Nothing Special   »   [go: up one dir, main page]

KR101635171B1 - Electronic textile and producing method thereof - Google Patents

Electronic textile and producing method thereof Download PDF

Info

Publication number
KR101635171B1
KR101635171B1 KR1020140046727A KR20140046727A KR101635171B1 KR 101635171 B1 KR101635171 B1 KR 101635171B1 KR 1020140046727 A KR1020140046727 A KR 1020140046727A KR 20140046727 A KR20140046727 A KR 20140046727A KR 101635171 B1 KR101635171 B1 KR 101635171B1
Authority
KR
South Korea
Prior art keywords
fiber
graphene
fibers
electronic
adhesive layer
Prior art date
Application number
KR1020140046727A
Other languages
Korean (ko)
Other versions
KR20150121350A (en
Inventor
전용석
윤용주
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020140046727A priority Critical patent/KR101635171B1/en
Publication of KR20150121350A publication Critical patent/KR20150121350A/en
Application granted granted Critical
Publication of KR101635171B1 publication Critical patent/KR101635171B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • D06M11/42Oxides or hydroxides of copper, silver or gold
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/76Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

본 발명은 전자섬유 및 이의 제조방법에 관한 것이다.
상기와 같은 본 발명에 따르면, 상기와 같은 본 발명에 따르면, 생체 접착 물질을 포함하는 접착층을 포함하고 상기 접착층의 외주면에 그래핀층 또는 금속나노입자층을 형성한 전자섬유 및 이의 제조방법을 제공함으로써, 기존 섬유 등을 이용해서 경제적이고 간편한 공정에 의해 전도성, 유연성, 내화학성이 우수한 전자섬유로 만들 수 있을 있을 뿐만 아니라 미래 섬유 산업 시장에서 경쟁력을 강화하고 유비쿼터스 환경에 적합한 지능형 의류 개발에 기여할 수 있는 효과가 있다.
The present invention relates to an electronic fiber and a manufacturing method thereof.
According to the present invention, as described above, the present invention provides an electronic fiber including an adhesive layer including a bioadhesive material and having a graphene layer or a metal nanoparticle layer formed on an outer circumferential surface of the adhesive layer, and a method of manufacturing the same, It can be made into electronic fiber with excellent conductivity, flexibility and chemical resistance by economical and easy process by using existing fiber, and it can contribute to the development of intelligent clothing suitable for ubiquitous environment by strengthening competitiveness in future textile industry market. .

Description

전자섬유 및 이의 제조방법{ELECTRONIC TEXTILE AND PRODUCING METHOD THEREOF}[0001] ELECTRONIC TEXTILE AND PRODUCING METHOD THEREOF [0002]

본 발명은 전자섬유 및 이의 제조방법에 관한 것으로서, 더욱 상세하게 생체 접착 물질을 포함하는 접착층을 포함하고 상기 접착층의 외주면에 그래핀층 또는 금속나노입자층을 형성한 전자섬유 및 이의 제조방법에 관한 것이다.The present invention relates to an electronic fiber and a method for manufacturing the same, and more particularly, to an electronic fiber including an adhesive layer containing a bioadhesive material and having a graphene layer or a metal nanoparticle layer formed on an outer circumferential surface of the adhesive layer, and a method of manufacturing the same.

전자 섬유는 휴대용 유연 디스플레이 기능, 생체 신호 진단 기능, 위험 가스 센싱 기능, 에너지 저장 기능 등을 비롯해 입는 컴퓨터 (Wearable computer)의 구현까지, 다양한 분야에 적용이 가능하여 아주 큰 관심을 받고 있다. 이런 기능을 구현하기 위해서 전자섬유는 전도성을 포함한 내구성, 휘어짐, 착용 및 세탁 가능, 소재의 경량성이 우수해야 하기 때문에 전 세계적으로 그래핀 (Graphene) 섬유 개발이 활발히 이루어지고 있다. 하지만 현재까지 발표된 전자섬유는 기존 섬유에 적용하기 어려운 제약이 있다.Electronic fibers have attracted much attention because they can be applied to various fields ranging from portable flexible display function, bio signal diagnosis function, hazardous gas sensing function, energy storage function to the implementation of a wearable computer. Graphene fibers have been actively developed around the world because of their durability, warpage, ability to be worn and washed, and light weight of materials to achieve such functions. However, the electronic fibers announced so far have limitations that are difficult to apply to conventional fibers.

본 발명은 생체 접착물질을 이용해 현재 사용되고 있는 섬유 즉, 면, 나일론, 폴리에스터 등을 그래핀 산화물로 감싸게 한 후, 화학적 방법으로 그래핀 산화물을 환원하는 과정을 거치게 된다.In the present invention, graphene oxide is wrapped in fibers, cotton, nylon, polyester, etc., which are currently used by using a bioadhesive material, and then the graphene oxide is reduced by a chemical method.

결과적으로 기존 섬유 혹은 신섬유인 나노 섬유 등을 손쉽게 전자섬유를 만들 수 있을 뿐 아니라, 현 의류 산업에 바로 적용이 가능하다는 장점이 있다. 본 발명의 전자섬유 제조기술은 미래 전자 및 섬유 산업 관련시장에서의 경쟁력을 강화하고 유비쿼터스 환경에 적합한 지능형 의류 개발에 표준화를 선도하는 데에도 크게 기여할 수 있을 것으로 기대된다.As a result, it is possible to easily make electronic fibers such as existing fibers or nanofibers such as new fibers, and it is possible to apply them directly to the current clothing industry. The electronic fiber manufacturing technology of the present invention is expected to contribute to strengthening competitiveness in the future electronic and textile industry related market and leading standardization in the development of intelligent clothes suitable for ubiquitous environment.

한편, 관련 선행기술로는 한국등록특허 제10-1233818호(그래핀이 처리된 섬유의 제조방법) 등이 있다.On the other hand, Korean Prior Registration No. 10-1233818 (a method of producing graphene-treated fiber) is known as a related art.

본 발명자는 전자섬유를 제조함에서 있어서 기존의 방법들은 기존 섬유에적용하기 어려울 뿐만 아니라, 전기전도성을 부여하기 위해 그래핀층 또는 금속나노입자층을 형성함에 있어서 기존에 사용되어왔던 접착물질(인산염 등)은 섬유와의 접착성이 약하여 최종적으로 만들어진 전자섬유의 전기전도도가 현저하게 낮은 문제점이 있음을 개선하기 위해 예의 노력한 결과 생체 접착 물질(보바인 세럼 알부민 등)로 이루어진 접착층을 형성시키고 상기 접착층의 외주면에 그래핀층 또는 금속나노입자층을 형성할 경우 기존섬유에 손쉽게 적용하여 전도성, 유연성, 내화학성이 우수한 전자섬유를 제조할 수 있을 뿐만 아니라 상기 인삼염을 접착물질로 사용하는 경우와 비교하여 1,000배 내지 10,000배 이상의 높은 전기전도도가 확보되는 것을 실험적으로 확인함으로써 본 발명을 완성하게 되었다.The present inventors have found that conventional methods for producing electronic fibers are difficult to apply to existing fibers, and that they are difficult to apply to existing fibers in the formation of graphene or metal nanoparticle layers to impart electrical conductivity, The adhesive layer of the biofouling material (such as bovine serum albumin) is formed as a result of efforts to improve the problem that the electrical conductivity of the finally formed electronic fiber is remarkably low because of low adhesiveness to the fibers, It is possible to produce electronic fibers having excellent conductivity, flexibility and chemical resistance by easily applying them to conventional fibers when forming a graphene layer or a metal nanoparticle layer, It is experimentally confirmed that a high electric conductivity of 10,000 times or more is secured Thereby completing the present invention.

결국, 본 발명의 목적은 생체 접착 물질로 이루어진 접착층을 포함하고 상기 접착층의 외주면에 형성되는 그래핀층 또는 금속나노입자층을 포함하는 전자섬유를 제공하는데 있다.It is an object of the present invention to provide an electronic fiber including an adhesive layer made of a bioadhesive material and including a graphene layer or a metal nanoparticle layer formed on the outer peripheral surface of the adhesive layer.

또한, 본 발명의 다른 목적은 생체 접착 물질로 이루어진 접착층을 포함하고 상기 접착층의 외주면에 그랜핀층을 포함하거나 금속나노입자층을 포함하는 전자섬유의 제조방법을 제공하는데 있다.Another object of the present invention is to provide a method of manufacturing an electronic fiber including an adhesive layer made of a bioadhesive material and including a granuline layer on the outer surface of the adhesive layer or a metal nanoparticle layer.

상기 목적을 달성하기 위하여, 본 발명은 섬유;와 상기 섬유의 외주면에 형성되는 생체 접착 물질로 이루어진 접착층; 및 상기 접착층의 외주면에 형성되는 그래핀층 또는 금속나노입자층;을 포함하는 전자섬유를 제공한다.In order to attain the above object, the present invention provides an adhesive sheet comprising: a fiber; and an adhesive layer made of a bio-adhesive material formed on an outer circumferential surface of the fiber; And a graphene layer or a metal nanoparticle layer formed on an outer peripheral surface of the adhesive layer.

상기 섬유는 면, 마, 비단, 양모, 나일론, 폴리에스터, 폴리우레탄, 폴리스틸렌, 폴리프로필렌, 테프론으로 이루어진 군에서 선택되는 하나인 것을 특징으로 한다.The fiber is characterized in that it is one selected from the group consisting of cotton, hemp, silk, wool, nylon, polyester, polyurethane, polystyrene, polypropylene and Teflon.

상기 생체 접착 물질은 보바인 세럼 알부민(bovine serum albumin, BSA),폴리라이신(polylysine), 폴리도파민(polydopamine), 카제인(casein), 키토산(chitosan)으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 한다.The bioadhesive material is at least one selected from the group consisting of bovine serum albumin (BSA), polylysine, polydopamine, casein, and chitosan .

상기 그래핀층은 그래핀 산화물을 접착층이 형성된 섬유에 처리한 후 상기 그래핀 산화물을 환원시켜 형성하는 것을 특징으로 한다.The graphene layer is formed by treating graphene oxide with a fiber having an adhesive layer formed thereon and reducing the graphene oxide.

상기 그래핀은 그래핀 양자점, 탄소나노튜브, 플러렌으로 이루어진 군에서 선택되는 것을 특징으로 한다. Wherein the graphene is selected from the group consisting of graphene quantum dots, carbon nanotubes, and fullerene.

상기 금속나노입자층은 금, 은, 구리, 니켈, 팔라듐, 백금으로 이루어진 군에서 선택되는 하나 이상의 나노입자, 나노선 또는 나노튜브를 포함하는 것을 특징으로 한다.The metal nanoparticle layer may include one or more nanoparticles selected from the group consisting of gold, silver, copper, nickel, palladium, and platinum, nanowires, or nanotubes.

또한, 본 발명은 섬유에 생체 접착 물질로 이루어진 접착층을 형성하는 과정을 포함하는 전자섬유 제조방법을 제공한다.In addition, the present invention provides a method for producing an electronic fiber comprising the step of forming an adhesive layer made of a bio-adhesive material on a fiber.

상기 섬유는 면, 마, 비단, 양모, 나일론, 폴리에스터, 폴리우레탄, 폴리스틸렌, 폴리프로필렌, 테프론으로 이루어진 군에서 선택되는 하나인 것을 특징으로 한다.The fiber is characterized in that it is one selected from the group consisting of cotton, hemp, silk, wool, nylon, polyester, polyurethane, polystyrene, polypropylene and Teflon.

상기 생체 접착 물질은 보바인 세럼 알부민(bovine serum albumin, BSA),폴리라이신(polylysine), 폴리도파민(polydopamine), 카제인(casein), 키토산(chitosan)으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 한다.The bioadhesive material is at least one selected from the group consisting of bovine serum albumin (BSA), polylysine, polydopamine, casein, and chitosan .

상기와 같은 본 발명에 따르면, 생체 접착 물질을 포함하는 접착층을 포함하고 상기 접착층의 외주면에 그래핀층 또는 금속나노입자층을 형성한 전자섬유 및 이의 제조방법을 제공함으로써, 기존 섬유 등을 이용해서 경제적이고 간편한 공정에 의해 전도성, 유연성, 내화학성이 우수한 전자섬유로 만들 수 있을 뿐만 아니라 미래 섬유 산업 시장에서 경쟁력을 강화하고 유비쿼터스 환경에 적합한 지능형 의류 개발에 기여할 수 있는 효과가 있다.According to the present invention, there is provided an electronic fiber comprising an adhesive layer containing a bioadhesive material and having a graphene layer or a metal nanoparticle layer formed on the outer circumferential surface of the adhesive layer, and a method for producing the same, It can be made into electronic fiber having excellent conductivity, flexibility and chemical resistance by a simple process, and it can contribute to the development of intelligent clothes suitable for ubiquitous environment, and to enhance competitiveness in future textile industry market.

도 1 은 본 발명의 전자섬유 제조 과정 중 일예를 나타낸 공정도.
도 2 는 본 발명의 실시예 1.에 따라 제조된 전자섬유의 사시도.
도 3a 는 본 발명의 실시예 1.에 따라 제조된 전자섬유의 전자현미경 사진.
도 3b 는 본 발명의 실시예 1.에 따라 제조된 전자섬유 한 가닥의 전자현미경 사진.
도 3c 는 본 발명의 실시예 .1에 따라 제조된 전자섬유 표면에 형성된 그래핀 고유의 주름과 잔물결의 전자현미경 사진.
도 4a 는 본 발명의 실시예 1.에 따라 제조된 전자섬유의 Raman 데이터.
도 4b 는 본 발명의 실시예 1.에 따라 제조된 전자섬유의 XPS(X-ray photoelectron spectroscopy) 데이터.
도 4c 는 본 발명의 실시예 1.에 따라 제조된 전자섬유의 전기전도도 데이터.
도 5 는 본 발명의 실시예 1.에 따라 제조된 LED 소자 점등 사진.
도 6 은 본 발명의 실시예 1.에 따라 제조된 전자섬유의 400회의 물리적 구부림에 따른 전기전도도의 변화 데이터.
도 7 은 본 발명의 실시예 1.에 따라 제조된 전자섬유의 9회 세탁에 따른 전기전도도의 변화 데이터.
도 8 은 본 발명의 실시예 1.에 따라 제조된 직물 전자 섬유의 가스 측정데이터.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram showing an example of a process for producing an electronic fiber according to the present invention. FIG.
2 is a perspective view of an electronic fiber produced according to Example 1 of the present invention.
FIG. 3A is an electron micrograph of an electronic fiber produced according to Example 1 of the present invention. FIG.
FIG. 3B is an electron micrograph of a single strand of an electronic fiber produced according to Example 1 of the present invention. FIG.
3C is an electron micrograph of graphene-specific wrinkles and ripples formed on the surface of an electronic fiber produced according to Example 1 of the present invention.
4A is Raman data of an electronic fiber produced according to Example 1 of the present invention.
4B is X-ray photoelectron spectroscopy (XPS) data of an electronic fiber produced according to Example 1 of the present invention.
Fig. 4c is electrical conductivity data of an electronic fiber prepared according to Example 1 of the present invention. Fig.
5 is a photograph of an LED device lighting according to Example 1 of the present invention.
Fig. 6 is a graph showing changes in electric conductivity of 400 times physical bending of an electronic fiber produced according to Example 1 of the present invention. Fig.
Fig. 7 is a graph showing change in electric conductivity of nine times of washing of an electronic fiber prepared according to Example 1 of the present invention. Fig.
8 is a gas measurement data of the woven electronic filament made according to Example 1 of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 섬유;와 상기 섬유의 외주면에 형성되는 생체 접착물로 이루어진 접착층; 및 상기 접착층의 외주면에 형성되는 그래핀층 또는 금속나노입자층;를 포함하는 전자섬유 및 상기 전자섬유의 제조방법을 제공한다.The present invention relates to an adhesive layer comprising a fiber and a bioadhesive formed on an outer peripheral surface of the fiber; And a graphene layer or a metal nanoparticle layer formed on an outer circumferential surface of the adhesive layer, and a method of manufacturing the electronic fiber.

상기 섬유는 면, 마, 비단, 양모, 나일론, 폴리에스터, 폴리우레탄, 폴리프로필렌, 테프론으로 이루어진 군에서 선택될 수 있으며 바람직하게는 면섬유를 사용할 수 있다. 상기 생체 접착 물질은 보바인 세럼 알부민(bovine serum albumin, BSA) 폴리라이신(polylisine), 폴리도파민(polydopamine), 카제인(casein), 키토산(chitosan) 중에서 선택할 수 있으며, 둘 이상의 생체 접착 물질을 혼합하여 사용할 수도 있다. 한편 바람직하게는 보바인 세럼 알부민을 사용할 수 있다. 상기 그래핀은 그래핀 양자점, 탄소나노튜브, 플러렌으로 이루어진 군에서 선택될 수 있고, 상기 금속나노입자층은 금, 은, 구리, 니켈, 팔라듐, 백금으로 이루어진 군에서 선택되는 하나 이상의 나노입자, 나노선 또는 나노튜브를 포함하여 형성될 수 있다. 한편, 그래핀층을 포함하는 전자섬유의 경우에는 섬유에 생체 접착 물질로 이루어진 접착층을 형성하는 단계;와 상기 접착층이 형성된 섬유에 그래핀 산화물을 처리하는 단계; 및 상기 그래핀 산화물을 환원시키는 단계;를 포함하여 제조될 수 있다. 또한, 금속나노입자층을 포함하는 전자섬유를 제조하는 과정은 섬유에 생체 접착 물질로 이루어진 접착층을 포함하는 단계;와 접착층이 형성된 섬유에 금속나노입자층을 형성하는 단계;를 포함하여 이루어질 수 있다.
The fibers may be selected from the group consisting of cotton, hemp, silk, wool, nylon, polyester, polyurethane, polypropylene, and Teflon, and cotton fibers may be preferably used. The biocompatible material may be selected from bovine serum albumin (BSA) polylisine, polydopamine, casein, chitosan, and may be prepared by mixing two or more bioadhesive materials It can also be used. Preferably, bovine serum albumin can be used. The graphene may be selected from the group consisting of graphene quantum dots, carbon nanotubes, and fullerenes, and the metal nanoparticle layer may include at least one nanoparticle selected from the group consisting of gold, silver, copper, nickel, palladium, Or nanotubes. ≪ / RTI > On the other hand, in the case of an electronic fiber including a graphene layer, the method includes the steps of forming an adhesive layer made of a bioadhesive material on the fiber, and treating the fiber having the adhesive layer formed with graphene oxide; And reducing the graphene oxide. In addition, the process for producing an electronic fiber including a metal nanoparticle layer may include a step of including an adhesive layer made of a bio-adhesive material on the fiber, and a step of forming a metal nanoparticle layer on the fiber having the adhesive layer formed thereon.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1. 보바인 세럼 알부민(bovine serume albumine)을 이용한 전자섬유의 제조Example 1. Preparation of electronic fiber using bovine serume albumine

ⅰ) 1 wt% 보바인 세럼 알부민 용액을 제조하였다.I) A 1 wt% bovine serum albumin solution was prepared.

ⅱ) 상기 준비된 1 wt% 보바인 세럼 알부민 용액에 면사 혹은 폴리에스터 실을 30 분간 담구어 코팅하고, 2시간 동안 후드내에서 건조한 다음, 면사에 코팅되지 않은 잔여 보바인 세럼 알부민을 제거하기 위해, 증류수에 담구어 헹군후 2시간 동안 다시 건조하였다.Ii) A cotton yarn or a polyester yarn was dipped in the prepared 1 wt% bovine serum albumin solution for 30 minutes, dried in a hood for 2 hours, and then removed to remove residual bovine serum albumin on the cotton yarn. Rinsed in distilled water and rinsed again for 2 hours.

ⅲ) 그래핀 산화물은 베이카본(Bay carbon) 사에서 구입한 그라파이트분말(SP-1 graphite)을 모디파이드휴멀스(modified Hummers)와오픈만스(Offenmans) 방법으로 제조하였다. 상기 그래핀 산화물 분말을 증류수에 대하여, 1 wt% 의 중량비로 첨가한 후, 상기 용액을 2 시간동안 초음파 방법으로 분산하여 그래핀 산화물 함유 용액을 제조하였다.Iii) The graphene oxide was manufactured by modified Hummers and Offenmans method of graphite powder (SP-1 graphite) purchased from Bay carbon. The graphene oxide powder was added to distilled water at a weight ratio of 1 wt%, and then the solution was dispersed by ultrasonic method for 2 hours to prepare a graphene oxide-containing solution.

ⅳ) 상기 제조된 그래핀 산화물 용액의 수소 이온 농도 (pH)를 약 3~4로 조정한 후, 보바인 세럼 알부민이 코팅된 면사를 2시간 이상 담가 주었다. 섬유의 표면에 형성된 아마이드 그룹과 그래핀 산화물의 수산화기 및 카르복실기가 정전 반응하여 그래핀 산화물 코팅된 섬유가 완성되었다. 제조된 그래핀 산화물 섬유를 꺼내어, 후드내에서 2시간 이상 건조하였다.Iv) The hydrogen ion concentration (pH) of the prepared graphene oxide solution was adjusted to about 3 to 4, and the cotton yarn coated with bovine serum albumin was immersed for 2 hours or more. The amide group formed on the surface of the fiber and the hydroxyl and carboxyl groups of the graphene oxide were electrostatically reacted to complete the graphene oxide coated fiber. The prepared graphene oxide fibers were taken out and dried in the hood for 2 hours or more.

ⅴ) 그래핀 산화물이 코팅된 섬유를 환원하여 전도성을 가진 전자 섬유를제조하였다. 그래핀 산화물 복합섬유를 HI-AcOH (hydroidic acid with acetic acid) 용액을 이용하여 전자 섬유로 변환하였다. 더욱 자세하게는, 2 ㎖ 요오드화수소산과 5 ㎖ 초산 혼합용액이 담긴 밀폐된 유리 반응기에 그래핀 산화물 섬유를 넣고 증기환원하거나, 담그는 방법으로 40도 에서 30분 동안 반응하였다.V) Electronic fibers having conductivity were produced by reducing the fibers coated with graphene oxide. The graphene oxide composite fiber was converted into an electronic fiber by using HI-AcOH (hydroidic acid with acetic acid) solution. More specifically, graphene oxide fibers were placed in a sealed glass reactor containing a mixture of 2 ml of hydroiodic acid and 5 ml of acetic acid, and reacted at 40 ° C for 30 minutes by steam reduction or immersion.

실시예 2. 폴리라이신(polylysine)을 이용한 전자섬유의 제조Example 2. Preparation of electronic fiber using polylysine

ⅰ) 0.1 wt% 폴리라이신 용액을 제조하였다.I) 0.1 wt% polylysine solution was prepared.

ⅱ) 상기 폴리라이신 용액에 면사를 30 분간 담구어 코팅하고, 2시간 동 후드내에서 건조하였다. 그 후 면사에 코팅되지 않은 잔여 폴리라이신을 제거하기 위해, 증류수에 담구어 헹군후 2시간 동안 다시 건조하였다.Ii) The cotton yarn was dipped in the polylysine solution for 30 minutes and dried in a hood for 2 hours. Thereafter, in order to remove the residual polylysine not coated on the cotton yarn, it was immersed in distilled water, rinsed, and then dried again for 2 hours.

ⅲ) 그래핀 산화물은 베이카본(Bay carbon) 사에서 구입한 그라파이트분말(SP-1 graphite)을 모디파이드휴멀스(modified Hummers) 와오픈만스(Offenmans) 방법으로 제조하였고, 상기 그래핀 산화물 분말을 증류수에 대하여, 1 wt% 의 중량비로 첨가한 후, 상기 용액을 2시간 동안 초음파 방법으로 분산하여 그래핀 산화물 함유 용액을 제조하였다. 상기 제조된 그래핀 산화물 용액에 폴리라이신이 코팅된 면사를 2시간 이상 담가 주었다. 섬유의 표면에 형성된 아마이드 그룹과 그래핀 산화물의 수산화기 및 카르복실기가 자기조립하여 그래핀 산화물 코팅된 섬유가 완성되었다. 제조된 그래핀 산화물 섬유를 꺼내어, 후드내에서 2시간 이상 건조하였다.Iii) The graphene oxide was prepared by a modified Hummers and Offenmans method of graphite powder (SP-1 graphite) purchased from Bay carbon, and the graphene oxide powder Was added to distilled water at a weight ratio of 1 wt%, and then the solution was dispersed by an ultrasonic method for 2 hours to prepare a graphene oxide-containing solution. The polylactic coated cotton yarn was immersed in the prepared graphene oxide solution for 2 hours or more. The amide group formed on the surface of the fiber and the hydroxyl and carboxyl groups of the graphene oxide self-assemble to complete the graphene oxide coated fiber. The prepared graphene oxide fibers were taken out and dried in the hood for 2 hours or more.

ⅳ) 상기 그래핀 산화물이 코팅된 섬유를 환원하여 전도성을 가진 전자섬유를 제조하였다. 그래핀 산화물 복합섬유를 HI-AcOH (hydroidic acid with acetic acid) 용액을 이용하여 전자 섬유로 변환하였다. 더욱 자세하게는, 2 ㎖ 요오드화수소산과 5 ㎖ 초산 혼합용액이 담긴 밀페된 유리 반응기에 그래핀 산화물 섬유를 넣고 증기환원하거나, 담그는 방법으로 40도 에서 30분 동안 반응하였다.Iv) The graphene oxide-coated fiber was reduced to prepare an electronic fiber having conductivity. The graphene oxide composite fiber was converted into an electronic fiber by using HI-AcOH (hydroidic acid with acetic acid) solution. More specifically, graphene oxide fiber was placed in a glass-filled glass reactor containing a mixture of 2 ml of hydroiodic acid and 5 ml of acetic acid, and the mixture was reacted at 40 ° C for 30 minutes by steam reduction or immersion.

실시예 3. 폴리도파민(polydopamine)을 이용한 전자섬유의 제조Example 3. Preparation of electronic fiber using polydopamine

ⅰ) 도파민 클로라이드 파우더를 증류수에 넣어 2 ㎎/㎖ 폴리도파민 용액을 제조하고, 10 mM Trizma 염산을 이용하여 pH 8 로 조절하였다.I) Dopamine chloride powder was added to distilled water to prepare a 2 mg / ml polypdopamine solution, which was adjusted to pH 8 with 10 mM Trizma hydrochloric acid.

ⅱ) 준비된 폴리도파민 용액에 면사를 30 분간 담구어 코팅하고, 2시간 동안 후드내에서 건조하였다. 그 후 면사에 코팅되지 않은 잔여 폴리라이신을 제거하기 위해, 증류수에 담구어 헹군 후 2시간 동안 다시 건조하였다.Ii) Cotton yarn was soaked in the prepared polydopamine solution for 30 minutes and dried in a hood for 2 hours. Thereafter, in order to remove the residual polylysine not coated on the cotton yarn, it was immersed in distilled water, rinsed, and then dried again for 2 hours.

ⅲ) 그래핀 산화물은 베이카본(Bay carbon) 사에서 구입한 그라파이트분말(SP-1 graphite)을 모디파이드휴멀스(modified Hummers) 와오픈만스(Offenmans) 방법으로 제조하였고, 상기 그래핀 산화물 분말을 증류수에 대하여, 1 wt% 의 중량비로 첨가한 후, 상기 용액을 2시간 동안 초음파 방법으로 분산하여 그래핀 산화물 함유 용액을 제조하였다. 상기 제조된 그래핀 산화물 용액에 폴리도파민이 코팅된 면사를 2시간 이상 담가 주었다. 섬유의 표면에 형성된 아마이드 그룹과 그래핀 산화물의 수산화기 및 카르복실기가 자기조립하여 그래핀 산화물 코팅된 섬유가 완성되었다. 제조된 그래핀 산화물 섬유를 꺼내어, 후드내에서 2시간 이상 건조하였다.Iii) The graphene oxide was prepared by a modified Hummers and Offenmans method of graphite powder (SP-1 graphite) purchased from Bay carbon, and the graphene oxide powder Was added to distilled water at a weight ratio of 1 wt%, and then the solution was dispersed by an ultrasonic method for 2 hours to prepare a graphene oxide-containing solution. A cotton yarn coated with polypodamine was immersed in the prepared graphene oxide solution for 2 hours or more. The amide group formed on the surface of the fiber and the hydroxyl and carboxyl groups of the graphene oxide self-assemble to complete the graphene oxide coated fiber. The prepared graphene oxide fibers were taken out and dried in the hood for 2 hours or more.

ⅳ) 그래핀 산화물이 코팅된 섬유를 환원하여 전도성을 가진 전자 섬유를제조하였다. 그래핀 산화물 복합섬유를 HI-AcOH (hydroidic acid with acetic acid) 용액을 이용하여 전자 섬유로 변환하였다. 더욱 자세하게는, 2 ㎖ 요오드화수소산과 5 ㎖ 초산 혼합용액이 담긴 밀페된 유리 반응기에 그래핀 산화물 섬유를 넣고 증기환원하거나, 담그는 방법으로 40도 에서 30분 동안 반응하였다.Iv) The grafted fiber-coated fiber was reduced to produce an electronic fiber having conductivity. The graphene oxide composite fiber was converted into an electronic fiber by using HI-AcOH (hydroidic acid with acetic acid) solution. More specifically, graphene oxide fiber was placed in a glass-filled glass reactor containing a mixture of 2 ml of hydroiodic acid and 5 ml of acetic acid, and the mixture was reacted at 40 ° C for 30 minutes by steam reduction or immersion.

실시예 4. 금나노입자를 포함하는 전자섬유의 제조Example 4. Preparation of electronic fibers containing gold nanoparticles

ⅰ) 1 wt% 보바인 세럼 알부민 용액을 제조한다.I) 1 wt% bovine serum albumin solution is prepared.

ⅱ) 준비된 1 wt% 보바인 세럼 알부민 용액에 면사 혹은 폴리에스터 실을 30 분간 담구어 코팅하고, 2시간 동안 후드내에서 건조하였다. 그 후 면사에 코팅되지 않은 잔여 보바인 세럼 알부민을 제거하기 위해, 증류수에 담구어 헹군후 2시간 동안 다시 건조하였다.Ii) A cotton or polyester yarn was immersed in the prepared 1 wt% bovine serum albumin solution for 30 minutes and dried in a hood for 2 hours. Thereafter, in order to remove the residual bovine serum albumin not coated on the cotton yarn, it was immersed in distilled water, rinsed and dried again for 2 hours.

ⅲ) 1 ㎎/㎖ 의 20 ㎚ 금나노입자 용액에 준비된 보바인 세럼 알부민이 점착된 면사 혹은 폴리에스터 사를 30분 동안 담군 후, 쉐이커 (shaker)를 이용하여 분당 60번의 속도로 흔들어 주었다.Iii) Bovine serum albumin prepared in a solution of 20 mg gold nanoparticles at 1 mg / ml was dipped in cotton yarn or polyester yarn for 30 minutes, and then shaken at a rate of 60 revolutions per minute using a shaker.

ⅳ) 금나노입자가 코팅된 실을 꺼내어, 2시간 동안 후드 내에서 건조하였다.Iv) The gold nanoparticle coated yarn was taken out and dried in a hood for 2 hours.

실험예 1. 전자현미경(Field emission scanning electron microscopy) 측정Experimental Example 1. Electron microscopy (Field emission scanning electron microscopy)

도 3c.의 데이터 결과와 관련하여 ⅰ) 상기 실시예 1.에 의해 준비된 그래핀 전자 섬유를, 고분해능의 전자현미경(FEI Sirion 200)으로 전자 섬유의 표면을 측정하였다. ⅱ) 그 결과 표면에 다수의 물결과 주름 무늬를 확인할 수 있는데, 이는 섬유 표면에 그래핀이 잘 코팅되었음을 나타내는 결과이다.3C. I) The surface of the electronic fiber was measured with a high-resolution electron microscope (FEI Sirion 200) using the graphene electronic fiber prepared in Example 1. [ Ii) As a result, a number of waves and wrinkles on the surface can be identified, indicating that the surface of the fiber is well coated with graphene.

실험예 2. 라만 분광법(raman spectroscopy) 측정Experimental Example 2 Raman spectroscopy measurement

도 4a.의 라만 데이터 결과와 관련하여 ⅰ) 상기 실시예 1.에 의해 준비된 그래핀 전자 섬유를 슬라이드 글라스 위에 위치한 후, 514 ㎚ 파장의 라만분광기(LabRAM HR, Horiba scienctific) 를 이용하여, 1000 ~ 3500 cm-1 범위내에서 수행하였다. ⅱ) 그래핀 섬유의 경우, 1340 ㎝-1 D-peak 과 1580 ㎝-1 G-peak 생성되는데, 라만 데이터를 통해 확인하였다.4A. I) The graphene electronic fibers prepared according to Example 1 were placed on a slide glass, and then, using a Raman spectroscope (LabRAM HR, Horiba Scientific) having a wavelength of 514 nm, 3500 cm < -1 >. Ii) In the case of graphene fibers, 1340 ㎝ -1 D-peak and 1580 ㎝ -1 G-peak are generated and confirmed by Raman data.

실험예 3. X선 광전자 분광법(X-ray photoelectron spectroscopy) 측정Experimental Example 3. X-ray photoelectron spectroscopy measurement

도 4b.의 XPS 데이터 결과와 관련하여 ⅰ) 상기 실시예 1.에 의해 준비된그래핀 전자 섬유를 슬라이드 글라스 위에 위치한 후, 광전자 분석기(ESCALAB 200R, Thermo VG Scientific) 를 이용하여, 280 ~ 294 eV binding energy 영역에서 분석을 수행하였다. ⅱ) 본 분석을 통해서 산소를 함유하는 기능기들이 감소하는 경향을 확인하였는데, 이는 그래핀 산화물 섬유에서 전도성 그래핀 전자 섬유로 환원되는 것을 말하는 것이다.With respect to the XPS data results in Figure 4b., I) the graphene electronic fibers prepared according to Example 1 above were placed on a slide glass and then 280-294 eV binding using an optoelectronic analyzer (ESCALAB 200R, Thermo VG Scientific) energy analysis. Ii) This analysis confirmed the tendency of oxygen-containing functional groups to decrease, which means that graphene oxide fibers are reduced to conductive graphene electronic fibers.

실험예 4. 전자섬유의 전기전도도 측정Experimental Example 4. Measurement of Electrical Conductivity of Electronic Fibers

도 4c.의 전기전도도 측정 결과와 관련하여 ⅰ) 상기 실시예 1.에 의해 준비된 그래핀 산화물 섬유와 그래핀 섬유에 사단자 측정을 위한 전극을 형성하였다. ⅱ) 그래핀 섬유의 경우, 환원전 그래핀 산화물 섬유에 비해, 전기전도도가 100,000 배 이상 증가됨을 확인하였다.With respect to the results of the electrical conductivity measurement of FIG. 4C, i) electrodes were prepared for graphene measurement on the graphene oxide fibers and graphene fibers prepared according to Example 1 above. Ii) In the case of graphene fiber, it was confirmed that the electric conductivity was increased by 100,000 times or more as compared with the graphene oxide fiber before reduction.

실험예 5. 전자섬유의 반복적 구부림에 따른 전기전도도의 변화측정.Experimental Example 5. Measurement of change in electrical conductivity according to repetitive bending of an electronic fiber.

도 6.의 반복적 구부림에 따른 전기전도도의 변화 결과와 관련하여 i) 상기 실시예 1.에 의해 준비된 전자 섬유를 구부림과 동시에 전기전도도 측정이 가능한 섬유 평가 장비에 연결하였다. ⅱ) 400회 구부림에 따른 전기전도도의 변화 측정을 수행하였다. 본 결과는 그래핀 전자 섬유가 반복적인 구부림과 같은 물리적인 힘에도 전기전도도의 저하가 없음 보여준다.With respect to the result of the change in electric conductivity according to the repetitive bending of FIG. 6, i) the electronic fiber prepared in Example 1 was bent and connected to a fiber evaluation device capable of measuring electric conductivity. Ii) Measurement of change in electrical conductivity according to bending of 400 times was performed. The results show that graphene fibers do not deteriorate electrical conductivity even with physical forces such as repetitive bending.

실험예 6. 전자섬유의 세탁에 따른 전기전도도의 변화측정Experimental Example 6 Measurement of Electrical Conductivity Change by Washing of Electronic Fibers

도 7.의 일반 세제를 이용한 다수의 세탁에 따른 전기전도도의 변화 결과와 관련하여 i) 상기 실시예 1.에 의해 준비된 전자 섬유를 일반 세제 용액에 넣고, 회당 30 분간 세탁하였다. ⅱ) 총 9회의 세탁을 수행하였고, 전기전도도의 측정을 수행하였다. 본 결과는 그래핀 전자 섬유가 다수의 세탁에도 전기전도도의 저하가 없음 보여준다.Regarding the result of the change of the electrical conductivity according to the multiple washing using the general detergent of Fig. 7, i) the electronic fiber prepared in Example 1 was put in a general detergent solution and washed for 30 minutes each time. Ii) A total of 9 washes were performed and a measurement of electrical conductivity was performed. This result shows that the graphene electronic fiber does not deteriorate the electrical conductivity even in a large number of washes.

실험예 7. 전자섬유의 가스측정Experimental Example 7. Gas Measurement of Electronic Fiber

도 8.의 가스 측정 결과와 관련하여 ⅰ) 상기 실시예 1.에 의해 준비된 그래핀 섬유에 가스 측정을 위한 두 개의 전극을 형성하였다. ⅱ) 측정가스는 이산화질소 가스를 사용하였고, 가스농도는 0.25 ppm ~ 1.25 ppm 에서 상온에서 수행하였다. 본 결과는 그래핀 전자 섬유가 실생활에 고위험성 가스를 감지할 수 있음을 보여준다.
With respect to the gas measurement results of FIG. 8, i) two electrodes for gas measurement were formed on the graphene fibers prepared according to Example 1 above. Ii) The measurement gas was nitrogen dioxide gas, and the gas concentration was 0.25 ppm to 1.25 ppm at room temperature. The results show that graphene fibers can detect high-risk gases in real life.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (9)

섬유;
상기 섬유의 외주면에 형성되는 생체 접착 물질로 이루어진 접착층; 및 상기 접착층의 외주면에 형성되는 그래핀층 또는 금속나노입자층;을 포함하며,
상기 섬유는 면, 마, 비단, 양모, 폴리에스터, 폴리스틸렌, 폴리프로필렌, 테프론으로 이루어진 군에서 선택되는 하나이며,
상기 생체 접착 물질은 보바인 세럼 알부민(bovine serum albumin, BSA), 폴리라이신(polylysine)으로 이루어진 군에서 선택되는 하나 이상이며,
상기 보바인 세럼 알부민의 농도는 1 wt%의 보바인 세럼 알부민이며,
상기 폴리라이신의 농도는 0.1 wt%의 폴리라이신인 것을 특징으로 하는 전자섬유.
fiber;
An adhesive layer made of a bio-adhesive material formed on an outer peripheral surface of the fiber; And a graphene layer or a metal nanoparticle layer formed on an outer circumferential surface of the adhesive layer,
The fiber is one selected from the group consisting of cotton, hemp, silk, wool, polyester, polystyrene, polypropylene, and Teflon,
The bioadhesive material may be at least one selected from the group consisting of bovine serum albumin (BSA) and polylysine,
The concentration of the bovine serum albumin is 1 wt% of bovine serum albumin,
Wherein the concentration of the polylysine is 0.1 wt% of polylysine.
삭제delete 삭제delete 제 1 항에 있어서,
상기 그래핀층은 그래핀 산화물을 접착층이 형성된 섬유에 처리한 후 상기 그래핀 산화물을 환원시켜 형성하는 것을 특징으로 하는 전자섬유.
The method according to claim 1,
Wherein the graphene layer is formed by treating graphene oxide with a fiber having an adhesive layer formed thereon and reducing the graphene oxide.
제 1 항에 있어서,
상기 그래핀은 그래핀 양자점, 탄소나노튜브, 플러렌으로 이루어진 군에서 선택되는 것을 특징으로 하는 전자섬유.
The method according to claim 1,
Wherein the graphene is selected from the group consisting of graphene quantum dots, carbon nanotubes, and fullerene.
제 1 항에 있어서,
상기 금속나노입자층은 금, 은, 구리, 니켈, 팔라듐, 백금으로 이루어진 군에서 선택되는 하나 이상의 나노입자, 나노선 또는 나노튜브를 포함하는 것을 특징으로 하는 전자섬유.
The method according to claim 1,
Wherein the metal nanoparticle layer comprises at least one nanoparticle selected from the group consisting of gold, silver, copper, nickel, palladium, and platinum, a nanowire, or a nanotube.
섬유에 생체 접착 물질로 이루어진 접착층을 형성하는 과정을 포함하며,
상기 섬유는 면, 마, 비단, 양모, 폴리에스터, 폴리스틸렌, 폴리프로필렌, 테프론으로 이루어진 군에서 선택되는 하나이며,
상기 생체 접착 물질은 보바인 세럼 알부민(bovine serum albumin, BSA), 폴리라이신(polylysine)으로 이루어진 군에서 선택되는 하나 이상이며,
상기 보바인 세럼 알부민의 농도는 1 wt%의 보바인 세럼 알부민이며,
상기 폴리라이신의 농도는 0.1 wt%의 폴리라이신이며,
상기 접착층을 형성하는 과정은, 섬유를 생체 접착 물질로 코팅한 후 증류수를 이용하여 세척하는 과정을 더 포함하는 것을 특징으로 하는 전자섬유 제조방법.
And forming an adhesive layer made of a bioadhesive material on the fibers,
The fiber is one selected from the group consisting of cotton, hemp, silk, wool, polyester, polystyrene, polypropylene, and Teflon,
The bioadhesive material may be at least one selected from the group consisting of bovine serum albumin (BSA) and polylysine,
The concentration of the bovine serum albumin is 1 wt% of bovine serum albumin,
The concentration of the polylysine is 0.1 wt% of polylysine,
Wherein the step of forming the adhesive layer further comprises a step of coating the fibers with a bioadhesive material and then washing the fibers with distilled water.
삭제delete 삭제delete
KR1020140046727A 2014-04-18 2014-04-18 Electronic textile and producing method thereof KR101635171B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140046727A KR101635171B1 (en) 2014-04-18 2014-04-18 Electronic textile and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140046727A KR101635171B1 (en) 2014-04-18 2014-04-18 Electronic textile and producing method thereof

Publications (2)

Publication Number Publication Date
KR20150121350A KR20150121350A (en) 2015-10-29
KR101635171B1 true KR101635171B1 (en) 2016-07-11

Family

ID=54430359

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140046727A KR101635171B1 (en) 2014-04-18 2014-04-18 Electronic textile and producing method thereof

Country Status (1)

Country Link
KR (1) KR101635171B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105342026A (en) * 2015-12-02 2016-02-24 上海烯旺信息科技有限公司 Graphene far-infrared intelligent physical therapy clothes
KR102600019B1 (en) * 2016-05-19 2023-11-08 주식회사 아모그린텍 Method of preparing graphene-graphene fused material and method of preparing graphene-substrate composite using the same
KR101896968B1 (en) 2016-07-26 2018-09-12 주식회사 에스제이피일렉 Methode of manufacturing conductive fiber
CN108071019A (en) * 2016-11-15 2018-05-25 天津工业大学 A kind of preparation method of poly-dopamine induction LBL self-assembly uvioresistant polypropylene non-woven fabric
CN109811541A (en) * 2019-04-08 2019-05-28 福建华彩新材料有限公司 A kind of graphene coated conductive fiber and preparation method thereof
CN111395002B (en) * 2020-03-18 2022-11-04 闽江学院 Preparation method of textile electrode material and textile electrode material
KR102605564B1 (en) * 2021-06-30 2023-11-24 성균관대학교산학협력단 Method for producing conductive fiber, and fiber manufactured by using the same
CN114775267A (en) * 2022-04-12 2022-07-22 南通大学 Electromagnetic shielding non-woven fabric and preparation method thereof
KR102578611B1 (en) 2023-02-07 2023-09-14 전북대학교산학협력단 Apparatus and method for manufacturing large area fiber light-emitting device by continuous coating process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233818B1 (en) 2011-06-07 2013-02-18 단국대학교 산학협력단 Method for Preparing the Fiber Treated by Graphene

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880353B1 (en) * 2005-01-05 2008-05-23 Arkema Sa USE OF CARBON NANOTUBES FOR THE MANUFACTURE OF A CONDUCTIVE ORGANIC COMPOSITION AND APPLICATIONS THEREOF
KR20130063769A (en) * 2011-12-07 2013-06-17 한국전자통신연구원 Fiber fabrication method and the fiber fabricated thereby
KR101830797B1 (en) * 2012-04-16 2018-02-21 한국전자통신연구원 Method of forming a Graphene fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233818B1 (en) 2011-06-07 2013-02-18 단국대학교 산학협력단 Method for Preparing the Fiber Treated by Graphene

Also Published As

Publication number Publication date
KR20150121350A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
KR101635171B1 (en) Electronic textile and producing method thereof
Yun et al. E-textile gas sensors composed of molybdenum disulfide and reduced graphene oxide for high response and reliability
Yin et al. Splash-resistant and light-weight silk-sheathed wires for textile electronics
Cai et al. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications
CN106705829B (en) A kind of flexible wearable conductive fabric sensor and its preparation method and application
Zhu et al. Cellulose nanofiber/carbon nanotube dual network-enabled humidity sensor with high sensitivity and durability
Cheng et al. In situ hydrothermal growth of Cu NPs on knitted fabrics through polydopamine templates for heating and sensing
Cai et al. Flexible and wearable strain sensing fabrics
Wu et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@ polyurethane yarn for tiny motion monitoring
Ehrmann et al. Nanosensors and nanodevices for smart multifunctional textiles
Shateri-Khalilabad et al. Fabricating electroconductive cotton textiles using graphene
CN110499535B (en) Conductive composite fiber yarn and continuous preparation method and application thereof
Hansora et al. Performance of hybrid nanostructured conductive cotton materials as wearable devices: an overview of materials, fabrication, properties and applications
Lin et al. Superior stretchable conductors by electroless plating of copper on knitted fabrics
CN104499272B (en) High-elasticity conductive fiber and preparation method thereof
Zhao et al. A wearable sensor based on gold nanowires/textile and its integrated smart glove for motion monitoring and gesture expression
Ma et al. Highly sensitive room-temperature NO2 gas sensors based on three-dimensional multiwalled carbon nanotube networks on SiO2 nanospheres
Lee et al. Bio-inspired electronic textile yarn-based NO2 sensor using amyloid–graphene composite
Ke et al. Layer-by-layer assembly for all-graphene coated conductive fibers toward superior temperature sensitivity and humidity independence
Nag et al. Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activities
He et al. Ultrafast, highly sensitive, flexible textile-based humidity sensors made of nanocomposite filaments
Li et al. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel
Hossain et al. Durability of smart electronic textiles
Luo et al. Preparation and tensile conductivity of carbon nanotube/polyurethane nanofiber conductive films based on the centrifugal spinning method
Xing et al. Robust and flexible smart silk/PEDOT conductive fibers as wearable sensor for personal health management and information transmission

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190520

Year of fee payment: 4

R401 Registration of restoration