KR101747455B1 - System and method for controlling combined radio signals - Google Patents
System and method for controlling combined radio signals Download PDFInfo
- Publication number
- KR101747455B1 KR101747455B1 KR1020127000292A KR20127000292A KR101747455B1 KR 101747455 B1 KR101747455 B1 KR 101747455B1 KR 1020127000292 A KR1020127000292 A KR 1020127000292A KR 20127000292 A KR20127000292 A KR 20127000292A KR 101747455 B1 KR101747455 B1 KR 101747455B1
- Authority
- KR
- South Korea
- Prior art keywords
- signal
- signals
- papr
- delete delete
- ofdm
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2614—Peak power aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transmitters (AREA)
Abstract
직교 주파수 멀티플렉싱된(orthogonal frequency multiplexed) 신호 성분들을 갖는 적어도 2 개의 신호의 결합을 나타내는 결합 파형(combined waveform)을 제어하는 방법은 상기 적어도 2 개의 신호를 각기 규정하는 정보들을 수신하는 단계와, 상기 각 신호를 규정하는 정보들을 직교 주파수 멀티플렉싱된 신호 성분들을 갖는 표현(representation)들로 변환하는 단계━적어도 하나의 신호는 동일한 정보의 적어도 2 개의 교번하는 표현들을 가짐━와, 상기 적어도 2 개의 교번하는 표현들을 사용하여서 각기 상이한 결합들을 규정하는 적어도 2 개의 상이한 방식으로 상기 변환된 정보들을 서로 결합하는 단계와, 적어도 하나의 기준에 대해서 상기 각기 상이한 결합들을 분석하는 단계와, 상기 분석 결과에 기초하여서 상기 적어도 2 개의 신호 각각으로부터의 변환된 정보들의 결합들 중 선택된 결합을 포함하는 각각의 결합된 파형을 나타내는 정보를 출력하는 단계를 포함한다.A method of controlling a combined waveform representing a combination of at least two signals having orthogonal frequency multiplexed signal components includes receiving information that each defines the at least two signals, Converting signals defining information into representations having orthogonal frequency multiplexed signal components, at least one signal having at least two alternate representations of the same information, and at least two alternating representations Combining the transformed information with each other in at least two different ways that define different bonds using each of the at least one criterion; analyzing the different bonds for at least one criterion; The converted information from each of the two signals And outputting information indicative of each combined waveform including a selected one of the combinations of the combinations.
Description
본 발명은 무선 주파수 신호의 무신 통신 분야에 관한 것이다. 특히, 본 발명은 결합 신호의 PAPR(peak to average power ratio: 피크 대 평균 전력 비율)을 저감시키거나 수신기에서의 추론된 에러를 저감시키기 위해서 결합 신호를 제어하는 기술에 관한 것이다.
Field of the Invention The present invention relates to the field of radio communication of radio frequency signals. In particular, the present invention relates to techniques for controlling a combined signal to reduce the PAPR (Peak to Average Power Ratio) of the combined signal or to reduce the estimated error in the receiver.
이동 무선 통신을 위한 통상적인 신호 포맷은 OFDM(orthgonal frequency divison multiplexing) 포맷 및 이와 밀접하게 관련된 포맷들이 있으며, 이렇게 밀접하게 관련된 포맷 중 하나가 OFDMA(orthgonal frequency division multiple access)이다. OFDM 신호 채널 상에서 반송되는 신호의 특징에 대하여 말하자면, 주파수 영역이 다수의 서로 인접하는 협대역의 서브채널들로 되어 있으며, 시간 영역은 각각이 시간 T를 갖는 상대적으로 저속의 일련의 OFDM 심볼들로 되어 있되, 각 OFDM 심볼은 가드 인터벌(guard interval) △T만큼 이격되어 있다(도 1 참조). 이 각 가드 인터벌 내에는 각 심볼 기간 이전에 사이클릭 프리픽스(CP)(cyclic prefix)가 존재하며, 이 사이클릭 프리픽스는 상기 심볼 기간 내의 신호와 동일한 신호로 구성되며 시간상 주기적으로 시프트된다. 이러한 CP는 높은 건물이나 구릉(hill) 등과 같은 지형적으로 큰 물체로부터 무선 주파수 신호들이 반사되는 것과 같이 다중 경로가 존재하는 경우에도 그 수신된 신호가 정확한 시간상의 동기화와 관련하여서 덜 예민하게 될 수 있도록 설계된다. 소정의 심볼이 근소한 시간 지연 정도(△T보다 작음)로 해서 수신되는 경우에, 이 심볼은 오차 없이 전과 마찬가지로 수신될 것이다. OFDM 페이로드(payload)와 연관된 데이터 심볼들 이외에, 통상적으로 또한 "프리앰블(preamble)"이 존재하는데, 이 프리앰블은 타이밍 및 다른 기준들을 확립시킨다. 이 프리앰블은 도 1에서는 나타나지 않은 자신의 고유 CP를 가질 수 있다.Typical signal formats for mobile wireless communications are the orthogonal frequency divisible multiplexing (OFDM) format and closely related formats, and one such closely related format is orthogonal frequency division multiple access (OFDMA). With respect to the characteristics of the signal carried on the OFDM signal channel, the frequency domain consists of a plurality of sub-channels adjacent to each other, and the time domain is a relatively slow sequence of OFDM symbols , And each OFDM symbol is spaced apart by a guard interval? T (see FIG. 1). In each guard interval, there is a cyclic prefix (CP) before each symbol period, and the cyclic prefix is composed of the same signal as the signal in the symbol period and is shifted periodically in time. Such a CP can be used to ensure that the received signal is less sensitive in terms of precise temporal synchronization, even in the presence of multipath, such as when radio frequency signals are reflected from a geographically large object, such as a tall building or hill Is designed. If a given symbol is received with a slight time delay (less than [Delta] T), this symbol will be received as before with no error. In addition to the data symbols associated with the OFDM payload, there is typically also a "preamble" that establishes timing and other criteria. This preamble may have its own unique CP which is not shown in FIG.
OFDM에 있어서, 서브캐리어 주파수들은 서브캐리어들이 서로 직교하도록 선택된다. 이는 서브채널들 간의 크로스토크가 제거되어 서브캐리어 간의 가드 밴드(gurad band)가 필요 없음을 의미한다. 이로써, 송신기 및 수신기 양자의 설계가 크게 단순화될 수 있다. 즉, 통상적인 FDM 방식과는 달리, 각 서브 채널에 대하여 개별 필터가 필요 없게 된다. 이러한 직교성으로 인해서, 서브캐리어들 간의 이격 정도 또는 스페이싱(spacing)은 △f = k/(TU) 헤르쯔가 될 필요가 있다. 여기서, TU 초는 유용한 심볼 기간(수신기 측의 윈도우 크기)이며 k는 양의 정수로서 통상적으로 1과 대등하다. 따라서, N 개의 서브캐리어가 존재하는 경우에, 총 패스밴드 대역폭은 B ≒ N·△f(Hz)의 관계가 성립할 것이다. 또한, 직교성으로 인해서 높은 스펙트럼 효율이 가능하고 총 심볼 레이트는 나이키스트 속도(Nyquist rate)에 근사하게 된다. 전체 가용 주파수 대역이 거의 사용될 수 있다. OFDM 방식은 일반적으로 거의 "백색인" 스펙트럼을 가지며 이로써 OFDM은 다른 공동 채널 사용자들에게 유익한 전자기 간섭 특성을 구비하게 된다.For OFDM, the subcarrier frequencies are chosen such that the subcarriers are orthogonal to one another. This means that the crosstalk between the subchannels is eliminated and no gurad band between the subcarriers is needed. Thus, the design of both the transmitter and the receiver can be greatly simplified. That is, unlike the conventional FDM scheme, individual filters are not required for each subchannel. Due to this orthogonality, the degree of spacing or spacing between subcarriers needs to be? F = k / (T U ) hertz. Where T U seconds is a useful symbol period (window size of the receiver side) and k is a positive integer and is usually equal to one. Therefore, when there are N subcarriers, the total passband bandwidth will satisfy the relation of B? N? F (Hz). Also, due to orthogonality, high spectral efficiency is possible and the total symbol rate approximates the Nyquist rate. The entire usable frequency band can be almost used. The OFDM scheme generally has a spectrum that is almost "white" so that OFDM has electromagnetic interference characteristics beneficial to other co-channel users.
2 개의 OFDM 신호들이 결합될 때에, 그 결과는 일반적으로 비직교성 신호가 된다. 단일 OFDM 신호 대역으로 한정된 수신기는 일반적으로 채널 외 신호(out-of-channel signal)에 의해서 영향을 받지 않을 것이지만, 이러한 채널 외 신호가 공통 전력 증폭기를 통과할 경우에는, 아날로그 시스템 구성 요소들의 고유한 비선형성으로 인해서 상호 작용이 발생하게 된다. When two OFDM signals are combined, the result is generally a non-orthogonal signal. A receiver limited to a single OFDM signal band will generally not be affected by out-of-channel signals, but when such off-channel signals pass through a common power amplifier, Interaction occurs due to nonlinearity.
OFDM 방식에서는 수신기와 송신기 간에 매우 정확한 주파수 동기화가 필요하다. 즉, 주파수 편차가 발생하면, 서브캐리어들은 서로 직교하지 않게 되고, 이로써, ICI(inter-carrier interference: 캐리어 간 간섭)가 유발된다. 즉, 서브캐리어들 간의 크로스토크가 발생한다. 이러한 주파수 편차는 통상적으로 송신기 발진기와 수신기 발진기 간의 오정합으로 인해서 발생하거나 움직임으로 인한 도플러 시프트 효과에 의해서 발생하게 된다. 도플러 시프트는 단독으로는 수신기에 의해서 보상될 수 있지만, 이 도플러 시프트가 다중 경로와 결합될 때에는 다양한 주파수 편차의 경우에 파 반사들이 발생할 수 있기 때문에 상황이 더 악화될 수 있다. 이러한 상황은 보정하기 매우 어렵다.In the OFDM scheme, very precise frequency synchronization between the receiver and the transmitter is required. That is, when a frequency deviation occurs, subcarriers are not orthogonal to each other, thereby causing inter-carrier interference (ICI). That is, crosstalk occurs between subcarriers. This frequency deviation is typically caused by misalignment between the transmitter oscillator and the receiver oscillator, or by a Doppler shift effect due to motion. The Doppler shift can be compensated by the receiver alone, but when the Doppler shift is combined with the multipath, the situation can get worse because wave reflections can occur in the case of various frequency deviations. This situation is very difficult to correct.
또한, 직교성으로 인해서, 수신기 측에서는 FFT(고속 푸리에 변환) 알고리즘을 사용하고 전송기 측에서는 IFFT(역 고속 푸리에 변환) 알고리즘을 사용하여서 변조기 및 복조기가 효율적으로 구현될 수 있다. FFT 알고리즘은 상대적으로 효율적이지만, 어느 정도의 계산상의 복잡성이 존재하므로 이는 제한적인 요인으로 작용한다.Further, due to the orthogonality, the modulator and the demodulator can be efficiently implemented using an FFT (Fast Fourier Transform) algorithm at the receiver side and an IFFT (Inverse Fast Fourier Transform) algorithm at the transmitter side. The FFT algorithm is relatively efficient, but it is a limiting factor because there is some computational complexity.
