KR101323321B1 - MnTe thermoelectric material doped with Sb and manufacturing method thereby - Google Patents
MnTe thermoelectric material doped with Sb and manufacturing method thereby Download PDFInfo
- Publication number
- KR101323321B1 KR101323321B1 KR1020120013559A KR20120013559A KR101323321B1 KR 101323321 B1 KR101323321 B1 KR 101323321B1 KR 1020120013559 A KR1020120013559 A KR 1020120013559A KR 20120013559 A KR20120013559 A KR 20120013559A KR 101323321 B1 KR101323321 B1 KR 101323321B1
- Authority
- KR
- South Korea
- Prior art keywords
- mnte
- thermoelectric material
- doped
- thermoelectric
- manufacturing
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 64
- 229910017231 MnTe Inorganic materials 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000005245 sintering Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 12
- 238000010791 quenching Methods 0.000 claims abstract description 11
- 239000003708 ampul Substances 0.000 claims abstract description 9
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 8
- 230000000171 quenching effect Effects 0.000 claims abstract description 8
- 238000005303 weighing Methods 0.000 claims abstract description 4
- 239000002994 raw material Substances 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000007731 hot pressing Methods 0.000 abstract description 4
- 238000005520 cutting process Methods 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 15
- 239000010453 quartz Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012856 weighed raw material Substances 0.000 description 2
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910005900 GeTe Inorganic materials 0.000 description 1
- 229910019064 Mg-Si Inorganic materials 0.000 description 1
- 229910019406 Mg—Si Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018321 SbTe Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/853—Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
본 발명은 Sb가 도핑된 Sb가 MnTe계 열전재료 및 그 제조방법에 관한 것으로, Sb가 도핑된 MnTe계 열전재료에 있어서, Mn1 - xSbxTe 화합물의 조성을 가지며, 여기서 0.01≤x≤0.2인 것을 특징으로 하는 Sb가 도핑된 MnTe계 열전재료를 기술적 요지로 한다. 그리고 본 발명은 Sb, Mn 및 Te를 조성비에 맞게 각각 칭량하여 진공상태의 앰플에 장입하여 용융시키는 제1단계와; 상기 용융된 원료를 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 Mn1 - xSbxTe(0.01≤x≤0.2) 분말을 제조하는 제3단계와; 상기 Mn1 - xSbxTe(0.01≤x≤0.2) 분말을 소결하여 열간 프레스 또는 방전 플라즈마 소결 공정 후 와이어 컷팅하여 Sb가 도핑된 MnTe계 열전재료를 제조하는 제4단계를 포함하여 이루어지는 Sb가 도핑된 MnTe계 열전재료의 제조방법을 또한 기술적 요지로 한다. 이에 따라, Sb를 도핑하여 소정의 급냉 과정 및 열간 프레스 또는 방전 플라즈마 소결 과정을 거침으로써 MnTe에 Sb가 일정량 도핑되도록 하여 그 열전특성을 향상시켜 성능이 우수한 열전재료로 사용이 가능하다는 이점이 있다.The present invention relates to Sb-doped Sb MnTe-based thermoelectric material and a method for manufacturing the same, in the Sb-doped MnTe-based thermoelectric material, having a composition of Mn 1 - x Sb x Te compound, wherein 0.01≤x≤0.2 Sb-doped MnTe system, characterized in that Thermoelectric material is the technical point. In addition, the present invention comprises a first step of weighing each of Sb, Mn and Te in accordance with the composition ratio to charge into a vacuum ampoule and melt; A second step of rapidly cooling the molten raw material to produce an ingot; Crushing the ingot to prepare Mn 1 - x Sb x Te (0.01 ≦ x ≦ 0.2) powder; Sb comprising a fourth step of manufacturing the Sb-doped MnTe-based thermoelectric material by sintering the Mn 1 - x Sb x Te (0.01 ≦ x ≦ 0.2) powder and then hot cutting or after the plasma cutting sintering process to produce Sb-doped MnTe-based thermoelectric material A method for producing a doped MnTe based thermoelectric material is also a technical subject matter. Accordingly, by doping Sb through a predetermined quenching process and hot pressing or discharge plasma sintering process, Sb is doped to MnTe by a certain amount, thereby improving its thermoelectric properties and thus being able to be used as a thermoelectric material having excellent performance.
Description
본 발명은 열전특성 향상을 위한 Sb가 도핑된 MnTe계 열전재료에 관한 것으로, MnTe에 Sb를 일정량 도핑하여 열전특성을 향상시키기 위한 Sb가 도핑된 MnTe계 열전재료 및 그 제조방법에 관한 것이다.The present invention relates to an MnTe-based thermoelectric material doped with Sb for improving thermoelectric characteristics, and an MnTe-doped MnTe for improving thermoelectric properties by doping Sb in MnTe in a predetermined amount. To a thermoelectric material and a manufacturing method thereof.
