 하나를 설정한다. Matching control부(123)는 타겟 공진 대역폭 설정부(도시 되지 않음) 또는 타겟 매칭 주파수 설정부(도시 되지 않음) 중 적어도 하나를 포함한다. 타겟 공진 대역폭 설정부는 타겟 공진기(121)의 공진 대역폭(Resonance Bandwidth)을 설정한다. 타겟 매칭 주파수 설정부는 타겟 공진기(121)의 임피던스 매칭 주파수를 설정한다. 이때, 타겟 공진기(121)의 공진 대역폭(Resonance Bandwidth) 또는 타겟 공진기(121)의 임피던스 매칭 주파수 설정에 따라서 타겟 공진기(121)의 Q-factor가 결정될 수 있다.
타겟부(125)는 수신된 공진 전력을 부하로 전달한다. 이때, 타겟부(125)는 소스 공진기(115)로부터 타겟 공진기(121)로 수신되는 AC 신호를 정류하여 DC 신호를 생성하는 AC-DC Converter와, DC 신호의 신호 레벨을 조정함으로써 정격 전압을 디바이스(device) 또는 부하(load)로 공급하는 DC-DC Converter를 포함할 수 있다.
소스 공진기(115) 및 타겟 공진기(121)는 헬릭스(helix) 코일 구조의 공진기 또는 스파이럴(spiral) 코일 구조의 공진기, 또는 meta-structured 공진기로 구성될 수 있다.
도 1을 참조하면, 큐-펙터의 제어 과정은, 소스 공진기(115)의 공진 대역폭(Resonance Bandwidth) 및 타겟 공진기(121)의 공진 대역폭을 설정하고, 소스 공진기(115)와 타겟 공진기(121) 사이의 마그네틱 커플링을 통해 전자기(electromagnetic) 에너지를 상기 소스 공진기(115)로부터 상기 타겟 공진기(121)로 전달(transferring)하는 것을 포함한다. 이때, 소스 공진기(115)의 공진 대역폭은 타겟 공진기(121)의 공진 대역폭 보다 넓거나 좁게 설정될 수 있다. 즉, 소스 공진기(115)의 공진 대역폭이 타겟 공진기(121)의 공진 대역폭 보다 넓거나 좁게 설정됨으로써, 소스 공진기의 BW-factor와 상기 타겟 공진기의 BW-factor는 서로 불평형(unbalance) 관계가 유지된다.
공진 방식의 무선 전력 전송에서, 공진 대역폭은 중요한 factor이다. 소스 공진기(115)와 타겟 공진기(121) 사이의 거리 변화, 공진 임피던스의 변화, 임피던스 미스 매칭, 반사 신호 등을 모두 고려한 Q-factor를 Qt라 할 때, Qt는 수학식 1과 같이 공진 대역폭과 반비례 관계를 갖는다.
[수학식 1]
수학식 1에서, f0는 중심주파수, 는 대역폭, 는 공진기 사이의 반사 손실, BWS는 소스 공진기(115)의 공진 대역폭, BWD는 타겟 공진기(121)의 공진 대역폭을 나타낸다. 본 명세서에서 BW-factor는 1/ BWS 또는 1/BWD를 의미한다.
한편, 소스 공진기(115)와 타겟 공진기(121) 간의 거리가 달라지거나, 둘 중 하나의 위치가 변하는 등의 외부 영향에 의하여, 소스 공진기(115)와 타겟 공진기(121) 간의 임피던스 미스 매칭이 발생할 수 있다. 임피던스 미스 매칭은 전력 전달의 효율을 감소시키는 직접적인 원인이 될 수 있다. 매칭 제어부(Matching control)(113)는 전송신호의 일부가 반사되어 돌아오는 반사파를 감지함으로써, 임피던스 미스 매칭이 발생한 것으로 판단하고, 임피던스 매칭을 수행할 수 있다. 또한, 매칭 제어부(Matching control)(113)는 반사파의 파형 분석을 통해 공진 포인트를 검출함으로써, 공진 주파수를 변경할 수 있다. 여기서, 매칭 제어부(Matching control)(113)는 반사파의 파형에서 진폭(amplitude)이 최소인 주파수를 공진 주파수로 결정할 수 있다.
한편, 본 발명의 실시 예에 따른 공진기는 헬릭스(helix) 코일 구조의 공진기, 또는 스파이럴(spiral) 코일 구조의 공진기, 또는 meta-structured 공진기로 구성될 수 있다.
이미 잘 알려진 내용들이지만, 이해의 편의를 위하여 관련 용어들을 기술한다. 모든 물질들은 고유의 투자율(Mu) 및 유전율(epsilon)을 갖는다. 투자율은 해당 물질에서 주어진 자계(magnetic field)에 대해 발생하는 자기력선속밀도(magnetic flux density)와 진공 중에서 그 자계에 대해 발생하는 자기력선속밀도의 비를 의미한다. 그리고, 유전율은 해당 물질에서 주어진 전계(electric field)에 대해 발생하는 전기력선속밀도(electric flux density)와 진공 중에서 그 전계에 대해 발생하는 전기력선속밀도의 비를 의미한다. 투자율 및 유전율은 주어진 주파수 또는 파장에서 해당 물질의 전파 상수를 결정하며, 투자율 및 유전율에 따라 그 물질의 전자기 특성이 결정된다. 특히, 자연계에 존재하지 않는 유전율 또는 투자율을 가지며, 인공적으로 설계된 물질을 메타 물질이라고 하며, 메타 물질은 매우 큰 파장(wavelength) 또는 매우 낮은 주파수 영역에서도 쉽게(즉, 물질의 사이즈가 많이 변하지 않더라도) 공진 상태에 놓일 수 있다.
도 2는 일실시예에 따른 공진 전력 전송 장치의 블록도이다.
공진 전력 전송 장치는 전력 증폭기를 포함한다. 전력 증폭기는 효율을 극대화하기 위해 스위칭 방법으로 설계된다. 그런데, 전력 증폭기는 전압/전류 스위칭 과정에서 2차, 3차, 4차, 5차, N차의 고조파가 발생하여 주변 디바이스에 영향을 준다. 또한, 공진 전력 수신 장치의 수가 증가함에 따라 공진 전력량도 커지게 되면서, 전체 공진 전력 전송 시스템의 온도가 상승한다. 시스템의 온도 상승은 전력 손실이 커짐을 의미할 수 있다. 일실시예에 따른 공진 전력 전송 장치는 복수개의 공진 전력 수신 장치를 충전하면서도 전송되는 공진 전력량을 상대적으로 낮게 유지함으로써, 고조파의 발생을 최소화할 수 있다.
도 2를 참조하면, 일실시예에 따른 공진 전력 전송 장치는 전력 변환부(210), 경로 다중화부(220), 소스 어레이 공진부(230), 소스 제어부(240) 및 검출부(250)를 포함한다.
전력 변환부(210)는 소정의 스위칭 펄스 신호에 의하여 일정 레벨의 DC 전압을 AC 전력으로 변환한다. 전력 변환부(210)는 DC/AC 인버터를 포함하여 구성될 수 있다. DC/AC 인버터는 일정레벨의 DC 신호를 AC 신호로 변환함으로써 공진 전력을 생성한다. DC/AC 인버터는 고속 스위칭을 위한 스위칭 소자를 포함할 수 있다. 이때, 스위칭 소자는 스위칭 펄스 신호가 “high”일 때 On되고, 스위칭 펄스 신호가 “Low” 일 때 off 되도록 구성될 수 있다.
경로 다중화부(220)는 AC 전력이 복수의 소스 공진기들로 순차적으로 전달되도록 스위칭한다. 경로 다중화부(220)는 AC 전력이 복수의 소스 공진기들로 일정 기준에 따라 전달되도록, 상기 AC 전력이 전달되는 경로를 다중화할 수 있다. 즉, 경로 다중화부(220)는 제1 소스 공진기에 1차적으로 AC 전력을 전달하고, 일정 시간이 경과한 후에 제2 소스 공진기에 2차적으로 AC 전력이 전달되도록 스위칭 할 수 있다.
소스 어레이 공진부(230)는 AC 전력을 공진 전력 수신 장치로 전달하는 복수의 소스 공진기들을 포함한다. 소스 어레이 공진부(230)는 일정 영역에 대해서 공진 전력을 전송하는 복수개의 소스 공진기가 어레이를 형성하여 구비될 수 있다. 여기서 각 소스 공진기는 공진 전력을 전송할 수 있는 일정 영역이 할당될 수 있다. 각 소스 공진기는 할당된 영역에 위치한 공진 전력 수신 장치에 마그네틱 커플링을 통하여 웨이크 업(wake-up) 전력 신호 또는 충전에 필요한 AC 전력을 전송할 수 있다. 이 때, 각 소스 공진기가 할당된 영역에는 복수개의 공진 전력 수신 장치가 위치할 수 있다. 즉, 소스 공진기는 상기 할당된 영역에 놓인 복수개의 공진 전력 수신 장치에 공진 전력을 전송할 수 있다. 웨이크 업(wake-up) 전력 신호는 공진 전력 수신 장치가 자신의 상태에 관한 메시지를 전송할 수 있을 만큼의 전력 신호를 의미한다. 보다 구체적인 설명은 도 3에서 한다. 소스 공진기는 도 9내지 도 16을 통해 설명된 공진기일 수 있으며, 소스 공진기에 의해 전파(propagate)되는 파동(wave)에 의해 전력이 무선으로 전송된다.
소스 제어부(240)는 검출부(250)에서 검출된 적어도 하나의 공진 전력 수신 장치로 소그 어레이 공진부(230)에서 AC 전력을 전달하도록 경로 다중화부(220)를 제어한다. 보다 구체적으로, 소스 제어부(240)는 적어도 하나의 공진 전력 수신 장치가 검출되면, 검출된 영역에 위치한 소스 공진기가 AC 전력을 전달하도록 경로 다중화부(220)를 제어할 수 있다. 이때, 소스 제어부(240)는 검출부(250)에서 적어도 하나의 공진 전력 수신 장치가 검출되면, 경로 다중화부(220)를 제어하여, 검출 후 바로 검출된 공진 전력 수신 장치에 AC 전력을 전달하게 할 수 있다.