OFDM 방식의 하나의 핵심 원리는 저 심볼 레이트 변조 방식(즉, 심볼 기간들이 채널 시간 특성에 비해서 상대적으로 김)은 다중 경로 전파에 의해서 유발되는 심볼간 간섭을 덜 경험하기 때문에, 단일 고 레이트 스트림 대신에 다수의 저 레이트 스트림들을 병렬로 전송하는 것이 유리하다는 것이다. 각 심볼 기간이 길기 때문에, OFDM 심볼들 간에 가드 인터벌을 삽입할 수 있으며, 이로써, 심볼간 간섭이 제거될 수 있다. 또한, 이러한 가드 인터벌로 인해서 펄스 정형 필터가 필요 없게 되며 시간상의 동기화 문제들에 대해서도 덜 예민해질 수 있다.One key principle of the OFDM scheme is that instead of a single high-rate stream, a low symbol rate modulation scheme (i.e., symbol periods relatively steep compared to channel time characteristics) experiences less intersymbol interference caused by multipath propagation It is advantageous to transmit a plurality of low rate streams in parallel. Since each symbol period is long, a guard interval can be inserted between OFDM symbols, whereby inter-symbol interference can be eliminated. In addition, this guard interval eliminates the need for a pulse shaping filter and can be less sensitive to temporal synchronization problems.
가드 인터벌 동안에 전송되는 사이클릭 프리픽스(CP)는 이 가드 인터벌 내로 복제된 OFDM 심볼의 단부로 구성되며, 가드 인터벌이 전송되고 OFDM 심볼이 이 가드 인터벌을 따르게 된다. 사이클릭 프리픽스가 복제된 OFDM 심볼의 단부로 구성되는 이유는 수신기가 FFT 알고리즘을 사용하여서 OFDM 복조를 수행할 때에 수신기가 정수 개수의 사인형 사이클(sinusoid cycle)에 걸쳐서 다중 경로 각각에 대해서 적분할 수 있도록 하기 위함이다. The cyclic prefix (CP) transmitted during the guard interval consists of the end of the OFDM symbol replicated into this guard interval, the guard interval is transmitted and the OFDM symbol follows this guard interval. The reason that the cyclic prefix is composed of the end of the replicated OFDM symbol is that when the receiver performs OFDM demodulation using the FFT algorithm, the receiver can integrate for each of the multipaths over an integer number of sinusoid cycles .
가령, 다중 경로 전파에 의해서 유발되는 페이딩(fading)과 같은 주파수 선택적 채널 상태들의 영향은 서브채널이 충분하게 협대역으로 되어 있으면, 즉, 서브채널들의 개수가 충분하게 많으면, OFDM 서브채널에 걸쳐서 일정한 것으로 고려될 수 있다. 이로써, 종래의 단일 캐리어 변조에 비해서 OFDM에서는 수신기에서의 등화 과정이 매우 단순하게 될 수 있다. 등화기는 각 검출된 서브캐리어(각 푸리에 계수)를 일정한 복소수 또는 거의 변하지 않는 값만큼 승산해야 할 뿐이다. 따라서, 수신기는 명시적 정보가 전송되도록 요구할 필요 없이 그 신호의 그러한 수정 사항들을 대체적으로 허용할 수 있다.For example, the effect of frequency selective channel conditions, such as fading caused by multipath propagation, is such that if the subchannels are sufficiently narrow, i. E. The number of subchannels is large enough, . ≪ / RTI > As a result, the equalization process in the receiver can be made very simple in OFDM as compared with the conventional single carrier modulation. The equalizer only multiplies each detected subcarrier (each Fourier coefficient) by a constant complex or nearly unchanged value. Thus, the receiver can generally allow such modifications of the signal without having to require explicit information to be transmitted.
OFDM은 언제나 채널 코딩(순방향 에러 보정)과 함께 사용되며 거의 언제나 주파수 및/또는 시간 인터리빙을 사용한다. 주파수(서브캐리어) 인터리빙은 페이딩과 같은 주파수 선택적 채널 상태들의 영향에 대한 내성을 증가시킬 수 있다. 가령, 채널 대역폭의 일부가 페이딩되면, 주파수 인터리빙을 수행함으로써, 이 대역폭의 페이딩된 부분에서의 서브캐리어들로부터 기인될 수 있는 비트 에러들이 비트 스트림 내에서 집중되기보다는 분산될 수 있게 된다. 이와 마찬가지로, 시간 인터리빙을 수행함으로써, 비트 스트림 내에서 최초에는 서로 근접해 있던 비트들이 시간이 지나면서 서로 멀리 떨어져서 전송되며, 이로써 고속으로 이동할 경우에 발생할 수 있었던 극심한 페이딩을 완화시킬 수 있다. 따라서, 등화 과정에서와 본질적으로 유사하게, 수신기는 그로써 생성된 에러 레이트를 증가시키지 않고서 이러한 타입의 수정 사항들을 어느 정도 통상적으로 허용할 수 있다.OFDM is always used in conjunction with channel coding (forward error correction) and almost always uses frequency and / or time interleaving. Frequency (subcarrier) interleaving may increase the immunity to the effects of frequency selective channel conditions such as fading. For example, if a portion of the channel bandwidth is faded, by performing frequency interleaving, bit errors that can be caused from subcarriers in the faded portion of this bandwidth can be distributed rather than concentrated in the bitstream. Likewise, by performing time interleaving, the bits initially close to each other in the bit stream are transmitted at a distance from each other over time, thereby mitigating the extreme fading that may occur when moving at high speed. Thus, essentially similar to that in the equalization process, the receiver can somehow typically allow modifications of this type without increasing the error rate thereby generated.
OFDM 신호는 IFFT(inverse fast Fourier transform)에 의해서 디지털 베이스밴드 데이터로부터 생성되는데, IFFT 계산상 복잡하며 이하에서 기술될 바와 같이 전 범위의 심볼들을 포함하는 심볼 세트에 대해서 상대적으로 높은 PAPR(peak to average power ratio)을 갖는 신호를 생성한다. 이러한 높은 PAPR로 인하여, 일반적으로 전력 증폭기(PA)의 취득 비용 및 운용 비용이 증가하게 되고, 낮은 PAPR을 갖는 신호들에 대해서 설계된 시스템들에 비해서 큰 비선형 왜곡(non-linear distortion)이 통상적으로 발생하게 된다. 이러한 큰 비선형 왜곡으로 인해서, 무엇보다도, 전력 손실을 일으키는 클립핑 왜곡 및 IM(intermodulation) 왜곡이 발생하고, 또한, 대역 외 간섭 및 가능하게는 대역 내 간섭이 발생하게 되어서 이에 따라서 수신기에서의 BER(bit error rate)가 증가하게 된다.The OFDM signal is generated from digital baseband data by an inverse fast Fourier transform (IFFT), which is complicated in IFFT computation and has a relatively high peak to average (PAPR) for a symbol set that includes a full range of symbols, power ratio). This high PAPR generally leads to an increase in the acquisition cost and operating cost of the power amplifier (PA), and a large non-linear distortion is typically encountered compared to systems designed for signals with low PAPR . This large nonlinear distortion causes, among other things, clipping distortion and IM (intermodulation) distortion that cause power loss, and also causes out-of-band interference and possibly in-band interference, error rate is increased.
통상적인 타입의 OFDM 송신기에서, 신호 생성기는 입력 정보 비트 시퀀스에 대해서 에러 보정 인코딩, 인터리빙 및 심볼 맵핑을 수행하여서 전송 심볼들을 생성한다. 이 전송 심볼들은 S/P(serial to parallel) 변환기에서 직렬 대 병렬 변환을 받게 되고 이로써 다수의 병렬 신호 시퀀스로 변환된다. 직렬 대 병렬 변환된 신호는 이어서 IFFT 유닛에서 역 고속 푸리에 변환을 받게 된다. 이어서, 이 신호는 P/S(parallel to serial) 변환기에서 병렬 대 직렬 변환을 받아서 하나의 신호 시퀀스로 변환된다. 이어서, 가드 인터벌들이 GI(guard interval) 부가 유닛에 의해서 부가된다. 이렇게 형성된 신호는 이어서 무선 주파수로 업컨버팅되고 전력 증폭기에서 증폭되며 마지막으로 무선 안테나에 의해서 OFDM 신호로서 전송된다.In a typical type OFDM transmitter, the signal generator performs error correction encoding, interleaving, and symbol mapping on the input information bit sequence to generate transmission symbols. These transmit symbols are subjected to a serial-to-parallel conversion in a serial-to-parallel (S / P) converter and thereby converted into a plurality of parallel signal sequences. The serial to parallel converted signal is then subjected to an inverse fast Fourier transform in the IFFT unit. Then, this signal is parallel-to-serial converted in a parallel to serial (P / S) converter and converted into a single signal sequence. Then, guard intervals are added by a guard interval (GI) adding unit. The signal thus formed is then upconverted to a radio frequency, amplified in a power amplifier, and finally transmitted as an OFDM signal by a wireless antenna.
한편, 통상적인 타입의 OFDM 수신기에서, 상기 무선 주파수 신호는 베이스밴드 또는 중간 주파수로 다운컨버팅되고 수신된 신호로부터 가드 인터벌을 가드 인터벌 제거 유닛이 제거한다. 이어서, 수신된 신호는 S/P 변환기에서 직렬 대 병렬 변환을 받게 되고 FFT 유닛에서 고속 푸리에 변환을 받으며 P/S 변환기에서 병렬 대 직렬 변환을 받는다. 이어서, 디코딩된 비트 시퀀스가 출력된다.On the other hand, in a typical type OFDM receiver, the radio frequency signal is downconverted to a baseband or intermediate frequency and the guard interval is removed from the received signal by the guard interval removal unit. The received signal is then subjected to a serial-to-parallel conversion in an S / P converter, a fast Fourier transform in an FFT unit, and a parallel-to-serial conversion in a P / S converter. The decoded bit sequence is then output.
각 OFDM 채널이 전력 증폭기(PA) 및 안테나 요소에서 끝나는 자신의 고유한 전송 채널을 갖는 것이 통상적이다. 그러나, 몇몇 경우에, 도 2에 도시된 바와 같이, 동일한 전력 증폭기(PA) 및 안테나 요소를 사용하여서 2 개 이상의 개별 OFDM 채널들을 전송하기를 원할 수 있다. 이로써, 한정된 개수의 기지국 타워 상에서 추가된 통신 대역폭을 갖는 시스템이 가능할 수 있다. 사용자가 추가되고 데이터 레이트도 추가된 경우의 구동 시에는, 이러한 시스템은 매우 바람직하다. 2 개의 채널들이 도 2에 도시된 바와 같은 2 단 업컨버팅 프로세스에 의해서 중간 주파수로 결합될 수 있다. 실수(real) 베이스밴드 신호들에 대한 증폭이 도 2에 도시되었지만, 일반적으로는, 동위상 업컨버팅 및 직교위상 업컨버팅을 갖는 복소수(complex)의 2 위상 신호들(미도시)을 가질 수 있다. 도 2는 디지털 신호와 아날로그 신호들 간의 경계를 나타내지 않고 있다. 베이스밴드 신호들은 정상적으로는 디지털이며 RF 전송 신호는 정상적으로는 아날로그이며, 이 두 단들 간의 어디에 디지털 대 아날로그 변환 단이 존재한다.It is common for each OFDM channel to have its own transmission channel ending in the power amplifier (PA) and antenna element. However, in some cases, as shown in FIG. 2, one may want to transmit two or more individual OFDM channels using the same power amplifier (PA) and antenna element. Thereby, a system with added communication bandwidth on a limited number of base station towers may be possible. When the user is added and the data rate is also added, such a system is highly desirable. Two channels can be combined at an intermediate frequency by a two stage upconversion process as shown in FIG. Although amplification for real baseband signals is shown in FIG. 2, it is generally possible to have complex two-phase signals (not shown) with in-phase upconverting and quadrature upconverting . Figure 2 does not show the boundary between the digital signal and the analog signals. The baseband signals are normally digital and the RF transmission signal is normally analog, where there is a digital to analogue conversion stage between the two stages.