일반적으로, 열전기술은 열에너지를 전기에너지로, 반대로 전기에너지를 열에너지로 고체 상태에서 직접 변환하는 기술로서, 열에너지를 전기에너지로 변환하는 열전발전 및 전기에너지를 열에너지로 변환하는 열전냉각 분야에 응용되고 있다.Generally, thermoelectric technology is a technology to convert heat energy directly into electric energy, and conversely to convert electric energy into heat energy directly in solid state. It is applied to thermoelectric power generation which converts heat energy into electric energy and thermoelectric cooling which converts electric energy into heat energy have.
이러한 열전발전 및 열전냉각을 위한 재료로 사용되는 열전재료는 열전특성이 증가할수록 열전소자의 성능이 향상된다. 그 열전성능을 결정하는 것은, 열기전력(V), 제벡 계수(α), 펠티어 계수(π), 톰슨 계수(τ), 네른스트 계수(Q), 에팅스하우젠 계수(P), 전기 전도율(σ), 출력 인자(PF), 성능 지수(Z), 무차원성능지수(ZT=α 2 σT/κ(여기에서, T는 절대온도이다)), 열전도율(κ), 로렌츠수(L), 전기 저항율(ρ) 등의 물성이다.The thermoelectric material used as the material for the thermoelectric power generation and the thermoelectric cooling increases the performance of the thermoelectric device as the thermoelectric property increases. The determination of the thermoelectric performance is based on the assumption that the thermoelectric performance is determined based on the thermoelectric power V, the Seebeck coefficient?, The Peltier coefficient?, The Thomson coefficient?, The Nernst coefficient Q, the Etchinghausen coefficient P, ), The output factor (PF), the figure of merit (Z), the dimensionless figure of merit (ZT = α 2 σT / κ where T is the absolute temperature), thermal conductivity (κ), Lorentz number And resistivity (rho).
특히, 무차원성능지수(ZT)는 열전 변환 에너지 효율을 결정하는 중요한 요소로써, 성능 지수(Z=α 2 σ/κ)의 값이 큰 열전 재료를 사용하여 열전 소자를 제조함으로써, 냉각 및 발전의 효율을 높일 수 있게 된다. 즉, 열전재료는 제벡 계수와 전기전도도가 높을수록 그리고 열전도도가 낮을수록 우수한 열전성능을 가지게 된다.Particularly, the dimensionless figure of merit (ZT) is an important factor for determining the thermoelectric conversion energy efficiency. The thermoelectric device is manufactured by using a thermoelectric material having a high performance index (Z =? 2 ? /?), It is possible to increase the efficiency of the apparatus. That is, thermoelectric materials have better thermoelectric performance as the Seebeck coefficient, electrical conductivity and thermal conductivity are lower.
현재 상용화된 열전재료는 ZT가 약 1 정도 수준으로, 사용 온도 별로 상온용으로 Bi-Te계, 중온용으로 Pb-Te계, Mg-Si계, 고온용으로 산화물, Fe-Si계 등으로 구별된다.Currently commercialized thermoelectric materials have a ZT of about 1 level, and are classified into Bi-Te-based for room temperature, Pb-Te-based, Mg-Si-based, and high-temperature oxide, Fe-Si-based, etc. do.
한편, 이러한 열전재료의 열전성능을 향상시키기 위해서는 다양한 원소를 첨가 또는 치환하는 방법(조성 제어), 미세 조직을 제어하는 방법(제조 공정 제어), 이상 입자 또는 불순물(첨가원소, 치환원소, 도핑원소)을 도입하는 방법 등이 있다.On the other hand, in order to improve the thermoelectric performance of such a thermoelectric material, a method of adding or replacing various elements (composition control), a method of controlling microstructure (manufacturing process control), abnormal particles or impurities (addition element, substitution element, doping element) ) Can be introduced.
일반적으로 금속계 열전재료는 전기전도도를 유지하면서 가능하면 열전도도를 낮추기 위해 다양한 방법들이 사용되고 있다. 반면에 산화물 열전재료는 제벡 계수를 증가시켜 성능지수를 개선하고자 하는 시도들이 주로 진행되고 있다.In general, metal-based thermoelectric materials are used in various ways to reduce the thermal conductivity if possible while maintaining the electrical conductivity. On the other hand, attempts have been made to improve the performance index of oxide thermoelectric materials by increasing the Seebeck coefficient.
AgSbTe2 화합물을 포함하는 이원계 화합물 (AgSbTe2)-(mPbTe)(LAST-m) 벌크(bulk)는 약 700K에서 m=18일때 Pb-Te 기지상에 Ag-Sb-rich상의 나노돗(nano-dot)의 형성에 기인하여 포논 산란에 의한 열전도도의 감소와 함께 높은 ZT≒1.7를 가진다. 마찬가지로, LAST와 비슷한 화학조성을 가지는 (GeTe)x(AgSbTe2)100-x(TAGS-x) 합금도 x=80일 때 나노도메인(nano-domain)의 형성에 기인하여 800K에서 ZT≒1.9를 가진다.AgSbTe 2 Binary Compounds (AgSbTe 2 )-(mPbTe) (LAST-m) Bulk Including Compounds of Nano-dots on Ag-Sb-rich on Pb-Te Matrix at m = 18 at 700 K Due to the formation, it has a high ZT ≒ 1.7 with a decrease in thermal conductivity due to phonon scattering. Likewise, (GeTe) x (AgSbTe 2 ) 100-x (TAGS-x) alloys with chemical compositions similar to LAST have ZT ≒ 1.9 at 800K due to the formation of nano-domains at x = 80. .