또한, 소스 제어부(240)는 기 설정된 시간 동안 적어도 하나의 공진 전력 수신장치에 순차적으로 웨이크 업 신호가 전달되도록 스위칭 신호를 제어하고, 상기 적어도 하나의 공진 전력 수신 장치로부터 소정의 시간 동안 수신되는 신호에 따라 해당 소스 공진기를 제어할 수 있다. 소스 제어부(240)는 일정 시간마다 소스 공진기가 위치한 각 영역에 웨이크 업 신호가 전달되도록 경로 다중화부(220)의 스위칭 신호를 제어할 수 있다. 웨이크 업 신호는 웨이크 업 전력 신호를 포함할 수 있다. 소스 제어부(240)는 소정의 시간 동안 웨이크 업 신호를 전달한 영역에서 웨이크 업 신호에 대한 응답신호 또는 충전 요청 신호를 수신하지 못하면, 해당 위치의 소스 공진기를 오프(off) 상태로 유지할 수 있다. 소스 제어부(240)는 공진 전력 수신 장치로부터 타겟 공진기의 아이디(ID) 및 공진 전력 수신 장치의 아이디(ID)에 대한 정보를 수신하면, 다음 소스 공진기에서 웨이크 업 신호가 전달되도록 스위칭 신호를 제어할 수 있다.
또한, 소스 제어부(240)는 적어도 하나의 공진 전력 수신 장치가 검출되면, 상기 검출된 적어도 하나의 공진 전력 수신 장치와 상기 검출된 적어도 하나의 공진 전력 수신 장치에 대응되는 적어도 하나의 소스 공진기간에, 임피던스가 매칭되도록 상기 임피던스를 제어할 수 있다. 소스 제어부(240)는 공진 전력 수신 장치가 검출되면, 검출된 위치의 소스 공진기에서 효율적으로 공진 전력이 전송되도록 임피던스를 제어할 수 있다. 소스 제어부(240)는 소스 공진기와 상기 공진 전력 수신 장치에 포함된 타겟 공진기 사이의 거리, 위치, 부하 임피던스의 차이 등으로 인해 발생한 미스 매칭된 임피던스 만큼 제어할 수 있다.
또한, 소스 제어부(240)는 적어도 하나의 공진 전력 수신 장치가 검출되면, 상기 검출된 적어도 하나의 공진 전력 수신 장치와 대응되는 적어도 하나의 소스 공진기에 대하여, AC 전력을 일정 운행 사이클(duty cycle)을 가지고 상기 검출된 적어도 하나의 공진 전력 수신 장치에 전달하도록, 스위칭 신호를 제어할 수 있다. 소스 제어부(240)는 경로 다중화부(220)를 제어하여 일정 시간 동안 제1 소스 공진기가 AC 전력을 전송하고, 그 후 스위칭되어, 일정 시간 동안 제2 소스 공진기가 AC 전력을 전송하게 할 수 있다. 이때, AC 전력을 전송하는 소스 공진기는 검출된 공진 전력 수신 장치와 대응된다. 일정 AC 전력을 시간에 따라 분배하여 복수개의 공진 전력 수신 장치에 전달되도록 함으로써, 멀티 디바이스의 충전이 가능하다. 또한, 상대적으로 적은 AC 전력을 통해 멀티 디바이스를 충전함으로써, 공진 전력 전송 장치에서 고주파로 인한 전력 손실이 감소한다.
또한, 소스 제어부(240)는 검출된 적어도 하나의 공진 전력 수신 장치에 대응하는 소스 공진기가 AC 전력을 전달하도록 상기 소스 공진기를 제어할 수 있다.
검출부(250)는 AC 전력을 이용하여 적어도 하나의 공진 전력 수신 장치를 웨이크 업(wake-up) 시키는 웨이크 업 신호를 생성한다. 또한, 상기 웨이크 업 신호에 대한 응답 신호에 기초하여 적어도 하나의 공진 전력 수신 장치를 검출한다. 검출부(250)는 소스 공진기가 위치한 영역에 공진 전력 수신 장치가 있는지 여부를 검출하기 위해 AC 전력을 이용하여 웨이크 업 신호를 생성할 수 있다. 검출부(250)는 공진 전력 수신 장치로부터 웨이크 업 신호에 대한 응답신호를 수신함으로써, 공진 전력 수신 장치를 검출할 수 있다. 이때, 검출부(250)는 하나의 소스 공진기로부터 전송되는 웨이크 업 신호를 통하여 복수개의 공진 전력 수신 장치를 검출할 수 있다. 즉, 하나의 소스 공진기가 공진 전력을 전송할 수 있는 영역에 위치한 복수개의 공진 전력 수신 장치로부터 웨이크 업 신호에 대한 응답신호를 수신함으로써, 상기 복수개의 공진 전력 수신 장치를 검출할 수 있다.
또한, 일실시예에 따른 공진 전력 전송 장치는 통신부(도시되지 않음)를 포함할 수 있다. 통신부(도시되지 않음)는 적어도 하나의 공진 전력 수신 장치로부터 웨이크 업 신호에 대한 응답신호, 상기 적어도 하나의 공진 전력 수신 장치에 포함된 공진기의 아이디(ID) 및 상기 적어도 하나의 공진 전력 수신 장치의 아이디(ID)에 대한 정보 등을 수신할 수 있다.
또한, 통신부(도시되지 않음)는 상기 검출된 적어도 하나의 공진 전력 수신 장치로부터, 소스 공진기와 상기 검출된 적어도 하나의 공진 전력 수신 장치간의 임피던스 매칭에 필요한 정보를 인 밴드(In-Band) 또는 아웃 밴드(Out Band)를 통하여 획득할 수 있다. 임피던스 매칭에 필요한 정보는 소스 공진기와 타겟 공진기간의 거리, 위치, 부하 임피던스의 차이, 소스 공진기로부터 타겟 공진기로 방사(radiation)되는 파동(wave)의 반사 계수, 전력 전송 이득 또는 커플링 효율 등에 관한 것을 포함한다. 인 밴드(In-Band) 통신은 공진 주파수를 통해 공진 전력 수신 장치와 데이터를 송수신하는 것을 의미하고, 아웃 밴드(Out Band) 통신은 데이터 통신을 위해 할당된 주파수를 통해 공진 전력 수신 장치와 데이터를 송수신하는 것을 의미한다.
도 3은 일실시예에 따른 소스 어레이 공진부(230)를 나타낸 도면이다.
도 3을 참조하면, 소스 어레이 공진부(350)는 4개의 소스 공진기(310,320,330,340)가 좌우 어레이(array)를 형성하여 구성된다. 소스 공진기(310)에서 웨이크 업 신호가 공진 전력 수신 장치(360)로 전송된 후, 상기 웨이크 업 신호에 대한 응답신호를 통해 공진 전력 수신 장치(360)가 검출될 수 있다. 공진 전력 수신 장치(360)가 검출되면 소스 공진기(310)는 온(On) 상태로 변경되어 공진 전력 수신 장치(360)에 공진 전력을 전송할 수 있다. 일정 시간 동안 상기 웨이크 업 신호에 대한 응답신호가 없으면 다음 소스 공진기(320)로 스위칭 될 수 있다. 소스 공진기(320)는 웨이크 업 신호를 전송하고, 일정 시간 동안 상기 웨이크 업 신호에 대한 응답 신호가 없으므로, 상태를 오프(Off) 상태로 유지한다. 위와 마찬가지 방식으로 소스 공진기(330,340)에서 공진 전력 수신 장치(370)의 검출 과정 및 공진 전력 전송 과정이 반복된다.
도 4는 일실시예에 따른 경로 다중화부(220)의 구체적 일 예를 나타낸 도면이다.
도 4를 참조하면, 경로 다중화부(410)는 입력된 AC 전력을 각 소스 공진기(A1, A2,… AN)에 순차적으로 전달하도록 소스 공진기를 스위칭 할 수 있다. 먼저 소스 공진기(A1)는 타겟 공진기(M1)에 소스 공진기(A1)의 아이디(ID) 및 웨이크 업 전력 신호를 전송한다. 타겟 공진기(M1)는 상기 웨이크 업 전력 신호를 통하여 웨이크 업 된 후, 웨이크 업 되었음을 알리는 상태 신호, 타겟 공진기(M1)의 아이디(ID), 타겟 공진기(M1)를 포함하는 공진 전력 수신 장치의 아이디(ID)를 전송하여 타겟 공진기(M1)의 위치를 전송한다. 위의 과정을 통해 타겟 공진기(M1)가 검출된다. 소스 공진기(A1)는 타겟 공진기(M1)로부터 상기 정보를 전송 받은 후, 다음 소스 공진기(A2)로 스위칭 된다. T1은 소스 공진기(A1)가 소스 공진기(A1)의 아이디(ID) 및 웨이크 업 전력 신호를 전송하는데 소요된 시간을 의미한다. T2는 타겟 공진기(M1)로부터 타겟 공진기(M1)와 관련된 정보를 수신하는데 소요된 시간을 의미한다. 소스 공진기(A2)도 위와 같은 과정을 반복함으로써, 공진 전력 전송 장치는 타겟 공진기(M2)를 검출할 수 있다. 소스 공진기(AN)에서는 대응되는 타겟 공진기가 존재하지 않으므로, 일정 시간 동안 웨이크 업 신호 또는 큰 반사신호가 수신 되지 않으면 타겟 공진기가 없는 것으로 판단하고, 소스 공진기(AN) 상태를 오프(Off)상태로 유지 한다. 그 후, 다음 타겟 공진기를 검출하기 위해 다음 소스 공진기로 스위칭 될 수 있다.
도 5는 일실시예에 따른 공진 전력 수신 장치의 검출 과정을 나타낸 도면이다.
도 5는 소스 공진기(A1, A2)의 동작을 통해 공진 전력 수신 장치를 검출하기 위한 과정을 나타낸다. 먼저, 소스 공진기(A1)는 해당 영역에 제1 타겟 공진기가 있는지 여부를 판단하기 위해, 웨이크 업 신호를 전송(510)한다. 해당 영역이란 소스 공진기(A1)가 공진 전력을 전송할 수 있는 영역을 의미한다. 제1 타겟 공진기는 웨이크 업 신호에 대한 응답 신호를 전송(520)한다. 응답 신호를 받은 소스 공진기(A1)는 자신의 아이디(ID) 및 제1 타겟 공진기에 관한 정보 요청 신호를 전송(530)한다. 제1 타겟 공진기는 상기 요청 신호를 수신하고, 제1 타겟 공진기의 아이디 및 제1 타겟 공진기를 포함하는 공진 전력 수신 장치의 아이디에 관한 정보를 전송(540)한다. 제1 타겟 공진기의 아이디 및 제1 타겟 공진기를 포함하는 공진 전력 수신 장치의 아이디에 관한 정보는 웨이크 업 신호에 대한 응답신호와 동시에 전송될 수 있다. 공진 전력 전송 장치는 제1 타겟 공진기의 아이디 및 제1 타겟 공진기를 포함하는 공진 전력 수신 장치의 아이디에 관한 정보를 수신함으로써, 공진 전력 수신 장치를 검출할 수 있다. 경로 다중화부(220)는 다음 소스 공진기(A2)가 웨이크 업 신호를 전송(550)하도록 스위칭한다. 제2 타겟 공진기는 웨이크 업 신호에 대한 응답 신호를 전송(560)한다. 응답 신호를 받은 소스 공진기(A2)는 자신의 아이디(ID) 및 제2 타겟 공진기에 관한 정보 요청 신호를 전송(570)한다. 제2 타겟 공진기는 상기 요청 신호를 수신하고, 제2 타겟 공진기의 아이디 및 제2 타겟 공진기를 포함하는 공진 전력 수신 장치의 아이디에 관한 정보를 전송(580)한다. 위와 같은 과정의 반복을 통해 공진 전력 전송 장치는 공진 전력 수신 장치를 순차적으로 검출할 수 있다.