각각이 평균 전력 P0 및 최대 순간 전력 P1을 갖는 2 개의 유사한 채널을 고려해보자. 이는 dB로 하면 PAPR[dB] = 10 log(P1/P0)으로 통상적으로 표현되는 피크 대 평균 전력 비(PAPR) = P1/P0에 대응한다. 결합된 신호의 경우에, 평균 전력은 2 P0 (3 dB의 증가)이지만, 최대 순간 전력은 4P1만큼 높을 수 있다(6 dB의 증가). 따라서, 결합된 신호의 경우의 PAPR은 3 dB만큼 증가할 수 있다. 최대 전력치는 2 개의 채널들로부터의 신호들이 동 위상을 갖는 피크 값을 가질 경우에 발생할 것이다. 이는 발생하기 힘든 과도적인 현상이지만 일반적으로 모든 전송 구성 요소들의 선형 동적 범위는 이러한 현상으로부터 자유로울 수 없을 것이다. 비선형성은 상호 변조 기생 신호(intermodulation products)를 유발할 것이며 이 상호 변조 기생 신호는 신호의 품질을 저하시키고 신호가 스펙트럼의 바람직하지 않는 영역들 내로 확산되게 할 수 있다. 이로써, 필터링이 요구되며 어떠한 경우에라도 시스템의 전력 효율을 감소시킬 것이다. Each having an average power P 0 And two similar channels with maximum instantaneous power P < 1 & gt ;. This corresponds to a peak to average power ratio (PAPR) = P 1 / P 0 , which is typically expressed in PAPR [dB] = 10 log (P 1 / P 0 ) in dB. In the case of a combined signal, the average power is 2 P 0 (an increase of 3 dB), but the maximum instantaneous power can be as high as 4 P 1 (an increase of 6 dB). Therefore, the PAPR for the combined signal can be increased by 3 dB. The maximum power value will occur when the signals from the two channels have peak values that are in phase. This is a difficult transient phenomenon, but in general, the linear dynamic range of all transmission components will not be free from this phenomenon. Nonlinearities will cause intermodulation products that can degrade the quality of the signal and cause the signal to spread into undesirable regions of the spectrum. As a result, filtering is required and in any case will reduce the power efficiency of the system.
이러한 높은 PAPR을 처리하기 위해서 요구되는 증가된 선형 동적 범위를 갖는 구성 요소들은 보다 큰 선형 동적 범위를 처리하기 위해서 더 많은 개수의 유효 비트들을 가져야 하는 가령 디지털 대 아날로그 변환기를 포함한다. 그러나, 전력 증폭기(PA)가 이 보다 중요한 구성 요소인데, 그 이유는 전력 증폭기는 일반적으로 송신기에서 최대의 최고 전력 집약적인 구성 요소이기 때문이다. 경우에 따라서 오직 작은 분량의 시간에 사용되는 초과 동적 범위를 갖는 구성 요소들을 유지할 수 있지만, 이는 낭비적이며 비효율적이어서 가능한 한 회피되어야 한다. 더 큰 동적 범위를 갖는 증폭기는 통상적으로 더 작은 동적 범위를 갖는 증폭기에 비해서 많은 비용이 들며 서로 비교 가능한 입력 및 출력에 있어서의 전류 효율이 낮으며 정지 상태의 전류 소모가 크다.The components with the increased linear dynamic range required to handle such a high PAPR include a digital-to-analog converter, which should have a larger number of significant bits to handle a larger linear dynamic range. However, a power amplifier (PA) is a more important component because a power amplifier is typically the largest and most power-intensive component in a transmitter. While it is possible to maintain components with excess dynamic range that are only occasionally used in a small amount of time, it is wasteful and inefficient and should be avoided as much as possible. Amplifiers with larger dynamic range are typically more expensive than amplifiers with smaller dynamic range and have lower current efficiency at comparable inputs and outputs and greater current consumption in quiescent state.
OFDM에서 이러한 채널들은 다수의 근접하게 이격된 서브채널들로 구성되기 때문에, 상기의 높은 PAPR 문제는 OFDM 및 이와 관련된 파형에서 잘 알려진 일반적인 문제였다. 이러한 높은 PAPR를 감소시키기 위한 수많은 종래 방식들이 존재한다. 이러한 방식들은 가령 Proc. 2006 IEEE International Symposium on Signal Processing and Information Technology의 페이지 821-827에서 Hanna Bogucka가 기술한 "Directions and Recent Advances in PAPR Reduction Methods"와 같은 문헌에 언급되어 있으며, 이 문헌은 본 명세서에서 참조로서 인용된다. 이러한 PAPR 저감 방식들은 진폭 클립핑 및 필터링 방식, 코딩 방식, 톤 예약 방식, 톤 주입 방식, 능동 성상도 확장(active constellation extension) 방식 및 PTS(partial transmit sequence), SLM(selective mapping) 및 인터리빙과 같은 다수의 신호 표현 기술들을 포함한다. 이러한 방식들을 사용하면 PAPR이 크게 저감되지만 전송 신호 전력이 증가하고 비트 에러 레이트(BER)가 증가하며, 데이터 레이트 손실이 발생하고, 계산상의 복잡도가 증가하게 된다. 또한, 이러한 방식들 중 수많은 방식에서는 수신된 신호가 적절하게 디코딩되도록 전송 신호 그 자체 이외에 (신호 변환에 대한) 추가적 부 정보들이 전송되어야 한다. 이러한 부 정보들은 그 방식의 보편성을 떨어뜨리는데, 특히 다양한 기지국 송신기들로부터 신호들을 수신하기 위해서 간단한 이동 수신기들을 사용하고자 하는 경우에 특히 그러하다. 위의 Bogucka가 개시한 방식들 및 본 기술 분야에서 달리 알려진 방식들은 이하에서 기술되는 방식들과 서로 호환 가능하는 정도에서 함께 사용될 수 있다.Since these channels in OFDM are made up of a number of closely spaced subchannels, the high PAPR problem described above is a common problem well known in OFDM and related waveforms. There are a number of conventional ways to reduce this high PAPR. These methods are described, for example, in Proc. 2006, pages 821-827 of IEEE International Symposium on Signal Processing and Information Technology, which is hereby incorporated by reference, such as in "Directions and Recent Advances in PAPR Reduction Methods" by Hanna Bogucka. Such PAPR mitigation schemes include a number of techniques such as an amplitude clipping and filtering scheme, a coding scheme, a tone reservation scheme, a tone injection scheme, an active constellation extension scheme, a partial transmit sequence (PTS) Signal representation techniques. Using these schemes significantly reduces the PAPR but increases the transmitted signal power, increases the bit error rate (BER), causes loss of data rate, and increases computational complexity. Further, in many of these schemes, additional sub-information (for signal conversion) must be transmitted in addition to the transmitted signal itself such that the received signal is properly decoded. These sub-information degrade the generality of the method, especially when it is desired to use simple mobile receivers to receive signals from various base station transmitters. The schemes disclosed by Bogucka above and other schemes known in the art may be used together to the extent that they are compatible with the schemes described below.
OFDM 전송 기술에 있어서 PAPR(피크 대 평균 전력 비) 문제를 해결하기 위한 다양한 노력들은 주파수 영역 인터리빙법, 클립핑 필터링법(가령, X. Li and L. J. Cimini, "Effects of Clipping and Filtering on the Performance of OFDM", IEEE Commun. Lett., Vol. 2, No. 5, pp. 131-133, May, 1998 참조), PTS(partial transmit sequence)법(가령, L. J Cimini and N. R. Sollenberger, "Peak-to-Average Power Ratio Reduction of an OFDM Signal Using Partial Transmit Sequences", IEEE Commun. Lett., Vol. 4, No. 3, pp. 86-88, March, 2000 참조) 및 CSS(cyclic shift sequence)법(가령, G. Hill and M. Faulkner, "Cyclic Shifting and Time Inversion of Partial Transmit Sequences to Reduce the Peak-to-Average Ratio in OFDM", PIMRC 2000, Vol. 2, pp. 1256-1259, Sep. 2000 참조)을 포함한다. 또한, 비선형 전송 증폭기가 사용될 때에 OFDM 전송에 있어서 수신 특성을 개선하기 위해서, 전송 증폭기에 의해서 클립핑된 전력 손실을 최소화하는 MCPLS(minimum clipping power loss scheme)을 사용하는 PTS법이 제안되었다(가령, Xia Lei, Youxi Tang, Shaoqian Li, "A Minimum Clipping Power Loss Scheme for Mitigating the Clipping Noise in OFDM", GLOBECOM 2003, IEEE, Vol. 1, pp. 6-9, Dec. 2003 참조). MCPLS은 또한 CSS법에 대해서도 적용될 수 있다.Various efforts to solve the PAPR (Peak-to-Average Power Ratio) problem in the OFDM transmission technology have been studied using frequency domain interleaving, clipping filtering (for example, X. Li and LJ Cimini, " Effects of Clipping and Filtering on the Performance of OFDM (See, for example, L. J Cimini and NR Sollenberger, "Peak-to-Peak-to-Peak-to- Vol. 4, No. 3, pp. 86-88, March, 2000) and a cyclic shift sequence (CSS) method (see, for example, IEEE Std. , G. Hill and M. Faulkner, "Cyclic Shifting and Time Inversion of Partial Transmit Sequences to Reduce the Peak-to-Average Ratio in OFDM", PIMRC 2000, Vol.2, pp. 1256-1259, . In addition, a PTS method has been proposed that uses a minimum clipping power loss scheme (MCPLS) that minimizes the power loss clipped by the transmission amplifier in order to improve reception characteristics in OFDM transmission when a nonlinear transmission amplifier is used Lei, Youxi Tang, Shaoqian Li, "A Minimum Clipping Power Loss Scheme for Mitigation of Clipping Noise in OFDM ", GLOBECOM 2003, IEEE, Vol.1, pp. 6-9, Dec. 2003). MCPLS can also be applied to the CSS method.
PTS 방식에서는, 각각의 서브캐리어에 대해서 미리 결정된 적합한 위상 회전 값 세트가 다수의 세트들로부터 선택되고, 이 선택된 위상 회전 값 세트는 신호 변조 이전에 각 서브캐리어의 위상을 회전시키는데 사용된다. 이로써, 피크 대 평균 전력 비(PAPR)가 저감되게 된다(가령, S. H. Muller and J. B. Huber, "A Novel Peak Power Reduction Scheme for OFDM", Proc. of PIMRC '97, pp. 1090-1094, 1997, 및 G. R. Hill, Faulkner, and J. Singh, "Deducing the Peak-to-Average Power Ratio in OFDM by Cyclically Shifting Partial Transmit Sequences", Electronics Letters, Vol. 36, No. 6, 16th March, 2000 참조).In the PTS scheme, a predetermined set of suitable phase rotation values for each subcarrier is selected from a plurality of sets, and this selected set of phase rotation values is used to rotate the phase of each subcarrier prior to signal modulation. This reduces the peak to average power ratio (PAPR) (see, for example, SH Muller and JB Huber, "A Novel Peak Power Reduction Scheme for OFDM", Proc. Of PIMRC '97, pp. 1090-1094, 36, No. 6, 16 th March, 2000), which is incorporated herein by reference in its entirety).
결합된 OFDM 신호들의 PAPR를 저감하기 위한 실제적 방법 및 이와 관련된 장치에서 필요한 사항은 수신된 신호의 품질을 저하시키지 않거나 부 정보 전송을 요구하지 않는 것이다.
A practical method for reducing the PAPR of the combined OFDM signals and what is needed in the related art is to not degrade the quality of the received signal or require no sub information transmission.