이상의 연구결과에서 높은 열전특성을 나타내는 중온용 열전재료인 LAST-m 화합물과 TAGS-x 화합물의 공통 구성 성분인 Ag 첨가를 기본으로 하는 SbTe계 화합물 등에 대한 다각적인 측면에서의 이론적, 실험적 연구결과가 요구된다.In the above results, theoretical and experimental results from various aspects of SbTe-based compounds based on the addition of Ag, which is a common constituent of LAST-m compound and TAGS-x compound, which are high temperature thermoelectric materials exhibiting high thermoelectric properties, Required.
그러나 Mn-Te계 열전재료에 Sb를 도핑 하여 열전성능을 향상시키고자 하는 시도는 없었다.However, no attempt has been made to improve thermoelectric performance by doping Sb into Mn-Te-based thermoelectric materials.
따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, MnTe계 열전재료의 성능지수를 개선 시키기 위해 Sb를 도핑하여 소정의 급냉 과정 및 열간 프레스 또는 방전 플라즈마 소결 과정을 거침으로써 MnTe에 Sb가 일정량 도핑되도록 하여 그 열전특성을 향상시키기 위한 Sb가 도핑된 MnTe계 열전재료 및 그 제조방법에 관한 것이다.Accordingly, the present invention has been made to solve the problems of the prior art, MnTe by going through a predetermined quenching process and hot press or discharge plasma sintering process by doping Sb to improve the performance index of the MnTe-based thermoelectric material The present invention relates to a MnTe-based thermoelectric material doped with Sb and to a method of manufacturing the same, in which Sb is doped in a predetermined amount to improve its thermoelectric properties.
상기한 목적을 달성하기 위한 본 발명은, Sb가 도핑된 MnTe계 열전재료에 있어서, Mn1 - xSbxTe 화합물의 조성을 가지며, 여기서 0.01≤x≤0.2인 것을 특징으로 하는 Sb가 도핑된 MnTe계 열전재료를기술적 요지로 한다.The present invention for achieving the above object, in the Sb-doped MnTe-based thermoelectric material, has a composition of Mn 1 - x Sb x Te compound, wherein Sb-doped MnTe, characterized in that 0.01≤x≤0.2 system The thermoelectric material is the technical point.
그리고 본 발명은, Sb, Mn 및 Te를 조성비에 맞게 각각 칭량하여 진공상태의 앰플에 장입하여 용융시키는 제1단계와; 상기 용융된 원료를 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 Mn1 - xSbxTe(0.01≤x≤0.2) 분말을 제조하는 제3단계와; 상기 Mn1 - xSbxTe(0.01≤x≤0.2) 분말을 소결하여 열간 프레스 또는 방전 플라즈마 소결 공정 후 와이어 컷팅하여 Sb가 도핑된 MnTe계 열전재료를 제조하는 제4단계를 포함하여 이루어지는 것을 특징으로 하는 Sb가 도핑된 MnTe계 열전재료의 제조방법을 또한 기술적 요지로 한다.In addition, the present invention comprises a first step of weighing each of Sb, Mn and Te in accordance with the composition ratio to charge and melt in a vacuum ampoule; A second step of rapidly cooling the molten raw material to produce an ingot; Crushing the ingot to prepare Mn 1 - x Sb x Te (0.01 ≦ x ≦ 0.2) powder; And sintering the Mn 1 - x Sb x Te (0.01 ≦ x ≦ 0.2) powder to cut the wire after a hot press or discharge plasma sintering process to produce a Sb-doped MnTe-based thermoelectric material. The manufacturing method of Sb-doped MnTe type thermoelectric material is also a technical subject matter.
여기서, 상기 제1단계는 450℃ 이상 600℃ 이하에서 5시간~10시간 동안 진행되는 것이 바람직하다.Here, the first step is preferably performed for 5 hours to 10 hours at 450 ℃ or more and 600 ℃ or less.
상기 제2단계의 급냉은 앰플을 물속에 담구어 급냉시키는 것이 바람직하다.The quenching in the second step is preferably carried out by immersing the ampule in water and quenching it.
상기 제4단계의 상기 열간 프레스 또는 방전 플라즈마 소결 공정은 300℃ 이상 600℃ 이하의 온도에서 5분 내지 3시간 동안 30~300MPa에서 이루어지는 것이 것이 바람직하다.The hot press or discharge plasma sintering process of the fourth step is preferably performed at 30 ~ 300MPa for 5 minutes to 3 hours at a temperature of 300 ℃ to 600 ℃.
이에 따라, Sb를 도핑하여 소정의 급냉 과정 및 열간 프레스 또는 방전 플라즈마 소결 과정을 거침으로써 MnTe에 Sb가 안정적으로 일정량 도핑 되도록 하여 성능지수를 향상시켜 우수한 열전재료가 될 수 있도록 하여 열전발전 및 열전냉각 분야에서 열전재료로써 널리 사용될 수 있는 이점이 있다.Accordingly, by doping Sb through a predetermined quenching process and hot pressing or discharging plasma sintering process, Sb is stably doped in MnTe to improve the performance index so as to be an excellent thermoelectric material, thereby improving thermoelectric power generation and thermoelectric cooling. There is an advantage that can be widely used as a thermoelectric material in the field.
상기의 구성에 의한 본 발명은 Sb를 도핑하여 소정의 급냉 과정 및 열간 프레스 또는 방전 플라즈마 소결 과정을 거침으로써 MnTe에 Sb가 안정적으로 일정량 도핑 되도록 하여 성능지수를 향상시켜 우수한 열전재료가 될 수 있도록 하여 열전발전 및 열전냉각 분야에서 열전재료로써 널리 사용될 수 있는 효과가 있다.The present invention by the above configuration by doping Sb through a predetermined quenching process and hot pressing or discharge plasma sintering process to ensure a certain amount of Sb doped MnTe to improve the performance index to be an excellent thermoelectric material There is an effect that can be widely used as a thermoelectric material in the field of thermoelectric power generation and thermoelectric cooling.
도 1 - 본 발명의 실시예 및 비교예에 따라 제조된 Mn1 - xSbxTe 열전재료의 온도에 따른 제벡계수 변화를 측정한 도.
도 2 - 본 발명의 실시예 및 비교예에 따라 제조된 Mn1 - xSbxTe 열전재료의 온도에 따른 비저항 변화를 측정한 도.
도 3 - 본 발명의 실시예 및 비교예에 따라 제조된 Mn1 - xSbxTe 열전재료의 온도에 따른 열전도 변화를 측정한 도.
도 4 - 본 발명의 실시예 및 비교예에 따라 제조된 Mn1 - xSbxTe 열전재료의 온도에 따른 성능지수를 변화를 측정한 도.FIG. 1 is a graph illustrating changes in Seebeck coefficient with temperature of Mn 1 - x Sb x Te thermoelectric materials prepared according to examples and comparative examples of the present invention. FIG.
FIG. 2 is a diagram illustrating a change in specific resistance of a Mn 1 - x Sb x Te thermoelectric material prepared according to Examples and Comparative Examples of the present invention.
Figure 3 is a view measuring the change in thermal conductivity according to the temperature of the Mn 1 - x Sb x Te thermoelectric material prepared according to the Examples and Comparative Examples of the present invention.
Figure 4 is a view measuring the change in the performance index according to the temperature of the Mn 1 - x Sb x Te thermoelectric material prepared according to the Examples and Comparative Examples of the present invention.
본 발명은 열전특성을 향상시키기 위한 열전재료 및 그 제조방법에 관한 것으로서, 특히, Sb가 MnTe계 열전재료에 도핑재 수준으로 일정량 첨가되어, 열전재료의 열전성능을 향상시키고자 하는 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric material for improving thermoelectric characteristics and a method of manufacturing the same, and particularly, to improve the thermoelectric performance of thermoelectric materials by adding a certain amount of Sb to a MnTe-based thermoelectric material at a doping material level.
여기에서, Sb가 도핑된 MnTe계 열전재료는 Mn1 - xSbxTe 조성을 가지며, 여기서 0.01≤x≤0.2인 것을 특징으로 한다.Here, the Sb-doped MnTe-based thermoelectric material has a composition of Mn 1 - x Sb x Te, where 0.01 ≦ x ≦ 0.2.
그리고, Sb가 도핑된 MnTe계 열전재료의 제조방법은 Sb, Mn 및 Te를 조성비에 맞게 각각 칭량하여 내부가 카본으로 얇게 코팅된 진공상태의 석영관 앰플에 장입하여 용융시키고, 상기 용융된 원료를 급냉시켜 잉곳을 제조하고 상기 잉곳을 석영관으로부터 분리한다.In addition, in the method of manufacturing the Sb-doped MnTe-based thermoelectric material, Sb, Mn and Te are respectively weighed according to the composition ratio, charged into a vacuum quartz tube ampoule coated with thin carbon inside, and melted. The ingot is made by quenching and the ingot is separated from the quartz tube.
분리된 잉곳을 파쇄하여 Mn1 - xSbxTe(0.01≤x≤0.2) 분말을 제조하고, 상기 Mn1-xSbxTe(0.01≤x≤0.2) 분말을 소결하여 열간 프레스 또는 방전 플라즈마 소결 공정 후 와이어 컷팅하여 Sb가 도핑된 MnTe계 열전재료를 제조하게 된다.Mn 1 - x Sb x Te (0.01≤x≤0.2) powder was prepared by crushing the separated ingot, and the Mn 1-x Sb x Te (0.01≤x≤0.2) powder was sintered to hot press or discharge plasma sintering. After the process, the wire is cut to prepare an MnTe-based thermoelectric material doped with Sb.
이하에서는 이에 대하여 상세히 설명하고자 한다.Hereinafter, this will be described in detail.
먼저, Mn1 - xSbxTe 열전재료를 제조하기 위한 것으로, 순수한(99.999%) Sb, Mn과 Te를 칭량하여 준비한다. 그리고, 상기 칭량된 원료들을 내부가 카본으로 얇게 코팅된 석영관 앰플에 장입하고, 석영관 내부 압력을 로터리 진공펌프와 유확산 진공펌프로 10-5Torr 압력 이하의 진공상태로 만든 후, 고진공 상태의 석영관 내부에 아르곤(Ar) 가스를 채워 대기압 수준에서 밀봉시킨다. 그러면 석영관 내에는 아르곤 가스로 충진된 원자비 Mn1 - xSbxTe 조성을 갖는 재료가 존재하게 된다. First, to prepare Mn 1 - x Sb x Te thermoelectric material, pure (99.999%) Sb, Mn and Te are prepared by weighing. Then, the weighed raw materials are charged into a quartz tube ampule whose interior is coated thinly with carbon, and the pressure inside the quartz tube is made to be a vacuum of 10 -5 Torr or less by using a rotary vacuum pump and an oil-spreading vacuum pump, The inside of the quartz tube is filled with argon (Ar) gas and sealed at atmospheric pressure. Then, a material having an atomic ratio Mn 1 - x Sb x Te filled with argon gas is present in the quartz tube.
이를 약 450℃ 이상의 온도에서 약 5시간 이상동안 고주파 유도용해법으로 용융시킨다.It is melted by high frequency induction melting at a temperature of about 450 ° C. for about 5 hours or more.
이에 의해 Sb, Mn 및 Te 물질들은 균일하게 혼합되어 용융되면서, MnTe의 Mn 자리에 Sb가 일정량 도핑된 Mn1 - xSbxTe 열전재료가 제조되게 되며, Sb의 도핑 함량 x는 0.01 이상 0.2 이하로 극소량이 첨가되게 된다. As a result, the Sb, Mn and Te materials are uniformly mixed and melted, thereby producing a Mn 1 - x Sb x Te thermoelectric material doped with a certain amount of Sb at Mn sites of MnTe, and the doping content x of Sb is 0.01 or more and 0.2 or less. Very small amount is added.
여기에서, Sb의 도핑 함량이 0.2보다 많으면 Sb의 도핑에 의한 첨가효과 대신에 산화성, 석출 및 편석 증가와 같은 다른 영향이 증가하게 되고, 0.01보다 적게 되면 극미량 첨가에 의해 어떠한 물성 변화도 야기하지 않게 된다. 특히, Sb는 산화성이 매우 크기 때문에 Sb를 첨가하여 합금화 할 경우 산화물 상태로 첨가될 가능성이 매우 높아 산화물 상태가 아니라 순수 Sb 상태로 첨가되어야 Sb의 첨가 효과를 나타낼 수 있게 된다. Here, when the doping content of Sb is greater than 0.2, other effects such as oxidization, precipitation, and segregation increase are increased instead of the addition effect by Sb doping, and when it is less than 0.01, no physical property change is caused by the addition of trace amount. . In particular, since Sb has a very high oxidizing ability, it is very likely to be added in an oxide state when Sb is added and alloyed. Therefore, it is necessary to add Sb as a pure Sb state instead of an oxide state.
그 다음, 고주파 유도용해법으로 용해된 액체상태의 Mn1 - xSbxTe가 들어 있는 석영관을 물속에 담구어 급냉시키고, 석영관을 제거하여 Mn1 - xSbxTe 잉곳을 확보한다. 상기 Mn1 - xSbxTe 잉곳을 파쇄하여 분말 상태의 Mn1 - xSbxTe를 제조한다. 제조된 Mn1-xSbxTe 분말은 325mesh 정도의 스크린으로 채질하여 325mesh 이하의 분말로 분리회수한다.Then, in a liquid state dissolved in a high frequency induction melting method Mn 1 - x Sb x Te enters the quartz tube was quenched in water in a spoken wall, to remove the quartz tube Mn 1 - x Sb x Te to obtain an ingot. The Mn 1 - x Sb x Te ingot is crushed to prepare Mn 1 - x Sb x Te in powder form. The prepared Mn 1-x Sb x Te powder is filled with a screen of about 325 mesh and separated and recovered into a powder of 325 mesh or less.
그리고, 상기 Mn1 - xSbxTe 분말을 소결하여 열간 프레스 또는 방전 플라즈마 소결 공정 후 와이어 컷팅하여 소정 크기의 열전재료를 제조하게 된다. 상기 열간 프레스 또는 방전 플라즈마 소결 공정은 그라파이트 몰드에서 약 550℃ 정도의 온도 및 약 30MPa 이상의 압력하에서 수분 이상 동안 이루어지게 된다.Then, the Mn 1 - x Sb x Te powder is sintered, and the wire is cut after hot pressing or discharge plasma sintering to manufacture a thermoelectric material having a predetermined size. The hot press or discharge plasma sintering process is performed in the graphite mold for a few minutes or more at a temperature of about 550 ° C. and a pressure of about 30 MPa or more.
이와 같은 제조 공정에 의해 Sb의 조성제어가 용이하여, 첨가되는 Sb 도핑 함량의 제어가 가능하게 되어, 순수한 Sb가 도핑된 Mn1 - xSbxTe 열전재료를 얻을 수 있게 된다.
Such a manufacturing process makes it easy to control the composition of Sb, thereby controlling the amount of Sb doping added, thereby obtaining a pure Sb-doped Mn 1 - x Sb x Te thermoelectric material.
이하에서는 본 발명의 바람직한 실시예를 설명하고자 한다.Hereinafter, preferred embodiments of the present invention will be described.
99.999% 이상의 고순도 Sb, Mn, Te를 염산, 질산, 아세톤, 에탄올 등을 이용하여 세척한 후, 원자조성비 Mn1 - xSbxTe(0.01≤x≤0.2)에 맞게 정밀 저울을 이용하여 칭량하여 준비한다. 여기에서 Sb가 도핑된 Mn1 - xSbxTe(0.01≤x≤0.2) 열전재료에 있어서 Sb의 도핑 함량 x가 0.02이 되도록 Mn0 .98Sb0 .02Te를 제조한다. High purity Sb, Mn, Te of 99.999% or more are washed with hydrochloric acid, nitric acid, acetone, ethanol, etc., and then weighed using a precision balance to the atomic composition ratio Mn 1 - x Sb x Te (0.01≤x≤0.2) Prepare. Here Mn 1 Sb is doped in a - in the x Sb x Te (0.01≤x≤0.2) thermal conductive material such that the content of doping x is 0.02 of Sb to produce a Mn 0 .98 Sb 0 .02 Te.
여기에서, 비교예로 x는 0인 MnTe에 대해서도 각 원소를 칭량하여 준비한다.Here, in the comparative example, each element is weighed and prepared also for MnTe which is 0.
그리고, 상기 칭량된 원료들을 석영관 앰플에 장입하고, 앰플 내부 압력이 10-5Torr 수준이 되도록 한다. 10-5Torr의 진공상태가 되며, 아르곤(Ar) 가스를 채워 밀봉한다. 밀봉된 석영관을 고주파 유도용해법을 이용하여 450℃에서 5시간 동안 용융시키게 되며, 이때 석영관 내부에는 액체 상태의 Mn1 - xSbxTe가 들어 있게 된다. 액체 상태의 Mn1 - xSbxTe가 들어있는 석영관을 물속에 담구어 급냉시킨 후, 석영관을 제거하여 Mn1 - xSbxTe를 확보한다.Then, the weighed raw material is charged into a quartz tube ampoule, and the pressure inside the ampoule is 10 -5 Torr. It becomes a vacuum state of 10 -5 Torr and is filled with argon (Ar) gas. The sealed quartz tube and thereby melting at 450 ℃ for 5 hours using a high frequency induction melting method, wherein a quartz tube inside the liquid Mn 1 - x Sb x Te that is possible example. After soaked quench the quartz tube containing the x Sb x Te in the water, to remove the quartz tube Mn 1 - - 1 Mn in the liquid state to obtain the x Sb x Te.
그 후, 상기 Mn1 - xSbxTe를 파쇄하여 분말 상태의 Mn1 - xSbxTe를 제조하고 채로 거르게 되며, 이를 소결하여 550℃의 온도에서 5분 동안 30MPa의 압력으로 열간 프레스 또는 방전 플라즈마 소결 공정을 거쳐 봉상 시편을 제조하고, 이를 와이어 컷팅하여 소정 형상의 열전재료를 제조하게 된다. Thereafter, the Mn 1 - x Sb x Te is crushed to prepare a powdered Mn 1 - x Sb x Te, which is then sieved and sintered and hot pressed or discharged at a pressure of 30 MPa at a temperature of 550 ° C. for 5 minutes. The rod-shaped specimen is manufactured through a plasma sintering process and wire-cut to produce a thermoelectric material having a predetermined shape.
이와 같이 Sb가 도핑된 Mn1 - xSbxTe 열전재료는 물성을 측정하고자 상기 봉상 시편을 프레스 방향에 대해 평행한 방향으로 컷팅하여 원형판상으로 형성한다. 일반적으로 프레스 방향과 평행한 방향(z 방향)으로 물성 측정이 이루어지게 되며, 열전도 측정은 원형판상 형태를 이용하고, 전기적 특성 측정은 직육면체 형태의 시료를 이용한다.As described above, the Sb-doped Mn 1 - x Sb x Te thermoelectric material is formed into a circular plate by cutting the rod-shaped specimen in a direction parallel to the pressing direction to measure physical properties. Generally, physical properties are measured in a direction parallel to the press direction (z direction). The thermal conductivity measurement uses a circular plate shape, and the electrical property measurement uses a rectangular parallelepiped shape sample.
한편, 비교실험을 위해 Sb가 도핑 되지 않은 경우에 대해서도 실험결과를 비교하였다.
On the other hand, the experimental results were also compared for the case where Sb is not doped for the comparative experiment.
도 1은 상기의 실시예 및 비교예에 따라 제조된 Mn1 - xSbxTe 열전재료의 온도에 따른 제벡계수를 측정한 것으로서, 제벡계수가 비교예에 비해 전체적으로 크기가 작으나 중온영역으로 가면서 격차가 줄어듬을 알 수 있다. 1 is a measurement of the Seebeck coefficient according to the temperature of the Mn 1 - x Sb x Te thermoelectric material prepared according to the above Examples and Comparative Examples, the Seebeck coefficient is smaller than the comparative example as a whole, but the gap in the middle temperature range It can be seen that the decrease.
도 2는 상기의 실시예 및 비교예에 따라 제조된 Mn1 - xSbxTe 열전재료의 온도에 따른 비저항을 측정한 것으로서, 본 발명의 실시예의 비저항이 비교예에 비해 상대적으로 훨씬 작음을 알 수 있다. Figure 2 is a measurement of the specific resistance according to the temperature of the Mn 1 - x Sb x Te thermoelectric material prepared according to the above Examples and Comparative Examples, it can be seen that the specific resistance of the embodiment of the present invention is relatively much smaller than the comparative example Can be.
도 3은 상기의 실시예 및 비교예에 따라 제조된 Mn1 - xSbxTe 열전재료의 온도에 따른 열전도도를 측정한 것으로서, 본 발명의 실시예가 비교예에 비해 대체적으로 낮은 열전도도를 가짐을 알 수 있었다.3 is a measurement of the thermal conductivity according to the temperature of the Mn 1 - x Sb x Te thermoelectric material prepared according to the above Examples and Comparative Examples, the embodiment of the present invention has a lower thermal conductivity than the comparative example And it was found.
도 4는 상기의 실시예 및 비교예에 따라 제조된 Mn1 - xSbxTe 열전재료의 성능지수(ZT) 변화를 측정한 것으로, 본 발명의 실시예에 따른 성능지수가 전체적으로 비교예보다 우수함을 알 수 있으며, 측정된 전 온도 영역에서 비교예에 비해서 성능지수가 향상되는 것으로 관찰되었다.4 is a measurement of the change in the performance index (ZT) of the Mn 1 - x Sb x Te thermoelectric material prepared according to the above Examples and Comparative Examples, the performance index according to the embodiment of the present invention as a whole better than the comparative example It was found that the figure of merit improved in all measured temperature ranges compared to the comparative example.
이와 같이, 본 발명에 따라 제조된 Sb가 도핑된 Mn1 - xSbxTe 열전재료는 성능지수가 향상되었으며, 이는 열전재료 제조시 Sb 도핑양을 제어하여 그 열전특성을 향상시킬 수 있어 열전발전 및 열전냉각 분야에서 열전재료로써 널리 활용될 것으로 기대된다.As described above, the Sb-doped Mn 1 - x Sb x Te thermoelectric material manufactured according to the present invention has improved performance index, which can control the amount of Sb doping in the manufacturing of thermoelectric material to improve its thermoelectric characteristics. And it is expected to be widely used as a thermoelectric material in the field of thermoelectric cooling.
상기에서는 MnTe에 Sb를 도핑한 열전재료에 대해 설명하였으나, 상기 MnTe계 물질로는 MnTe2도 존재하며, MnTe2에 Sb를 도핑한 결과 MnTe2보다 열전성능이 향상된 결과를 도출할 수 있었으며, MnTe2에 Sb를 도핑한 열전재료의 구성 또한 본원발명의 범주에 속함은 자명하다 할 것이다. Although the above describes a thermoelectric material doped with Sb in MnTe, in the MnTe-based material is MnTe 2 also exist, and, MnTe was the result doped with Sb 2 than MnTe second thermoelectric performance can be obtained improved results, MnTe It is obvious that the construction of the thermoelectric material doped with Sb 2 also belongs to the scope of the present invention.
Claims (5)
Mn1 - xSbxTe 화합물의 조성을 가지며, 여기서 0.01≤x≤0.2인 것을 특징으로 하는 Sb가 도핑된 MnTe계 열전재료.In the Sb-doped MnTe-based thermoelectric material,
Sb-doped MnTe system having a composition of Mn 1 - x Sb x Te compound, wherein 0.01 ≦ x ≦ 0.2 Thermoelectric material.
상기 용융된 원료를 급냉시켜 잉곳을 제조하는 제2단계와;
상기 잉곳을 파쇄하여 Mn1 - xSbxTe(0.01≤x≤0.2) 분말을 제조하는 제3단계와;
상기 Mn1 - xSbxTe(0.01≤x≤0.2) 분말을 소결하여 열간 프레스 또는 방전 플라즈마 소결 공정 후 와이어 컷팅하여 Sb가 도핑된 MnTe계 열전재료를 제조하는 제4단계를 포함하여 이루어지는 것을 특징으로 하는 Sb가 도핑된 MnTe계 열전재료의 제조방법.A first step of weighing Sb, Mn, and Te according to the composition ratios, charging the molten Sb, Mn, and Te into a vacuum ampoule;
A second step of rapidly cooling the molten raw material to produce an ingot;
Crushing the ingot to prepare Mn 1 - x Sb x Te (0.01 ≦ x ≦ 0.2) powder;
And sintering the Mn 1 - x Sb x Te (0.01 ≦ x ≦ 0.2) powder to cut the wire after a hot press or discharge plasma sintering process to produce a Sb-doped MnTe-based thermoelectric material. Method for producing a Sb-doped MnTe-based thermoelectric material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120013559A KR101323321B1 (en) | 2012-02-10 | 2012-02-10 | MnTe thermoelectric material doped with Sb and manufacturing method thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120013559A KR101323321B1 (en) | 2012-02-10 | 2012-02-10 | MnTe thermoelectric material doped with Sb and manufacturing method thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130092072A KR20130092072A (en) | 2013-08-20 |
KR101323321B1 true KR101323321B1 (en) | 2013-10-29 |
Family
ID=49216994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120013559A KR101323321B1 (en) | 2012-02-10 | 2012-02-10 | MnTe thermoelectric material doped with Sb and manufacturing method thereby |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101323321B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104627968B (en) * | 2015-01-30 | 2016-08-24 | 宁波工程学院 | The preparation technology of high temperature thermoelectric compound in a kind of p-type Mn-Zn-Te |
CN109309155B (en) * | 2017-07-28 | 2022-04-19 | 丰田自动车株式会社 | High-manganese-silicon-based telluride thermoelectric composite material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002270907A (en) | 2001-03-06 | 2002-09-20 | Nec Corp | Thermoelectric conversion material and device using the same |
JP2006019754A (en) | 2005-07-05 | 2006-01-19 | Toshiba Corp | Thermoelectric conversion material and thermoelectric conversion element using the same |
KR20100027079A (en) * | 2008-08-29 | 2010-03-10 | 주식회사 엘지화학 | New thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same |
KR20110096247A (en) * | 2010-02-22 | 2011-08-30 | 한국전기연구원 | Fabrication method for la doped agsbte2 thermoelectric materials and the thermoelectric materials thereby |
-
2012
- 2012-02-10 KR KR1020120013559A patent/KR101323321B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002270907A (en) | 2001-03-06 | 2002-09-20 | Nec Corp | Thermoelectric conversion material and device using the same |
JP2006019754A (en) | 2005-07-05 | 2006-01-19 | Toshiba Corp | Thermoelectric conversion material and thermoelectric conversion element using the same |
KR20100027079A (en) * | 2008-08-29 | 2010-03-10 | 주식회사 엘지화학 | New thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same |
KR20110096247A (en) * | 2010-02-22 | 2011-08-30 | 한국전기연구원 | Fabrication method for la doped agsbte2 thermoelectric materials and the thermoelectric materials thereby |
Also Published As
Publication number | Publication date |
---|---|
KR20130092072A (en) | 2013-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101172802B1 (en) | fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby | |
JP4976567B2 (en) | Thermoelectric conversion material | |
KR101072299B1 (en) | fabrication method for La doped AgSbTe2 thermoelectric materials and the thermoelectric materials thereby | |
KR101323319B1 (en) | The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver | |
KR101417968B1 (en) | PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby | |
KR20130078478A (en) | Fabrication method for te-based thermoelectric materials containing twins formed by addition of dopant and nano particle sintering | |
KR101323320B1 (en) | GeTe thermoelectric material doped with Ag and Sb and manufacturing method thereby | |
KR101323321B1 (en) | MnTe thermoelectric material doped with Sb and manufacturing method thereby | |
KR101264311B1 (en) | fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion | |
KR101417965B1 (en) | GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby | |
KR101104386B1 (en) | fabrication method for Zn4Sb3 thermoelectric materials | |
KR101215562B1 (en) | GeTe thermoelectric material doped Sb and manufacturing method thereby | |
KR102198207B1 (en) | Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping | |
KR101147230B1 (en) | fabrication method for rare earth element added AgSbTe2 thermoelectric materials and the thermoelectric materials thereby | |
KR20170069795A (en) | Half-heusler type thermoelectric material, method for manufacturing the same, thermoelectric element comprising the same | |
KR102269404B1 (en) | Selenium content increased thermal element | |
KR101296813B1 (en) | The manufacturing process of embedded nano-dot on Rare earth doped AgSbTe₂matrix in thermoelectric materials | |
KR101367719B1 (en) | Three-elements thermoelectric materials and fabrication method for the same | |
KR101531011B1 (en) | PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby | |
KR20130098605A (en) | Fabrication method for zn4sb3 thermoelectric materials doped with mn and thermoelectric materials thereby | |
JP2018078219A (en) | P-type thermoelectric semiconductor, manufacturing method therefor, and thermoelectric generation element using the same | |
TW201326048A (en) | Thermoelectric material, method for fabricating the same, and thermoelectric module employing the same | |
KR102121436B1 (en) | Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same | |
KR101952358B1 (en) | The thermoelectric device having improved thermoelectric characteristics | |
KR101198304B1 (en) | fabrication method for Zn4Sb3 thermoelectric materials and thermoelectric materials thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20161004 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170927 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20181023 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20191021 Year of fee payment: 7 |