도 6은 일실시예에 따른 소스 공진기와 타겟 공진기간에 임피던스가 매칭되는 과정을 나타낸 도면이다.
도 6을 참조하면, 소스 공진기(A1)는 소스 공진기(A1)의 아이디 및 웨이크 업 신호를 전송(610)하고, 타겟 공진기(M1)와 타겟 공진기(M1)의 아이디 및 타겟 공진기(M1)를 포함하는 공진 전력 수신 장치의 아이디에 관한 정보를 송수신(620)한다. 공진 전력 전송 장치는 위의 과정을 통하여 타겟 공진기(M1)를 검출한다. 공진 전력 전송 장치는 소스 제어부(240)를 통하여 소스 공진기(A1)와 타겟 공진기(M1)간에 임피던스를 매칭(630)시킨다. 임피던스가 매칭됨으로써 공진 주파수에서 효율적으로 공진 전력이 전송될 수 있다. 소스 공진기(A1)으로부터 소스 공진기(A2)로 스위칭 되는 시간(640)이 소요되고, 소스 공진기(A2)는 소스 공진기(A2)의 아이디 및 웨이크 업 신호를 전송(650)하고, 타겟 공진기(M2)와 타겟 공진기(M2)의 아이디 및 타겟 공진기(M2)를 포함하는 공진 전력 수신 장치의 아이디에 관한 정보를 송수신(660)한다. 공진 전력 전송 장치는 위의 과정을 통하여 타겟 공진기(M2)를 검출한다. 공진 전력 전송 장치는 소스 제어부(240)를 통하여 소스 공진기(A2)와 타겟 공진기(M2)간에 임피던스를 매칭(670)시킨다. 공진 전력 전송 장치는 위의 과정을 통해 타겟 공진기(M1,M2)를 검출하고, 소스 공진기(A1,A2)와 매칭시킬 수 있다.
도 7은 일실시예에 따른 AC 전력을 일정 운행 사이클(duty cycle) 동안 전송하는 과정을 나타낸 도면이다.
도 7을 참조하면, 소스 제어부(240)는 소스 공진기(A1)의 온/오프 스위칭 타임을 제어하여 전송되는 평균 전력을 제어할 수 있다. 즉, 소스 제어부(240)는 소스 공진기(A1)의 운행 사이클(duty cycle)을 제어하여 공진 전력 수신 장치의 수신 전력을 제어할 수 있다. 소스 제어부(240)는 소스 공진기(A1)에서 일정시간(710) 동안 공진 전력을 전송하고, 일정시간(720) 동안 공진 전력의 전송을 멈추게 할 수 있다. 소스 제어부(240)는 소스 공진기(A1)의 공진 전력 전송이 멈춘 일정시간(720) 동안, 소스 공진기(A2)가 공진 전력을 전송(730)하게 할 수 있다. 또, 소스 제어부(240)는 소스 공진기(A2)가 공진 전력 전송을 멈춘 일정시간(740) 동안, 소스 공진기(A1)가 공진 전력을 전송하게 할 수 있다. 즉, 소스 제어부(240)는 경로 다중화부(220)를 제어하여 일정한 AC 전력을 복수개의 소스 공진기(A1,A2)에 전달할 수 있다. 따라서, 각 소스 공진기(A1,A2)는 해당 영역의 타겟 공진기에 공진 전력을 전송함으로써, 복수개의 공진 전력 수신 장치에 균일하게 전력을 전달할 수 있다. 소스 공진기(A1,A2)는 상대적으로 작은 전력을 전송하여 복수개의 공진 전력 수신 장치를 충전할 수 있다. 소스 공진기의 관점에서는 작은 전력이지만, 공진 전력 수신 장치의 관점에서는 평균적으로 동일한 전력을 수신하는 것이어서, 상대적으로 큰 전력을 수신하는 것과 같다.
도 8은 일실시예에 따른 공진 전력 수신 장치의 블록도이다.
도 8을 참조하면, 일실시예에 따른 공진 전력 수신 장치는 타겟 공진부(810), 전압 변환부(820), 전력 판단부(830), 타겟 제어부(840) 및 통신부(850)를 포함한다.
타겟 공진부(810)는 마그네틱 커플링을 통하여 공진 전력 전송 장치로부터 AC 전력 또는 웨이크 업(wake-up) 신호를 수신한다. 또한, 타겟 공진부(810)는 공진 전력 전송 장치로부터 마그네틱 커플링을 통하여 AC 전력을 일정 운행 사이클(duty cycle) 동안 수신할 수 있다. 타겟 공진부(810)는 AC 전력을 일정 운행 사이클(duty cycle) 동안 수신함으로써, 평균적으로 하나의 소스 공진기로부터 지속적으로 AC 전력을 수신하는 것과 동일한 전력을 수신하게 된다.
전압 변환부(820)는 AC 전력으로부터 DC 전압을 획득하고, 상기 획득된 DC 전압을 부하(Load)로 공급한다. 전압 변환부(820)는 AC 신호를 DC 신호로 변환하는 AC/DC 변환기 및 DC 신호의 신호 레벨을 조정하는 DC/DC 변환기를 포함할 수 있다.
전력 판단부(830)는 웨이크 업 신호에 의하여 웨이크 업 되었는지 여부 및 충전 필요 여부를 판단한다. 즉, 전력 판단부(830)는 소스 공진기의 웨이크 업 신호에 대한 응답 신호의 생성 여부를 판단한다. 또한, 전력 판단부(830)는 공진 전력 수신 장치의 내부 상황에 따라 충전 필요 여부를 판단할 수 있다. 여기서 내부 상황이란, 공진 전력 수신 장치의 사용 여부, 배터리의 수명, 방전 상태 등을 포함할 수 있다.
타겟 제어부(840)는 소스 공진기와 웨이크 업 된 타겟 공진기간의 임피던스를 매칭시키기 위해 상기 임피던스를 제어한다.
통신부(850)는 공진 전력 전송 장치의 아이디(ID), 상기 공진 전력 전송 장치에 포함된 소스 공진기의 아이디, 웨이크 업 신호에 대한 응답 신호, 충전 요청 신호, 웨이크 업 된 타겟 공진기의 아이디 및 웨이크 업 된 공진 전력 수신 장치의 아이디에 대한 정보를 송수신한다. 통신부(850)는 인 밴드(In-Band) 통신 또는 아웃 밴드(Out Band) 통신을 통하여 공진 전력 전송 장치의 아이디(ID), 상기 공진 전력 전송 장치에 포함된 소스 공진기의 아이디에 대한 정보를 수신하고, 웨이크 업 신호에 대한 응답 신호, 충전 요청 신호, 웨이크 업 된 타겟 공진기의 아이디 및 웨이크 업 된 공진 전력 수신 장치의 아이디에 대한 정보를 송신할 수 있다.
도 9는 일실시예에 따른 2 차원 구조의 공진기를 나타낸 도면이다.
도 9를 참조하면, 일실시예에 따른 2 차원 구조의 공진기는 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 및 그라운드 도체 부분(913)을 포함하는 전송 선로, 커패시터(920), 매칭기(930) 및 도체들(941, 942)을 포함한다.
도 9에 도시된 바와 같이, 커패시터(920)는 전송 선로에서 제1 신호 도체 부분(911)과 제2 신호 도체 부분(912) 사이에 위치에 직렬로 삽입되며, 그에 따라 전계(electric field)는 커패시터(920)에 갇히게 된다. 일반적으로, 전송 선로는 상부에 적어도 하나의 도체, 하부에 적어도 하나의 도체를 포함하며, 상부에 있는 도체를 통해서는 전류가 흐르며, 하부에 있는 도체는 전기적으로 그라운드 된다(grounded). 본 명세서에서는 전송 선로의 상부에 있는 도체를 제1 신호 도체 부분(911)과 제2 신호 도체 부분(912)로 나누어 부르고, 전송 선로의 하부에 있는 도체를 그라운드 도체 부분(913)으로 부르기로 한다.
도 9에 도시된 바와 같이 본 발명의 일실시예에 따른 공진기(900)는 2 차원 구조의 형태를 갖는다. 전송 선로는 상부에 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)을 포함하고, 하부에 그라운드 도체 부분(913)을 포함한다. 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)과 그라운드 도체 부분(913)은 서로 마주보게 배치된다. 전류는 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)을 통하여 흐른다.
또한, 도 9에 도시된 바와 같이 제1 신호 도체 부분(911)의 한쪽 단은 도체(942)와 접지(short)되고, 다른 쪽 단은 커패시터(920)와 연결된다. 그리고, 제2 신호 도체 부분(912)의 한쪽 단은 도체(941)와 접지되며, 다른 쪽 단은 커패시터(920)와 연결된다. 결국, 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 및 그라운드 도체 부분(913), 도체들(941, 942)은 서로 연결됨으로써, 공진기(900)는 전기적으로 닫혀 있는 루프 구조를 갖는다. 여기서, '루프 구조'는 원형 구조, 사각형과 같은 다각형의 구조 등을 모두 포함하며, '루프 구조를 갖는다고 함은' 전기적으로 닫혀 있다는 것을 의미한다.
커패시터(920)는 전송 선로의 중단부에 삽입된다. 보다 구체적으로, 커패시터(920)는 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912) 사이에 삽입된다. 이 때, 커패시터(920)는 집중 소자(lumped element) 및 분산 소자(distributed element) 등의 형태를 가질 수 있다. 특히, 분산 소자의 형태를 갖는 분산된 커패시터는 지그재그 형태의 도체 라인들과 그 도체 라인들 사이에 존재하는 높은 유전율을 갖는 유전체를 포함할 수 있다.