상이한 캐리어 주파수들을 갖는 다수의 무선 신호들이 전송되기 위해서 결합될 때에, 동 위상에 있는 피크들이 서로 결합될 가능성이 있기 때문에, 이 결합된 신호의 PAPR(피크 대 평균 전력 비)는 증가할 수 있다. 이로써, 낮은 평균 효율로 동작하는 대형 무선 주파수 전력 증폭기(PA)가 요구될 수 있다. OFDM(직교 주파수 분할 멀티플렉싱된) 채널들이 디지털적으로 결합될 때의 PAPR은 소정의 심볼 기간에 대한 시간 영역 OFDM 신호들을 메모리 버퍼 내에 저장하고 적어도 하나의 OFDM 신호에 대해서 주기적 시간 시프트(time-shift)들을 수행하여서 그 결합된 다중 채널 신호의 저감된 PAPR에 대응하는 시간 시프트를 선택함으로써 저감될 수 있다. 이는 베이스밴드 상의 신호들 또는 업컨버팅된 신호들에 대해서 적용될 수 있다. 시뮬레이션 결과에 따르면, 시스템 성능을 저하시키지 않고서 수 데시벨(dB)의 PAPR이 감소될 수 있음을 알 수 있었다. 또한, 어떠한 부 정보도 수신기에 전송될 필요가 없다.When multiple radio signals with different carrier frequencies are combined to be transmitted, the PAPR (peak to average power ratio) of this combined signal may increase because peaks in phase are likely to be combined with each other. Thereby, a large radio frequency power amplifier (PA) operating at low average efficiency may be required. The PAPR when OFDM (Orthogonal Frequency Division Multiplexed) channels are digitally combined can be used to store time domain OFDM signals for a given symbol period in a memory buffer and to periodically time-shift for at least one OFDM signal. And selecting a time shift corresponding to the reduced PAPR of the combined multi-channel signal. This can be applied to signals on the baseband or upconverted signals. Simulation results show that PAPR of several decibels (dB) can be reduced without degrading system performance. Also, no sub information needs to be transmitted to the receiver.
본 발명에 따른 시스템 및 방법의 바람직한 실시예는 소정의 심볼 기간에 대한 시간 영역 OFDM 신호들을 메모리 버퍼 내에 저장하고 상기 시간 영역 OFDM 신호들 중 적어도 하나에 대해서 주기적 시간 시프트들을 수행하여서 그 결합된 다중 채널 신호의 소망하는 PAPR에 대응하는 시간 시프트를 선택함으로써 PAPR을 제어하고자 한다. 대부분의 경우에, PAPR을 최소치로 저감시키는 것이 바람직하지만, 본 발명은 이로만 한정되는 것이 아니다. 이와 달리, 선택된 시간 시프트는 다른 기준에 기초할 수 있다.A preferred embodiment of the system and method according to the present invention is characterized by storing time domain OFDM signals for a given symbol period in a memory buffer and performing periodic time shifts on at least one of said time domain OFDM signals, It is desirable to control the PAPR by selecting a time shift corresponding to the desired PAPR of the signal. In most cases, it is desirable to reduce PAPR to a minimum, but the present invention is not limited to this. Alternatively, the selected time shift may be based on another criterion.
상기 OFDM 신호들 각각은 알려진 방식에 따라서 사전 프로세싱되고 이로써 각 OFDM 신호 자체가 고유 PAPR(intrinsic PAPR)이 저감되도록 프로세싱될 수 있지만, 최적의 비용 및 이점을 얻기 위해서, 상기 OFDM 신호들에 대한 바람직하게는 임의의 사전 프로세싱도 그 결합된 신호들에 대한 프로세싱과 협력 관계에 있을 수 있다. 가령, 각각이 높은 PAPR을 갖는 2 개의 개별 신호들이 결합될 경우에, 피크들이 서로 180 도의 위상 차로 부가되어서 상쇄된다면 감소된 PAPR을 갖는 신호를 얻을 수 있다. 따라서, 입력 OFDM 신호들을 수정하고자 하는 초기의 단독적인 노력들도 어느 정도 한계는 있지만 이점을 가질 수 있다.Each of the OFDM signals is pre-processed according to a known manner so that each OFDM signal itself can be processed to reduce its intrinsic PAPR (Intrinsic PAPR), but in order to obtain optimal cost and benefit, Any pre-processing may be in cooperation with the processing for the combined signals. For example, when two individual signals each having a high PAPR are combined, a signal having a reduced PAPR can be obtained if the peaks are canceled by adding 180 degrees of phase difference to each other. Thus, even the initial singular efforts to modify the input OFDM signals are somewhat limited, but may have advantages.
본 발명에 따른 시스템은 일반적으로는 통상적으로 서로 간에 협력 관계에 있지 않은 서로 다른 수신기 또는 수신기 세트를 향하게 되어 있는 독립적으로 포맷팅된(formatted) OFDM 신호들을 결합하고자 하는 것이다. 가령, 셀룰러 송수신기 시스템에서, 일 기지국은 각각이 단일 OFDM 브로드캐스트 채널을 모니터링하는 수백 또는 수천 개의 셀 전화들을 서비스할 수 있다. 이 기지국은 다수의 OFDM 채널들을 서비스할 수 있다. 특히, 각 OFDM 서브캐리어 세트는 직교하지만 개별 OFDM 신호들 및 그들의 서브캐리어들은 일반적으로 서로 직교하지 않는다. OFDM 신호들은 서로 인접하거나 변위된 채널들 내에 존재하며 따라서 OFDM 신호들 간의 상대적인 위상 변화가 단일 심볼 기간 동안 발생할 수 있다. 따라서, PAPR은 전체 심볼 기간에 걸쳐서 고려되어야 한다.A system according to the present invention is generally intended to combine independently formatted OFDM signals that are typically directed to different sets of receivers or receivers that are not in cooperation with each other. For example, in a cellular transceiver system, one base station may service hundreds or even thousands of cell phones, each monitoring a single OFDM broadcast channel. This base station can serve multiple OFDM channels. In particular, each OFDM subcarrier set is orthogonal but the individual OFDM signals and their subcarriers are generally not orthogonal to each other. The OFDM signals are present in adjacent or displaced channels of one another and therefore a relative phase change between the OFDM signals can occur during a single symbol period. Therefore, PAPR should be considered over the entire symbol period.
본 발명에 따른 방법에 따라서, 최적화를 위해서 분석되는 것은 신호의 PAPR이 아니라 수신기에서 추론된 에러이다. 결합된 신호의 PAPR이 심볼 기간의 오직 작은 부분에 대해서만 높다면, 전력 증폭기는 이 작은 부분의 시간에만 신호를 왜곡하거나 클립핑할 수 있지만, 대부분의 시간 동안에는 상기 결합된 신호는 해당 사양 내의 양호한 상태에 있을 수 있다. 따라서, 해당 전송은 허용 가능한 전송이 될 수 있으며 낮은 에러 확률이 발생할 수 있다. 몇몇 경우에는, 이러한 낮은 에러 확률은 낮은 절대 피크를 갖는 신호의 경우에서보다 낮을 수 있다. 따라서, 특정 수신기들에 대한 특정 통신 채널 손상 및 (가령, 복귀 경로 특성을 분석함으로써 판정될 수 있는) 도플러 시프트들에 대한 마진(margin)을 가능한 편차 범위에 걸쳐서 송신기 신호 프로세싱 경로의 일부로서 자체적으로 포함하는 수신기 모델을 채용함으로써, 간단히 PAPR를 최소화하는 경우에서보다 양호한 성능이 달성될 수 있다.According to the method according to the invention, what is analyzed for optimization is the error inferred at the receiver, not the PAPR of the signal. If the PAPR of the combined signal is high only for a small fraction of the symbol period, the power amplifier can distort or clip the signal only in this small fraction of the time, but for most of the time the combined signal is in a good state Can be. Thus, the transmission may be an acceptable transmission and a low error probability may occur. In some cases, this low error probability may be lower than in the case of a signal having a low absolute peak. Thus, a particular communication channel impairment for particular receivers and a margin for Doppler shifts (which can be determined, for example, by determining return path characteristics) can be determined by itself as part of the transmitter signal processing path over a range of possible deviations By employing a receiver model that includes, better performance can be achieved in the case of simply minimizing the PAPR.
다른 옵션은 심볼 기간 전체 또는 일부 동안에 가령 IEEE-802 OFDM 표준, WiFi, WiMax, DAB, DVB, 셀룰러 통신, LTE 신호 등과 같은 표준 프로토콜로부터 벗어난 방식이지만 표준 수신기 또는 특정 수신기에서 예상된 BER(비트 에러 레이트)를 실질적으로 증가시키지 않는 방식으로 OFDM 신호를 수정하는 것이다. 가령, PAPR이 심볼 기간의 작은 부분에서 높게 되어서, 심볼 기간의 일부분 동안에 하나 이상의 서브캐리어들이 제거되거나 수정되고, 이로써 PAPR은 허용 가능하게 되며 수신기에서의 신호가 BER를 크게 증가시키지 않고서 표준 수신기를 사용하여서 디코딩되기에 충분한 정보를 가질 경우에, 송신기는 복조를 위해서 필요한, 상술한 OFDM 신호 수정을 식별하는 부 정보를 전송할 필요 없이 상술한 OFDM 신호 수정을 구현할 수 있다. 다른 가능한 변형은 주파수 시프트와 균등한 도플러 시프트의 범위 내에서 동작하도록 수신 허용 오차 범위 내에서 (직교성을 약간 위반한) 신호를 주파수 시프트하는 것이다.Other options are those that deviate from standard protocols such as IEEE-802 OFDM standard, WiFi, WiMax, DAB, DVB, cellular communication, LTE signals, etc. during all or part of a symbol period, Lt; RTI ID = 0.0 > OFDM < / RTI > For example, one or more subcarriers may be removed or modified during a portion of a symbol period such that the PAPR is high in a small portion of the symbol period such that the PAPR is allowed and the signal at the receiver uses the standard receiver The transmitter can implement the OFDM signal modification described above without the need to transmit sub-information identifying the above-mentioned OFDM signal modification needed for demodulation. Another possible modification is to frequency shift the signal (with a slight violation of orthogonality) within the tolerance range to operate within a range of frequency shift and equivalent Doppler shift.
도 2에 도시된 바와 같이 결합되는 2 개의 OFDM 신호들을 고려해보자. 단순화를 위해서, 신호 1 (S1)을 기준 신호로 호칭하고 신호 2 (S2)을 수정된 신호로 칭하자. 각 OFDM 심볼 기간 동안에, 각 신호에 대한 베이스밴드 디지털 데이터 비트들이 메모리 내에 저장될 것이다. 프리앰블은 제거되었지만 CP(cyclic prefix)는 남아 있다고 가정하자. 본 발명의 일 실시예에 대한 것인 도 3에 도시된 바와 같이, 기준 신호(S1)의 비트들이 FIFO(first-in first-out:선입선출) 시프트 레지스터(SR)에 저장된다. 수정된 신호(S2)의 대응하는 비트들이 CSR(circular shift register) 내에 저장된다. CSR은 그 내에 포함된 데이터들이 프로그램 제어 하에서 회전할 수 있도록 구성된다. 디지털 포맷이 디지털 데이터 레이트에 비해서 증가된 샘플링 주파수로 유지되면서, 기준 신호 및 수정된 신호의 데이터들이 중간 주파수(IF)로 업컨버팅되고 이어서 결합된다(부가된다). 이어서, 결합된 IF 신호들은 PAPR 테스트를 받으며, 이로써, 피크 전력 레벨이 허용 가능한 지의 여부가 판정된다. 다른 실시예에서는, 다른 기준이 만족되는 지가 판정된다. 그 결과는 가령 9 dB의 PAPR에 상당할 수 있다. 테스트를 통과하였으면, 결합된 OFDM 심볼들의 데이터 비트들이 판독되고 이어서 전체 OFDM 프레임 내로 재결합되고 완전한 RF로 업컨버팅되어서 전력 증폭기에 의해서 증폭되어서 전송된다. 다른 실시예에 따라서, 결합된 데이터의 결합된 OFDM 표현 자체가 업컨버팅을 위한 소스가 될 수 있다.Consider two OFDM signals that are combined as shown in FIG. For simplicity, we refer to signal 1 (S1) as the reference signal and signal 2 (S2) as the modified signal. During each OFDM symbol period, baseband digital data bits for each signal will be stored in memory. Suppose that the preamble has been removed, but a cyclic prefix (CP) remains. The bits of the reference signal S1 are stored in a first-in first-out (FIFO) shift register SR, as shown in Fig. 3 for one embodiment of the present invention. Corresponding bits of the modified signal S2 are stored in a circular shift register (CSR). The CSR is configured such that the data contained therein can be rotated under program control. As the digital format is maintained at an increased sampling frequency relative to the digital data rate, the data of the reference signal and the modified signal are upconverted to the intermediate frequency (IF) and then combined (added). The combined IF signals are then subjected to a PAPR test, thereby determining whether the peak power level is acceptable. In another embodiment, it is determined whether other criteria are met. The result can be equivalent to a PAPR of, for example, 9 dB. Once the test passes, the data bits of the combined OFDM symbols are read out, then recombined into the entire OFDM frame, upconverted to full RF, amplified by the power amplifier and transmitted. According to another embodiment, the combined OFDM representation of the combined data may itself be the source for the upconverting.
