Nothing Special   »   [go: up one dir, main page]

KR101464283B1 - 나노튜브 장치 및 제조 방법 - Google Patents

나노튜브 장치 및 제조 방법 Download PDF

Info

Publication number
KR101464283B1
KR101464283B1 KR1020107001283A KR20107001283A KR101464283B1 KR 101464283 B1 KR101464283 B1 KR 101464283B1 KR 1020107001283 A KR1020107001283 A KR 1020107001283A KR 20107001283 A KR20107001283 A KR 20107001283A KR 101464283 B1 KR101464283 B1 KR 101464283B1
Authority
KR
South Korea
Prior art keywords
nanotubes
opening
deposited
region
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020107001283A
Other languages
English (en)
Other versions
KR20100047845A (ko
Inventor
레지날드 씨. 패로우
자파 아이크발
아밋 고얄
셍 류
Original Assignee
뉴저지 인스티튜트 오브 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 뉴저지 인스티튜트 오브 테크놀로지 filed Critical 뉴저지 인스티튜트 오브 테크놀로지
Publication of KR20100047845A publication Critical patent/KR20100047845A/ko
Application granted granted Critical
Publication of KR101464283B1 publication Critical patent/KR101464283B1/ko
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/957Of chemical property or presence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/957Of chemical property or presence
    • Y10S977/958Of biomolecule property

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Thin Film Transistor (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

나노튜브 장치와 장치 제조를 위해 나노튜브를 증착하기 위한 방법이 개시되어 있다. 상기 방법은 나노튜브의 전기영동 증착에 관한 것이며, 증착된 나노튜브 개수의 조절 및 정의된 영역 내에 나노튜브를 위치시키는 것을 가능하게 한다.

Description

나노튜브 장치 및 제조 방법{NANOTUBE DEVICE AND METHOD OF FABRICATION}
관련 출원
본 출원은 공통으로 소유하고 있는 2007년 6월 20일 출원된 미국 특허출원번호 제 11/765,788 호, "Method of Forming Nanotube Vertical Field Effect Transistor"와 관련된 내용을 포함하며, 그 전체가 본 명세서 내에 인용문헌으로 포함된다.
정부 권리에 관한 진술
본 발명은 Air Force Office of Scientific Research에 의해 허여된 승인 계약 번호(grant contract number) AFOSR Grant: FA9550-05-1-0461 에 따라 미국 정부의 지원 하에 만들어졌다. 미국 정부는 본 발명에 있어 소정의 권리를 갖는다.
기술분야
본 발명은 일반적으로 나노튜브 장치 및 상기 장치의 형성방법에 관한 것이며, 더욱 상세하게는 정의된 영역 내에 하나 또는 그 이상의 나노튜브를 조절가능하게 증착하는 방법에 관한 것이다.
나노튜브, 예를 들어, 탄소나노튜브(CNT), 또는 나노튜브의 어레이가 전기탐침 또는 전자장치 내의 센싱 또는 액티브 장치 소자로써 사용될 수 있는 많은 적용이 있다. 이런 적용에서, 나노튜브와 전기적 콘택(contact)이 이루어져야 하는데, 전기적 콘택을 위해서는 다양한 전도성 링크(즉, 인터커넥트) 및 다른 회로에 대해 나노튜브를 정확하게 위치시켜야 한다.
정확한 배열에 관한 요구 외에, 원하는 사양에 따른 장치 성능을 제공하기 위해서는 나노튜브의 특성이 또한 조절될 필요가 있다. 예를 들어, CNT에 대한 많은 트랜지스터 적용은 다중벽 탄소나노튜브(multi-wall carbon nanotubes (MWNT)) 보다는 단일벽 탄소나노튜브(single wall carbon nanotubes (SWNT))에 의해 가장 잘 달성된다. 게다가, 트랜지스터의 액티브 소자로써, 금속성 SWNT 보다는 반도체성 SWNT가 요구된다. 하지만, 인터커넥트 및 나노프로브와 같은 다른 적용을 위해서는 금속성 CNT가 선호된다.
CNT 장치에 대해 현존하는 제조 방법들은 배열뿐만 아니라 특성 조절에 대한 요구를 충분히 다루지 않고 있다. 게다가, CNT 전기적 장치 제조에 있어서는, CNT 증착 전에 적어도 하나의 인터커넥트 레벨이 처리되어야 한다. 가장 흔한 금속화 방식(metallization schemes), 예를 들어, 알루미늄 및 구리 인터커넥트를 이용한 금속화는 후속하는 처리 절차에 종종 써멀 버짓 제한(thermal budget constraint)을 부과한다. CNT 증착에 통상적으로 사용되는 화학적 증기 증착(CVD) 방법은 상대적으로 높은 온도가 수반되어야 하기 때문에 알루미늄 또는 구리 인터커넥트와 호환될 수 없다.
발명의 요약
본 발명의 실시예는 나노튜브 장치 및 장치 제조를 위한 나노튜브의 증착 방법을 제공한다.
일 실시예는 (a) 개구에 의해 구조 상 영역을 정의하는 단계, (b) 영역 내에 전기영동에 의해 증착될 나노튜브의 개수를 조절하도록 개구를 형성하는 단계, 및 (c) 전기영동에 의해 영역 내에 나노튜브를 개수만큼 증착하는 단계를 포함하는 방법에 관한 것이다.
본 발명의 다른 실시예는 기판 상에 형성된 금속콘택 위의 절연층, 절연층 내에 형성된 개구로써, 개구는 금속콘택까지 확장하며 금속콘택의 영역을 정의하는 개구, 개구 내부에 배치되고 영역의 실질적인 중심에서 영역과 접촉하는 제 1 말단과 시료와 상호작용하기 위한 작용기를 갖는 분자에 결합된 제 2 말단을 갖는 나노튜브를 포함하는 나노튜브에 기반한 센서를 제공한다.
또 다른 실시예는 탄소나노튜브에 기반한 장치를 형성하는 방법을 제공하며, 이 방법은 금속콘택 상에 형성된 절연층을 기판에 제공하는 단계, 금속층의 영역을 노출시키기 위해 절연층을 통해 개구를 형성하는 단계, 탄소나노튜브를 포함하는 전해유체 안에 기판을 담그는 단계, 금속전극을 전해유체 안에 제공하는 단계, 금속콘택과 금속전극의 전역에 걸쳐 바이어스 전압을 적용하는 단계, 및 적어도 하나의 탄소나노튜브를 영역에 대해 실질적으로 수직한 방향으로 증착시키는 단계를 포함하며, 방법 중 탄소나노튜브의 일 말단이 영역의 중심에 근접한 영역에 접촉한다.
본 발명의 가르침은 첨부된 도면과 함께 하기 상세한 설명을 고려함으로써 쉽게 이해될 수 있으며, 도면 중
도 1은 본 발명의 실시예를 사용하여 제조될 수 있는 나노튜브에 기반한 구조의 개략적인 단면도이고,
도 2a 내지 2d는 본 발명의 일 실시예에 따라서 탄소나노튜브를 증착하기 위한 실험장치구성(experimental setup)과 프로세스 시퀀스를 설명하기 위한 개념도(schematic diagram)이고,
도 3a 내지 3c는 100nm의 직경과 50nm의 깊이를 가진 개구 주변의 전기장 분포의 개략도(schematic illustration)이고,
도 4a 내지 4b는 500nm의 직경과 50nm의 깊이를 가진 개구 주변의 전기장 분포의 개략도(schematic illustration)이고,
도 5a는 나노튜브 센서 어레이의 개략도(schematic illustration)이고,
도 5b는 도 5a의 나노튜브 센서 어레이의 단면도이고,
도 6a 내지 6j는 센서 제조 시퀀스의 다양한 단계를 진행하는 동안의 구조의 단면도를 도시한 것이고;
도 7은 나노튜브 센서를 세포 내 프로브로써 사용하는 실험적 배치(experimental arrangement)의 개략도이고,
도 8은 본 발명의 실시예를 사용하여 제조될 수 있는 나노튜브에 기반한 트랜지스터의 개략도이고,
도 9a 내지 9b는 본 발명의 실시예를 시행하기에 적당한 개구의 형상의 개략도이다.
이해를 돕기 위해서, 가능하다면, 도면에 공통되는 동일한 구성요소를 나타내기 위해서 동일한 참조번호가 사용되었다.
상세한 설명
CNT 장치의 제조에 있어서, 개구 안에서 수직을 향하는 CNT를 제공할 필요가 종종 있다. 트랜지스터 제조 프로세스에 있어서, 특정 스테이지 또는 레벨에 따라서, 개구는 또한 비아(via)로 지칭된다.
본 발명의 실시예는 나노튜브의 패턴과 간격(spacing)뿐만 아니라 증착될 나노튜브의 개수를 조절하면서 개구에 의해 정의된 영역 내에 나노튜브를 증착하는 방법을 제공한다. 구체적으로, 개구의 적당한 형상과 함께 전기영동 증착은 적어도 하나의 나노튜브가 타겟 영역 내에 나노미터 스케일의 정확도로 증착될 수 있도록 한다. 본 발명의 실시예와 관련하여, 특정 성능 요구조건을 갖는 장치의 제조를 용이하게 하기 위해, 예를 들어, 그 기하학적 배열 또는 다른 특성에 따라서, 나노튜브를 사전-선별(pre-sorting)하는 것이 사용될 수 있다.
도 1a는 본 발명의 실시예를 사용하여 제조될 수 있는 나노튜브 구조(100)의 개략적인 단면도이다. 구조(100)는 기판(102)을 포함하며, 기판 위에는 절연재료층(104)이 증착되어 있다. 절연층(104)은 패터닝되어서 개구(106)를 형성하며, 기판(102)의 상부 표면(108)을 노출시킨다. 단일 CNT(110)가 개구(106) 내부에 증착되어 CNT(110)의 일 말단(112)이 기판(102)의 상부 표면과 접촉한다. 기판(102)은 금속 또는 전도성 필름(절연재료 위에 증착됨)과 같은, 나노튜브(110)의 전기영동 증착을 위한 바이어스 전압의 인가가 가능하도록 하는 전도성 재료이다.
본 발명의 실시예는 다른 CNT를 배제하면서 개구(106) 내부에 CNT(110)가 증착되는 것을 허용한다. CNT(110)를 수용할 만큼 충분히 큰 개구(106)가 다른 리소그래픽 공정을 사용함으로써 패터닝될 수 있다. 따라서, 일 실시예에서, 개구(106)는 리소그래피 공정의 대략 최저 한계(lower limit)(예를 들어, 분해능)에서부터 대략 100nm 범위의 직경(D)을 가질 수 있다. 예를 들어, 193 nm에서 현존하는 리소그래피는 대략 90 nm의 분해능 한계를 쉽게 제공한다. 일 실시예에서, 기판(102)은 개구(106)에 대한 레벨-투-레벨(level-to-level) 오버레이 컨스트레인트(overlay constraint)를 충족시키기에 충분히 큰 측면 치수(예를 들어, 개구 전역에 걸쳐서 확장됨)를 갖는다. 하기에서 알 수 있듯이, CNT(110)는 개구(106)의 중심에 근접하여, 예를 들어, 수 나노미터의 측면 배열 정확도를 갖도록, 증착될 수 있다. 게다가, CNT(110)는 다중벽 CNT 대 단일벽 CNT 및 또는 전도성 CNT 대 반도체성 CNT를 포함한 바람직한 물리적 특성을 갖도록 사전-선택(pre-select)될 수 있다.
도 2a 내지 2d는 본 발명의 일 실시예에 따라서 CNT를 기판 상에 증착하기 위한 전기영동 실험장치구성(experimental setup)과 시퀀스를 개략적으로 설명한다. 적당한 용매 내에 분산된 하전 입자가 전기장의 영향 하에 전극을 향해 움직임으로써 전기영동 증착(EPD)을 하게 된다. 대략 30㎛ 크기 미만의 입자가 저 고체함량(low solid loading)과 저점도를 갖는 현탁액에 사용될 수 있다. 일반적으로, 나노튜브가 번들(bundle)의 형태로 증착될 지 또는 개별 튜브로 증착될 지는 현탁액의 특징과 각각의 상대 이동도(relative mobility)에 달려 있으며, 상대 이동도는 그 형태와 개구 또는 비아 내부의 접촉표면을 향해 확산하는 것과 연관되어 있는 저항에 달려 있다.
도 2a는 전도층(202)을 갖는 기판 구조(200)를 나타낸다. 절연층(204)은 전도층(202) 위에 제공되며, 하나 또는 그 이상의 개구(206)는 절연층(204) 안에 패터닝된다. 기판 구조(200)를 액체배스(liquid bath)(220)에 담그는데, 예를 들어, 상온에서 전해질과 적당한 용매 내 CNT(210)의 현탁액을 포함하는 액체배스에 담근다.
성공적인 EPD를 위해서는 안정한 분산액(dispersion)의 제조가 필요하다. 일반적으로, 현탁액의 이온 전도도는 낮게 유지하면서, 높은 ζ-포텐셜을 가진 입자를 사용하여 정전기적으로 안정화된 분산액이 수득될 수 있다. SWNT는 낮은 pH 값에서 높은 ζ-포텐셜을 나타내었다. 하전 염(charging salt)의 존재가 나노튜브의 기판으로의 부착을 개선하고 증착속도를 증가시키는데 중요한 역할을 할 수 있다는 것이 또한 알려져 있다.
일 실시예에서, 10mg의 정제 SWNT를 30ml의 증류수에 현탁시키고, 10-4 몰의 마그네슘 나이트레이트 헥사하이드레이트(Mg(NO3)26H20)가 현탁액에 첨가되고 약 2 내지 3시간 동안 초음파 처리되었다. 일반적으로, 액체배스(220) 안의 나노튜브를 적용 요구에 따른 나노튜브의 유형으로 사전-선별하는 것이 바람직하다. 예를 들어, 반도체성 SWNT가 트랜지스터의 액티브 소자로써 사용되는 반면, 반도체성 또는 금속성 나노튜브가 프로브 또는 다른 장치를 위해 사용될 수 있다. 몇 방울의 비-이온성 Triton-X 계면활성제가 현탁액에 첨가되었고 그 결과 용액의 최종 pH가 대략 4로 개선되었다.
수소 이온(H+) 외에, 도 2a에 원으로 나타낸 바와 같이, 액체배스(220)는 또한 CNT를 흡수하거나 또는 CNT에 부착하는 경향이 있는 마그네슘 이온, Mg2 +을 포함한다. 전극(224), 예를 들어 백금 전극은 액체배스(220)에 담가져서 DC 전압원(222)의 양 단자(positive terminal)에 연결된다. 전도층(202)은 스위치(226)에 연결된다.
도 2a에서, 스위치(226)가 개방되고 액체배스(220)에 전류가 흐르지 않으면(전류는 전류계(A)를 사용하여 측정될 수 있다), CNT는 현탁액 안에 임의로 분포되어 기판 상에 증착이 무작위로 이루어지게 될 것이다.
도 2b에서, 스위치(226)가 닫히고, 그로 인해 전도층(202)이 DC전원(222)의 음 단자(negative terminal)에 연결된다. 백금 전극(224) 및 전도층(202) 전역에 걸쳐서 인가되는 DC 전위, 예를 들어 약 5V 내지 25V 범위의 DC 전위로 유체 내 하전 입자 또는 종(species)은 음극 또는 양극을 향해 움직일 것이다. 예를 들어, H+ 이온과 양으로 하전된 CNT는 기판 구조(200)-이 경우는 음극임-를 향해 움직일 것이다.
H+ 이온이 CNT를 포함하는 다른 양으로 하전된 종보다 높은 이동성을 가지므로, H+ 이온은 다른 하전 종 보다 더 빨리 기판 구조(200)에 도달하게 될 것이고, 그로 인해 도 2b에 나타낸 바와 같이 절연층(204)의 표면에 우선적으로 축적될 것이다. 절연층(204)의 양으로 하전된 표면은 각각의 개구(206) 주변에 전기장을 형성한다.
도 2c에 나타낸 바와 같이, 기판 구조(200) 근처에 도착한 양으로 하전된 CNT는 전기장에 의해 각 개구(206)의 중심을 향하게 된다. 이 “포커싱(focusing)” 효과에 대한 상세사항은 이후에서 논의될 것이다. 일 실시예에서, 비록 각 개구(206)의 직경(또는 측면지수)이 물리적으로 추가적인 CNT를 수용하기에 충분히 크지만, 각 개구(206) 내부에 단지 하나의 CNT(CNT(210*)으로 나타냄)가 증착되도록 개구(206)와 전기장 분포가 형성된다. CNT(210*)는 CNT의 일 말단이 전도층(202)과 접촉하면서 각 개구(206) 내부에 “길이방향”, 즉, CNT(210*)의 길이가 개구(206)의 깊이와 동일한 방향으로 배치된다.
도 2d는 CNT(210*)의 미부착 말단이 백금 전극을 향해 배열하거나 또는 백금 전극을 가리키는 경향을 나타내며, 게다가 추가적인 CNT를 위한 초점 역할을 하는 것을 보여준다. 따라서, 추가적인 CNT가 서로 말단-대-말단으로 부착되면서, 두 번째 CNT(210A)는 예를 들면 세로로 CNT(210*)의 자유 말단에 부착되게 된다. 기판 구조(200)는 그 후 배스(bath)(220)로부터 제거되고, 증류 및 탈-이온수로 세척되고, 비활성 기체로 건조된다. 건조 후에, 전도층(202)에 부착된 CNT(210*) 만이 남게 되고, 도 2e에 도시된 것과 같이 그 결과로써 생기는 구조는 추가적인 공정을 위해 준비된다.
종종 다른 장치가 적당한 오퍼레이션 및/또는 최적 성능을 위해 나노튜브의 다른 특성들을 요구하기 때문에, 전기영동 증착 전에 나노튜브를 사전-선별하는 것이 유리할 것이다. 예를 들어, 나노튜브는 반도체성 대 금속성, 단일벽 대 다중벽과 같은 그들의 특성에 따라서 선별될 수 있거나, 또는 기하학적 배열 또는 길이, 직경 등과 같은 치수에 따라서 선별될 수 있다.
다른 종류의 나노튜브는 다른 이동성을 갖기 때문에, 예를 들어 더 길거나 또는 다중벽 나노튜브가 더 짧거나 또는 단일벽 나노튜브와 비교하여 일반적으로 더 낮은 이동성을 가질 것이므로, 전기영동이 또한 선별 목적으로 사용될 수 있다. 그러한 선별은 전기영동 증착 전에 시행되어, 배스(bath) 내 나노튜브는 특성 및/또는 기하학적 배열의 관점에서 상대적으로 균일한 분포를 가질 수 있다. 한편, 만약 전기영동 배스 내 나노튜브가 기하학적 배열 또는 다른 특성의 관점에서 상대적으로 넓은 분포를 가지면, 증착을 하는 동안 나노튜브의 다른 이동성으로 인하여 일정 정도의 선별이 또한 “인-시츄”에서 달성될 수 있다.
나노튜브를 개구 방향으로 향하게 하는 포커싱의 정도는 개구의 형상과 함께 전기장 분포의 크기와 형태에 의해 영향을 받는다. 증착된 나노튜브의 포지셔닝 뿐만 아니라 증착된 나노튜브 개수의 조절을 위해서, 전기장 분포를 조사하기 위하여 유한요소모델이 다양한 입력 파라미터의 함수로써 사용된다. 나노튜브 증착 조절과 관련된 파라미터 또는 인자는 특히 개구 형상(aperture configuration), 나노튜브 특성, 절연층 및 기판의 특징, 바이어스 포텐셜, 용액의 유전특성을 포함한다. 개구 형상은 일반적으로 형태, 치수(예를 들어, 폭, 길이, 깊이, 치수의 비율), 측벽 프로파일 등을 포함할 수 있다. 나노튜브 특성은 일반적으로 치수(예를 들어, 길이, 직경), 단일벽 또는 다중벽, 반도체성 또는 금속성을 포함할 수 있다.
개구 주변의 전기장은 기판 구조 상의 금속층에 인가된 포텐셜과 절연층의 표면에 축적된 전하의 조합의 결과로서 생긴다. 음극을 덮는 유전체층 위의 양 전하 축적은 양극과 음극 사이에 인가되는 바이어스에서 비롯되는 장(field, 場)에 반대되는 전기장을 생성한다. 일단 두 개의 전기장이 동등하며 상반되면, 양 전하는 절연층의 표면에 더 이상 끌리지 않을 것이다. 생성된 전기장 분포로부터 나노스코픽 렌즈의 강도를 결정하는 이 “포화 전하 밀도(saturation charge density)”, σ는 다음으로부터 계산될 수 있다:
σ=ε0εrE 식 (1)
식 중, E는 양극과 음극간의 전기장의 크기이고, ε0는 자유 공간의 유전율이고, εr는 액체의 상대 유전율이다.
예를 들어, E = 103 V/m, ε0 = 8.85x10-12 Farad/m 및 액체는 물, εr= 80일 때, 표면전하밀도 σ는 7.1x10-7 Coulomb/m2이다.
일단 개구의 특정 기하학적 배열이 선택되고 표면전하밀도가 계산되면, 개구에 인접한 영역 내 전기장과 양으로 하전된 입자의 이동이 잘 알려진 유한요소분석 기술을 이용함으로써 계산될 수 있다. 따라서, 적당한 형상과 디자인을 가지고, 소망하는 포커싱 또는 렌즈 효과를 생성하여 나노튜브 증착을 지휘할 수 있는 전기장 분포를 수득할 수 있다.
도 3a 내지 3c는 직경 100 nm 와 깊이 50 nm를 갖는 개구(306) 주변의 전기장 분포의 결과를 나타낸다. 이 예에서, 음의 10V 바이어스가 전도층(302)에 인가되었다. 도 3a는 H+ 이온이 절연 표면에 축적되기 전의 전기장 분포를 나타낸다. 전기장 분포는 상대적으로 균일하며, 절연층(304)의 표면과 거의 수직인 역선(field line)을 갖는다. 도시된 바와 같이, 역선 방향은 음 포텐셜의 영역을 가리키는 화살로 나타내었다. 역선이 단지 약간 편향된 것이 개구(306) 또는 근처에서 확인되었다.
도 3b는 절연층(304)의 표면이 H+ 이온으로 포화된 후 변경된 전기장 분포를 나타낸다. 개구(306)의 어느 한면 상의 화살(322)은 역선이 안쪽을 향함을, 즉, 개구(306)의 윗 부분을 향함을 보여주는 반면, 절연층(304) 위의 화살(320)은 양으로 하전된 종이 표면으로부터 반발되게 될 것을 보여준다. 개구(306)의 중심 근처에서, 화살(334)로 나타낸 바와 같이, 역선은 아래쪽을, 즉 개구(306)의 내부를 향한다. 따라서, CNT처럼 양으로 하전된 종은 개구(306)를 향한다.
전하 포화 지점에 도달하도록 충분한 전하가 축적되고 난 후, 정전기적 렌즈 효과로 인해 모든 하전 입자가 개구(306)의 중심을 향하게 될 것이다. 이러한 기하학적 배열을 위한 등전위선은 이동성의 하전된 나노튜브가 개구(306)의 중심을 향하도록 포커싱 하기에 유리하다. 이 경우에, 개구(306)의 직경은 100 nm이고 깊이는 50 nm이다. 이 예에서, 개구(306) 주변의 전기장 분포가 개구의 중심 세로 축에 대해 실질적으로 대칭이므로, CNT(310)는 또한 개구(306) 내부의 실질적인 중심에 위치된다. 따라서, CNT(310)의 일 말단은 개구(306)에 의해 정의된 전도층(302)의 영역(즉, 개구 바닥의 노출된 영역), 예를 들어, 정의된 영역의 중심에서 수 나노미터 이내에 부착된다.
도 3c는 개구(306) 내부에 하나의 CNT(310)가 증착되고 난 후의 전기장 분포를 나타낸다. CNT가 전도성이고 전도층(302)과 전기적 콘택을 하고 있기 때문에, 전기장 분포는 증착된 CNT(310)에 의해 변형된다. 게다가, 개구(306)가 충분히 작다면, 이 경우에서와 마찬가지로, 전기력선이 개구(306)의 내부를 향하지 않고 CNT(310)의 자유말단에 집중하는 경향이 있다. 따라서, CNT(310)의 자유 말단은 개구(306)의 바닥에 증착되지 않고 나노튜브의 추가 증착을 위한 초점이 된다.
일반적으로, 참조 전극과 개구 바닥의 금속 콘택 간의 고정된 포텐셜 차이를 위해, 포커싱 효과의 강도는 고정된 개구 깊이를 위한 개구의 직경에 반비례한다.
도 4a 내지 4b는 전도층(402)에 인가된 음의 10V 바이어스로 500nm의 직경과 50nm의 깊이를 갖는 개구(406)에 대해 수득된 다른 결과를 나타낸다. 도 4a는 절연층(404)의 표면에 축적된 H+ 이온에 의한 개구(406) 주변의 전기력선을 나타내고, 도 4b는 CNT(410)에 의해 변형된 개구(406) 내부의 전기력선을 나타낸다. 이 경우에, CNT(410)는 개구(406)의 중심(406C)으로부터 측면 오프셋에 위치하는데, 이는 예를 들어 배스 내에서 접근 방향이 무작위적이며 그 후 나노튜브를 증착 위치로 향하게 하는 전기장에서 기인할 수 있다. 도면 내 역선이 암시하는 바와 같이, 하나 이상의 CNT가 개구(406) 내부에 증착될 수 있다.
이 경우, 전기장 분포는 나노튜브가 개구(406)의 중심 영역을 향하도록 유도하는 우세한 방향을 제공하지 않을 것이다. 나노튜브의 최종 위치는 바이어스가 인가되기 전의 나노튜브의 최초 위치에 좌우될 것이다. 예를 들어, 약 100nm를 초과하는 직경 또는 측면 치수의 큰 개구를 위해서, 최초 증착된 나노튜브의 미부착 말단은 여전히 추가적인 나노튜브의 증착을 위한 초점일 수 있다. 하지만, 개구의 측면 치수가 충분히 클 때, 전기장은 다른 나노튜브를 전도층(402)의 노출된 표면의 다른 위치로 또한 향하게 할 것이다.
비록 결과는 대략 100 nm의 개구 직경이 그 미만으로는 증착이 단일 나노튜브로 제한되는 전이(transition) 또는 참조점(reference point)을 제공함을 암시하고 있지만, 대략 100 nm 보다 큰 개구가 하나 이상의 나노튜브의 증착에 유리한 한편, 나노튜브 및/또는 구조적 형상의 특정 조합에 따라서 참조점이 다양할 수 있다고 이해된다.
개구 직경(또는 측면 치수) 외에도, 예를 들어 나노튜브의 특성 및/또는 기하학적 배열에 따라서 다른 형상을 제공함으로써 나노튜브의 증착을 조절하기 위한 목적으로 다른 파라미터, 예를 들어 특히 형태, 종횡비(측면 치수로 나눈 개구의 깊이 또는 높이로 정의됨)가 또한 사용될 수 있다.
다른 유한요소분석의 결과는 또한 10nm의 직경과 100nm의 길이를 갖는 나노튜브와 100nm의 직경과 18nm 보다 큰 깊이(또는 높이)를 갖는 실리콘 나이트라이드 내에 형성된 개구에 대해 단지 하나의 나노튜브가 개구 내부에 증착될 것임을 보여준다. 이는 종횡비가 적어도 0.18 또는 이보다 큰 개구가 증착될 나노튜브의 수를 단지 1로 제한하기 위해 사용될 수 있다는 것을 암시한다. 더 작은 직경을 갖는 나노튜브에 대해, 증착을 단지 하나의 나노튜브로 제한하기 위해서 더 큰 종횡비가 요구될 수 있다. 다른 개구 형상과 나노튜브 특성을 위해서 증착된 나노튜브의 예상 위치를 모의실험하기 위한 유사한 분석이 사용될 수 있다. 대칭면이 이용가능한 상황에 2차원 분석이 적당한 반면, 일반적으로 3차원 분석이 다른 상황에 사용될 수 있다. 따라서, 나노튜브 증착에 추가적 수준의 조절을 제공하기 위한 가이드로써 나노스코픽 렌즈 디자인에 유한요소분석이 사용될 수 있다.
많은 다른 나노튜브에 기반한 장치가 본 발명의 방법을 사용하여 제조될 수 있다. 다른 치수의 개구 내부로의 나노튜브의 증착에 이 방법이 일반적으로 적용될 수 있기는 하지만, 증착될 나노튜브의 개수 또는 나노튜브의 측면 포지셔닝 또는 정렬을 조절하는 것이 바람직한 상황에 특히 적합하다. 이 방법으로부터 이익을 얻을 수 있는 나노튜브에 기반한 장치의 예들은 특히 수직 CNT 트랜지스터, 화학적 센서 또는 바이오 센서를 포함한다.
도 5a는 본 발명의 일 실시예에 따른 나노튜브에 기반한 센서 어레이 장치(500)의 개략도이며, 도 5b는 선 BB'을 포함하는 수직면에 따른 단면도이다. 장치(500)는 일반적으로 기판(501) 위에 증착되는 하나 또는 그 이상의 나노튜브(510)를 포함한다. 전도성 재료(502), 예를 들어, 금속이 기판(501)의 선택된 영역에 형성되어 나노튜브(510)에 전도성 경로를 제공한다. 나노튜브(510)는 전술한 바와 같이 전기영동을 사용하여, 예를 들어 전도성 재료(502) 위에 제공된 절연층(504) 내에 개구를 형성하고, 전도성 재료(502)에 바이어스 전압을 인가함으로써 전도성 재료(502) 상에 증착될 수 있다. 쉬스(sheath)(512)는 또한 각각의 나노튜브(510) 주위에 형성되어 나노튜브(510)에 패시베이션과 절연을 제공한다. 나노튜브(510)의 측벽들을 절연하고 단지 팁만을 노출시킴으로써, 잠재적 배경 소음(potential background noise)이 감소될 수 있고, 그로 인해 센서의 전기적 민감도를 증가시킬 수 있다. 나노튜브(510)에 대한 인터커넥트가 CNT 전기적 특성의 변화를 측정하기 위해 사용된다.
도 5a 내지 5b에 도시된 것과 유사한 장치가 생물학적 세포 안의 세포 내 활동을 탐구하기 위해 사용될 수 있다. 특히, CNT는 직경이 작아서(예를 들어, 세포 멤브레인 두께와 비교할 때), 프로브로 탐구되는 세포의 찌그러뜨림을 최소화할 수 있기 때문에 그러한 프로브의 좋은 후보이다.
특정 센서 적용에 따라, 다른 기능성 분자(514)가 나노튜브(510)의 다른 말단에 제공된다. 일반적으로, 비록 MWNT 또한 사용될 수 있는 상황이 있기는 하지만, SWNT가 센서 적용에 바람직하다.
도 6a 내지 6j는 도 5a에 도시된 바와 같은 장치 어레이를 형성하기에 적당한 프로세스 시퀀스의 다양한 단계를 진행하는 동안의 센서 장치 구조의 개략적인 단면도이다. 도 6a는 기판(600) 상에 형성된 전도성 부분(602)을 나타낸다. 바이오센서를 위해서, 석영이 기판 재료로써 사용될 수 있고, 이는 트랜스미션 모드(transmission mode)에서 광학현미경으로 생물학적 시료를 보는 것을 용이하게 할 것이다. 일 실시예에서, 100 mm 직경과 350 ㎛ 두께의 석영 웨이퍼가 사용될 수 있고, 이 기술분야의 당업자에게 알려진 방법을 사용하여 장치 제조를 하기 전에 상기 석영 웨이퍼가 세척 및 준비될 수 있다. 하지만, 일반적으로 실리콘을 포함하는 임의의 적합한 기판으로 충분할 것이다. 만약 출발 기판이 실리콘이거나 또는 다른 전도성 재료이면, 절연층은 금속 인터커넥트 이전에 우선 증착되어야 할 것이다.
전도성 부분(602), 예를 들어 인터커넥트 금속은 포토리소그래피 및 이 기술분야의 당업자에게 알려진 레지스트 리프트오프 기술(resist liftoff technique)을 사용하여 증착되고 패터닝될 수 있다. 인터커넥트 금속은 CNT와 전기적 콘택 및 부착을 유지하기에 적당해야 하며, 그 비-제한적 예는 코발트(Co), 니켈(Ni), 또는 철(Fe)을 포함할 수 있다.
금속 인터커넥트 간에 석영 기판으로의 부착을 용이하게 하기 위해서, 부착층(미도시)은 또한 전도성 부분(602)의 형성 전에 형성될 수 있다. 일 실시예에서, 코발트(Co)는 또한 금속 인터커넥트로써 사용되고, 코발트의 석영 표면으로의 부착을 증진시키기 위해서 20 nm 두께의 크롬(Cr) 부착층이 사용된다. Cr층은 대략 2 옹스트롬/초(Å/s)의 속도로 증발될 수 있고, 그 후 120 nm 두께의 Co 층이 대략 1옹스트롬/초(Å/s)의 속도로 증발될 수 있다. 대략 20nm 및 120nm의 두께가 Cr 및 Co 층 각각에 사용될 수 있다. 코발트 금속 인터커넥트는 또한 나노튜브의 전기영동 증착을 하는 동안 음극 구실을 할 수 있다.
전기영동을 사용하여 CNT가 증착되는 실시예에서, 전도성 부분(602)은 기판(602)의 가장자리 또는 주변에 제공되는 콘택 패드(미도시)에 전기적으로 연결되도록 형성된다. 일 실시예에서, 전기적 커넥션 경로를 단순화하기 위해서 기판(600) 위에 형성된 연속적 전도층의 일부로써 CNT가 증착되게 될 각각의 전도성 부분(602)이 제공된다. 이는 전자-빔 리소그래피를 하는 동안 금속의 전기적 접지를 용이하게 하고(만약 e-빔이 제조에 사용된다면) CNT의 전기영동 증착을 위한 단일 커넥션 포인트를 제공한다. 일 예에서, 다른 장치간의 전기적 커넥션은 커프(kerf)(각 장치간의 영역) 내에 만들어지는데, 이는 장치의 어셈블링을 용이하게 하기 위해 기판을 자를 때 커넥션이 다이싱 소(dicing saw)에 의해 절단되는 것이 가능하도록 한다. 제조를 하는 동안 필요한 전기적 커넥션을 제공하기 위해 대체적인 형상이 또한 사용될 수 있고, 이러한 목적으로 다양한 통상적인 리소그래피 및 에칭 공정이 개조될 수 있다.
각각의 개별적인 센서 장치를 위해서, 예를 들어 솔더링 또는 와이어 본딩에 의해 외부 회로와의 전기적 커넥션을 제공하기 위해 금속 콘택이 필요하다. 일 실시예에서, 금(Au)이 금속 콘택 재료로써 사용된다. 금속 콘택은 포토리소그래피 및 레지스트 리프트오프 기술을 사용하여 형성될 수 있다. 도 6b는 포토레지스트층(603)이 전도성 부분(602)의 밑에 있는 영역까지 확장되는 개구(608)를 형성하도록 패터닝되는 금속 콘택 형성 단계를 진행하는 동안의 구조를 나타낸다. 전도층(604)은 패터닝된 레지스트(603)와 전도성 부분(602)의 노출된 영역 위에 증착된다. 레지스트층(603)이 도 6b의 구조에서 제거될 때, 개구(606) 안의 전도층만이 남게 되고, 그 결과가 도 6c에 도시된 구조이다.
도 6d는 기판(600) 및 전도성 부분(602) 위에 증착되고 개구(610)(비아 또는 윈도우로 지칭되기도 함)를 형성하기 위해 연속적으로 패터닝된 절연층(608)을 나타낸다. 일 실시예에서, 실리콘 나이트라이드(SiNx)가 절연층(608)으로써 사용된다. 절연층(608)의 두께는 패터닝 이후 정전기적 렌즈 구현(implementation)에 적당한 종횡비를 제공하도록 선택된다. 예를 들어, 50 nm 두께의 SiNx 필름이 측면 치수, 예를 들어 대략 100 nm의 직경을 갖는 개구를 형성하기에 적합하다. 예를 들어, 50nm 두께의 저-스트레스 SiNx 필름이 대략 350℃ 온도의 Plasma Therm 790 표준 장비를 사용하여 플라즈마 화학기상 증착(plasma enhanced chemical vapor deposition (PECVD))에 의해 저온에서 증착될 수 있다. 센서 장치와의 관계에서, SiNx 층은 두가지 기능을 한다. 장치 제조를 하는 동안 개구를 형성하기 위한 절연층을 제공하는 것 외에도, 완성된 센서에서 SiNx 층은 전도성 인터커넥트 금속과 측정이 수행될 세포 배양 용액간에 절연 배리어를 또한 제공한다.
적당한 리소그래피 공정을 사용하여, 대략 100 nm 또는 그 미만의 측면 치수를 갖는 개구(610)가 절연층(608) 내에 형성될 수 있다. 개구(610)는 기판(602) 상에 증착될 나노튜브를 수용하기에 충분이 크다. 일 실시예에서, 개구(610)는 리소그래피 공정의 대략 최저한계(예를 들어, 분해능)에서부터 대략 100nm 범위의 직경을 가진다. 일 실시예에서, 193nm의 광원을 사용한 광학 리소그래피가 포토레지스트 안에 개구를 패터닝하는데 사용될 수 있고, 대략 90nm의 해상도를 제공한다. 한편, 이 개구는 또한 전자-빔 리소그래피 또는 집속 이온빔 밀링 기술(focused ion beam milling technique)을 사용하여 제조될 수 있다. 대략 100nm 미만의 치수를 갖는 개구가 나노튜브의 전기영동 증착을 하는 동안 정전기적 렌즈 효과를 제공하기에 적당하다. 인터커넥트 금속 및 비아의 리소그래피 기술이 나노튜브 장치간의 분리를 제한할 것이다.
그 후, 도 6d의 구조는 도 2와 관련하여 이미 논의된 유사한 장치구성(setup)을 사용하여 나노튜브의 전기영동 증착을 위한 전해 배스에 담가질 수 있다. 일 실시예에서, 석영 기판 상에 코발트 금속층을 가진 패터닝된 구조는 음극으로써 사용되고, 백금 와이어는 양극으로써 사용된다. 대략 5V 내지 25V 범위의 DC 바이어스 전압이 사용될 수 있다.
도 6e는 개구(610) 내부에 나노튜브(650)를 증착한 후의 구조를 나타낸다. 전기영동 증착 전에, 나노튜브는 금속성 SWNT를 위해 사전-선별되고 SWNT의 번들을 제한하기 위해 필터링될 수 있다. CNT 또는 SWNT의 길이는, 예를 들어 대략 1 마이크론(㎛) 미만일 수 있고, 적용 요구사항에 의해 통상적으로 결정될 것이다. 세포 내 프로브와 같은 바이오센서의 경우에, 길이는 기계적 안정성과 타겟 세포로의 침투 거리에 대한 요구사항에 의존할 수 있다.
나노튜브(650)가 개구(610) 내에 증착된 후, 그 수직적 오리엔테이션은 헹굼 공정 또는 하전 효과(charging effect)에 의해 영향 받을 수 있다. 나노튜브는 그것이 증착된 금속 레벨과 웨이퍼 기판 위의 금속 플레이트 간에 전위를 적용함으로써 수직 방향으로 재배열될 수 있다. 이는 예를 들어 제조 시퀀스 중 후속하는 증착 공정 전에 반응기 안에서 행해질 수 있다. 플라즈마 프로세싱 시스템은 통상적으로 플라즈마를 발생시키기 위한 전기적 회로의 일부인 웨이퍼 위에 금속 플레이트를 갖는다. 이 금속 플레이트(또는 다른 전극)와 나노튜브가 증착된 금속 레벨 간에 DC 또는 AC 전기장을 성립시킴으로써, 나노튜브는 후속하는 프로세싱 전에 원하는 방향으로 재배열될 수 있다.
나노튜브 증착 후에, 나노튜브(650)를 인캡슐레이트하고 패시베이트(또는 절연) 하기 위해서 대략 2 내지 5nm 범위의 두께를 갖는 절연재료의 컨포멀 필름(conformal film)(612)이 형성될 수 있다. 이 인캡슐레이션 필름에 적당한 재료는 SiNx 또는 적당한 고분자, 예를 들어, 폴리테트라플루오로에틸렌을 포함한다.
전기영동 증착 전에 또는 전기영동 증착을 하는 동안 나노튜브를 선별하는 것은 통상적으로 나노튜브 길이의 정확한 조절을 충분히 제공할 수 없기 때문에, 일정 길이 사양을 갖는 나노튜브를 제공하기 위해서는 추가적인 트리밍이 필요할 수 있다. 이는 인캡슐레이션 필름(612) 위에 형성된(예를 들어, 성장 또는 증착된) 폴리실리콘층(613)을 나타내는(도 6g), 도 6g 내지 6h에 도시된 프로세스 단계에 의해 달성될 수 있다. 그 후, 도 6h에 도시된 바와 같이 소망하는 나노튜브 길이가 달성될 때까지 폴리실리콘층(615)은 예를 들어 화학적 기계적 연마(CMP)를 사용하여 연마될 수 있다.
그 후 증착된 나노튜브(650)의 팁 주변의 인캡슐레이션 필름(612)의 일부는 간략한 반응성 이온 에칭(RIE) 또는 화학적 에칭에 의해 제거되어 나노튜브(650)의 팁을 벗겨낼 수 있다. 벗겨진 나노튜브(650)의 길이는 에칭 속도와 에칭의 지속 시간에 의존할 것이다. SiNx용 RIE 에칭은 상보적 금속 산화물 반도체(CMOS) 집적회로의 제조용 표준 공정이며, 에칭 속도는 잘 알려져 있으며 상업적 SiNx 에칭 장치에 포함되어 있다.
그 후 폴리-Si 층(613)은, 도 6i에 나타낸 바와 같이, 제거되어 자유 스탠딩 인캡슐화 나노튜브(650)를 남길 것이다. 도 6j는 인캡슐레이션 필름(612)과 절연층(608) 안에 개구(616)가 형성되어 금속 콘택(606)을 노출하는 구조를 보여준다. 개구(616)는 이 기술분야의 당업자에게 알려진 표준 포토리소그래피 및 드라이 에칭 공정에 의해 형성될 수 있다.
도 7은 그러한 나노튜브 센서를 세포 내 프로브로써 사용하는 실험적 배열의 개략도이다. 도 7은 두 개의 CNT 프로브(710)를 나타내며, 각각의 프로브는 기판(700) 위에 형성된 각각의 인터커넥트 금속(702)에 연결된다. CNT 프로브(710)는 전기적 프로빙을 위해 액체배스(720) 안에 있는 세포(750)에 삽입된다. 배스 전극(722)과 콘택 패드(704)(절연층(708) 안에 형성된 개구 내부에 제공됨)는 각각 적당한 전자장치(electronics)(미도시)에 연결되어 세포 내 활동을 나타내는 전기적 특성을 모니터한다.
상기 실시예와 논의는 개구에 의해 정의된 영역의 중심 근처에서 나노스케일의 측면 정확도를 갖는 단일 나노튜브를 조절가능하게 증착할 수 있는 능력을 설명한 것이다. 방법은 구현(implementation) 또는 프로세싱 측면에서 특히 매력적인데, 상대적으로 넓은 영역 내에 그렇게 조절된 증착을 달성할 수 있는 능력이 리소그래피 기술을 위해 필요한 요구사항을 상당히 완화시키기 때문이다. 그렇기 때문에, 더욱 복잡한 리소그래픽 도구(e-빔 또는 집속 이온 빔과 같은)에 의존하지 않고, 광학 리소그래피를 사용하여 쉽게 제조가 수행될 수 있고 그 결과 타겟 증착 영역을 정의하기에 충분히 작은 개구를 형성할 수 있다.
본 발명의 실시예는 또한 주어진 영역 내 증착될 나노튜브의 개수와 그 간격을 조절하는 방법을 제공한다. 그러한 방법은 정의된 영역에 하나 이상의 나노튜브를 증착하는 것이 바람직한 많은 적용에 유용하다. 예를 들어, 일정 수직 전계 효과 트랜지스터(vertical field effect transistor(VFET)) 디자인은 채널을 형성하는 하나 이상의 나노튜브를 갖기 때문에 더 많은 전류가 장치를 통해 흐르도록 할 수 있는 이익을 가질 수 있다. 따라서, 증착될 나노튜브의 개수를 조절함으로써, VFET 출력이 논리 회로 입력(logic circuit input)의 파라미터를 충족시키기에 충분한 전류를 갖도록 설계될 수 있다는 것을 확신할 수 있다.
VFET의 설계의 한가지 제한은 장치의 측면 사이즈가 단위 면적 당 VFET의 수를 최대화하기에 충분할 정도로 작아야 한다는 것이다. 도 8에 나타낸 바와 같이, 한가지 가능성은 밀접한 간격의 비아를 제조하고, 각 소스(802), 드레인(804) 및 게이트(806)를 평행하게 연결하는 것이다(CNT(810)가 장치의 채널 역할을 하고 게이트 유전체(808)에 의해 게이트(806)로부터 분리됨). 이 개념은 Hoenlein 외의 Materials Science and Engineering C, 23, p.663-669(2003)와 DE 0010036897 C1, (2000)에 의해 제안되었다. 하지만, 나노튜브를 위치시키기 위해 밀접한 간격으로 비아를 제조해야 하는 어려움은 단위 면적 당 나노튜브의 수가 순전히 비아의 최소 직경과 비아 간의 거리에 의해 결정된다는 데 있다. 이는 단위 길이 당 합리적인 최대 전류(마이크로미터 당 1,500 마이크로암페어)를 갖는 VFET 장치를 위한 리소그래피 및 에칭 공정에 엄격한 요구조건을 부여하여, 서브-20 nm 직경의 비아가 요구될 것이다.
본 발명의 실시예는 리소그래피에 엄격한 요구조건을 부과하지 않으면서 제조되는 도 8에 나타낸 바와 같은 장치 개념을 허용하게 할 것이다. 특히, 전기영동 증착을 이용하여 개구가 있는 영역 내의 나노튜브의 간격 또는 위치뿐만 아니라 나노튜브의 개수를 조절하도록 개구가 형성될 수 있다.
도 9a 내지 9b는 나노튜브 증착을 조절하기에 적당한 개구 형상의 상부도의 개략도이다. 도 9a에 나타낸 바와 같이, 개구는 폭(W)-또는 가로방향 또는 가로 치수로써 지칭됨(선 X-X'로 나타낸 방향을 따라서)-과 길이(L)-또는 세로 치수로써 지칭됨(선 Y-Y'으로 나타낸 방향을 따라서)-에 있어서 L이 W보다 큰 것이 특징인 슬롯과 같은 연장된 기하학적 배열을 갖는다. 이 예에서, 폭 W는 가로 방향을 따라서 단지 하나의 나노튜브가 증착되도록 하기에 충분히 좁도록 설계된다. 따라서, 모든 증착된 나노튜브는 라인 패턴 내에 증착될 것인데, 즉 세로 방향을 따라서 서로 인접하여 정렬된다.
게다가, 슬롯 내에 증착된 나노튜브의 개수가 슬롯의 길이에 의해 조절될 수 있다. 일단 첫번째 나노튜브가 슬롯 내에 증착되면, 슬롯 주변의 전기장 분포는 변경될 것이다. 새로운 장(場) 분포는 유한요소분석을 이용하여 계산될 수 있다. 또한 인접한 나노튜브 간의 가장 근접한 간격은 유한 요소 분석에 의해 계산될 수 있고, 그 결과 슬롯 내에 연속적으로 증착되는 무작위로 접근하는 하전 입자의 궤도를 예측할 수 있다.
100 nm의 길이를 갖는 나노튜브에 이 분석을 사용함으로써, 1nm 직경을 갖는 나노튜브 간의 가장 근접한 간격은 대략 15 nm로 평가되었다. 직경 10nm와 길이 100 nm를 갖는 나노튜브를 위해서, 인접한 나노튜브의 가장 근접한 간격은 대략 20 nm이다. 임의의 기하학적 배열을 갖는 나노튜브의 가장 근접한 간격을 계산하기 위해서 동일 방법이 사용될 수 있다. 두 개의 근접한 간격를 갖는 나노튜브에 근접한 전기장을 계산하고, 계산된 전기장이 이미 증착된 두 개의 나노튜브 사이 안으로 제 3의 나노튜브가 증착되는 것을 배제하는 분포를 가질 때까지 간격을 감소시키기 위한 대체적인 방법이 사용될 수 있다.
나노튜브 간의 가장 근접한 간격(s)이 알려지면, 슬롯 내에 증착되는 나노튜브의 개수, N은 N=MOD(L/s)에 의해 구해진다. 함수 MOD()는 결과 개수 L/s의 끝수를 버리고 정수로 만든다. 슬롯의 말단에서의 형태는 또한 라운딩의 정도에 따라서 이 결과를 변형할 수 있다. 만약 라운딩이 없다면, 이 계산은 가장 정확하다. 라운딩이 존재할 때, 추가적인 정도의 포커싱이 증착되는 나노튜브의 개수를 감소시킬 수 있고, 이는 정확한 기하학적 배열을 위한 3차원 유한요소분석을 사용하여 결정될 수 있다.
상술한 바와 같이, 본 발명의 실시예는 정의된 영역 내에 전기영동을 사용하여 나노튜브를 조절가능하게 증착하는 방법을 제공한다. 증착영역은 증착된 나노튜브의 간격뿐만 아니라 영역 내 증착될 수 있는 나노튜브의 개수를 조절하도록 형성될 수 있는 개구에 의해 정의될 수 있다. 예를 들어 대략 100 nm 미만과 같이 충분히 작은 개구 크기를 제공하여 적절하게 개구를 형성함으로써, 수 나노미터의 측면 배열 정확도를 가지며 영역 내에 단지 단일 나노튜브가 증착되도록 증착을 조절할 수 있다.
본 발명의 실시예는 쉽게 잴 수 있고(scalable) 통상적인 제조 공정 및 재료와 호환가능한 상온 공정을 제공하고, 장치 제조에 사용되는 나노튜브의 특성 조절의 개선이 가능하게 한다.
탄소나노튜브의 증착에 관해 비록 몇몇 예가 논의되었지만, 이 방법이 다른 나노튜브의 증착을 위해 일반적으로 개조될 수 있다고 이해된다. 게다가, 본 발명의 실시예는 일반적으로 다른 장치의 제조용 단일벽, 다중벽, 반도체성 또는 금속성 나노튜브의 증착에 적용될 수 있다.
전술한 것들이 본 발명의 실시예에 관한 것이기는 하지만, 본 발명의 다른 추가적인 실시예가 그 기본적인 범위를 벗어나지 않으면서 고안될 수 있으며, 그 기본적인 범위는 후술할 청구항에 의해 결정된다.

Claims (22)

  1. (a) 개구에 의해 구조 상 영역을 정의하는 단계;
    (b) 상기 영역 내에 전기영동에 의해 증착될 나노튜브의 개수를 조절하도록 상기 개구를 형성하는 단계;
    (c) 상기 개수의 나노튜브가 상기 영역을 향하게 하도록 구성되는 전기장을 상기 개구에 생성하는 단계; 및
    (d) 전기영동에 의해 상기 영역 내 상기 개수의 나노튜브 중에서 적어도 하나를 증착하는 단계
    를 포함하고,
    상기 개수의 나노튜브 중에서 적어도 하나가 상기 영역에 증착된 후, 증착된 상기 개수의 나노튜브 중에서 적어도 하나가 상기 개구에서의 전기장을 재형성(re-configure)하며,
    단계 (b)는:
    (b1) 상기 개구에서의 전기장 분포를 획득하기 위해서 상기 개구의 적어도 하나의 파라미터의 함수로써 유한요소해석을 수행하는 단계; 및
    (b2) 상기 영역 내 상기 개수의 나노튜브 중에서 적어도 하나를 증착하도록 상기 개구의 미리결정된 형상(configuration)을 선택하는 단계
    를 더 포함하는, 나노튜브의 증착방법.
  2. 제 1항에 있어서, 상기 단계 (b)가
    상기 영역 내에 증착될 나노튜브의 적어도 하나의 패턴과 간격을 조절하기 위해 상기 개구를 형성하는 단계를 더 포함하는 방법.
  3. 제 1 항에 있어서, 상기 단계 (b)가
    증착될 나노튜브의 상기 개수를 조절하기 위해 상기 개구에 길이, 폭 및 깊이의 조합을 제공하는 단계를 더 포함하는 방법.
  4. 제 1 항에 있어서, 상기 단계 (b)가
    전기영동에 의해 단지 한 개의 나노튜브가 상기 영역 내에 증착되도록 하기 위해 상기 개구에 측면 치수(lateral dimension)를 제공하는 단계를 더 포함하며,
    상기 개구의 상기 측면 치수가 100 nm 미만인 방법.
  5. 제 1 항에 있어서, 상기 개구가 100 nm 미만의 폭을 갖고, 길이 방향으로 적어도 두 개의 나노튜브의 증착을 허용하도록 하는 길이를 갖는 슬롯으로 형성되는 방법.
  6. 삭제
  7. 제 1 항에 있어서, 증착될 적어도 하나의 나노튜브를 위한 적어도 하나의 파라미터가 상기 유한요소해석에 포함되는 방법.
  8. 제 1 항에 있어서, 상기 단계 (a)가
    (a1) 상기 구조에 금속층 위의 절연층을 제공하는 단계; 및
    (a2) 상기 절연층을 통하여 상기 금속층에 상기 영역을 정의하기 위해서 상기 개구를 형성하는 단계;
    를 더 포함하는 방법.
  9. 제 8 항에 있어서, 단계 (d)가
    (d1) 나노튜브를 포함하는 전해유체에 상기 구조를 노출시키는 단계;
    (d2) 상기 금속층에 바이어스 전압을 인가하는 단계; 및
    (d3) 상기 금속층이 상기 개구 내부에 접촉하도록 상기 개수의 나노튜브를 수직 방향으로 증착하는 단계;
    를 더 포함하며,
    상기 나노튜브의 개수는 1인 방법.
  10. 제 9 항에 있어서, 상기 나노튜브는 상기 개구 내부의 중심에 위치되도록 증착되는 방법.
  11. 제 9 항에 있어서, 상기 단계 (d)가
    (d4) 상기 전해 유체 안에 금속 전극을 제공하는 단계; 및
    (d5) 상기 금속층과 관련된 상기 금속 전극에 포지티브 바이어스를 제공하는 단계;
    를 더 포함하는 방법.
  12. 제 11 항에 있어서,
    상기 금속층과 관련된 상기 금속전극의 방향을 조정함으로써 상기 개구 내부의 상기 나노튜브의 방향을 조절하는 단계를 더 포함하는 방법.
  13. 제 1 항에 있어서, 상기 개구가 적어도 0.18의 높이 대 폭의 비율을 갖는 방법.
  14. 전도층 상에 형성된 절연층을 기판에 제공하는 단계;
    상기 전도층의 영역을 노출시키기 위해 상기 절연층을 통해 개구를 형성하는 단계;
    탄소나노튜브를 포함하는 전해유체 안에 상기 기판을 담그는 단계;
    금속전극을 상기 전해유체 안에 제공하는 단계;
    상기 전도층과 상기 금속전극의 전역에 걸쳐 바이어스 전압을 인가하는 단계;
    적어도 하나의 탄소나노튜브가 상기 영역을 향하게 하도록 구성되는 전기장을 상기 개구에 생성하는 단계;
    적어도 하나의 탄소나노튜브를 상기 영역에 대해 수직한 방향으로 증착시키는 단계로서, 상기 탄소나노튜브의 일 말단이 상기 영역의 중심에서 상기 영역에 접촉하고, 상기 적어도 하나의 탄소나노튜브가 상기 영역에 증착된 후, 상기 적어도 하나의 탄소나노튜브가 상기 개구에서의 전기장을 재형성하는, 탄소나노튜브 증착 단계;
    추가적인 공정을 위해 상기 적어도 하나의 증착된 탄소나노튜브를 가진 상기 기판을 플라즈마 프로세스 시스템에 제공하는 단계; 및
    상기 플라즈마 프로세스 시스템 내에서 상기 전도층과 전극 사이에 전기장을 인가함으로써 상기 적어도 하나의 증착된 탄소나노튜브를 미리결정된 방향으로 재-정렬하는 단계
    를 포함하는, 탄소나노튜브에 기반한 장치를 형성하는 방법.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
KR1020107001283A 2007-06-20 2008-06-20 나노튜브 장치 및 제조 방법 Expired - Fee Related KR101464283B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/765,735 2007-06-20
US11/765,735 US7964143B2 (en) 2007-06-20 2007-06-20 Nanotube device and method of fabrication
PCT/US2008/067604 WO2009017898A2 (en) 2007-06-20 2008-06-20 Nanotube device and method of fabrication

Publications (2)

Publication Number Publication Date
KR20100047845A KR20100047845A (ko) 2010-05-10
KR101464283B1 true KR101464283B1 (ko) 2014-11-21

Family

ID=40136698

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107001283A Expired - Fee Related KR101464283B1 (ko) 2007-06-20 2008-06-20 나노튜브 장치 및 제조 방법

Country Status (5)

Country Link
US (2) US7964143B2 (ko)
EP (1) EP2171132A4 (ko)
JP (1) JP5674466B2 (ko)
KR (1) KR101464283B1 (ko)
WO (1) WO2009017898A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829302B1 (ko) * 2016-10-24 2018-02-19 한국생산기술연구원 나노소재 어셈블리구조의 제작방법 및 그 방법을 실시하기 위한 장치

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US8031514B2 (en) 2007-04-09 2011-10-04 Northeastern University Bistable nanoswitch
US7964143B2 (en) 2007-06-20 2011-06-21 New Jersey Institute Of Technology Nanotube device and method of fabrication
US20090045061A1 (en) * 2007-06-20 2009-02-19 New Jersey Institute Of Technology Nanotube Devices and Vertical Field Effect Transistors
ATE516247T1 (de) * 2008-02-15 2011-07-15 Imec Synthese von zeolithkristallen und bildung von kohlenstoffnanostrukturen in gemusterten strukturen
US8362760B2 (en) * 2008-02-19 2013-01-29 West Virginia University Research Corporation, Wvu Office Of Technology Transfer Stimulus responsive nanoparticles
FR2928093B1 (fr) * 2008-02-28 2010-12-31 Commissariat Energie Atomique Dispositif de separation de molecules et procede de fabrication.
JP5717233B2 (ja) * 2010-02-16 2015-05-13 独立行政法人産業技術総合研究所 単層カーボンナノチューブの分離方法、分離装置、分離済単層カーボンナノチューブ含有ミセル分散溶液
US8317978B1 (en) * 2010-04-07 2012-11-27 Manning Thelma G Nitriding of carbon nanotubes
US9406580B2 (en) * 2011-03-16 2016-08-02 Synaptics Incorporated Packaging for fingerprint sensors and methods of manufacture
KR101311780B1 (ko) * 2011-06-09 2013-09-25 경희대학교 산학협력단 탄소나노튜브 수직 배향 방법 및 장치
CN103288033B (zh) * 2012-02-23 2016-02-17 清华大学 碳纳米管微尖结构的制备方法
EP2791059A1 (en) 2013-01-14 2014-10-22 Kaya, Cengiz A method for production and coating of antibacterial copper (ii) oxide (cuo) nano-tube
US9689829B2 (en) 2013-03-12 2017-06-27 New Jersey Institute Of Technology Nanoprobe and methods of use
US10501315B2 (en) 2016-05-23 2019-12-10 New Jersey Institute Of Technology Analytical nanoscope on a chip for sub-optical resolution imaging
US9643179B1 (en) * 2016-06-24 2017-05-09 International Business Machines Corporation Techniques for fabricating horizontally aligned nanochannels for microfluidics and biosensors
US9837403B1 (en) * 2016-09-27 2017-12-05 International Business Machines Corporation Asymmetrical vertical transistor
US11017997B2 (en) 2017-01-13 2021-05-25 Applied Materials, Inc. Methods and apparatus for low temperature silicon nitride films
US11467109B2 (en) * 2018-04-30 2022-10-11 The Hong Kong University Of Science And Technology Nanotube array gas sensor
KR102607332B1 (ko) * 2020-03-24 2023-11-29 한국전자통신연구원 전계 방출 장치
US11705312B2 (en) 2020-12-26 2023-07-18 Applied Materials, Inc. Vertically adjustable plasma source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020001905A1 (en) 2000-06-27 2002-01-03 Choi Won-Bong Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
US20050145838A1 (en) 2004-01-07 2005-07-07 International Business Machines Corporation Vertical Carbon Nanotube Field Effect Transistor
KR20060020570A (ko) * 2004-08-30 2006-03-06 삼성전기주식회사 탄소나노튜브의 셀프 어셈블링을 이용한 전계방출 에미터전극의 제조 방법 및 이에 따라 제조된 전계방출 에미터전극
US20060169972A1 (en) 2005-01-31 2006-08-03 International Business Machines Corporation Vertical carbon nanotube transistor integration

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902883B2 (ja) * 1998-03-27 2007-04-11 キヤノン株式会社 ナノ構造体及びその製造方法
KR100314094B1 (ko) * 1999-08-12 2001-11-15 김순택 전기 영동법을 이용한 카본나노튜브 필드 에미터의 제조 방법
JP3581298B2 (ja) 2000-04-27 2004-10-27 シャープ株式会社 電界放出型電子源アレイ及びその製造方法
DE10036897C1 (de) 2000-07-28 2002-01-03 Infineon Technologies Ag Feldeffekttransistor, Schaltungsanordnung und Verfahren zum Herstellen eines Feldeffekttransistors
JP3590007B2 (ja) * 2001-06-25 2004-11-17 シャープ株式会社 電子放出素子およびその製造方法並びに該電子放出素子を用いた画像表示装置
JP3583387B2 (ja) * 2001-06-25 2004-11-04 シャープ株式会社 電子放出素子、その製造方法、及び電子放出素子を備えた画像表示装置
US7252749B2 (en) 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US6515325B1 (en) 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6891227B2 (en) 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
US6830981B2 (en) 2002-07-02 2004-12-14 Industrial Technology Research Institute Vertical nanotube transistor and process for fabricating the same
US6933222B2 (en) 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
US6995046B2 (en) 2003-04-22 2006-02-07 Nantero, Inc. Process for making byte erasable devices having elements made with nanotubes
US7045421B2 (en) 2003-04-22 2006-05-16 Nantero, Inc. Process for making bit selectable devices having elements made with nanotubes
KR101015498B1 (ko) 2003-06-14 2011-02-21 삼성전자주식회사 수직 카본나노튜브 전계효과트랜지스터 및 그 제조방법
JP2005101191A (ja) * 2003-09-24 2005-04-14 Denso Corp 熱電変換型冷却装置およびその製造方法
US8859151B2 (en) 2003-11-05 2014-10-14 St. Louis University Immobilized enzymes in biocathodes
US20050118494A1 (en) 2003-12-01 2005-06-02 Choi Sung H. Implantable biofuel cell system based on nanostructures
TWI293766B (en) * 2004-01-14 2008-02-21 Ind Tech Res Inst A method for assembling carbon nanotubes and micro-probe and an apparatus thereof
US20050167655A1 (en) 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7211844B2 (en) 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7135773B2 (en) 2004-02-26 2006-11-14 International Business Machines Corporation Integrated circuit chip utilizing carbon nanotube composite interconnection vias
US7709134B2 (en) 2004-03-15 2010-05-04 St. Louis University Microfluidic biofuel cell
US7091096B2 (en) 2004-07-29 2006-08-15 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method of fabricating carbon nanotube field-effect transistors through controlled electrochemical modification
JP2006049435A (ja) 2004-08-02 2006-02-16 Sony Corp カーボンナノチューブ及びその配置方法と、これを用いた電界効果トランジスタとその製造方法及び半導体装置
US7470353B2 (en) * 2004-08-30 2008-12-30 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing field emitter electrode using self-assembling carbon nanotubes and field emitter electrode manufactured thereby
JP4463070B2 (ja) 2004-10-15 2010-05-12 株式会社日立ハイテクノロジーズ カーボンナノチューブ精製方法、精製装置、及び精製キット
US20060103287A1 (en) * 2004-11-15 2006-05-18 Li-Ren Tsuei Carbon-nanotube cold cathode and method for fabricating the same
US7989349B2 (en) 2005-04-15 2011-08-02 Micron Technology, Inc. Methods of manufacturing nanotubes having controlled characteristics
US20060249388A1 (en) * 2005-05-04 2006-11-09 Yu-Yang Chang Electrophoretic deposition method for a field emission device
JP5037804B2 (ja) * 2005-09-30 2012-10-03 富士通株式会社 垂直配向カーボンナノチューブを用いた電子デバイス
KR20070046602A (ko) * 2005-10-31 2007-05-03 삼성에스디아이 주식회사 전자 방출 소자, 이를 구비한 전자 방출 디스플레이 장치및 그 제조방법
US7964143B2 (en) 2007-06-20 2011-06-21 New Jersey Institute Of Technology Nanotube device and method of fabrication
US7736979B2 (en) * 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020001905A1 (en) 2000-06-27 2002-01-03 Choi Won-Bong Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
US20050145838A1 (en) 2004-01-07 2005-07-07 International Business Machines Corporation Vertical Carbon Nanotube Field Effect Transistor
KR20060020570A (ko) * 2004-08-30 2006-03-06 삼성전기주식회사 탄소나노튜브의 셀프 어셈블링을 이용한 전계방출 에미터전극의 제조 방법 및 이에 따라 제조된 전계방출 에미터전극
US20060169972A1 (en) 2005-01-31 2006-08-03 International Business Machines Corporation Vertical carbon nanotube transistor integration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829302B1 (ko) * 2016-10-24 2018-02-19 한국생산기술연구원 나노소재 어셈블리구조의 제작방법 및 그 방법을 실시하기 위한 장치

Also Published As

Publication number Publication date
JP5674466B2 (ja) 2015-02-25
WO2009017898A3 (en) 2009-04-16
EP2171132A4 (en) 2015-06-03
US8257566B2 (en) 2012-09-04
KR20100047845A (ko) 2010-05-10
US20080317631A1 (en) 2008-12-25
US20110240480A1 (en) 2011-10-06
JP2010532717A (ja) 2010-10-14
EP2171132A2 (en) 2010-04-07
US7964143B2 (en) 2011-06-21
WO2009017898A2 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
KR101464283B1 (ko) 나노튜브 장치 및 제조 방법
KR101464284B1 (ko) 나노튜브 수직 전계 효과 트랜지스터의 형성방법
Bezryadin et al. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes
US20090045061A1 (en) Nanotube Devices and Vertical Field Effect Transistors
US20050285275A1 (en) Fabrication of nano-gap electrode arrays by the construction and selective chemical etching of nano-crosswire stacks
US8546027B2 (en) System and method for directed self-assembly technique for the creation of carbon nanotube sensors and bio-fuel cells on single plane
US8395185B2 (en) Switching element
US20060086626A1 (en) Nanostructure resonant tunneling with a gate voltage source
CN104568684B (zh) 一种纳米颗粒检测系统及筛选分析方法
JP2002538606A (ja) ナノ構造デバイス及び装置
EP1495163A1 (en) Selectively aligning nanometer-scale components using ac fields
Mahapatro et al. Nanometer scale electrode separation (nanogap) using electromigration at room temperature
US8647490B2 (en) Method for manufacturing carbon nanotube containing conductive micro wire and sensor including the micro wire
KR100822992B1 (ko) 나노선 전계효과 트랜지스터 및 그 제조 방법
US11322702B1 (en) Electrical devices having radiofrequency field effect transistors and the manufacture thereof
Goyal et al. Directed self-assembly of individual vertically aligned carbon nanotubes
KR20130018019A (ko) 나노 전극 및 그 제조 방법
Huang et al. Fabricating Methods and Materials for Nanogap Electrodes
Jaber-Ansari Fluidic assembly of highly organized single-wall carbon nanotubes in nano and micro scales—Characterization and investigation of the assembly mechanism
Sapkov et al. Method of creation of monomolecular transistor with overhanging electrodes
KR100796280B1 (ko) 디엔에이를 이용한 규비트의 제조 방법
Lin Localized programmable gas phase electrodeposition yielding functional nanostructured materials and molecular arrays
Zhou The application of shadow mask evaporation in molecular electronics
Strobel Nanoscale contacts to organic molecules based on layered semiconductor substrates
Davis Scaling Carbon Nanotube Localization by Floating Potential Dielectrophoresis: An Enabling Geometry

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20100120

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20130611

Comment text: Request for Examination of Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20140409

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20140821

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20141117

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20141117

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20180103

Start annual number: 4

End annual number: 4

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20190828