커패시터(920)가 전송 선로에 삽입됨에 따라 상기 공진기(900)는 메타물질(metamaterial)의 특성을 가질 수 있다. 여기서, 메타물질이란 자연에서 발견될 수 없는 특별한 전기적 성질을 갖는 물질로서, 인공적으로 설계된 구조를 갖는다. 자연계에 존재하는 모든 물질들의 전자기 특성은 고유의 유전율 또는 투자율을 가지며, 대부분의 물질들은 양의 유전율 및 양의 투자율을 갖는다. 대부분의 물질들에서 전계, 자계 및 포인팅 벡터에는 오른손 법칙이 적용되므로, 이러한 물질들을 RHM(Right Handed Material)이라고 한다. 그러나, 메타물질은 자연계에 존재하지 않는 유전율 또는 투자율을 가진 물질로서, 유전율 또는 투자율의 부호에 따라 ENG(epsilon negative) 물질, MNG(mu negative) 물질, DNG(double negative) 물질, NRI(negative refractive index) 물질, LH(left-handed) 물질 등으로 분류된다.
이 때, 집중 소자로서 삽입된 커패시터(920)의 커패시턴스가 적절히 정해지는 경우, 상기 공진기(900)는 메타물질의 특성을 가질 수 있다. 특히, 커패시터(920)의 커패시턴스를 적절히 조절함으로써, 공진기는 음의 투자율을 가질 수 있으므로, 본 발명의 일실시예에 따른 공진기(900)는 MNG 공진기로 불려질 수 있다. 아래에서 설명하겠지만, 커패시터(920)의 커패시턴스를 정하는 전제(criterion)들은 다양할 수 있다. 공진기(900)가 메타물질(metamaterial)의 특성을 가질 수 있도록 하는 전제(criterion), 공진기(900)가 대상 주파수에서 음의 투자율을 갖도록 하는 전제 또는 공진기(900)가 대상 주파수에서 영번째 공진(Zeroth-Order Resonance) 특성을 갖도록 하는 전제 등이 있을 수 있고, 상술한 전제들 중 적어도 하나의 전제 아래에서 커패시터(920)의 커패시턴스가 정해질 수 있다.
MNG 공진기(900)는 전파 상수(propagation constant)가 0일 때의 주파수를 공진 주파수로 갖는 영번째 공진(Zeroth-Order Resonance) 특성을 가질 수 있다. MNG 공진기(900)는 영번째 공진 특성을 가질 수 있으므로, 공진 주파수는 MNG 공진기(900)의 물리적인 사이즈에 대해 독립적일 수 있다. 즉, 아래에서 다시 설명하겠지만, MNG 공진기(900)에서 공진 주파수를 변경하기 위해서는 커패시터(920)를 적절히 설계하는 것으로 충분하므로, MNG 공진기(900)의 물리적인 사이즈를 변경하지 않을 수 있다.
또한, 근접 필드(near field)에서 전계는 전송 선로에 삽입된 커패시터(920)에 집중되므로, 커패시터(920)로 인하여 근접 필드에서는 자계(magnetic field)가 도미넌트(dominant)해진다. 그리고, MNG 공진기(900)는 집중 소자의 커패시터(920)을 이용하여 높은 큐-팩터(Q-Factor)를 가질 수 있으므로, 전력 전송의 효율을 향상시킬 수 있다. 참고로, 큐-팩터는 무선 전력 전송에 있어서 저항 손실(ohmic loss)의 정도 또는 저항(resistance)에 대한 리액턴스의 비를 나타내는데, 큐-팩터가 클수록 무선 전력 전송의 효율이 큰 것으로 이해될 수 있다.
또한, MNG 공진기(900)는 임피던스 매칭을 위한 매칭기(930)를 포함할 수 있다. 이 때, 매칭기(930)는 MNG 공진기(900) 의 자계의 강도를 적절히 조절 가능(tunable)하고, 매칭기(930)에 의해 MNG 공진기(900)의 임피던스는 결정된다. 그리고, 전류는 커넥터(940)를 통하여 MNG 공진기(900)로 유입되거나 MNG 공진기(900)로부터 유출될 수 있다. 여기서, 커넥터(940)는 그라운드 도체 부분(913) 또는 매칭기(930)와 연결될 수 있다. 다만, 커넥터(940)와 그라운드 도체 부분(913) 또는 매칭기(930) 사이에는 물리적인 연결이 형성될 수도 있고, 커넥터(940)와 그라운드 도체 부분(913) 또는 매칭기(930) 사이의 물리적인 연결 없이 커플링을 통하여 전력이 전달될 수도 있다.
보다 구체적으로, 도 9에 도시된 바와 같이, 매칭기(930)는 공진기(900)의 루프 구조로 인해 형성되는 루프의 내부에 위치할 수 있다. 매칭기(930)는 물리적인 형태를 변경함으로써, 공진기(900)의 임피던스를 조절할 수 있다. 특히, 매칭기(930)는 그라운드 도체 부분(913)으로부터 거리 h 만큼 떨어진 위치에 임피던스 매칭을 위한 도체(931)를 포함할 수 있으며, 공진기(900)의 임피던스는 거리 h를 조절함으로써 변경될 수 있다.
도 9에 도시되지 아니하였지만, 매칭기(930)를 제어할 수 있는 컨트롤러가 존재하는 경우, 매칭기(930)는 컨트롤러에 의해 생성되는 제어 신호에 따라 매칭기(930)의 물리적 형태를 변경할 수 있다. 예를 들어, 제어 신호에 따라 매칭기(930)의 도체(931)와 그라운드 도체 부분(913) 사이의 거리 h가 증가하거나, 감소될 수 있으며, 그에 따라 매칭기(930)의 물리적 형태가 변경됨으로써, 공진기(900)의 임피던스는 조절될 수 있다.
매칭기(930)는 도 9에 도시된 바와 같이, 도체 부분(931)과 같은 수동 소자로 구현될 수 있으며, 실시예에 따라서는 다이오드, 트랜지스터 등과 같은 능동 소자로 구현될 수 있다. 능동 소자가 매칭기(930)에 포함되는 경우, 능동 소자는 컨트롤러에 의해 생성되는 제어 신호에 따라 구동될 수 있으며, 그 제어 신호에 따라 공진기(900)의 임피던스는 조절될 수 있다. 예를 들어, 매칭기(930)에는 능동 소자의 일종인 다이오드가 포함될 수 있고, 다이오드가 'on' 상태에 있는지 또는 'off'' 상태에 있는지에 따라 공진기(900)의 임피던스가 조절될 수 있다.
또한, 도 9에 도시되지 아니하였으나, MNG 공진기(900)를 관통하는 마그네틱 코어가 더 포함될 수 있다. 이러한 마그네틱 코어는 전력 전송 거리를 증가시키는 기능을 수행할 수 있다.
도 10은 일실시예에 따른 3 차원 구조의 공진기를 나타낸 도면이다.
도 10를 참조하면, 본 발명의 일실시예에 따른 3 차원 구조의 공진기(900)는 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 및 그라운드 도체 부분(913)을 포함하는 전송 선로 및 커패시터(920)를 포함한다. 여기서 커패시터(920)는 전송 선로에서 제1 신호 도체 부분(911)과 제2 신호 도체 부분(912) 사이에 위치에 직렬로 삽입되고, 전계(electric field)는 커패시터(920)에 갇히게 된다.
또한, 도 10에 도시된 바와 같이 공진기(900)는 3차원 구조의 형태를 갖는다. 전송 선로는 상부에 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)을 포함하고, 하부에 그라운드 도체 부분(913)을 포함한다. 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)과 그라운드 도체 부분(913)은 서로 마주보게 배치된다. 전류는 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)을 통하여 x 방향으로 흐르며, 이러한 전류로 인해 -y 방향으로 자계(magnetic field) H(w)가 발생한다. 물론, 도 10에 도시된 것과 다르게, +y 방향으로 자계(magnetic field) H(w)가 발생할 수 있다.
또한, 도 10에 도시된 바와 같이 제1 신호 도체 부분(911)의 한쪽 단은 도체(942)와 접지(short)되고, 다른 쪽 단은 커패시터(920)와 연결된다. 그리고, 제2 신호 도체 부분(912)의 한쪽 단은 도체(941)와 접지되며, 다른 쪽 단은 커패시터(920)와 연결된다. 결국, 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 및 그라운드 도체 부분(913), 도체들(941, 942)은 서로 연결됨으로써, 공진기(900)는 전기적으로 닫혀 있는 루프 구조를 갖는다. 여기서, '루프 구조'는 원형 구조, 사각형과 같은 다각형의 구조 등을 모두 포함하며, '루프 구조를 갖는다고 함은' 전기적으로 닫혀 있다는 것을 의미한다.
또한, 도 10에 도시된 바와 같이 커패시터(920)는 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912) 사이에 삽입된다. 이 때, 커패시터(920)는 집중 소자(lumped element) 및 분산 소자(distributed element) 등의 형태를 가질 수 있다. 특히, 분산 소자의 형태를 갖는 분산된 커패시터는 지그재그 형태의 도체 라인들과 그 도체 라인들 사이에 존재하는 높은 유전율을 갖는 유전체를 포함할 수 있다.
도 10에 도시된 바와 같이 커패시터(920)가 전송 선로에 삽입됨에 따라 상기 공진기(900)는 메타물질(metamaterial)의 특성을 가질 수 있다. 집중 소자로서 삽입된 커패시터(920)의 커패시턴스가 적절히 정해지는 경우, 공진기(900)는 메타물질의 특성을 가질 수 있다. 특히, 커패시터(920)의 커패시턴스를 적절히 조절함으로써, 공진기(900)는 특정 주파수 대역에서 음의 투자율을 가질 수 있으므로, 본 발명의 일실시예에 따른 공진기(900)는 MNG 공진기로 불려질 수 있다. 아래에서 설명하겠지만, 커패시터(920)의 커패시턴스를 정하는 전제(criterion)들은 다양할 수 있다. 공진기(900)가 메타물질(metamaterial)의 특성을 가질 수 있도록 하는 전제(criterion), 공진기(900)가 대상 주파수에서 음의 투자율을 갖도록 하는 전제 또는 공진기(900)가 대상 주파수에서 영번째 공진(Zeroth-Order Resonance) 특성을 갖도록 하는 전제 등이 있을 수 있고, 상술한 전제들 중 적어도 하나의 전제 아래에서 커패시터(920)의 커패시턴스가 정해질 수 있다.