보다 일반적으로 말하자면, 소망하는 기준을 달성하는 파라미터 정보(상대적 시간 시프트)가 판정되면, 상기 파라미터 정보 또는 베이스밴드 신호의 디지털 데이터 비트이거나 베이스밴드 신호의 변환된 형태일 수 있는 최종 생성된 표현에 기초하여서 최종 신호가 형성된다. 후자의 경우에, 즉, 최종 생성된 표현에 기초하여서 최종 신호가 형성되는 경우에, 시스템은 그 데이터에 대해서 일련의 변환들을 수행한다. 이러한 일련의 변환들 중 몇몇은 사용하지 않은 여분의 변환이거나 실패한 변환일 수 있다. 이러한 변환들을 수행하여서 허용 가능한 것 또는 최적의 것을 찾는다. 일단 허용 가능한 것 또는 최적의 것이 발견되면, 이러한 일련의 변환들을 다시 반복할 필요가 없다. 마찬가지로, 선택 사양적으로 최초의 디지털 데이터로 복귀하여서 결정된 일련의 변환들을 반복하면, 다소 상이한 표현이 레지스터 내에서 형성될 것이다. 가령, 이러한 표현은 결합 테스트에서 아날로그 구성 요소 성능 문제가 고려될 수 있도록 단순화되거나 사전왜곡(predistort)될 수 있다.More generally, if parameter information (relative time shift) to achieve the desired criterion is determined, then the parameter information or the digital data bits of the baseband signal, or based on the last generated representation, which may be a transformed form of the baseband signal Thereby forming a final signal. In the latter case, i.e., if the final signal is formed based on the final generated representation, the system performs a series of transformations on the data. Some of these series of transforms may be extra transformations that have not been used or failed transformations. Perform these transformations to find what is acceptable or optimal. Once an acceptable or optimal one is found, it is not necessary to repeat this series of transformations again. Similarly, optionally repeating a series of transformations determined by returning to the original digital data, a somewhat different representation will be formed in the register. For example, this representation can be simplified or predistorted so that analog component performance problems can be considered in a coupling test.
더 일반적으로 말하자면, 본 발명에서는, 증분적으로, 알고리즘 방식으로, 랜덤(random) 방식으로 또는 이와 다른 방식으로 변할 수 있는 하나 이상의 허용 가능한 파라미터들의 범위가 결합될 각 신호에 제공된다. 이어서, 가능한 OFDM 신호 결합들 중 적어도 일부가 하나 이상의 기준에 부합하는지에 대하여 테스트 및/또는 분석된다. 이어서, 결합된 OFDM 신호들이 보다 큰 가용한 파라미터 세트로부터 선택된 파라미터를 사용하여서 구현된다. 이러한 파라미터 변경 및 테스트는 초전도 로직과 같은 고속 디지털 회로로 직렬 방식으로 수행되거나 필요하다면 병렬화 기능을 갖는 저속 로직을 사용하여서 수행될 수 있다. 그러나, 다음으로 한정되지 않지만 광학적 컴퓨터, 프로그램 가능한 로직 어레이, 초병렬 컴퓨터(가령, nVidia Tesla® GPU, ATI Radeon R66, R700과 같은 그래픽 프로세서들) 등을 포함하는 다른 기술들이 적합하거나/하고 필요하다면 사용될 수 있다. 가령, 아주 많은 수의 독립 수신기들이 송신기 최적화의 일부로서 모델링되는 경우와 같이, 특정 고속 프로세서를 많이 사용하는 매우 많은 수의 복잡한 계산의 경우에는 초전도 디지털 회로를 사용하는 것이 유리할 수 있다.More generally, in the present invention, a range of one or more allowable parameters, which may be incrementally, algorithmically, randomly or otherwise, is provided for each signal to be combined. Then, it is tested and / or analyzed as to whether at least some of the possible OFDM signal combinations meet one or more criteria. The combined OFDM signals are then implemented using parameters selected from a larger set of available parameters. These parameter changes and tests may be performed in a serial manner with high-speed digital circuits such as superconducting logic or, if necessary, using low-speed logic with parallelism. However, other technologies, including but not limited to, optical computers, programmable logic arrays, super parallel computers (e.g., graphics processors such as nVidia Tesla® GPU, ATI Radeon R66, R700) Can be used. For example, it may be advantageous to use superconducting digital circuits in the case of a very large number of complex calculations using a large number of specific high-speed processors, such as when a large number of independent receivers are modeled as part of the transmitter optimization.
바람직한 실시예들에서, 파라미터 범위에 걸친 테스트의 임의의 상태에서, 테스트가 통과되지 않으면, 제어 신호가 가령 CSR와 같은 레지스터에 제공되며, 이 레지스터는 수정된 신호(S2)의 데이터 비트들을 회전시킨다. 이어서, 시프트된 데이터가 이전과 같이 신호(S1)로부터의 초기에 저장된 데이터와 결합되고 이어서 PAPR이 재테스트된다. 이는 PAPR 테스트가 통과될 때까지 반복된다. 유사한 단계들의 순서가 도 4에 도시되어 있다. 도 4에서는, 프리앰블을 제거하고 프리앰블을 단부에 다시 붙이는 동작이 명시적으로 나타나 있다. 몇몇 경우에, 테스트들은 병렬로 이루어질 수 있으며 이로써 엄밀하게 말하여서 반복적인 테스트는 필요하지 않게 된다. 이로써, 비록 복잡도가 높지만 저속 테스트 로직이 사용될 수 있다. 마찬가지로, 각 상대적 시간 시프트에서, 부수적인 파라미터가 또한 고려될 수 있다.In the preferred embodiments, in any state of the test over the parameter range, if the test is not passed, a control signal is provided to a register, such as a CSR, for example, which rotates the data bits of the modified signal S2 . The shifted data is then combined with the data initially stored from signal S1 as before and the PAPR is then retested. This is repeated until the PAPR test passes. The sequence of similar steps is shown in FIG. In Fig. 4, an operation of removing the preamble and reattaching the preamble to the end is explicitly shown. In some cases, the tests can be done in parallel, so that strict testing and repetitive testing is not required. This allows low-speed test logic to be used, although the complexity is high. Similarly, for each relative time shift, ancillary parameters may also be considered.
가령, 최적 결합을 위한 부수적인 고려 사항은 대역 내(필터링 불가능한) 혼변조 왜곡(intermodulation distortion)일 수 있다. 따라서, 각 기본적인 파라미터 변경 시에, 가령 전력 및/또는 추론된 BER로 표현되는 예측된 대역 내 혼변조 왜곡은 계산될 수 있다. 이러한 고려 사항은 가령 임계치를 부여하거나 간단한 선형 결합 "비용 함수"을 최적화함으로써 허용 가능한 PAPR 범위 내에서 PAPR에 병합될 수 있다.For example, ancillary considerations for optimal combining may be in-band (non-filterable) intermodulation distortion. Thus, at each basic parameter change, predicted intermodulation distortion, e.g., expressed in terms of power and / or inferred BER, can be computed. These considerations can be merged into the PAPR within an acceptable PAPR range, for example by thresholding or by optimizing a simple linear combination "cost function ".
이러한 SAA(Shift-and-Add) 프로세스에서 어느 정도 지연이 존재하지만, 전체 반복을 포함하여서 전체 결정 알고리즘 시간은 확장된 심볼 기간 T + △T를 초과하지 말아야 한다. 도 3 및 도 4에서 직렬 결정 프로세스를 기술하였다. 상술한 바와 같이, 몇몇 경우에, 이러한 프로세스의 일부를 상이한 시프트를 갖는 다수의 CSR 및 다수의 병렬 PAPR 테스트를 사용하여서 병렬로 수행하여서 프로세스를 보다 신속하게 완료하는 것이 바람직할 수 있다. 이러한 바가 도 5에 도시되어 있다. 도 5는 각각이 적합한 시간 시프트를 갖는 병렬 메모리들(본 도면에서는 RAM들로 도시됨)을 나타내고 있으며, 최소 PAPR이 RF 서브시스템으로 전송되기 위해서 선택된다. 회로 속도와 복잡도 간의 최적의 절충에 따라서 바람직한 구성이 결정될 수 있다.There is some delay in this Shift-and-Add (SAA) process, but the total decision algorithm time, including the entire iteration, should not exceed the extended symbol period T + ΔT. The serial determination process is described in FIGS. 3 and 4. FIG. As described above, in some cases, it may be desirable to perform some of these processes in parallel using multiple CSRs and multiple parallel PAPR tests with different shifts to complete the process more quickly. Such a bar is shown in Fig. FIG. 5 shows parallel memories (shown as RAMs in this figure), each with a suitable time shift, and a minimum PAPR is selected for transmission to the RF subsystem. A preferable configuration can be determined in accordance with an optimal trade-off between the circuit speed and the complexity.
몇몇 상황에서는, 최적의 결합된 신호를 탐색하기 위해서 광대한 양의 계산 자원들이 필요하다. 사실상, 허용 가능한 결과를 달성하면서 탐색량을 한정하기 위해서 귀납적인 방법이 사용될 수 있다. PAPR 최적화의 경우에, 일반적으로 그 목적은 한정된 개수의 낮은 확률의 "최악의 경우의" 심볼 결합에 대하여서 테스트하는 것이다. 로우 디지털 데이터(raw digital data)가 입수되면, 룩업 테이블이 사용되어서 불량한 결합에 대한 테스트가 수행된다. 이어서, 사전 결정된 수정 사항에 따라서 이 불량한 결합이 처리될 수 있다. 그러나, 복잡한 심볼들이 다중 방식으로 결합된 경우에는, 이러한 룩업 테이블은 사용할 수 없다. 한편, 개별 OFDM 파형 각각이 가령 평균보다 6 dB 이상인 피크에 대해서 탐색될 수 있다. 오직 신호 중 이러한 부분만이 분석되어서 다른 OFDM 신호들의 피크들과 일시적으로 정렬되는지의 여부가 판정될 수 있다. 피크들이 서로 일시적으로 동기화되지 않는다면, 허용 불가능한 피크가 최종 결합된 신호를 생성하지 않았을 것이라고 가정할 수 있다. 이 방법은 통계적으로 허용 가능해야 하는 가정을 한다. 즉, 그 자체가 상대적인 피크들인 OFDM 파형의 일부분들만이 결합된 OFDM 신호의 큰 피크에 기여할 것이라는 가정이다. 이 방법은 순차적으로 파라미터를 변경한 결과를 직렬로 테스트하는 동작을 피하고 이진 임계 조건이 최악의 경우로 중첩하는 바도 간단하게 피할 수 있다.In some situations, a vast amount of computational resources is needed to search for the best combined signal. Indeed, an inductive method can be used to limit the amount of search while achieving an acceptable result. In the case of PAPR optimization, the goal is generally to test for a limited number of " worst case "symbol combinations with a low probability. When raw digital data is obtained, a lookup table is used to test for poor coupling. This poor combination can then be processed according to a predetermined modification. However, when complex symbols are combined in a multiplex manner, this lookup table can not be used. On the other hand, each individual OFDM waveform can be searched for a peak that is, for example, at least 6 dB above the average. It can be determined whether only this portion of the signal is analyzed and temporally aligned with the peaks of the other OFDM signals. If the peaks are not temporally synchronized with each other, it can be assumed that the unacceptable peak has not generated the final combined signal. This method makes assumptions that should be statistically acceptable. That is, it is assumed that only a part of the OFDM waveform, which itself is a relative peak, will contribute to a large peak of the combined OFDM signal. This method avoids the operation of serially testing the results of sequentially changing parameters and avoids superposition of binary critical conditions in the worst case.
수정된 신호에 대하여 순환적으로 시프트된 심볼 데이터는 시프트되지 않은 데이터와 정확하게 동일한 심볼 세트를 표현한다는 것을 주목할 필요가 있다. 또한, OFDM 신호들의 표준 특성으로 인해서, 시프트된 심볼 세트는 어떠한 특별한 부 정보도 필요 없이 신호 무결성이 전혀 저하되지 않으면서 전송 및 수신될 수 있다. 따라서, 감소된 PAPR을 갖는 결합된 OFDM 채널들은 최초의 시프트되지 않은 버전과 본질적으로 동일한 성능을 발휘하여야 한다. 이를 확인하는 세부적인 시뮬레이션 세트가 다음의 상세한 설명 부분에서 기술될 것이다.It should be noted that the symbol data cyclically shifted for the modified signal represents exactly the same symbol set as the un-shifted data. In addition, due to the standard nature of OFDM signals, the shifted symbol set can be transmitted and received without any undue degradation of signal integrity without the need for any special sub information. Thus, the combined OFDM channels with reduced PAPR should exhibit essentially the same performance as the original unshifted version. A detailed set of simulations confirming this will be described in the following detailed description section.
상기 도면들은 2 개의 OFDM 채널들을 결합할 시에 PAPR을 감소시키는 경우에 초점을 두었지만, 본 방법은 2 개의 채널들로 한정되지 않는다. 3 개 이상의 채널들이 유사한 방법의 순환적 시간 시프팅에 의해서 최적화되고, 이어서 PAPR 테스트가 수행될 수 있다.
Although the above figures focus on reducing PAPR when combining two OFDM channels, the present method is not limited to two channels. Three or more channels may be optimized by cyclical time shifting in a similar manner, followed by a PAPR test.
도 1A 및 도 1B는 주파수 영역 및 시간 영역에서 직교 주파수 분할 멀티플렉싱된 채널(OFDM 채널)의 통상적인 거동을 나타낸다.
도 2는 송신기에서 이중 업컨버팅 방식을 사용하여서 2 개의 OFDM 채널들을 결합하는 바를 나타내고 있다.
도 3은 2 개의 OFDM 채널이 결합되는 방식을 나타내는 간단한 블록도로서, PAPR(피크 대 평균 비)를 감소시키기 위해서 일 OFDM 채널의 데이터 비트들이 주기적으로 시프트된다.
도 4는 2 개의 OFDM 채널의 구조를 나타내며, PAPR를 저감시키기 위해서 일 OFDM 채널의 데이터가 주기적으로 시프트된다.
도 5는 OFDM 채널로부터의 데이터의 다수의 시프트된 복제 데이터를 메모리에 저장하고 PAPR을 최소화할 수 있는 하나의 복제 데이터를 선택하는 바를 나타내는 블록도이다.
도 6은 송신기 내에 SAA(shift and add) 알고리즘을 포함하는 시뮬레이션되는 통신 시스템의 블록도이다.
도 7은 도 6에 도시된 시뮬레이션을 위해서 송신기 내에 포함된 전력 증폭기의 전달 함수를 나타내고 있다.
도 8은 QPSK(quadrature phase-shift keying) 변조에 대해서 SAA 알고리즘을 적용하였을 때와 적용하지 않았을 때의 BER 성능을 SNR(신호 대 잡음 비) 함수로서 나타내고 있는 시뮬레이션 그래프이다.
도 9는 16-QAM(16 quadrature amplitude modulation)에 대해서 SAA 알고리즘을 적용하였을 때와 적용하지 않았을 때의 BER 성능을 SNR(신호 대 잡음 비) 함수로서 나타내고 있는 시뮬레이션 그래프이다.Figures 1A and 1B illustrate typical behavior of orthogonal frequency division multiplexed channels (OFDM channels) in the frequency domain and time domain.
FIG. 2 illustrates the coupling of two OFDM channels using a dual upconverting scheme in a transmitter.
FIG. 3 is a simplified block diagram illustrating the manner in which two OFDM channels are combined, in which data bits of one OFDM channel are cyclically shifted in order to reduce the PAPR (peak-to-average ratio).
4 shows the structure of two OFDM channels, in which data of one OFDM channel is periodically shifted in order to reduce the PAPR.
5 is a block diagram illustrating a method for storing a plurality of shifted replicated data of data from an OFDM channel in a memory and selecting one replicated data capable of minimizing PAPR.
6 is a block diagram of a simulated communication system including a shift and add (SAA) algorithm within the transmitter.
FIG. 7 shows the transfer function of the power amplifier included in the transmitter for the simulation shown in FIG.
FIG. 8 is a simulation graph showing the BER performance when the SAA algorithm is applied to the quadrature phase-shift keying (QPSK) modulation and the BER performance when the SAA algorithm is not applied as a function of SNR (signal-to-noise ratio).
9 is a simulation graph showing the BER performance when the SAA algorithm is applied to 16-QAM (16 quadrature amplitude modulation) and when the SAA algorithm is not applied as a function of SNR (signal-to-noise ratio).
OFDM 채널들은 각각이 협대역 신호인 다수의 서브채널로 구성된다(도 1A 및 도 1B 참조). OFDM 채널 그 자체는 시변 인벨로프(time-varying envelope)를 가지며 통상적으로 9 내지 10 dB의 실질적 PAPR을 나타낼 수 있다. 그러나, 2 개의 개별 OFDM 채널들이 결합되면, 이로써 생성되는 신호는 3 dB 이득의 경우에 12 내지 13 dB의 PAPR을 나타낼 것이다. 이러한 PAPR 값은 평균으로 하면 오직 2 배만큼 큰 전송 용량으로 전송할 수 있는 결합 신호를 전송하기 위해서 4 배만큼이나 큰 용량을 갖는 전력 증폭기를 요구하기 때문에 허용 불가능할 정도로 크다.The OFDM channels are composed of a plurality of subchannels each of which is a narrowband signal (see Figs. 1A and 1B). The OFDM channel itself has a time-varying envelope and can typically exhibit a substantial PAPR of 9 to 10 dB. However, if two separate OFDM channels are combined, the resulting signal will exhibit a PAPR of 12 to 13 dB in the case of 3 dB gain. This PAPR value is unacceptably large because it requires a power amplifier with a capacity as much as four times as large as the average to transmit a coupling signal that can be transmitted with a transmission capacity that is twice as large.
따라서, 본 발명의 바람직한 실시예는 2 개의 OFDM 채널의 결합된 신호의 PAPR을 12 내지 13 dB에서 최초의 성분들의 9 내지 10 dB로 줄이는 PAPR 저감 방법을 제공한다. 이러한 3 dB만큼의 PAPR 감소는 바람직하게는 신호의 품질을 저하시키지 않고 또한 수신기가 OFDM 심볼들을 복구하는데 필요할 임의의 특정 부 정보도 전송할 필요 없이 달성된다. 또한, PAPR 저감 방법은 충분하게 신속하기만 하면 임의의 하드웨어 기술로도 구현될 수 있을 만큼 충분하게 단순하다.Thus, a preferred embodiment of the present invention provides a PAPR mitigation method that reduces the PAPR of the combined signal of two OFDM channels from 12 to 13 dB to 9 to 10 dB of the original components. This reduction of the PAPR by 3 dB is preferably achieved without degrading the quality of the signal and without requiring the receiver to transmit any particular sub information required to recover the OFDM symbols. In addition, the PAPR mitigation method is sufficiently simple to be implemented with any hardware technology as long as it is sufficiently fast.
종래의 PAPR 저감 방법들은 서브채널들을 결합하여서 높은 PAPR을 가지지 않는 단일 OFDM 채널을 생성하는데 초점을 두고 있다. 본 발명은 어떤 측면에서 PTM(partial transmit sequence) 및 SLM(selected Mapping)의 결합으로서 생각될 수 있다.Conventional PAPR mitigation methods focus on combining subchannels to create a single OFDM channel with no high PAPR. The present invention may in some aspects be thought of as a combination of partial transmit sequence (PTM) and selected mapping (SLM).
통상적인 PTS에서, N 개의 심볼들로 된 입력 데이터 블록이 분리된 서브블록들로 분할된다. 각 서브블록 내의 서브캐리어들은 해당 서브블록에 대한 위상 요소(phase factor)만큼 가중치 처리된다. 결합된 신호의 PAPR이 최소화되도록 위상 요소들이 선택된다.In a typical PTS, an input data block of N symbols is divided into separate sub-blocks. The subcarriers in each subblock are weighted by a phase factor for the subblock. The phase elements are selected such that the PAPR of the combined signal is minimized.
SLM 방식에서, 송신기는 모두가 최초의 데이터 블록과 동일한 정보를 나타내는 서로 간에 충분하게 상이한 후보 데이터 블록들로 구성된 세트를 생성하고, 전송을 위해서 최적의 후보 데이터 블록(신호 품질 저하가 없는 최저의 PAPR을 갖는 후보 데이터 블록)을 선택한다.In the SLM scheme, the transmitter generates a set of candidate data blocks that are sufficiently different from each other, all of which represent the same information as the original data block, and transmit the best candidate data block (the lowest PAPR (I.e., a candidate data block having a plurality of candidate data blocks).
본 발명의 혼성 방식은 결합된 캐리어 변조된 신호들을 위해서 PTS 요소 및 SLM 요소를 결합시킨다. 오버샘플링된 OFDM 파형의 다양한 주기적 시간 시프트들이 탐색되고, 최저의 PAPR을 갖는 시간 시프트가 선택된다. PTS 방식과 유사한 방식으로, 하나의 OFDM 신호는 기준으로서 사용되고 다른 캐리어 변조된 신호(들)는 시간 시프트들을 생성하는데 사용된다. 탐색 윈도우는 사이클릭 프리픽스(CP) 길이 및 오버샘플링 레이트에 의해서 결정된다.The hybrid scheme of the present invention combines a PTS element and an SLM element for combined carrier modulated signals. Various periodic time shifts of the oversampled OFDM waveform are searched and a time shift with the lowest PAPR is selected. In a manner similar to the PTS scheme, one OFDM signal is used as a reference and the other carrier modulated signal (s) is used to generate time shifts. The search window is determined by the cyclic prefix (CP) length and the oversampling rate.
시프트들의 가능한 결합들의 위상 공간은 크게 증가하지만, 이러한 모든 결합들을 탐색할 필요는 없을 것이다. 일반적으로, 매우 높은 값을 갖는 PAPR은 상대적으로 거의 발생하지 않으므로, 높은 PAPR 상태에서 시작하는 대부분의 시간 시프트들은 PAPR 감소로 이어지는 경향이 있다. 다수의 채널들에서의 시프트들은 순차적으로 또는 병렬로 또는 이들의 몇몇 조합으로 해서 구현될 수 있다. 이로써, 가령, 허용 가능한 범위 내에 있는 PAPR을 갖는 임의의 결합도 허용 가능하게 되며, 임의의 허용 불가능한 PAPR 상태는 심볼 기간의 1 %의 시간에 발생하고, 허용 가능한 PAPR를 찾기 위해서 탐색되는 탐색 공간은 일반적으로 가능한 상태의 2 % 미만일 것이다. 한편, 다른 허용 가능성 판단 기준이 채용되면, 더 큰 탐색 공간이 필요하거나 적절할 것이다. 가령, 높은 PAPR 신호를 전송하기 위해서 더 많은 비용이 든다고 가정하면, 가령, 전력 비용 또는 간섭 비용이 더 든다고 가정하면, 형식적 최적화(formal optimization)가 적합할 수 있다. 최적 상태를 예측하는데 있어서 어떠한 귀납적 방법도 가용하지 않는다면, 비용이 최소화되도록 파라미터 공간 전체를 탐색하는 것이 적합할 수 있다.The phase space of possible combinations of shifts increases significantly, but it will not be necessary to search all these combinations. In general, very high value PAPRs occur relatively infrequently, so most time shifts starting with a high PAPR state tend to lead to PAPR reduction. The shifts in the multiple channels may be implemented sequentially or in parallel or some combination thereof. This allows, for example, any combination with a PAPR that is within an acceptable range to be acceptable, any unacceptable PAPR condition occurs at 1% of the symbol period, and the search space searched for an acceptable PAPR is Generally less than 2% of the possible states. On the other hand, if other acceptability criteria are adopted, a larger search space will be necessary or appropriate. Assuming, for example, that it is more expensive to transmit a high PAPR signal, formal optimization may be appropriate, assuming that, for example, there is more power or interference cost. If no inductive method is available to predict the optimal state, it may be appropriate to search the entire parameter space so that the cost is minimized.
이러한 방식은 상이한 OFDM 채널들은 서로 독립적이고 개별 전송 체인을 가지며 서로 동기화되지 않는 종래 방식과는 상이하다. 또한, 종래 방식은 베이스밴드 신호에 대해서 직접적으로 이루어졌다. 이와 반대로, 본 발명에 따른 방법에서는, 2 개 이상의 OFDM 채널들을 포함하는 업컨버팅된 결합된 신호에 대해서 PAPR을 평가하고, 이러한 OFDM 채널들 각각에 대한 심볼 기간들은 서로 동기화되어야 한다. 이로써, 각 채널이 독립적으로 수신 및 클록킹되는 수신기들에서 문제들이 야기되지 않는다.This scheme is different from the conventional scheme in which different OFDM channels are independent of one another and have separate transmission chains and are not synchronized with each other. In addition, the conventional method was directly performed on the baseband signal. In contrast, in the method according to the present invention, the PAPR is evaluated for the upconverted combined signal comprising two or more OFDM channels, and the symbol periods for each of these OFDM channels must be synchronized with each other. This causes no problems in receivers where each channel is independently received and clocked.
PAPR을 다루고 있는 몇몇 종래 방식은 클립핑(clipping)에 기반을 두고 있지만 이러한 방식에서는 왜곡 및 대역 외 생성이 반드시 발생하게 되어 있다. 몇몇 다른 종래 방식들은 이러한 왜곡을 피할 수는 있지만 수신단에서 디코딩되어야 하는 특정 변환들을 요구하고 있다. 이러한 종래 방식들은 부 정보 전송을 요구하거나 표준 OFDM 통신 프로토콜을 따르지 않을 수 있다. 본 발명에 따른 방식은 이러한 단점을 어느 것도 가지지 않는다.Some conventional schemes dealing with PAPR are based on clipping, but in this way distortion and out-of-band generation must occur. Some other conventional schemes can avoid this distortion, but require specific conversions that must be decoded at the receiving end. These conventional schemes may require sub-information transmission or may not follow the standard OFDM communication protocol. The scheme according to the invention has none of these disadvantages.
셀룰러 통신에서 사용되는 OFDM 채널들은 10 MHz 또는 20 MHz에 달하는 대역폭을 가질 수 있다. 그러나, 이러한 채널들은 2.5 GHz 내지 2.7 GHz와 같은 매우 넓은 주파수 대역 내에 위치할 수 있다. 따라서, 각각이 10 MHz의 대역폭을 가지면서 서로 100 MHz 이상 이격되어 있는 2 개 이상의 OFDM 채널들의 결합을 가질 수 있다. 10 MHz 디지털 베이스밴드 신호는 20 MS/s 정도의 낮은 레이트로 샘플링되지만, 100 MHz를 커버하는 결합된 디지털 신호는 최소 200 MS/2의 레이트로 샘플링되어야 한다.OFDM channels used in cellular communications may have a bandwidth of up to 10 MHz or 20 MHz. However, these channels may be located within a very wide frequency band, such as 2.5 GHz to 2.7 GHz. Thus, they can have a combination of two or more OFDM channels each having a bandwidth of 10 MHz and spaced apart from each other by 100 MHz. A 10 MHz digital baseband signal is sampled at a rate as low as 20 MS / s, but a combined digital signal covering 100 MHz should be sampled at a rate of at least 200 MS / 2.
바람직한 실시예에서, (도 3에서의 업컨버팅을 포함하는) 신호 결합 동작은 증대된 샘플링 레이트로 해서 디지털 영역에서 수행된다. PAPR 임계치 테스트 및 CSR 제어도 또한 더 높은 레이트로 해서 구현된다. 이러한 레이트는 다수의 반복 동작이 단일 심볼 기간(수 마이크로초) 내에 수행될 수 있도록 충분하게 빨라야 한다.In the preferred embodiment, the signal combining operation (including upconverting in FIG. 3) is performed in the digital domain with an increased sampling rate. The PAPR threshold test and CSR control are also implemented at higher rates. This rate should be fast enough so that multiple iterations can be performed within a single symbol period (microseconds).
순환적 시간 시프트(circular time shift)에 의해서 시스템 성능이 저하되지 않고서 결합된 OFDM 채널들의 PAPR이 저감될 수 있음을 입증하기 위해서, OFDM 전송 및 수신에 대하여 전 대역 Monte-Carlo 시뮬레이션이 수행되었다. 이 시뮬레이션의 블록도가 도 6에 요약되어 있다. 도 6에서는, "SAA 평가 테스트 벤치(evaluation test bench)"가 나타나 있으며, 송신기가 PAPR을 저감시키기 위해서 SAA 알고리즘을 거친 주파수 F1 및 F2의 OFDM 신호들을 결합한다. 수신단에서, 이 결합된 신호는 다운컨버팅되고 주파수 F2의 신호가 표준 OFDM 수신기를 사용하여서 복구된다. 나아가, 적합한 AWGN(Additive White Gaussian Noise)가 이 채널에 부가된다. 또한, 이 시뮬레이션은 (도 7에 나타난 바와 같은) 포화 상태에 근사한 선형으로부터의 편차를 나타내는, 거의 선형의 전력 증폭기(PA)에 대한 실제적 전달 함수를 포함한다.To demonstrate that the PAPR of the combined OFDM channels can be reduced without degrading the system performance by circular time shifts, full-band Monte-Carlo simulations have been performed for OFDM transmission and reception. A block diagram of this simulation is summarized in FIG. In Fig. 6, an " SAA evaluation test bench "is shown and the transmitter combines the OFDM signals of frequencies F 1 and F 2 through the SAA algorithm to reduce the PAPR. At the receiving end, this combined signal is downconverted and the signal at frequency F 2 is recovered using a standard OFDM receiver. Further, an appropriate AWGN (Additive White Gaussian Noise) is added to this channel. This simulation also includes an actual transfer function for a nearly linear power amplifier (PA), which represents a deviation from the linear approximation to saturation (as shown in Figure 7).
PAPR BER(비트 에러 레이트) 시뮬레이션에서의 파라미터들은 다음과 같은 것들이 있다. 각 패킷은 사용된 변조 타입에 따라서 여러 개의 OFDM 심볼 기간들에 걸쳐서 변조되는 800 바이트 정보를 포함한다. QPSK(quadrature phase-shift keying) 변조 및 16-QAM(16-quadrature amplitude modulation)이 모두 검사된다. 250 개의 패킷 에러가 발생할 때까지 각 SNR 포인트는 지속된다. 사이클릭 프리픽스는 총 심볼 기간의 1/8로 설정된다. 주파수 F1 및 F2의 캐리어들은 그들의 스펙트럼이 중첩하지 않도록 충분하게 이격되어 있다. 오버샘플링 레이트는 8 배이다. 마지막으로, 매우 급한 롤오프(sharp rolloff)를 가지며 샘플링 주파수 Fs = 160 MHz을 가지고 주파수 컷오프 Fc = 24 MHz를 갖는 올림 코사인 필터(raised cosine filter)가 사용되었다. 결합된 OFDM 채널들에 대하여 약 9 dB의 PAPR 임계치가 사용되었다.The parameters in the PAPR BER (bit error rate) simulation are as follows. Each packet contains 800 bytes of information that is modulated over several OFDM symbol periods according to the modulation type used. Quadrature phase-shift keying (QPSK) modulation and 16-quadrature amplitude modulation (16-QAM) are both examined. Each SNR point is sustained until 250 packet errors occur. The cyclic prefix is set to 1/8 of the total symbol period. The carriers at frequencies F 1 and F 2 are sufficiently spaced such that their spectra do not overlap. The oversampling rate is 8 times. Finally, we have a very sharp rolloff and have a sampling frequency F s = 160 MHz and a raised cosine filter with frequency cutoff F c = 24 MHz was used. A PAPR threshold of about 9 dB was used for the combined OFDM channels.
도 8은 QPSK 변조에 대해서 SAA 알고리즘을 적용하였을 때와 적용하지 않았을 때의 BER 성능을 (AWGN 전력을 변화시키는) SNR(신호 대 잡음 비) 함수로서 나타내고 있다. 도 9는 16-QAM 변조에 대해서 SAA 알고리즘을 적용하였을 때와 적용하지 않았을 때의 BER 성능을 (AWGN 전력을 변화시키는) SNR(신호 대 잡음 비) 함수로서 나타내고 있다. 두 경우 모두, BER이 제로 시프트 곡선으로부터 거의 저하되지 않았음을 알 수 있다.FIG. 8 shows the BER performance when applying the SAA algorithm for QPSK modulation and when not applying it as a function of SNR (signal-to-noise ratio) (changing the AWGN power). Figure 9 shows the BER performance when applying the SAA algorithm for 16-QAM modulation and when not applied as a function of SNR (signal-to-noise ratio) (changing the AWGN power). In both cases, it can be seen that the BER is not substantially reduced from the zero-shift curve.
정량적으로 보게 되면, SAA 알고리즘을 적용하였을 경우에 순 성능 개선 정도는, BER 플롯으로부터 유추할 수 있는 바와 같이, QPSK 변조의 경우에 2.35 dB이며 16-QAM 변조의 경우에는 2.9 dB이다. 가령, SAA(shift and add) 알고리즘을 적용하지 않았을 경우에, BER은 8.5 dB의 (전력 증폭기에 대한) 입력 백오프(backoff)에서 0.03의 오류 마루(error floor)를 나타내는데 반면에, 6.5 dB의 SAA를 적용하면 BER은 동일한 0.03의 오류 마루를 나타낸다. 따라서, SAA 알고리즘을 적용함으로써 달성되는 성능 개선 정도는 8.5 - 6.5 = 2 dB이다.Quantitatively, the net performance improvement when applying the SAA algorithm is 2.35 dB for QPSK modulation and 2.9 dB for 16-QAM modulation, as can be deduced from the BER plot. For example, when the SAA (shift and add) algorithm is not applied, the BER shows an error floor of 0.03 at an input backoff of 8.5 dB (for the power amplifier), whereas a BER of 6.5 dB When SAA is applied, BER shows the same error floor of 0.03. Therefore, the performance improvement achieved by applying the SAA algorithm is 8.5 - 6.5 = 2 dB.
이러한 시뮬레이션으로부터, SAA 알고리즘이 결합된 OFDM 채널에서의 PAPR을 3 dB 만큼 저감시켰을 뿐만 아니라 이러한 PAPR 감소는 신호 품질을 저하시키지 않고 변환에 대한 어떠한 특정 부 정보도 전송 신호 내에 포함시켜서 전송할 필요 없이 이루어질 수 있음을 확인할 수 있다.From this simulation, it can be seen that the SAA algorithm not only reduces the PAPR in the combined OFDM channel by 3 dB, but also this PAPR reduction can be achieved without including any specific sub information about the transform in the transmission signal without degrading the signal quality .
본 발명의 일 바람직한 구현예는 시프트 레지스터 메모리, 디지털 업컨버팅 및 임계치 테스트를 위한 블록들을 갖는 고속 FPGA(field programmable gate array)를 사용하여서 구현될 수 있다. 이와 달리, RSFQ(rapid single flux quantum) 초전도 회로와 같은 초고속 디지털 기술이 사용될 수 있다. 결합되는 OFDM 채널들의 개수가 증가할수록, 알고리즘 속도를 증가시키거나 아니면 프로세싱의 일부를 병렬로 실행할 필요가 있다.One preferred implementation of the present invention may be implemented using a high speed field programmable gate array (FPGA) with blocks for shift register memory, digital upconverting, and threshold testing. Alternatively, ultra high speed digital technology such as a rapid single flux quantum (RSFQ) superconducting circuit can be used. As the number of OFDM channels coupled increases, it is necessary to increase the speed of the algorithm, or to perform some of the processing in parallel.
본 발명에 따른 방법은 전송될 다수의 채널들이 사용자 요구 사항 및 가용한 대역폭에 따라서 동적으로 재할당되는 무선 인지 기술을 따르는 재구성 가능한 시스템에도 적용될 수 있다. 전송되는 채널의 수 및 이들에 대한 주파수 할당 사항은 전적으로 소프트웨어로 수행되는 제어 하에서 변할 수 있다. 모든 채널들이 동일한 일반적인 심볼 프로토콜 및 타이밍을 따르면, 유사한 SAA(shift and add) 알고리즘 세트를 적용하여서 효율적인 전송을 위해서 PAPR을 유지시킬 수 있다.The method according to the present invention can also be applied to a reconfigurable system following a wireless cognitive technology in which a plurality of channels to be transmitted are dynamically re-allocated according to user requirements and available bandwidth. The number of channels to be transmitted and the frequency assignments for them may vary entirely under software-controlled control. All channels follow the same general symbol protocol and timing, and a similar set of SAA (shift and add) algorithms can be applied to maintain PAPR for efficient transmission.
본 발명에 대한 전술한 설명은 본 기술 분야의 당업자가 본 발명을 실시하거나 사용하도록 하기 위해서 제공되었다. 이러한 본 발명에 대한 다양한 수정들이 본 기술 분야의 당업자에게는 쉽게 명백해질 것이며 본 명세서에서 규정된 전반적인 원리들은 본 발명의 사상 또는 범위를 일탈하지 않고서 다른 변형들에도 적용될 수 있다. 따라서, 본 발명은 본 명세서에서 기술된 설계 및 실례들로만 한정되는 것이 아니라, 본 명세서에서 개시된 원리 및 신규한 특징들에 부합되는 가장 넓은 범위가 본 발명에 부여될 수 있다. 따라서, 본 발명의 범위는 다음의 청구 범위에 의해서 규정된다.The foregoing description of the invention has been presented to enable any person skilled in the art to make or use the invention. Various modifications to this invention will become readily apparent to those skilled in the art, and the overall principles set forth herein may be applied to other modifications without departing from the spirit or scope of the invention. Accordingly, the invention is not limited to the design and illustrations described herein, but the widest scope consistent with the principles and novel features disclosed herein may be devoted to the invention. Accordingly, the scope of the present invention is defined by the following claims.
Claims (43)
적어도 2개의 신호를 규정하는 정보를 수신하는 단계,
각각의 신호를 규정하는 정보를 직교 주파수 멀티플렉싱된 신호 성분을 갖는 적어도 하나의 표현으로 변환하는 단계 - 각각의 신호 중 적어도 하나를 규정하는 정보는 동일 정보를 나타내는 서로 다른 직교 주파수 멀티플렉싱된 신호 성분을 갖는 적어도 2개의 교번하는 표현(alternate representation)으로 변환되며, 교번하는 표현 각각은 각 신호의 통신 프로토콜과 양립 가능함 - ,
동일 정보를 나타내는 적어도 2개의 신호의 각각의 서로 다른 결합을 규정하기 위해, 적어도 2개의 서로 다른 방식으로 동일 정보를 나타내는 서로 다른 직교 주파수 멀티플렉싱된 신호 성분을 갖는 적어도 2개의 교번하는 표현을 이용해, 직교 주파수 멀티플렉싱된 신호 성분을 각각 갖는 적어도 2개의 신호의 정보의 변환된 표현을 결합하는 단계,
적어도 하나의 기준에 대해 동일 정보를 나타내는 각각의 서로 다른 결합을 분석하는 단계,
상기 분석하는 단계를 기초로, 결합에 포함되도록 적어도 2개의 교번하는 표현 중 각각의 표현을 선택하는 단계, 및
(a) 각각의 결합 파형을 식별하는 정보, (b) 각각의 결합 파형을 규정하는 정보, 및 (c) 상기 선택하는 단계를 기초로, 적어도 2개의 신호 각각으로부터의 변환된 정보의 선택된 결합을 포함하는 각각의 결합 파형을 나타내는 정보 중 적어도 하나를 출력하는 단계를 포함하는, 결합 파형 제어 방법.CLAIMS 1. A method of controlling a combined waveform representing a combination of at least two signals, each signal having orthogonal frequency multiplexed signal components, wherein the combined waveform comprises at least two The signal components are modulated in each communication channel according to a respective communication protocol,
Receiving information defining at least two signals,
Converting the information defining each signal into at least one representation having an orthogonal frequency multiplexed signal component, the information defining at least one of the respective signals having different orthogonal frequency multiplexed signal components representing the same information At least two alternate representations are converted, each alternate representation being compatible with the communication protocol of each signal,
Using at least two alternating representations having different orthogonal frequency multiplexed signal components representing the same information in at least two different ways to define respective different combinations of at least two signals representing the same information, Combining a transformed representation of information of at least two signals each having a frequency multiplexed signal component,
Analyzing each different combination representing the same information for at least one criterion,
Selecting each of the at least two alternate representations to be included in the association based on the analyzing step, and
(a) information identifying each of the coupled waveforms, (b) information defining each of the combined waveforms, and (c) a selected combination of transformed information from each of the at least two signals, And outputting at least one of information indicative of each coupled waveform included.
복수의 신호 각각을 규정하는 정보를 수신하고,
복수의 신호의 각각의 신호를 규정하는 수신된 정보를 각자의 복수의 직교 주파수 멀티플렉싱된 신호 성분으로서 표현하고 - 복수의 신호 중 적어도 하나의 신호를 규정하는 정보는 수신된 동일 정보를 다 함께 규정하는 직교 주파수 멀티플렉싱된 신호 성분의 복수의 교번하는 세트로서 표현됨 - ,
복수의 신호를 표현하는 각각의 복수의 직교 주파수 멀티플렉싱된 신호 성분의 복수의 서로 다른 결합을 적어도 하나의 피트니스 기준에 대해 분석하며 - 복수의 표현 각각은 복수의 신호의 적어도 하나의 신호의 직교 주파수 멀티플렉싱된 신호 성분의 각기 교번하는 세트를 포함함 - ,
분석을 기초로 서로 다른 결합 중 각각의 결합을 선택하도록 구성된 프로세서와,
선택된 결합의 식별, 선택된 결합, 및 선택된 결합을 규정하는 정보 중 적어도 하나를 제시하도록 구성된 출력 포트
를 포함하는, 복수의 신호를 결합하기 위한 장치. An apparatus for combining a plurality of signals in each of a plurality of channels, each signal comprising a set of phase and amplitude modulation, or phase modulation, or amplitude modulated orthogonal frequency components in one channel, ,
Receiving information defining each of the plurality of signals,
Wherein the information defining the respective signals of the plurality of signals is represented as a plurality of orthogonal frequency multiplexed signal components of the respective ones of the plurality of signals and information defining at least one of the plurality of signals defines the same information received together A plurality of alternating sets of orthogonal frequency-multiplexed signal components,
Analyzing a plurality of different combinations of each of a plurality of orthogonal frequency-multiplexed signal components representing a plurality of signals for at least one fitness criterion, each of the plurality of representations performing orthogonal frequency multiplexing of at least one signal of the plurality of signals Each comprising an alternating set of signal components,
A processor configured to select each of the different bonds based on the analysis;
An output port configured to present at least one of identification of the selected binding, selected binding, and information defining the selected binding
≪ / RTI >
13. The apparatus of claim 11 or 12, wherein the processor analyzes the nonlinear distortion of the coupling waveform in the model of the amplifier and further pre-warp at least one component of the selected coupling.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2010/040176 WO2012030319A2 (en) | 2009-06-26 | 2010-06-28 | System and method for controlling combined radio signals |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177015546A Division KR101936533B1 (en) | 2009-06-26 | 2010-09-24 | System and method for controlling combined radio signals |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130045831A KR20130045831A (en) | 2013-05-06 |
KR101747455B1 true KR101747455B1 (en) | 2017-06-14 |
Family
ID=48684226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020127000292A KR101747455B1 (en) | 2010-06-28 | 2010-09-24 | System and method for controlling combined radio signals |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101747455B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101589102B1 (en) * | 2015-04-01 | 2016-01-27 | 순천향대학교 산학협력단 | A system of cooperative vehicular network based on cognitive radio |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007055518A2 (en) * | 2005-11-09 | 2007-05-18 | Lg Electronics Inc. | Method and apparatus for improving papr in ofdm or ordma communication system |
WO2009022856A2 (en) | 2007-08-14 | 2009-02-19 | Lg Electronics Inc. | Peak to average power ratio reduction |
US20090147870A1 (en) | 2007-12-10 | 2009-06-11 | Mao-Chao Lin | Method for solving high papr problem of mcm communication system using unitary transform |
-
2010
- 2010-09-24 KR KR1020127000292A patent/KR101747455B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007055518A2 (en) * | 2005-11-09 | 2007-05-18 | Lg Electronics Inc. | Method and apparatus for improving papr in ofdm or ordma communication system |
WO2009022856A2 (en) | 2007-08-14 | 2009-02-19 | Lg Electronics Inc. | Peak to average power ratio reduction |
US20090147870A1 (en) | 2007-12-10 | 2009-06-11 | Mao-Chao Lin | Method for solving high papr problem of mcm communication system using unitary transform |
Also Published As
Publication number | Publication date |
---|---|
KR20130045831A (en) | 2013-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10616025B2 (en) | System and method for controlling combined radio signals | |
US11095489B2 (en) | System and method for controlling combined radio signals | |
KR101747455B1 (en) | System and method for controlling combined radio signals | |
Ali-Hemmati et al. | Iterative cancellation of clipping noise in multilevel quadrature amplitude modulation multi-carrier CDMA system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |