KR101472392B1 - UAV System having an Accuracy Position Tracking Function and Controlling Method for the Same - Google Patents
UAV System having an Accuracy Position Tracking Function and Controlling Method for the Same Download PDFInfo
- Publication number
- KR101472392B1 KR101472392B1 KR20130091445A KR20130091445A KR101472392B1 KR 101472392 B1 KR101472392 B1 KR 101472392B1 KR 20130091445 A KR20130091445 A KR 20130091445A KR 20130091445 A KR20130091445 A KR 20130091445A KR 101472392 B1 KR101472392 B1 KR 101472392B1
- Authority
- KR
- South Korea
- Prior art keywords
- signal
- correction signal
- dgps
- ground control
- rtcm
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0004—Transmission of traffic-related information to or from an aircraft
- G08G5/0013—Transmission of traffic-related information to or from an aircraft with a ground station
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0047—Navigation or guidance aids for a single aircraft
- G08G5/0069—Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Astronomy & Astrophysics (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
본 발명은 정밀위치추적기능이 구비된 무인기시스템 및 그 제어방법에 관한 것으로, 특히 무인항공기가 지상통제장비로부터 전송받은 DGPS정보를 이용하여 정확한 위치정보를 획득한후 비행자세제어를 정밀하게 수행하므로써, 비행안전성을 극대화시키는 정밀위치추적기능이 구비된 무인기시스템 및 그 제어방법에 관한 것이다.The present invention relates to an unmanned aerial vehicle system having a precise position tracking function and a control method thereof, and more particularly, to an unmanned aerial vehicle system capable of accurately acquiring position information using DGPS information transmitted from a ground control device, , A UAV system equipped with a precise position tracking function for maximizing flight safety, and a control method thereof.
일반적으로 무인항공기는 동떨어져 있는 원격 조종원에 의해서 조종되는 비행기를 말하는데, 종래에는 주로 정찰, 표적용으로만 사용되어 왔으나 근래에는 후방에 있는 조종사의 전파, 광선을 이용한 원격조정으로 정찰, 폭격, 공중전 등 모든 공중활동을 한다. 따라서, 상기와 같은 무인기에는 조종사의 눈 구실을 하는 카메라를 비롯한 각종 전자장치를 탑재하고 있다. 그리고 상기와 같은 무인기가 가지는 다양한 장점으로 인하여 군수용 무인기 시장이 급성장 추세에 있고, 민수용으로까지 시장이 확대되고 있는 상황에서 무인기 시스템은 특성상 IT 기술인 탑재시스템과 지상시스템 소프트웨어가 매우 중요한 비중을 차지하면서 주요기반을 이루고 있는데, 무인기의 총 개발비 중 반이상 수준인 SW 개발비용이 중복 투자되고 있으며, 선진국의 수출제한조치에 의한 기술보호로 무인기 핵심 SW 기술이 정치/경제적 측면에서 전략적으로 활용되고 있다. 그래서 상기와 같은 무인기의 WBS(World Best Software)과제는 다양한 기종에 적용 가능한 무인기 공통탑재 SW 의 표준 플랫폼과 이를 쉽게 개발하기 위한 개발환경을 포함한 무인기용 표준 SW 솔루션 및 Test-bed 를 개발하여 항공기의 비행제어컴퓨터에 시키는 것이 필요하다. Generally, unmanned airplane is an airplane controlled by a remote remote control. It has been used mainly for reconnaissance and table applications. In recent years, however, And so on. Therefore, various electronic devices including a camera serving as a pilot's eye are mounted on the UAV. In addition, due to the various advantages of the UAV, the military UAV market is growing fast and the market is expanding to the civilian market. Therefore, the UAV system and the ground system software are very important in the UAV system, , Which is more than half of the total development cost of UAV, is being invested in the same way, and UAV core SW technology is being utilized strategically for technological protection by export restriction measures in advanced countries. Thus, the WBS (World Best Software) task of the UAV has developed a standard SW solution and test-bed for the UAV, including the standard platform of the common-mount SW that can be applied to various models and the development environment to easily develop it, It is necessary to put it on the flight control computer.
그러면, 상기와 같은 종래 무인항공기시스템을 도 1을 참고로 살펴보면, DGPS 수신기(70)를 탑재하고 각각의 GPS위성(71)으로부터 수신된 GPS신호를 DGPS수신기(70)를 통해 DGPS기준국(74)으로부터 수신받은 보정신호로 보정하여 정밀위치를 획득하고, 무선원격제어신호에 따라 원격비행을 실행하는 무인항공기(72)와;1, a
상기 무인항공기(72)와 무선데이터링크를 구성한 후 무선데이터링크를 통해 무인항공기의 비행을 원격제어하는 지상통제장비(73)를 포함하여 구성된다. And a ground control device (73) for remotely controlling the flight of the UAV through a wireless data link after configuring a wireless data link with the UAV (72).
한편, 상기와 같은 종래 무인항공기시스템의 동작은 먼저, 무인항공기(72)의 운용자가 무인항공기(72)를 이륙시킨후 지상통제장비(73)를 통해 무인항공기(72)와 무선데이터링크를 연결시킨다. 그리고 상기와 같이 연결된 무선데이터링크를 통해 지상통제장비(73)에서 무선원격제어신호를 무인항공기(73)로 전송하여 비행을 제어한다. 이 과정에서, 상기 무인항공기(72)는 각각의 GPS위성(71)으로부터 GPS신호를 수신하여 측정된 거리(의사거리)와 탑재된 DGPS 수신기(70)를 통해 DGPS기준국(74)으로부터 수신받은 보정신호를 이용하여 확보한 거리를 비교 계산하므로써, 위성벡터 차이를 보정하여 정밀위치를 획득한다. 즉, 상기 무인항공기(72)는 수신한 위성에서의 의사거리, 시간정보 및 궤도데이터에서의 거리오차를 검출하여 탑재된 DGPS 수신기(70)를 통해 각 지역에 산재된 DGPS 기준국(74)으로부터 RTCM SC-104(Radio Technical Commission for Maritime Services, Special Committee 104)의 포맷형식에 따라 변조되어 방송되는 DGPS기준신호를 이용하여 보정하므로써, 무인항공기(72)의 정밀한 위치를 확보하게된다. 따라서, 상기 무인항공기(72)는 상기와 같이 탑재된 DGPS수신기(70)를 통해 보정한 정밀위치신호를 지상통제장비(73)로 전송하여 이착륙을 실행하게 된다. The operation of the conventional unmanned aerial vehicle system as described above is such that an operator of the
그러나, 상기와 같은 종래 무인항공기시스템은 무인항공기에 대한 정밀한 위치를 확보하기위해 별도로 무인항공기에 고가의 DGPS수신기를 탑재시켜야 하기 때문에 무인기시스템의 운용비용이 상당히 증가시켰으며, 또한 무인항공기의 설계시에 별도 공간을 마련하여 DGPS수신기를 탑재시켜야 하므로 그에 따라 무인항공기의 안정된 설계에도 상당한 어려움을 초래하였다는 문제점이 있었다.However, since the conventional unmanned aerial vehicle system as described above requires an expensive DGPS receiver to be mounted on a UAV, in order to secure a precise position of the UAV, the operation cost of the UAV is considerably increased, The DGPS receiver must be mounted in a separate space. Therefore, it has been difficult to design a stable U-plane.
이에 본 발명은 상기와 같은 종래기술의 문제점을 해결하기위해 발명된 것으로, SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems of the prior art,
무인항공기가 지상통제장비로부터 전송받은 DGPS정보를 이용하여 정확한 위치정보를 획득한후 비행자세제어를 정밀하게 수행할 수 있기 때문에 자동 이착륙과정을 안정적으로 수행할 수 있어 그에 따라 비행안전성을 극대화시키는 정밀위치추적기능이 구비된 무인기시스템 및 그 제어방법을 제공함에 그 목적이 있다.Since the unmanned aircraft can precisely control the flight attitude after acquiring the accurate position information by using the DGPS information transmitted from the ground control equipment, it is possible to carry out the automatic takeoff and landing process in a stable manner, And an object of the present invention is to provide a UAV system equipped with a position tracking function and a control method thereof.
본 발명의 또 다른 특징은 정밀위치획득을 위해 무인항공기내에 별도의 DGPS추적장치를 구비하지 않고도 무인항공기에 대한 정밀위치를 획득할 수가 있기 때문에 무인항공기에 대한 비행설계안정성을 높일 수 있는 정밀위치추적기능이 구비된 무인기시스템 및 그 제어방법을 제공하는데 있다.Another feature of the present invention is that accurate positioning of an unmanned airplane can be obtained without having a separate DGPS tracking device in an unmanned airplane for accurate position acquisition, And a control method thereof.
상기와 같은 목적을 달성하기위한 본 발명은 DGPS 수신기를 탑재하고 각 지역에 산재된 DGPS 기준국으로부터 방송된 DGPS 위성신호를 이용하여 생성한 RTCM 보정신호를 수신처리한 후 무선데이터링크를 무선원격제어신호와 함께 전송하는 지상통제장비와;According to another aspect of the present invention, there is provided a method for receiving a DGPS satellite signal, the DGPS satellite signal being received from a DGPS reference station distributed in each region, receiving a RTCM correction signal, Ground control equipment to transmit with signals;
상기 지상통제장비로부터 무선전송된 RTCM 보정신호와 GPS위성으로부터 수신한 GPS위성신호를 연동계산하여 정밀위치(비행궤적)를 추정한 후 그 추정된 정밀위치를 근거로 하여 자동이착륙을 포함한 비행을 실행하는 무인항공기를 포함하는 정밀위치추적기능이 구비된 무인기시스템을 제공한다.The RTCM correction signal wirelessly transmitted from the ground control equipment and the GPS satellite signal received from the GPS satellite are interlocked to estimate the precise position (flight trajectory), and the flight including the automatic takeoff and landing is executed based on the estimated precise position A UAV system is provided with a precise position tracking function including a UAV.
본 발명의 또 다른 특징은 지상통제장비가 각 지역에 산재된 DGPS 기준국으로부터 RTCM 보정신호를 수신처리한 후 그 수신한 RTCM신호를 무인항공기와 연결된 무선데이터링크를 통해 무인항공기로 전송하는 제1 과정과;Another feature of the present invention is that the ground control equipment receives the RTCM correction signal from the DGPS reference station scattered in each area and then transmits the received RTCM signal to the unmanned airplane through the wireless data link connected with the unmanned airplane A process;
상기 제1 과정후에 무인항공기가 지상통제장비로부터 무선전송된 RTCM 보정신호와 GPS위성으로부터 수신한 GPS위성신호를 연동계산하여 정밀위치정보(비행궤적)를 획득하는 제2 과정과;A second step of calculating precise position information (flight trajectory) by interlocking the RTCM correction signal wirelessly transmitted from the ground control equipment and the GPS satellite signal received from the GPS satellite after the first process;
상기 제2 과정후에 무인항공기가 획득된 정밀위치정보를 근거로 하여 지상통제장비의 원격제어신호에 따라 자동이착륙을 포함한 비행을 정밀하게 실행시키는 제3 과정을 포함하는 정밀위치추적기능이 구비된 무인기시스템의 제어방법을 제공한다.
And a third step of precisely executing the flight including the automatic takeoff and landing in accordance with the remote control signal of the ground control equipment based on the precise position information obtained by the unmanned airplane after the second process, And provides a control method of the system.
상기와 같은 본 발명에 의하면, 무인항공기가 지상통제장비로부터 전송받은 DGPS정보를 이용하여 정확한 위치정보를 획득한후 비행자세제어를 정밀하게 수행하므로써, 무인항공기에 대한 자세제어를 포함한 자동 이착륙과정을 실제 지상활주로에 맞게 안정적으로 수행할 수 있으므로 그에 따라 비행안전성을 극대화시키는 효과가 있다.According to the present invention, an unmanned airplane obtains accurate position information using DGPS information received from a ground control device, and performs an automatic takeoff and landing process including attitude control for an unmanned airplane by performing flight attitude control precisely. It can be carried out stably according to the actual ground runway, thereby maximizing flight safety.
상기와 같은 본 발명은 정밀위치획득을 위해 무인항공기내에 별도의 DGPS추적장치를 구비하지 않고도 무인항공기에 대한 정밀위치를 획득할 수가 있기 때문에 무인항공기에 대한 비행설계안정성을 높일 수 있을 뿐만아니라 무인항공기에 대한 운용비용을 상당히 저감시키는 효과도 있다.The present invention as described above can acquire a precise position of the unmanned airplane without providing a separate DGPS tracking device in the unmanned airplane for acquiring the precise position, thereby improving the stability of flight design for the unmanned airplane, There is also an effect of significantly reducing the operation cost of the system.
도 1은 무인항공기시스템의 일례를 설명하는 설명도.
도 2는 본 발명에 따른 정밀위치추적기능이 구비된 무인기시스템의 일례를 설명하는 설명도.
도 3은 본 발명에 따른 DGPS 기준국의 일실시예를 설명하는 설명도.
도 4는 본 발명의 플로우차트.1 is an explanatory view for explaining an example of an unmanned aerial vehicle system;
2 is an explanatory view for explaining an example of a UAV system provided with a precise position tracking function according to the present invention;
3 is an explanatory diagram for explaining an embodiment of a DGPS reference station according to the present invention;
4 is a flowchart of the present invention.
이하, 본 발명에 따른 정밀위치추적기능이 구비된 무인기시스템의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of a UAV system provided with a precise position tracking function according to the present invention will be described with reference to the accompanying drawings.
그러나 본 발명은 여기서 설명되어지는 본 발명에 따른 정밀위치추적기능이 구비된 무인기시스템의 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급되지 않는 한 복수형도 포함된다. 명세서에서 사용되는 "포함한다(comprises)." 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자가 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
However, the present invention is not limited to the embodiments of the UAV system provided with the precise position tracking function according to the present invention described here, but may be embodied in other forms. Rather, the embodiments disclosed herein are provided so that the disclosure can be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals designate like elements throughout the specification. It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In the present specification, the singular form includes plural forms unless otherwise specified in the specification. The term " comprises " And / or "comprising" does not exclude the presence or addition of one or more other elements, steps, operations, and / or elements.
실시예Example
도 2는 본 발명에 따른 정밀위치추적기능이 구비된 무인기시스템의 일실시예를 개략적으로 설명하는 설명도이고, 도 3은 본 발명에 따른 DGPS 기준국의 일실시예를 설명하는 설명도이며, 도 4는 본 발명의 플로우차트이다.FIG. 2 is an explanatory view schematically illustrating one embodiment of a UAV system equipped with a precise position tracking function according to the present invention, FIG. 3 is an explanatory diagram illustrating an embodiment of a DGPS reference station according to the present invention, 4 is a flowchart of the present invention.
도 2를 참조하면, 본 발명의 일실시예에 따른 정밀위치추적기능이 구비된 무인기시스템은, Referring to FIG. 2, a UAV system equipped with a precise position tracking function according to an embodiment of the present invention includes:
DGPS 수신기(1)를 탑재하고 각 지역에 산재된 DGPS 기준국(2)으로부터 방송된 DGPS 위성신호를 이용하여 생성한 RTCM 보정신호를 수신처리한 후 무선데이터링크를 무선원격제어신호와 함께 전송하는 지상통제장비(3:GCS)와;DGPS receiver 1, receives and processes the RTCM correction signal generated using the DGPS satellite signal broadcast from the
상기 지상통제장비(3)로부터 무선전송된 RTCM 보정신호와 GPS위성(4)으로부터 수신한 GPS위성신호를 연동계산하여 정밀위치(비행궤적)를 추정한 후 그 추정된 정밀위치를 근거로 하여 자동이착륙을 포함한 비행을 실행하는 무인항공기(5)를 포함하여 구성된다. The RTCM correction signal wirelessly transmitted from the
그리고, 상기 무인항공기(5)에는 무인항공기(5)에 탑재된 모든 장비와 전기적으로 연결되어 동작상태를 모니터링하고 무인항공기(5)에 탑재된 무선통신장비를 포함한 서브시스템(6)을 지상통제장비(3)의 무선원격제어신호에 따라 제어하는 비행제어 컴퓨터(7)가 탑재된다. 이때, 상기 비행제어 컴퓨터(7)는 지상통제장비(3)로부터 무선전송된 RTCM 보정신호와 GPS위성(4)으로부터 수신한 GPS위성신호를 무인항공기(5)에 탑재된 자동항법장치(8)를 이용하여 정밀위치를 추정계산한다. The
여기서, 상기 지상통제장비(3)는 예컨대, 도 3에 도시된 바와같이 각 지역에 산재된 DGPS 기준국(2)으로부터 방송되는 RTCM 보정신호의 수신감도를 계속 체킹하고 그 수신감도가 가장 좋은 DGPS 기준국(2)으로부터 전송되는 RTCM 보정신호를 선별하여 무인항공기(5)로 전송시키는 신호선별부(9)를 더 포함한다.3, the
또한 상기 지상통제장비(3)는 다른 실시예로, RTCM 보정신호를 획득하기위해 DGPS 기준국(2)으로부터 DMB를 통해 TPEG신호형태로 RTCM 보정신호를 수신받아 전송하거나 혹은 유선인터넷을 통해 수신받아 전송할 수 있다.
The
다음에는 상기와 같은 구성으로 된 본 발명의 제어방법을 설명한다.Next, the control method of the present invention having the above-described configuration will be described.
본 발명의 방법은 도 4에 도시된 바와같이 초기상태(S1)에서 지상통제장비가 각 지역에 산재된 DGPS 기준국으로부터 RTCM 보정신호를 수신처리한 후 그 수신한 RTCM신호를 무인항공기와 연결된 무선데이터링크를 통해 무인항공기로 전송하는 제1 과정(S2)과;As shown in FIG. 4, in the initial state (S1), the method of the present invention receives the RTCM correction signal from the DGPS reference station in which the ground control equipment is scattered in each region, and transmits the received RTCM signal to the wireless A first step (S2) of transmitting to the UAV through a data link;
상기 제1 과정(S2)후에 무인항공기가 지상통제장비로부터 무선전송된 RTCM 보정신호와 GPS위성으로부터 수신한 GPS위성신호를 연동계산하여 정밀위치정보(비행궤적)를 획득하는 제2 과정(S3)과;A second step S3 of acquiring accurate position information (flight trajectory) by interlocking the RTCM correction signal wirelessly transmitted from the ground control equipment and the GPS satellite signal received from the GPS satellite after the first step S2, and;
상기 제2 과정(S3)후에 무인항공기가 획득된 정밀위치정보를 근거로 하여 지상통제장비의 원격제어신호에 따라 자동이착륙을 포함한 비행을 정밀하게 실행시키는 제3 과정(S4)을 포함하여 구성된다.And a third step S4 of accurately executing the flight including the automatic landing and landing according to the remote control signal of the ground control equipment based on the precise position information obtained by the unmanned airplane after the second step S3 .
그리고, 상기 제1 과정(S2)에는 지상통제장비가 신호선별부를 통해 각 지역에 산재된 DGPS 기준국으로부터 방송되는 RTCM 보정신호의 수신감도를 계속 체킹하고 그 수신감도가 가장 좋은 DGPS 기준국으로부터 전송되는 RTCM 보정신호를 선별하여 무인항공기로 전송시키는 수신신호 선별단계를 더 포함한다.
In the first step S2, the ground control equipment continuously checks the reception sensitivity of the RTCM correction signal broadcast from the DGPS reference station scattered in each area through the signal selection unit, and transmits the RGM correction signal from the DGPS reference station having the highest reception sensitivity And transmitting the RTCM correction signal to an unmanned airplane.
환언하면, 본 발명의 무인기시스템은 무인항공기(5)의 운용자가 무인항공기(5)를 이륙시킨후 지상통제장비(3)에서 무인항공기(5)와 무선데이터링크를 연결시킨다. 그리고 상기와 같이 연결된 무선데이터링크중 상향링크를 통해 지상통제장비(3)에서 무선원결제어신호를 무인항공기(5)의 비행제어 컴퓨터(7)로 전송하여 비행을 제어한다. 이때, 상기 무인항공기(5)의 비행제어 컴퓨터(7)는 무인항공기(5)에 탑재된 모든 장비와 전기적으로 연결되어 동작상태를 모니터링하며서 항공기에 탑재된 서브시스템(6)을 지상으로부터 전송받은 지상통제장비의 무선원격제어신호에 따라 비행제어 하게된다.In other words, the UAV system of the present invention connects the wireless data link with the
이 과정에서, 본 발명의 무인기시스템은 무인항공기(5)의 위치를 정밀추적하게되는데, 이때, 상기 지상통제장비(3)는 DGPS 수신기(1)를 통해 각 지역에 산재된 DGPS 기준국(2)으로부터 RTCM 보정신호를 수신처리한 후 그 수신한 RTCM신호를 무인항공기(5)와 연결된 무선데이터링크를 통해 무인항공기(5)로 전송한다. 그리고 상기 과정후에 무인항공기(5)는 지상통제장비(3)로부터 무선전송된 RTCM 보정신호와 GPS위성으로부터 수신한 GPS위성신호를 연동계산하여 정밀위치정보(비행궤적)를 획득한다. 또한, 상기 과정후에 무인항공기(5)는 획득된 정밀위치정보를 근거로 하여 지상통제장비의 원격제어신호에 따라 자동이착륙을 포함한 비행을 정밀하게 실행시킨다. In this process, the UAV system of the present invention closely tracks the position of the
이때, 상기 지상통제장비(3)는 신호선별부(9)를 통해 각 지역에 산재된 DGPS 기준국(2)으로부터 방송되는 RTCM 보정신호의 수신감도를 계속 체킹하고 그 수신감도가 가장 좋은 DGPS 기준국(2)으로부터 전송되는 RTCM 보정신호를 선별하여 무인항공기(5)로 전송시킬 수도 있다.At this time, the
더 나아가, 상기 지상통제장비(3)는 RTCM 보정신호를 획득하기위한 경로로, DGPS 기준국(2)으로부터 DMB(도시안됨)를 통해 TPEG신호형태로 RTCM 보정신호를 수신받아 무인항공기(5)로 전송하거나 혹은 유선인터넷을 통해 수신받아 전송할 수도 있다.Furthermore, the
1 : DGPS 수신기 2 : DGPS 기준국
3 : 지상통제장비 4 : GPS위성
5 : 무인항공기 6 : 서브시스템
7 : 비행제어 컴퓨터 8 : 자동항법장치
9 : 신호선별부1: DGPS receiver 2: DGPS reference station
3: Ground control equipment 4: GPS satellite
5: Unmanned Aircraft 6: Subsystem
7: Flight control computer 8: Automatic navigation device
9: Signal selector
Claims (6)
상기 지상통제장비로부터 무선전송된 RTCM 보정신호와 GPS위성으로부터 수신한 GPS위성신호를 연동계산하여 정밀위치(비행궤적)를 추정한 후 그 추정된 정밀위치를 근거로 하여 자동이착륙을 포함한 비행을 실행하는 무인항공기를 포함하여 구성하되;
상기 지상통제장비는 DGPS 기준국으로부터 DMB를 통해 TPEG신호형태로 RTCM 보정신호를 수신받아 무인항공기로 전송하는 것을 특징으로 하는 정밀위치추적기능이 구비된 무인기시스템.A ground control device for receiving a RTCM correction signal generated by using a DGPS satellite signal broadcast from a DGPS reference station, which is installed in a DGPS receiver, and transmitting the wireless data link together with a wireless remote control signal;
The RTCM correction signal wirelessly transmitted from the ground control equipment and the GPS satellite signal received from the GPS satellite are interlocked to estimate the precise position (flight trajectory), and the flight including the automatic takeoff and landing is executed based on the estimated precise position Including an unmanned aerial vehicle;
Wherein the ground control device receives the RTCM correction signal in the form of a TPEG signal from the DGPS reference station through the DMB and transmits the RTCM correction signal to the unmanned airplane.
상기 지상통제장비는 각 지역에 산재된 DGPS 기준국으로부터 방송되는 RTCM 보정신호의 수신감도를 계속 체킹하고 그 수신감도가 가장 좋은 DGPS 기준국으로부터 전송되는 RTCM 보정신호를 선별하여 무인항공기로 전송시키는 신호선별부를 더 포함하는 것을 특징으로 하는 정밀위치추적기능이 구비된 무인기시스템.The method according to claim 1,
The ground control equipment continuously checks the reception sensitivity of the RTCM correction signal broadcast from the DGPS reference station scattered in each area, selects the RTCM correction signal transmitted from the DGPS reference station having the highest reception sensitivity, and transmits the signal to the unmanned airplane Further comprising a selection unit for selecting a position of the unmanned aerial vehicle.
상기 지상통제장비는 DGPS 기준국으로부터 유선인터넷을 통해 RTCM 보정신호를 수신받아 무인항공기로 전송하는 것을 특징으로 하는 정밀위치추적기능이 구비된 무인기시스템.The method according to claim 1,
Wherein the ground control device receives the RTCM correction signal from the DGPS reference station via the wired Internet and transmits the RTCM correction signal to the unmanned airplane.
상기 제1 과정후에 무인항공기가 지상통제장비로부터 무선전송된 RTCM 보정신호와 GPS위성으로부터 수신한 GPS위성신호를 연동계산하여 정밀위치정보(비행궤적)를 획득하는 제2 과정과;
상기 제2 과정후에 무인항공기가 획득된 정밀위치정보를 근거로 하여 지상통제장비의 원격제어신호에 따라 자동이착륙을 포함한 비행을 정밀하게 실행시키는 제3 과정을 포함하여 구성하되;
상기 제1 과정은 지상통제장비가 신호선별부를 통해 각 지역에 산재된 DGPS 기준국으로부터 방송되는 RTCM 보정신호의 수신감도를 계속 체킹하고 그 수신감도가 가장 좋은 DGPS 기준국으로부터 전송되는 RTCM 보정신호를 선별하여 무인항공기로 전송시키는 수신신호 선별단계를 더 포함하고,
상기 지상통제장비가 DGPS 기준국으로부터 DMB를 통해 TPEG신호형태로 RTCM 보정신호를 수신받아 무인항공기로 전송하는 것을 특징으로 하는 정밀위치추적기능이 구비된 무인기시스템.A first step of receiving the RTCM correction signal from the DGPS reference station and transmitting the received RTCM signal to the unmanned airplane through a wireless data link connected with the unmanned airplane;
A second step of calculating precise position information (flight trajectory) by interlocking the RTCM correction signal wirelessly transmitted from the ground control equipment and the GPS satellite signal received from the GPS satellite after the first process;
And a third step of finely performing the flight including the automatic landing and landing according to the remote control signal of the ground control equipment based on the precise position information obtained by the unmanned airplane after the second step;
In the first step, the ground control equipment continuously checks the reception sensitivity of the RTCM correction signal broadcast from the DGPS reference station scattered in each area through the signal selection unit, and transmits the RTCM correction signal transmitted from the DGPS reference station having the highest reception sensitivity And transmitting the selected signal to an unmanned airplane,
Wherein the ground control device receives the RTCM correction signal in the form of a TPEG signal from the DGPS reference station through the DMB and transmits the RTCM correction signal to the unmanned airplane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130091445A KR101472392B1 (en) | 2013-08-01 | 2013-08-01 | UAV System having an Accuracy Position Tracking Function and Controlling Method for the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130091445A KR101472392B1 (en) | 2013-08-01 | 2013-08-01 | UAV System having an Accuracy Position Tracking Function and Controlling Method for the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101472392B1 true KR101472392B1 (en) | 2014-12-15 |
Family
ID=52678770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20130091445A KR101472392B1 (en) | 2013-08-01 | 2013-08-01 | UAV System having an Accuracy Position Tracking Function and Controlling Method for the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101472392B1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2529021A (en) * | 2014-05-30 | 2016-02-10 | Geola Technologies Ltd | Charging and re-provisioning station for electric and hybrid unmanned aerial vehicles. |
KR20160082848A (en) | 2014-12-29 | 2016-07-11 | 서울대학교산학협력단 | Mechanical structure operating system and method using an aerial manipulator |
WO2016148989A1 (en) * | 2015-03-18 | 2016-09-22 | Amazon Technologies, Inc. | Gps error correction via network of point ground stations |
KR20160128144A (en) | 2015-04-28 | 2016-11-07 | 주식회사 유브이코어 | Air traffic Control System for Small Size UAV using Commercial Cellular Networks |
CN106291592A (en) * | 2016-07-14 | 2017-01-04 | 桂林长海发展有限责任公司 | A kind of countermeasure system of SUAV |
KR101749577B1 (en) * | 2015-04-01 | 2017-06-21 | 고려대학교 산학협력단 | Method for measuring state of drone |
CN108061906A (en) * | 2017-11-30 | 2018-05-22 | 上海华测导航技术股份有限公司 | A kind of mapping system and its method for including the GNSS receiver for supporting MavLink agreements |
CN108075823A (en) * | 2017-12-13 | 2018-05-25 | 上海航天电子有限公司 | A kind of unmanned scout observing and controlling Data transfer system of lightweight and method of work |
KR20180117879A (en) | 2017-04-20 | 2018-10-30 | 한국과학기술원 | Method and apparatus for position estimation of unmanned vehicle based on graph structure |
CN110187695A (en) * | 2019-04-19 | 2019-08-30 | 北京航空航天大学 | A kind of unmanned plane Collaborative Control verification platform |
CN112650298A (en) * | 2020-12-30 | 2021-04-13 | 广东工业大学 | Unmanned aerial vehicle tracking landing method and system |
KR102730832B1 (en) * | 2023-10-12 | 2024-11-15 | 한국전자기술연구원 | RTK-GPS positioning method and system based on mobile communication network |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100779488B1 (en) * | 2006-12-12 | 2007-11-26 | (주)에치소프트 | The system and method for sending flight information using differential global positioning system and personal digital assistant |
KR20110132641A (en) * | 2010-05-27 | 2011-12-09 | 한국항공우주산업 주식회사 | Navigation apparatus and navigation method |
-
2013
- 2013-08-01 KR KR20130091445A patent/KR101472392B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100779488B1 (en) * | 2006-12-12 | 2007-11-26 | (주)에치소프트 | The system and method for sending flight information using differential global positioning system and personal digital assistant |
KR20110132641A (en) * | 2010-05-27 | 2011-12-09 | 한국항공우주산업 주식회사 | Navigation apparatus and navigation method |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2529021B (en) * | 2014-05-30 | 2016-11-02 | Neva Aerospace Ltd | Charging and re-provisioning station for electric and hybrid unmanned aerial vehicles. |
GB2529021A (en) * | 2014-05-30 | 2016-02-10 | Geola Technologies Ltd | Charging and re-provisioning station for electric and hybrid unmanned aerial vehicles. |
KR20160082848A (en) | 2014-12-29 | 2016-07-11 | 서울대학교산학협력단 | Mechanical structure operating system and method using an aerial manipulator |
JP2020003500A (en) * | 2015-03-18 | 2020-01-09 | アマゾン テクノロジーズ インコーポレイテッド | Gps error correction via network of fixed point ground stations |
WO2016148989A1 (en) * | 2015-03-18 | 2016-09-22 | Amazon Technologies, Inc. | Gps error correction via network of point ground stations |
CN107407729A (en) * | 2015-03-18 | 2017-11-28 | 亚马逊技术股份有限公司 | The GPS error carried out via the network of fixing point earth station corrects |
US9903952B2 (en) | 2015-03-18 | 2018-02-27 | Amazon Technologies, Inc. | GPS error correction via network of fixed point ground stations |
JP2018512583A (en) * | 2015-03-18 | 2018-05-17 | アマゾン テクノロジーズ インコーポレイテッド | GPS error correction via fixed-position ground station network |
US11209549B2 (en) | 2015-03-18 | 2021-12-28 | Amazon Technologies, Inc. | GPS error correction via network of fixed point ground stations |
KR101749577B1 (en) * | 2015-04-01 | 2017-06-21 | 고려대학교 산학협력단 | Method for measuring state of drone |
KR20160128144A (en) | 2015-04-28 | 2016-11-07 | 주식회사 유브이코어 | Air traffic Control System for Small Size UAV using Commercial Cellular Networks |
CN106291592A (en) * | 2016-07-14 | 2017-01-04 | 桂林长海发展有限责任公司 | A kind of countermeasure system of SUAV |
CN106291592B (en) * | 2016-07-14 | 2019-03-01 | 桂林长海发展有限责任公司 | A kind of countermeasure system of small drone |
KR20180117879A (en) | 2017-04-20 | 2018-10-30 | 한국과학기술원 | Method and apparatus for position estimation of unmanned vehicle based on graph structure |
CN108061906A (en) * | 2017-11-30 | 2018-05-22 | 上海华测导航技术股份有限公司 | A kind of mapping system and its method for including the GNSS receiver for supporting MavLink agreements |
CN108075823A (en) * | 2017-12-13 | 2018-05-25 | 上海航天电子有限公司 | A kind of unmanned scout observing and controlling Data transfer system of lightweight and method of work |
CN108075823B (en) * | 2017-12-13 | 2022-07-05 | 上海航天电子有限公司 | Portable unmanned reconnaissance machine measurement and control data transmission system and working method |
CN110187695A (en) * | 2019-04-19 | 2019-08-30 | 北京航空航天大学 | A kind of unmanned plane Collaborative Control verification platform |
CN112650298A (en) * | 2020-12-30 | 2021-04-13 | 广东工业大学 | Unmanned aerial vehicle tracking landing method and system |
CN112650298B (en) * | 2020-12-30 | 2021-08-17 | 广东工业大学 | Unmanned aerial vehicle tracking landing method and system |
KR102730832B1 (en) * | 2023-10-12 | 2024-11-15 | 한국전자기술연구원 | RTK-GPS positioning method and system based on mobile communication network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101472392B1 (en) | UAV System having an Accuracy Position Tracking Function and Controlling Method for the Same | |
EP2533068B1 (en) | Near field navigation system | |
US9031725B1 (en) | System and method for time-space-position-information (TSPI) | |
US20230324562A1 (en) | Stratospheric position, navigation, and timing system | |
RU2666479C1 (en) | Method of providing the automatic landing of the flying apparatus | |
KR101494654B1 (en) | Method and Apparatus for Guiding Unmanned Aerial Vehicle and Method and Apparatus for Controlling Unmanned Aerial Vehicle | |
RU2562890C2 (en) | Method of control over drone | |
CN101989363B (en) | System and method for processing digital air data | |
CN105892483A (en) | Miniature SAR remote sensing observation method based on multi-rotor unmanned aerial vehicle | |
US10410529B2 (en) | Automatic assistance method for landing an aircraft | |
CN103592948A (en) | Unmanned aerial vehicle flying anti-collision method | |
US10771993B2 (en) | Method for determining a quality of at least one mobile radio network | |
JP7557686B2 (en) | End-to-end unmanned control and monitoring system for aircraft navigation | |
CN100507597C (en) | Portable tester for LAAS ground facility | |
CN110850456A (en) | Positioning equipment, positioning method and monitoring device of high-altitude unmanned aerial vehicle | |
JP7337444B2 (en) | Positioning method and positioning system | |
CN112781621B (en) | Multi-rotor unmanned aerial vehicle flight correction system and method based on accurate positioning | |
EP3863322B1 (en) | Communication device, communication method, and communication program | |
EP3885781B1 (en) | Method and system for operating an aircraft | |
CN104122573A (en) | Unmanned aerial vehicle-based portable runway calibrating system and method | |
KR20190107772A (en) | System for analyzing DME signal using drone | |
Felux et al. | Flight testing GBAS for UAV operations | |
Layh et al. | Gps-denied navigator for small uavs | |
Craig et al. | The uhars non-gps based positioning system | |
US20230251387A1 (en) | Precision approach and landing system for aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20171205 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20181207 Year of fee payment: 5 |