도 10에 도시된 MNG 공진기(900)는 전파 상수(propagation constant)가 0일 때의 주파수를 공진 주파수로 갖는 영번째 공진(Zeroth-Order Resonance) 특성을 가질 수 있다. MNG 공진기(900)는 영번째 공진 특성을 가질 수 있으므로, 공진 주파수는 MNG 공진기(900)의 물리적인 사이즈에 대해 독립적일 수 있다. MNG 공진기(900)에서 공진 주파수를 변경하기 위해서는 커패시터(920)를 적절히 설계하는 것으로 충분하므로, MNG 공진기(900)의 물리적인 사이즈를 변경하지 않을 수 있다.
도 10에 도시된 바와 같이 MNG 공진기(900)를 참조하면, 근접 필드(near field)에서 전계는 전송 선로(910)에 삽입된 커패시터(920)에 집중되므로, 커패시터(920)로 인하여 근접 필드에서는 자계(magnetic field)가 도미넌트(dominant)해진다. 특히, 영번째 공진(Zeroth-Order Resonance) 특성을 갖는 MNG 공진기(900)는 자계 다이폴(magnetic dipole)과 유사한 특성들을 가지므로, 근접 필드에서는 자계가 도미넌트하며, 커패시터(920)의 삽입으로 인해 발생하는 적은 양의 전계 또한 그 커패시터(920)에 집중되므로, 근접 필드에서는 자계가 더더욱 도미넌트해진다. MNG 공진기(900)는 집중 소자의 커패시터(920)를 이용하여 높은 큐-팩터(Q-Factor)를 가질 수 있으므로, 전력 전송의 효율을 향상시킬 수 있다.
또한, 도 10에 도시된 MNG 공진기(900)는 임피던스 매칭을 위한 매칭기(930)를 포함할 수 있다. 이 때, 매칭기(930)는 MNG 공진기(900)의 자계의 강도를 적절히 조절 가능(tunable)하고, 매칭기(930)에 의해 MNG 공진기(900)의 임피던스는 결정된다. 그리고, 전류는 커넥터(940)를 통하여 MNG 공진기(900)로 유입되거나 MNG 공진기(900)로부터 유출된다. 여기서, 커넥터(940)는 그라운드 도체 부분(913) 또는 매칭기(930)와 연결될 수 있다.
보다 구체적으로, 도 10에 도시된 바와 같이, 매칭기(930)는 공진기(900)의 루프 구조로 인해 형성되는 루프의 내부에 위치할 수 있다. 매칭기(930)는 물리적인 형태를 변경함으로써, 공진기(900)의 임피던스를 조절할 수 있다. 특히, 매칭기(930)는 그라운드 도체 부분(913)으로부터 거리 h 만큼 떨어진 위치에 임피던스 매칭을 위한 도체 부분(931)을 포함할 수 있으며, 공진기(900)의 임피던스는 거리 h를 조절함으로써 변경될 수 있다.
도 10에 도시되지 아니하였지만, 매칭기(930)를 제어할 수 있는 컨트롤러가 존재하는 경우, 매칭기(930)는 컨트롤러에 의해 생성되는 제어 신호에 따라 매칭기(930)의 물리적 형태를 변경할 수 있다. 예를 들어, 제어 신호에 따라 매칭기(930)의 도체(931)과 그라운드 도체 부분(913) 사이의 거리 h가 증가하거나, 감소될 수 있으며, 그에 따라 매칭기(930)의 물리적 형태가 변경됨으로써, 공진기(900)의 임피던스는 조절될 수 있다. 매칭기(930)의 도체(931)과 그라운드 도체 부분(913) 사이의 거리 h는 다양한 방식들로 조절될 수 있다. 즉, 첫째, 매칭기(930)에는 여러 도체들이 포함될 수 있고, 그 도체들 중 어느 하나를 적응적으로 활성화함으로써 거리 h가 조절될 수 있다. 둘째, 도체(931)의 물리적인 위치를 상하로 조절함으로써, 거리 h가 조절될 수 있다. 이러한 거리 h는 컨트롤러의 제어 신호에 따라 제어될 수 있으며, 컨트롤러는 다양한 팩터들을 고려하여 제어 신호를 생성할 수 있다.
매칭기(930)는 도 10에 도시된 바와 같이, 도체 부분(931)과 같은 수동 소자로 구현될 수 있으며, 실시예에 따라서는 다이오드, 트랜지스터 등과 같은 능동 소자로 구현될 수 있다. 능동 소자가 매칭기(930)에 포함되는 경우, 능동 소자는 컨트롤러에 의해 생성되는 제어 신호에 따라 구동될 수 있으며, 그 제어 신호에 따라 공진기(900)의 임피던스는 조절될 수 있다. 예를 들어, 매칭기(930)에는 능동 소자의 일종인 다이오드가 포함될 수 있고, 다이오드가 'on' 상태에 있는지 또는 'off'' 상태에 있는지에 따라 공진기(900)의 임피던스가 조절될 수 있다.
또한, 도 10에 명시적으로 도시되지 아니하였으나, MNG 공진기(900)를 관통하는 마그네틱 코어가 더 포함될 수 있다. 이러한 마그네틱 코어는 전력 전송 거리를 증가시키는 기능을 수행할 수 있다.
도 11은 bulky type으로 설계된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 11을 참조하면, 제1 신호 도체 부분(911)과 도체(942)는 개별적으로 제작된 후, 서로 연결되는 것이 아니라 하나의 일체형으로 제작될 수 있다. 마찬가지로, 제2 신호 도체 부분(912)과 도체(941) 역시 하나의 일체형으로 제작될 수 있다.
제2 신호 도체 부분(912)과 도체(941)가 개별적으로 제작된 후, 서로 연결되는 경우, 이음매(950)로 인한 도체 손실이 있을 수 있다. 이 때, 본 발명의 실시예에 따르면, 제2 신호 도체 부분(912)과 도체(941)는 별도의 이음매 없이(seamless) 서로 연결되며, 도체(941)와 그라운드 도체 부분(913)도 별도의 이음매 없이 서로 연결될 수 있으며, 이음매로 인한 도체 손실을 줄일 수 있다. 결국, 제2 신호 도체 부분(912)과 그라운드 도체 부분(913)은 별도의 이음매 없이 하나의 일체형으로서 제작될 수 있다. 마찬가지로, 제1 신호 도체 부분(911)과 그라운드 도체 부분(913)은 별도의 이음매 없이 하나의 일체형으로서 제작될 수 있다.
도 11에 도시된 바와 같이, 별도의 이음매 없이 하나의 일체형으로서 둘 이상의 부분(partition)들을 서로 연결하는 유형을 'bulky type'이라고 부르기도 한다.
도 12는 Hollow type으로 설계된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 12를 참조하면, Hollow type으로 설계된 무선 전력 전송을 위한 공진기의 제1 신호 도체 부분(911), 제2 신호 도체 부분(912), 그라운드 도체 부분(913), 도체들(941, 942) 각각은 내부에 비어 있는 공간을 포함한다.
주어진(given) 공진 주파수에서, 유효 전류는 제1 신호 도체 부분(911), 제2 신호 도체 부분(912), 그라운드 도체 부분(913), 도체들(941, 942) 각각의 모든 부분을 통해 흐르는 것이 아니라, 일부의 부분만을 통해 흐르는 것으로 모델링될 수 있다. 즉, 주어진 공진 주파수에서, 제1 신호 도체 부분(911), 제2 신호 도체 부분(912), 그라운드 도체 부분(913), 도체들(941, 942) 두께(depth)가 각각의 skin depth보다 지나치게 두꺼운 것은 비효율적일 수 있다. 즉, 그것은 공진기(900)의 무게 또는 공진기(900)의 제작 비용을 증가시키는 원인이 될 수 있다.
따라서, 본 발명의 실시예에 따르면, 주어진 공진 주파수에서 제1 신호 도체 부분(911), 제2 신호 도체 부분(912), 그라운드 도체 부분(913), 도체들(941, 942) 각각의 skin depth를 기초로 제1 신호 도체 부분(911), 제2 신호 도체 부분(912), 그라운드 도체 부분(913), 도체들(941, 942) 각각의 두께를 적절히 정할 수 있다. 제1 신호 도체 부분(911), 제2 신호 도체 부분(912), 그라운드 도체 부분(913), 도체들(941, 942) 각각이 해당 skin depth보다 크면서도 적절한 두께를 갖는 경우, 공진기(900)는 가벼워질 수 있으며, 공진기(900)의 제작 비용 또한 감소될 수 있다.
예를 들어, 도 5에 도시된 바와 같이, 제2 신호 도체 부분(912)의 두께는 d mm로 정해질 수 있고, d는 를 통해서 결정될 수 있다. 여기서, f는 주파수, 는 투자율, 는 도체 상수를 나타낸다. 특히, 제1 신호 도체 부분(911), 제2 신호 도체 부분(912), 그라운드 도체 부분(913), 도체들(941, 942) 이 구리(copper)로서 5.8x10^7의 도전율(conductivity)을 갖는 경우에, 공진 주파수가 10kHz에 대해서는 skin depth가 약 0.6mm일 수 있으며, 공진 주파수가 100MHz에 대해서는 skin depth는 0.006mm일 수 있다.
도 13은 parallel-sheet이 적용된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 13를 참조하면, parallel-sheet이 적용된 무선 전력 전송을 위한 공진기에 포함된 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 각각의 표면에는 parallel-sheet이 적용될 수 있다.
제1 신호 도체 부분(911), 제2 신호 도체 부분(912)은 완벽한 도체(perfect conductor)가 아니므로, 저항 성분을 가질 수 있고, 그 저항 성분으로 인해 저항 손실(ohmic loss)가 발생할 수 있다. 이러한 저항 손실은 Q 팩터를 감소시키고, 커플링 효율을 감소시킬 수 있다.
본 발명의 실시예에 따르면, 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 각각의 표면에 parallel-sheet을 적용함으로써, 저항 손실을 줄이고, Q 팩터 및 커플링 효율을 증가시킬 수 있다. 도 13의 부분(970)을 참조하면, parallel-sheet이 적용되는 경우, 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 각각은 복수의 도체 라인들을 포함한다. 이 도체 라인들은 병렬적으로 배치되며, 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 각각의 끝 부분에서 접지(short)된다.
제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 각각의 표면에 parallel-sheet을 적용하는 경우, 도체 라인들이 병렬적으로 배치되므로, 도체 라인들이 갖는 저항 성분들의 합은 감소된다. 따라서, 저항 손실을 줄이고, Q 팩터 및 커플링 효율을 증가시킬 수 있다.
도 14은 분산된 커패시터를 포함하는 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 14을 참조하면, 무선 전력 전송을 위한 공진기에 포함되는 커패시터(920)는 분산된 커패시터일 수 있다. 집중 소자로서의 커패시터는 상대적으로 높은 등가 직렬 저항(Equivalent Series Resistance: ESR)을 가질 수 있다. 집중 소자로서의 커패시터가 갖는 ESR을 줄이기 위한 여러 제안들이 있지만, 본 발명의 실시예는 분산 소자로서의 커패시터(920)를 사용함으로써, ESR을 줄일 수 있다. 참고로, ESR로 인한 손실은 Q 팩터 및 커플링 효율을 감소시킬 수 있다.
분산 소자로서의 커패시터(920)는 도 14에 도시된 바와 같이, 지그 재그 구조를 가질 수 있다. 즉, 분산 소자로서의 커패시터(920)는 지그 재그 구조의 도체 라인 및 유전체로 구현될 수 있다.
뿐만 아니라, 도 14에 도시된 바와 같이, 본 발명의 실시예는 분산 소자로서의 커패시터(920)를 사용함으로써, ESR로 인한 손실을 줄일 수 있을 뿐만 아니라, 복수 개의 집중 소자로서의 커패시터들을 병렬적으로 사용함으로써, ESR로 인한 손실을 줄일 수 있다. 왜냐 하면, 집중 소자로서의 커패시터들 각각이 갖는 저항 성분들은 병렬 연결을 통하여 작아지기 때문에, 병렬적으로 연결된 집중 소자로서의 커패시터들의 유효 저항 또한 작아질 수 있으며, 따라서, ESR로 인한 손실을 줄일 수 있다. 예를 들어, 10pF의 커패시터 하나를 사용하는 것을 1pF의 커패시터들 10개를 사용하는 것으로 대체함으로써, ESR로 인한 손실을 줄일 수 있다.
도 15는 2 차원 구조의 공진기 및 3 차원 구조의 공진기에서 사용되는 매칭기들의 예들을 나타낸 도면이다.
도 15의 A는 매칭기를 포함하는 도 9에 도시된 2 차원 공진기의 일부를 나타내며, 도 15의 B는 매칭기를 포함하는 도 10에 도시된 3 차원 공진기의 일부를 나타낸다.
도 15의 A를 참조하면, 매칭기는 도체(931), 도체(932) 및 도체(933)을 포함하며, 도체(932) 및 도체(933)는 전송 선로의 그라운드 도체 부분(913) 및 도체(931)와 연결된다. 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h에 따라 2 차원 공진기의 임피던스는 결정되며, 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h는 컨트롤러에 의해 제어된다. 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h는 다양한 방식들로 조절될 수 있으며, 도체(931)가 될 수 있는 여러 도체들 중 어느 하나를 적응적으로 활성화함으로써 거리 h를 조절하는 방식, 도체(931)의 물리적인 위치를 상하로 조절함으로써, 거리 h를 조절하는 방식 등이 있을 수 있다.
도 15의 B를 참조하면, 매칭기는 도체(931), 도체(932) 및 도체(933)을 포함하며, 도체(932) 및 도체(933)는 전송 선로의 그라운드 도체 부분(913) 및 도체(931)와 연결된다. 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h에 따라 3 차원 공진기의 임피던스는 결정되며, 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h는 컨트롤러에 의해 제어된다. 2 차원 구조의 공진기에 포함되는 매칭기와 마찬가지로, 3 차원 구조의 공진기에 포함되는 매칭기에서도 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h는 다양한 방식들로 조절될 수 있다. 예를 들어, 도체(931)가 될 수 있는 여러 도체들 중 어느 하나를 적응적으로 활성화함으로써 거리 h를 조절하는 방식, 도체(931)의 물리적인 위치를 상하로 조절함으로써, 거리 h를 조절하는 방식 등이 있을 수 있다.
도 15에 도시되지 아니하였지만, 매칭기는 능동 소자를 포함할 수 있으며, 능동 소자를 이용하여 공진기의 임피던스를 조절하는 방식은 상술한 바와 유사하다. 즉, 능동 소자를 이용하여 매칭기를 통해 흐르는 전류의 경로를 변경함으로써, 공진기의 임피던스는 조절될 수 있다.
도 16은 도 9에 도시된 무선 전력 전송을 위한 공진기의 등가 회로를 나타낸 도면이다.
도 9에 도시된 무선 전력 전송을 위한 공진기는 도 16에 도시된 등가 회로로 모델링될 수 있다. 도 16의 등가 회로에서 CL은 도 9의 전송 선로의 중단부에 집중 소자의 형태로 삽입된 커패시터를 나타낸다.
이 때, 도 9에 도시된 무선 전력 전송을 위한 공진기는 영번째 공진 특성을 갖는다. 즉, 전파 상수가 0인 경우, 무선 전력 전송을 위한 공진기는 를 공진 주파수로 갖는다고 가정한다. 이 때, 공진 주파수 는 하기 수학식 2와 같이 표현될 수 있다. 여기서, MZR은 Mu Zero Resonator를 의미한다.
[수학식 2]
상기 수학식 2를 참조하면, 공진기의 공진 주파수 는 에 의해 결정될 수 있고, 공진 주파수 와 공진기의 물리적인 사이즈는 서로 독립적일 수 있음을 알 수 있다. 따라서, 공진 주파수 와 공진기의 물리적인 사이즈가 서로 독립적이므로, 공진기의 물리적인 사이즈는 충분히 작아질 수 있다.
도 17은 일실시예에 따른 공진 전력 전송 방법을 설명하기 위한 흐름도이다.
1710단계에서, 일실시예에 따른 공진 전력 전송 장치는 전원 공급기로부터 공급된 AC 전력이 복수의 소스 공진기들에 순차적으로 전달되도록 상기 AC 전력이 전달되는 경로를 스위칭한다.
1720단계에서, 일실시예에 따른 공진 전력 전송 장치는 상기 AC 전력을 이용하여 적어도 하나의 공진 전력 수신 장치를 웨이크 업(wake-up) 시키는 웨이크 업 신호를 생성한다.
1730단계에서, 일실시예에 따른 공진 전력 전송 장치는 상기 웨이크 업 신호에 대한 응답 신호에 기초하여 적어도 하나의 공진 전력 수신 장치를 검출한다.
1740단계에서, 일실시예에 따른 공진 전력 전송 장치는 상기 검출된 적어도 하나의 공진 전력 수신 장치로 상기 AC 전력을 전달한다.
또한, 일실시예에 따른 공진 전력 전송 장치는 적어도 하나의 공진 전력 수신 장치로부터, 소정의 시간 동안 수신되는 신호에 따라, 상기 적어도 하나의 공진 전력 수신 장치에 대응하는 소스 공진기를 제어할 수 있다. 또한, 일실시예에 따른 공진 전력 전송 장치는 검출된 적어도 하나의 공진 전력 수신 장치와 상기 검출된 적어도 하나의 공진 전력 수신 장치에 대응되는 적어도 하나의 소스 공진기간에, 임피던스가 매칭되도록 상기 임피던스를 제어할 수 있다. 또한, 일실시예에 따른 공진 전력 전송 장치는 검출된 적어도 하나의 공진 전력 수신 장치와 대응되는 적어도 하나의 소스 공진기에 대하여, AC 전력을 일정 운행 사이클(duty cycle)을 가지고, 상기 검출된 적어도 하나의 공진 전력 수신 장치에 전달하도록, 스위칭 신호를 제어할 수 있다. 또한, 일실시예에 따른 공진 전력 전송 장치는 적어도 하나의 공진 전력 수신 장치로부터 웨이크 업 신호에 대한 응답 신호를 수신할 수 있다. 또한, 일실시예에 따른 공진 전력 전송 장치는 상기 응답신호를 수신하면, 상기 적어도 하나의 공진 전력 수신 장치에 관한 정보 요청 신호 및 상기 웨이크 업 신호에 대한 응답 신호를 수신한 소스 공진기의 아이디(ID)를 전송할 수 있다. 또한, 일실시예에 따른 공진 전력 전송 장치는 상기 정보 요청 신호에 대한 에크(Ack) 신호, 상기 적어도 하나의 공진 전력 수신 장치에 포함된 공진기의 아이디(ID) 및 상기 적어도 하나의 공진 전력 수신 장치의 아이디(ID)에 대한 정보를 수신할 수 있다. 또한, 일실시예에 따른 공진 전력 전송 장치는 검출된 적어도 하나의 공진 전력 수신 장치로부터, 소스 공진기와 상기 검출된 적어도 하나의 공진 전력 수신 장치간의 임피던스 매칭에 필요한 정보를 인 밴드(In-Band) 또는 아웃 밴드(Out Band)를 통하여 획득할 수 있다.
도 18은 일실시예에 따른 공진 전력 수신 방법을 설명하기 위한 흐름도이다.
1810단계에서, 일실시예에 따른 공진 전력 수신 장치는 마그네틱 커플링을 통하여 공진 전력 전송 장치로부터 AC 전력 또는 웨이크 업(wake-up) 신호를 수신한다. 또한, 일실시예에 따른 공진 전력 수신 장치는 상기 공진 전력 전송 장치로부터 마그네틱 커플링을 통하여 상기 AC 전력을 일정 운행 사이클(duty cycle)동안 수신할 수 있다.
1820단계에서, 일실시예에 따른 공진 전력 수신 장치는 웨이크 업 신호에 의하여 웨이크 업 되었는지 여부 및 충전 필요 여부를 판단한다.
1830단계에서, 일실시예에 따른 공진 전력 수신 장치는 공진 전력 전송 장치의 아이디(ID), 상기 공진 전력 전송 장치에 포함된 소스 공진기의 아이디, 웨이크 업 신호에 대한 응답 신호, 충전 요청 신호, 웨이크 업 된 타겟 공진기의 아이디 및 웨이크 업 된 공진 전력 수신 장치의 아이디에 대한 정보를 송수신한다.
1840단계에서, 일실시예에 따른 공진 전력 수신 장치는 소스 공진기와 웨이크 업 된 타겟 공진기간의 임피던스를 매칭시키기 위해 상기 임피던스를 제어한다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
Claims (18)
- 제1 시간 구간 동안 제1 전력을 제1 공진 전력 수신 장치로 전송하는 제1 소스 공진기, 및 제2 시간 구간 동안 제2 전력을 제2 공진 전력 수신 장치로 전송하는 제2 소스 공진기를 포함하는 소스 어레이 공진부;
상기 제1 시간 구간 동안 상기 제1 소스 공진기에 소스 전력을 전달하고, 상기 제2 시간 구간 동안 상기 제2 소스 공진기에 상기 소스 전력을 전달하는 경로 다중화부;
적어도 둘의 공진 전력 수신 장치들을 웨이크 업(wake-up) 시키는 웨이크 업 신호를 생성하고, 상기 웨이크 업 신호에 대한 응답 신호에 기초하여 상기 제1 공진 전력 수신 장치 및 상기 제2 공진 전력 수신 장치를 검출하는 검출부; 및
상기 제1 공진 전력 수신 장치의 요구 전력에 따라 상기 제1 시간 구간의 길이를 조절하고, 상기 제2 공진 전력 수신 장치의 요구 전력에 따라 상기 제2 시간 구간의 길이를 조절하는 소스 제어부
를 포함하는 공진 전력 전송 장치. - 제1항에 있어서,
상기 소스 제어부는
기 설정된 시간 동안 상기 적어도 둘의 공진 전력 수신장치들에 순차적으로 상기 웨이크 업 신호가 전달되도록 스위칭 신호를 제어하고, 상기 적어도 둘의 공진 전력 수신 장치들로부터 소정의 시간 동안 수신되는 신호에 따라 해당 소스 공진기를 제어하는
공진 전력 전송 장치. - 제1항에 있어서,
상기 소스 제어부는
상기 적어도 둘의 공진 전력 수신 장치들이 검출되면, 상기 검출된 적어도 둘의 공진 전력 수신 장치들과 상기 검출된 적어도 둘의 공진 전력 수신 장치들에 대응되는 적어도 둘의 소스 공진기들간에, 임피던스가 매칭되도록 상기 임피던스를 제어하는
공진 전력 전송 장치. - 제1항에 있어서,
상기 소스 제어부는
상기 적어도 둘의 공진 전력 수신 장치들이 검출되면, 상기 검출된 적어도 둘의 공진 전력 수신 장치들과 대응되는 적어도 둘의 소스 공진기들에 대하여, 상기 소스 전력을 일정 운행 사이클(duty cycle)을 가지고 상기 검출된 적어도 둘의 공진 전력 수신 장치들에 전달하도록, 스위칭 신호를 제어하는
공진 전력 전송 장치. - 제1항에 있어서,
상기 소스 제어부는
상기 검출된 적어도 둘의 공진 전력 수신 장치들에 대응하는 소스 공진기들이 상기 소스 전력을 전달하도록 상기 소스 공진기들을 제어하는
공진 전력 전송 장치. - 제1항에 있어서,
상기 적어도 둘의 공진 전력 수신 장치들로부터 웨이크 업 신호에 대한 응답신호, 상기 적어도 둘의 공진 전력 수신 장치들에 포함된 공진기들의 아이디(ID) 및 상기 적어도 둘의 공진 전력 수신 장치들의 아이디(ID)에 대한 정보를 수신하는 통신부
를 더 포함하는 공진 전력 전송 장치. - 제6항에 있어서,
상기 통신부는
상기 검출된 적어도 둘의 공진 전력 수신 장치들로부터, 소스 공진기들과 상기 검출된 적어도 둘의 공진 전력 수신 장치들간의 임피던스 매칭에 필요한 정보를 인 밴드(In-Band) 또는 아웃 밴드(Out Band)를 통하여 획득하는
공진 전력 전송 장치. - 제 1항에 있어서,
상기 소스 어레이 공진부는
일정 영역에 대해서 공진 전력을 전송하는 복수개의 소스 공진기가 어레이를 형성하여 구비되는 것을 특징으로 하는
공진 전력 전송 장치. - 마그네틱 커플링을 통하여 공진 전력 전송 장치로부터 무선 전력 또는 웨이크 업(wake-up) 신호를 수신하는 타겟 공진부;
상기 웨이크 업 신호에 의하여 웨이크 업 되었는지 여부 및 충전 필요 여부를 판단하는 전력 판단부;
상기 공진 전력 전송 장치의 아이디(ID), 상기 공진 전력 전송 장치에 포함된 소스 공진기의 아이디, 상기 웨이크 업 신호에 대한 응답 신호, 충전 요청 신호, 웨이크 업 된 타겟 공진기의 아이디 및 웨이크 업 된 공진 전력 수신 장치의 아이디에 대한 정보를 송수신하는 통신부; 및
상기 소스 공진기와 상기 웨이크 업 된 타겟 공진기간의 임피던스를 매칭시키기 위해 상기 임피던스를 제어하는 타겟 제어부
를 포함하고,
상기 타겟 공진부는 상기 공진 전력 전송 장치로부터 마그네틱 커플링을 통하여 상기 무선 전력을 일정 운행 사이클(duty cycle) 동안 수신하고, 상기 일정 운행 사이클은 상기 공진 전력 수신 장치의 요구 전력에 따라 조절되는,
공진 전력 수신 장치. - 삭제
- 전원 공급기로부터 공급된 소스 전력을 제1 시간 구간 동안 제1 소스 공진기에 전달하고, 상기 소스 전력을 제2 시간 구간 동안 제2 소스 공진기에 전달하는 단계;
상기 소스 전력을 이용하여 적어도 둘의 공진 전력 수신 장치들을 웨이크 업(wake-up) 시키는 웨이크 업 신호를 생성하는 단계;
상기 웨이크 업 신호에 대한 응답 신호에 기초하여 제1 공진 전력 수신 장치 및 제2 공진 전력 수신 장치를 검출하는 단계;
상기 소스 전력에 기초하여, 제1 전력을 상기 제1 시간 구간 동안 상기 제1 소스 공진기를 통해 제1 공진 전력 수신 장치로 전송하고, 제2 전력을 상기 제2 시간 구간 동안 상기 제2 소스 공진기를 통해 제2 공진 전력 수신 장치로 전송하는 단계; 및
상기 제1 공진 전력 수신 장치의 요구 전력에 따라 상기 제1 시간 구간의 길이를 조절하고, 상기 제2 공진 전력 수신 장치의 요구 전력에 따라 상기 제2 시간 구간의 길이를 조절하는 단계
를 포함하는 공진 전력 전송 방법. - 제11항에 있어서,
상기 적어도 둘의 공진 전력 수신 장치들로부터 소정의 시간 동안 수신되는 신호에 따라 상기 적어도 둘의 공진 전력 수신 장치들에 대응하는 소스 공진기를 제어하는 단계
를 더 포함하는 공진 전력 전송 방법. - 제11항에 있어서,
상기 검출된 적어도 둘의 공진 전력 수신 장치와 상기 검출된 적어도 둘의 공진 전력 수신 장치에 대응되는 적어도 둘의 소스 공진기들간에, 임피던스가 매칭되도록 상기 임피던스를 제어하는 단계
를 더 포함하는 공진 전력 전송 방법. - 제11항에 있어서,
상기 검출된 적어도 둘의 공진 전력 수신 장치들과 대응되는 적어도 둘의 소스 공진기들에 대하여, 상기 소스 전력을 일정 운행 사이클(duty cycle)을 가지고 상기 검출된 적어도 둘의 공진 전력 수신 장치들에 전달하도록, 스위칭 신호를 제어하는 단계
를 더 포함하는 공진 전력 전송 방법. - 제11항에 있어서,
상기 적어도 둘의 공진 전력 수신 장치들로부터 웨이크 업 신호에 대한 응답 신호를 수신하는 단계;
상기 응답신호를 수신하면, 상기 적어도 둘의 공진 전력 수신 장치들에 관한 정보 요청 신호 및 상기 웨이크 업 신호에 대한 응답 신호를 수신한 소스 공진기의 아이디(ID)를 전송하는 단계; 및
상기 정보 요청 신호에 대한 에크(Ack) 신호, 상기 적어도 둘의 공진 전력 수신 장치에 포함된 공진기의 아이디(ID) 및 상기 적어도 둘의 공진 전력 수신 장치의 아이디(ID)에 대한 정보를 수신하는 단계
를 더 포함하는 공진 전력 전송 방법. - 제11항에 있어서,
상기 검출된 적어도 둘의 공진 전력 수신 장치들로부터, 소스 공진기와 상기 검출된 적어도 둘의 공진 전력 수신 장치들간의 임피던스 매칭에 필요한 정보를 인 밴드(In-Band) 또는 아웃 밴드(Out Band)를 통하여 획득하는 단계
를 더 포함하는 공진 전력 전송 방법. - 마그네틱 커플링을 통하여 공진 전력 전송 장치로부터 무선 전력 또는 웨이크 업(wake-up) 신호를 수신하는 단계;
상기 웨이크 업 신호에 의하여 웨이크 업 되었는지 여부 및 충전 필요 여부를 판단하는 단계;
상기 공진 전력 전송 장치의 아이디(ID), 상기 공진 전력 전송 장치에 포함된 소스 공진기의 아이디, 상기 웨이크 업 신호에 대한 응답 신호, 충전 요청 신호, 웨이크 업 된 타겟 공진기의 아이디 및 웨이크 업 된 공진 전력 수신 장치의 아이디에 대한 정보를 송수신하는 단계; 및
상기 소스 공진기와 상기 웨이크 업 된 타겟 공진기간의 임피던스를 매칭시키기 위해 상기 임피던스를 제어하는 단계
를 포함하고,
상기 무선 전력 또는 웨이크 업(wake-up) 신호를 수신하는 단계는 상기 공진 전력 전송 장치로부터 마그네틱 커플링을 통하여 상기 무선 전력을 일정 운행 사이클(duty cycle)동안 수신하는 단계를 포함하고, 상기 일정 운행 사이클은 상기 공진 전력 수신 장치의 요구 전력에 따라 조절되는,
공진 전력 수신 방법. - 삭제
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100084084A KR101782354B1 (ko) | 2010-08-30 | 2010-08-30 | 공진 전력 전송 및 수신 장치 및 방법 |
US13/154,218 US10103785B2 (en) | 2010-08-30 | 2011-06-06 | Apparatus and method for resonance power transmission and resonance power reception |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100084084A KR101782354B1 (ko) | 2010-08-30 | 2010-08-30 | 공진 전력 전송 및 수신 장치 및 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120020452A KR20120020452A (ko) | 2012-03-08 |
KR101782354B1 true KR101782354B1 (ko) | 2017-09-27 |
Family
ID=45696180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100084084A KR101782354B1 (ko) | 2010-08-30 | 2010-08-30 | 공진 전력 전송 및 수신 장치 및 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10103785B2 (ko) |
KR (1) | KR101782354B1 (ko) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8855554B2 (en) * | 2008-03-05 | 2014-10-07 | Qualcomm Incorporated | Packaging and details of a wireless power device |
KR101589836B1 (ko) | 2008-04-21 | 2016-01-28 | 퀄컴 인코포레이티드 | 근거리 효율적인 무선 전력 송신 |
US8497658B2 (en) | 2009-01-22 | 2013-07-30 | Qualcomm Incorporated | Adaptive power control for wireless charging of devices |
US20120217820A1 (en) * | 2009-07-06 | 2012-08-30 | Young Tack Hong | Wireless power transmission system and resonator for the system |
US9479225B2 (en) | 2010-05-13 | 2016-10-25 | Qualcomm Incorporated | Resonance detection and control within a wireless power system |
KR101782354B1 (ko) * | 2010-08-30 | 2017-09-27 | 삼성전자주식회사 | 공진 전력 전송 및 수신 장치 및 방법 |
WO2012128093A1 (ja) * | 2011-03-18 | 2012-09-27 | 矢崎総業株式会社 | 給電システム |
US9094055B2 (en) | 2011-04-19 | 2015-07-28 | Qualcomm Incorporated | Wireless power transmitter tuning |
KR101987283B1 (ko) * | 2011-06-24 | 2019-06-10 | 삼성전자주식회사 | 무선 전력을 이용한 통신 시스템 |
US9728997B2 (en) * | 2011-09-21 | 2017-08-08 | Samsung Electronics Co., Ltd. | Wireless power transmission system |
US9071284B2 (en) | 2011-10-21 | 2015-06-30 | Qualcomm Incorporated | Load impedance detection for static or dynamic adjustment of passive loads |
KR101349551B1 (ko) * | 2011-11-02 | 2014-01-08 | 엘지이노텍 주식회사 | 무선 전력 송신 장치 및 그 방법 |
KR20130121466A (ko) * | 2012-04-27 | 2013-11-06 | 한국전자통신연구원 | 에너지 전송 시스템에서 무선 에너지 전송 장치 및 방법 |
US9472958B2 (en) * | 2012-07-18 | 2016-10-18 | WIPQTUS Inc. | Wireless power system |
KR102004541B1 (ko) * | 2012-12-31 | 2019-07-26 | 지이 하이브리드 테크놀로지스, 엘엘씨 | 공진형 무선 전력 전송 시스템에서의 무선 전력 전송 제어 방법, 이를 이용하는 무선 전력 전송 장치, 및 이를 이용하는 무선 전력 수신 장치 |
KR101318688B1 (ko) * | 2013-03-26 | 2013-10-16 | 주식회사 맥스웨이브 | 무선 충전 제어 시스템 및 그 제어 방법 |
KR102042674B1 (ko) * | 2013-05-23 | 2019-11-11 | 삼성전자주식회사 | 무선 전력 전송 장치 및 무선 전력 전송 방법 |
KR102227504B1 (ko) * | 2013-08-07 | 2021-03-15 | 삼성전자주식회사 | 복수의 무선 전력 수신 장치에 대해 안정적으로 전력을 송신하는 무선 전력 송신 방법 및 장치 |
JP2015076993A (ja) * | 2013-10-09 | 2015-04-20 | ソニー株式会社 | 給電装置、受電装置、および給電システム |
JP6218545B2 (ja) * | 2013-10-09 | 2017-10-25 | キヤノン株式会社 | 給電装置、制御方法及びプログラム |
US10164472B2 (en) | 2013-12-03 | 2018-12-25 | Massachusetts Institute Of Technology | Method and apparatus for wirelessly charging portable electronic devices |
JP2015128349A (ja) * | 2013-12-27 | 2015-07-09 | キヤノン株式会社 | 送電装置、無線給電システム、制御方法及びプログラム |
US20150249343A1 (en) | 2014-03-03 | 2015-09-03 | The Wiremold Company | Wireless power stations |
US11984731B2 (en) * | 2014-12-22 | 2024-05-14 | The Wiremold Company | Ecosystem for surface-based wireless charging system |
US10498160B2 (en) | 2015-08-03 | 2019-12-03 | Massachusetts Institute Of Technology | Efficiency maximization for device-to-device wireless charging |
KR102543298B1 (ko) * | 2015-11-17 | 2023-06-14 | 삼성전자주식회사 | 무선 전력 전송 장치 및 방법 |
EP3346581B1 (en) * | 2017-01-04 | 2023-06-14 | LG Electronics Inc. | Wireless charger for mobile terminal in vehicle |
KR102506760B1 (ko) * | 2018-01-04 | 2023-03-07 | 현대자동차주식회사 | 노이즈 개선 장치 및 방법 |
US10651687B2 (en) | 2018-02-08 | 2020-05-12 | Massachusetts Institute Of Technology | Detuning for a resonant wireless power transfer system including cryptography |
US11018526B2 (en) | 2018-02-08 | 2021-05-25 | Massachusetts Institute Of Technology | Detuning for a resonant wireless power transfer system including cooperative power sharing |
KR20200131452A (ko) | 2019-05-14 | 2020-11-24 | 경북대학교 산학협력단 | 무선전력전송장치 |
KR102231882B1 (ko) * | 2019-07-31 | 2021-03-25 | 에타일렉트로닉스 주식회사 | 효율적인 무선 전력 전송을 위한 상호 인덕턴스 결정 방법 및 그 장치 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070236336A1 (en) * | 2006-03-31 | 2007-10-11 | Borcherding Eric J | Transponder detector for an RFID system generating a progression of detection signals |
US20100148723A1 (en) * | 2008-09-02 | 2010-06-17 | Qualcomm Incorporated | Bidirectional wireless power transmission |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050261037A1 (en) * | 2004-05-18 | 2005-11-24 | Raghunath Mandayam T | Conservation of battery power in mobile devices having communication capabilities |
US7541930B2 (en) * | 2005-06-14 | 2009-06-02 | Nokia Corporation | Apparatus and method for controlling diverse short-range antennas of a near field communications circuit |
US7521890B2 (en) * | 2005-12-27 | 2009-04-21 | Power Science Inc. | System and method for selective transfer of radio frequency power |
US9129741B2 (en) | 2006-09-14 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for wireless power transmission |
EP2154763B1 (en) * | 2007-03-22 | 2021-07-28 | Powermat Technologies Ltd. | Efficiency monitor for inductive power transmission |
KR101645736B1 (ko) | 2007-12-21 | 2016-08-04 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | 유도 전력 전송 회로 |
JP5106237B2 (ja) | 2008-05-02 | 2012-12-26 | オリンパス株式会社 | 無線給電システム |
US8629650B2 (en) | 2008-05-13 | 2014-01-14 | Qualcomm Incorporated | Wireless power transfer using multiple transmit antennas |
TWI364895B (en) | 2008-06-09 | 2012-05-21 | Univ Nat Taipei Technology | Wireless power transmitting apparatus |
JP5241381B2 (ja) | 2008-08-25 | 2013-07-17 | 株式会社日立製作所 | 電力受信装置 |
RU2548367C2 (ru) * | 2009-07-13 | 2015-04-20 | Конинклейке Филипс Электроникс Н.В. | Индуктивная передача энергии |
US8686685B2 (en) * | 2009-12-25 | 2014-04-01 | Golba, Llc | Secure apparatus for wirelessly transferring power and communicating with one or more slave devices |
KR101782354B1 (ko) * | 2010-08-30 | 2017-09-27 | 삼성전자주식회사 | 공진 전력 전송 및 수신 장치 및 방법 |
-
2010
- 2010-08-30 KR KR1020100084084A patent/KR101782354B1/ko active IP Right Grant
-
2011
- 2011-06-06 US US13/154,218 patent/US10103785B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070236336A1 (en) * | 2006-03-31 | 2007-10-11 | Borcherding Eric J | Transponder detector for an RFID system generating a progression of detection signals |
US20100148723A1 (en) * | 2008-09-02 | 2010-06-17 | Qualcomm Incorporated | Bidirectional wireless power transmission |
Also Published As
Publication number | Publication date |
---|---|
US10103785B2 (en) | 2018-10-16 |
US20120049642A1 (en) | 2012-03-01 |
KR20120020452A (ko) | 2012-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101782354B1 (ko) | 공진 전력 전송 및 수신 장치 및 방법 | |
KR101859191B1 (ko) | 무선 전력 전송 시스템, 무선 전력 전송 및 수신 제어 방법 | |
KR101850527B1 (ko) | 휴대용 디바이스 및 휴대용 디바이스의 무선 전력 충전 시스템 | |
KR101779344B1 (ko) | 무선 전력 전송 시스템, 무선 전력 전송 및 수신 제어 방법 | |
KR101735558B1 (ko) | 공진 전력 전송 시스템, 공진 전력 전송 및 수신 제어 방법 | |
KR101726195B1 (ko) | 공진 전력 전달 시스템에서 공진 임피던스 트래킹 장치 및 방법 | |
KR101813129B1 (ko) | 무선 전력 송수신 시스템 | |
KR101358280B1 (ko) | 전력 전송 효율을 고려한 공진 전력 전송 시스템 | |
KR101896979B1 (ko) | 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법 | |
KR101782083B1 (ko) | 공진 전력 전송을 이용한 지붕형 충전 장치 | |
KR101739283B1 (ko) | 적응형 공진 전력 전송 장치 | |
KR101718826B1 (ko) | 다중 대역으로 공진전력을 전송하는 무선전력전송 장치 및 방법 | |
KR101750415B1 (ko) | 정류기를 보호하는 보호기, 상기 보호기를 포함하는 무선전력 수신 장치 | |
US9276433B2 (en) | Robot cleaning system and control method having a wireless electric power charge function | |
KR101817194B1 (ko) | 태양전지 모듈을 이용한 무선 전력 전송 시스템 | |
KR101925959B1 (ko) | 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 임피던스 제어 방법 | |
KR101753607B1 (ko) | 방사형 무선 전력 전송 및 수신 장치 | |
KR101373769B1 (ko) | 고효율 가변전력 전송 장치 및 방법 | |
KR20120126333A (ko) | 무선 전력 전송 시스템, 무선 전력 전송 시스템의 공진 임피던스 및 공진 주파수의 제어 방법 | |
KR20120127231A (ko) | 무선 전력 전송 장치 및 방법 | |
KR20120132406A (ko) | 무선 전력을 송수신하는 전자 기기 및 방법 | |
KR20120102316A (ko) | 무선 전력 송수신 시스템 | |
KR20120069349A (ko) | 스위칭 손실을 줄이는 직류-직류 전압 변환기, 상기 직류-직류 전압 변환기를 포함하는 무선전력 수신 장치 | |
KR101847814B1 (ko) | 공진 전력 전송 시스템, 공진 전력 전송 및 수신 제어 방법 | |
KR101952604B1 (ko) | 무선 전력 전송 시스템, 무선 전력 전송 및 수신 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |