KR101313314B1 - Manufacturing method for refuse derived fuel using highly water-contained waste, and cogeneration system using the rdf - Google Patents
Manufacturing method for refuse derived fuel using highly water-contained waste, and cogeneration system using the rdf Download PDFInfo
- Publication number
- KR101313314B1 KR101313314B1 KR1020120052662A KR20120052662A KR101313314B1 KR 101313314 B1 KR101313314 B1 KR 101313314B1 KR 1020120052662 A KR1020120052662 A KR 1020120052662A KR 20120052662 A KR20120052662 A KR 20120052662A KR 101313314 B1 KR101313314 B1 KR 101313314B1
- Authority
- KR
- South Korea
- Prior art keywords
- waste
- reactor
- solid fuel
- organic waste
- mixture
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000003473 refuse derived fuel Substances 0.000 title 1
- 239000010815 organic waste Substances 0.000 claims abstract description 44
- 239000004449 solid propellant Substances 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000001035 drying Methods 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 238000002156 mixing Methods 0.000 claims abstract description 16
- 238000007599 discharging Methods 0.000 claims abstract description 6
- 230000003301 hydrolyzing effect Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 18
- 239000000376 reactant Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 238000006460 hydrolysis reaction Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 3
- 239000010794 food waste Substances 0.000 claims description 3
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 239000010801 sewage sludge Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 7
- 238000009825 accumulation Methods 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 10
- 239000004033 plastic Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000010871 livestock manure Substances 0.000 description 5
- 239000001888 Peptone Substances 0.000 description 4
- 108010080698 Peptones Proteins 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 235000019319 peptone Nutrition 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000006837 decompression Effects 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010813 municipal solid waste Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/42—Solid fuels essentially based on materials of non-mineral origin on animal substances or products obtained therefrom, e.g. manure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/403—Solid fuels essentially based on materials of non-mineral origin on paper and paper waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/406—Solid fuels essentially based on materials of non-mineral origin on plastic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/46—Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
- C10L9/08—Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
- C10L9/086—Hydrothermal carbonization
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/14—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours using industrial or other waste gases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/04—Specifically adapted fuels for turbines, planes, power generation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/08—Drying or removing water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/24—Mixing, stirring of fuel components
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/28—Cutting, disintegrating, shredding or grinding
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/48—Expanders, e.g. throttles or flash tanks
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/50—Screws or pistons for moving along solids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
본 발명은 악취를 현저하게 저감하면서도 친환경적이고 효율적으로 고함수 유기성 폐기물로부터 고형원료를 제조하는 방법과 이를 이용한 열병합 발전 시스템에 관한 것이다.
The present invention relates to a method for producing a solid raw material from high-functional organic wastes while significantly reducing odor, and a cogeneration system using the same.
유기성슬러지와 축산분뇨 등 유기성폐기물은 소각, 발효, 직·간접 건조 등의 기술을 이용하여 처리하고 있다. 그러나 소각의 경우에는 다이옥신을 비롯한 유해물질을 발생시키고 많은 양의 외부에너지가 필요한데다 설치비용이 많이 들어 경제적이지 못하다는 단점이 있다. 또한, 직·간접 건조시에는 80%의 수분을 15%까지 낮추는데 상당한 양의 에너지가 소비되고 건조과정 및 건조후의 고체연료에서 악취 발생이 심하다는 문제점이 있다. 또한 발효의 경우에는 이러한 악취 발생이 특히 심한데다, 에너지 효율이 낮고, 많은 시간이 소요되며 폐수를 처리하여야 하는 문제점이 있다. 또한, 해양배출은 협약의 발효로 2012년1월 이후 하수슬러지 및 축산분뇨는 금지가 실시되고 있으며, 또한 2013년 1월 이후 음식물쓰레기 처리중 발생하는 음폐수에 대해서도 해양투기가 금지될 예정이다. Organic wastes such as organic sludge and livestock manure are treated using technologies such as incineration, fermentation and direct and indirect drying. However, incineration generates disadvantageous substances such as dioxins, requires a large amount of external energy, and is expensive due to high installation costs. In addition, the direct and indirect drying has a problem that a considerable amount of energy is consumed to lower the moisture of 80% to 15%, and the bad smell is generated in the solid fuel after drying and drying. In addition, in the case of fermentation, the occurrence of such odor is particularly severe, there is a problem that the energy efficiency is low, takes a lot of time, and wastewater treatment. In addition, marine discharges are banned from sewage sludge and livestock manure since January 2012. Also, from January 2013, marine dumping will be banned for wastewater generated during food waste disposal.
고함수 유기성 폐기물의 처리와 관련하여 이를 에너지원으로 사용하기 위하여 고형연료화하는 기술이 개발되고 있으며, 이 경우 필수적으로 수분함량을 15%이하까지 낮추어 주어야 한다. 이러한 고형연료화 기술로는 건조와 탄화로 대별되는데, 에너지 총량 부분에서 건조가 가장 바람직하다. 그러나 건조 과정에서의 악취와, 생성된 연료의 저장 및 사용 시 동반되는 악취가 문제되고 있는 실정이다.
Regarding the treatment of high-functional organic wastes, techniques for solidifying fuels have been developed to use them as energy sources. In this case, the water content must be reduced to 15% or less. Such solid fueling techniques are roughly classified into drying and carbonization, and drying is most preferable in the total amount of energy. However, the odor in the drying process and the odor accompanying the storage and use of the fuel produced is a problem.
이에 본 발명에서는, 상기와 같은 문제점을 해결하기 위하여 악취를 현저하게 저감하면서도 친환경적이고 효율적으로 고함수 유기성 폐기물로부터 고형원료를 제조하는 방법을 제공하는 것을 그 해결과제로 한다. In the present invention, in order to solve the above problems, to provide a method for producing a solid raw material from a high-functional organic waste, while reducing the odor significantly environmentally and efficiently as a problem.
또한 본 발명은 상기에서 제조된 고형연료를 이용하는 열병합 발전 시스템을 제공하는 것을 그 해결과제로 한다.
In addition, the present invention is to provide a cogeneration system using the solid fuel prepared above as a problem.
상기와 같은 과제를 해결하기 위한 본 발명은 일 양태로서, The present invention for solving the above problems as one aspect,
⒜ 고함수 유기성 폐기물과 도시쓰레기를 Fe 계열의 반응기에 투입하여 혼합하는 폐기물의 혼합단계; ⒝ 상기 반응기에 고온의 증기를 가하여 상기 유기성 폐기물과 도시쓰레기의 혼합물을 가압한 후, 가압상태에서 교반함으로써 상기 혼합물을 가수분해하는 가수분해 단계; ⒞ 상기 반응기 내부의 증기를 배출시켜 반응기 내부를 급감압하여 정치함으로써 상기 (b)단계를 거친 유기성 폐기물을 저분자화하거나, 상기 (b)단계를 거친 도시쓰레기의 비표면적을 증대시켜 파쇄하는 급감압 단계; ⒟ 상기 반응기에 진공 또는 차압 조건을 가하여 상기 (c)단계를 거친 반응물의 수분을 제거하는 진공 또는 차압 단계; 및 ⒠ 상기 ⒟단계를 거친 반응물을 자연건조 및 압축성형하여 수분함량이 10~20%인 고형연료를 제조하는 고형연료화 단계;를 포함하여 이루어지는, 고함수 유기성 폐기물을 이용한 고형연료 제조방법에 관한 것이다.
혼합 a mixing step of mixing high-functional organic waste and municipal waste into a Fe-based reactor and mixing the waste; A hydrolysis step of adding hot steam to the reactor to pressurize the mixture of organic waste and municipal waste and then hydrolyzing the mixture by stirring in a pressurized state; 증기 abruptly depressurizing the inside of the reactor by discharging the steam inside the reactor and allowing the mixture to remain at low molecular weight through the step (b), or abruptly decompressing by increasing the specific surface area of the municipal waste which has passed the step (b) step; 진공 a vacuum or differential pressure step of removing moisture from the reactants subjected to step (c) by applying vacuum or differential pressure conditions to the reactor; And ⒠ a solid fuel forming step of producing a solid fuel having a water content of 10 to 20% by naturally drying and compressing the reactant which passed through the ⒟ step; and relates to a solid fuel manufacturing method using a high functional organic waste. .
또한 다른 양태로서 본 발명은 상기 방법으로 제조된 고형연료를 이용하는 열병합 발전 시스템에 관한 것이다.
In another aspect, the present invention relates to a cogeneration system using the solid fuel produced by the above method.
본 발명에 따르면, 고함수 유기성 폐기물와 도시쓰레기를 Fe계열 반응기에 투입하여 혼합하고 고온고압의 수증기를 가함으로써, 수증기 라디칼의 분해력, Fe 반응 촉매에 의한 펩톤반응의 촉진으로 인한 유기물 및 악취성분을 매우 효과적으로 분해하고, 급감압 공정에 의하여 유기성 폐기물을 파쇄, 완전 분해하여 유기성 폐기물의 내부수까지 효율적으로 건조시켜 고형연료를 제조할 수 있게 된다. 특히 본 발명의 방법에 의하면 고온·고압의 증기를 가한 후 급감압 하는 단계를 거침으로써 미분해된 유기성 폐기물의 저분자화하고, 도시쓰레기를 팽창시켜 비표면적을 증대시킴으로써 건조의 효율을 매우 향상시켜 빠른 시간 내에 고형연료를 제조할 수 있게 되는 효과가 있다. According to the present invention, by mixing high-functional organic waste and municipal waste into the Fe-based reactor and mixing and adding high-temperature, high-pressure steam, organic matter and odor components due to decomposition of steam radicals, peptone reaction by the Fe reaction catalyst are very highly By effectively decomposing and rapidly decomposing organic wastes, the organic wastes can be crushed and completely decomposed to efficiently dry the internal wastes of organic wastes to produce solid fuel. In particular, according to the method of the present invention, the high-pressure and high-pressure steam is applied to reduce the molecular weight of undecomposed organic wastes, and to expand the municipal waste to increase the specific surface area, thereby greatly improving drying efficiency. There is an effect that can be produced in a solid fuel in time.
또한 본 발명의 방법에 의하여 제조되는 고형연료는, 저위 발열량이 높아 화석에너지를 대체하는 훌륭한 에너지원으로서 제공될 수 있어, 이를 이용한 열병합발전시스템에 의하여 효율적으로 전력을 생산할 수 있게 되는 효과가 있다.
In addition, the solid fuel produced by the method of the present invention can be provided as an excellent energy source to replace the fossil energy because the low calorific value is high, there is an effect that can be efficiently produced by the cogeneration system using the same.
도 1은 본 발명에 따른 고함수 유기성 폐기물의 처리 시스템을 나타낸 것이다.
도 2는 물의 이온적 변화와 유전율 변화 곡선을 나타낸 것이다. 1 shows a treatment system for a high functional organic waste according to the present invention.
Figure 2 shows the ionic change and the dielectric constant change curve of the water.
본 발명은 고함수 유기성 폐기물과 도시쓰레기를 Fe계열 반응기에 투입하여 혼합하고 고온고압의 수증기를 가함으로써, 수증기 라디칼의 분해력, Fe 반응 촉매에 의한 펩톤반응의 촉진으로 인한 유기물 및 악취성분을 분해하고, 급감압 공정에 의하여 유기성 폐기물을 파쇄, 완전 분해하여 유기성 폐기물의 내부수까지 효율적으로 건조시키도록 한 친환경·고효율의 고함수 유기성 폐기물을 이용한 고형연료 제조방법에 관한 것이다.
In the present invention, high-functional organic waste and municipal waste are mixed in a Fe-based reactor and mixed with high temperature and high pressure steam to decompose organic matter and odor components due to decomposition of steam radicals and peptone reaction by Fe reaction catalyst. In addition, the present invention relates to a method for manufacturing solid fuel using high-efficiency organic waste of eco-friendly and high efficiency, which crushes and completely decomposes organic wastes by a rapid depressurization process so as to efficiently dry them to the internal water of organic wastes.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 ⒜ 고함수 유기성 폐기물과 도시쓰레기를 Fe 계열의 반응기에 투입하여 혼합하는 폐기물의 혼합단계; ⒝ 상기 반응기에 고온의 증기를 가하여 상기 유기성 폐기물과 도시쓰레기의 혼합물을 가압한 후, 가압상태에서 교반함으로써 상기 혼합물을 가수분해하는 가수분해 단계; ⒞ 상기 반응기 내부의 증기를 배출시켜 반응기 내부를 급감압하여 정치함으로써 상기 (b)단계를 거친 유기성 폐기물을 저분자화하거나, 상기 (b)단계를 거친 도시쓰레기의 비표면적을 증대시켜 파쇄하는 급감압 단계; ⒟ 상기 반응기에 진공 또는 차압 조건을 가하여 상기 (c)단계를 거친 반응물의 수분을 제거하는 진공 또는 차압 단계; 및 ⒠ 상기 ⒟단계를 거친 반응물을 자연 건조시켜 수분함량이 10~20%인 고형연료를 제조하는 고형연료화 단계;를 포함하여 이루어지는, 고함수 유기성 폐기물을 이용한 고형연료 제조방법에 관한 것이다. The present invention is a waste mixing step of mixing the high-function organic waste and municipal waste into the Fe-based reactor for mixing; A hydrolysis step of adding hot steam to the reactor to pressurize the mixture of organic waste and municipal waste and then hydrolyzing the mixture by stirring in a pressurized state; 증기 abruptly depressurizing the inside of the reactor by discharging the steam inside the reactor and allowing the mixture to remain at low molecular weight through the step (b), or abruptly decompressing by increasing the specific surface area of the municipal waste which has passed the step (b) step; 진공 a vacuum or differential pressure step of removing moisture from the reactants subjected to step (c) by applying vacuum or differential pressure conditions to the reactor; And ⒠ a solid fuelization step of naturally drying the reactants passed through the ⒟ step to produce a solid fuel having a water content of 10 to 20%. It relates to a solid fuel manufacturing method using a high water-containing organic waste.
본 발명에 있어서 상기 (a) 단계는 고함수 유기성 폐기물과 도시쓰레기를 Fe 계열의 반응기에 투입하여 혼합하는 폐기물의 혼합하는 단계로, 상기 고함수 유기성 폐기물은 축산 분뇨, 하수 슬러지, 음식물 쓰레기 중에서 선택되는 1종 이상으로서 수분함량이 80% 이상인 폐기물이고, 상기 도시쓰레기는 종이류 및 플라스틱류를 포함하는 것이 바람직하다. 이는 감압 단계에서 감압에 의하여 저분자화된 유기성 폐기물과 팽창하면서 증대된 비표면적을 갖는 종이류 및 플라스틱류 도시쓰레기가 반응하여 건조의 효율을 최대화하고, 석유계 유기성 물질인 플라스틱류 도시쓰레기가 포함됨으로써 생성된 고형연료의 저위 발열량을 향상시킬 수 있기 때문이다. 바람직하게는 상기 도시쓰레기 중 종이류는 50~55 중량%, 플라스틱류는 40~45중량%를 포함하도록 한다. In the present invention, the step (a) is a step of mixing the high-functional organic waste and the waste mixed with municipal waste in the Fe-based reactor, the high-functional organic waste is selected from livestock manure, sewage sludge, food waste At least one of them is a waste having a water content of 80% or more, and the municipal waste preferably includes papers and plastics. This is achieved by maximizing the efficiency of drying through the reaction of low molecular weight organic waste and the increased specific surface area of paper and plastic wastes, which are expanded by decompression in the decompression stage, and the production of plastic wastes including petroleum organic materials. This is because the low calorific value of the solid fuel can be improved. Preferably, the paper is 50 to 55% by weight of the municipal waste, plastics to include 40 to 45% by weight.
또한 상기 (a) 단계에 있어서 상기 고함수 유기성 폐기물과 도시쓰레기는 3.5~4:0.5~1의 비율로 투입하여 혼합하는 것이 더욱 바람직하다. 또한, 더욱 바람직하게는 상기 고함수 유기성 폐기물과 도시쓰레기를, 70~90%의 충전율로 상기 반응기에 투입하여 혼합하도록 한다. 이는 상기와 같이 높은 충전율로 목적하는 폐기물이 반응기 내부로 투입되어도 반응기 외부로부터 고온고압의 수증기가 공급되어 포화수증기와의 접촉반응이 유지될 수 있기 때문에 폐기물의 처리 용량을 최대로 하여 반응의 효율을 높일 수 있게 되는 것이다. In addition, in the step (a), the high-functional organic waste and municipal waste are more preferably mixed at a ratio of 3.5-4: 0.5-1. In addition, more preferably, the high-functional organic waste and municipal waste are mixed into the reactor at a filling rate of 70 to 90%. It is possible to maintain the efficiency of the reaction by maximizing the processing capacity of the waste because high temperature and high pressure water vapor can be supplied from the outside of the reactor to maintain contact reaction with saturated steam even if the desired waste is introduced into the reactor at the high filling rate as described above. You can increase it.
또한 본 발명에 있어서, 상기 (b)단계는 상기 반응기에 고온의 증기를 가하여 상기 유기성 폐기물과 도시쓰레기의 혼합물을 가압한 후, 가압상태에서 교반함으로써 상기 혼합물을 가수분해하는 단계로, 가압에 의하여 유기성 폐기물을 이루는 물질이 분해되어 저분자화되고, 황산성분을 포함하는 악취성분이 분해되어 악취를 제거하면서 고온에 의하여 유기성 폐기물의 함수율을 현저하게 낮추는 단계이다. 이 때 바람직하게는 상기 반응기와 연결된 보일러를 이용하여, 상기 반응기에 200~250℃의 증기를 가하여 반응기 내부압력이 20~25기압이 되도록 한 후, 교반함으로써 가수분해 반응이 이루어지도록 한다. 도 2에 물의 이온적([H+][OH-]) 변화와 유전율 변화를 나타내었는 바, 도 2에 나타낸 바와 같이 200~250℃에서 이온반응이 가장 활발하여 상온과 비교할 때 약 1000배 이상의 활성이 나타나게 되고, 유전율이 상온에 비해서 1/3~1/4 수준으로 낮아지게 되므로 이온사이에 전위차가 발생하여 유기물 분해력을 증가시킬 수 있게 된다. 이에 상기 온도 및 압력 범위 미만일 경우 유기물의 분해 및 악취의 저감 효과가 감소하여 원하는 효과를 얻을 수 없게 되고, 상기 온도 및 압력 범위를 초과할 경우 에너지 손실을 초래하게 된다.In addition, in the present invention, the step (b) is a step of hydrolyzing the mixture by stirring in a pressurized state after pressurizing the mixture of the organic waste and municipal waste by applying a high temperature steam to the reactor, by pressing It is a step of lowering the moisture content of the organic waste by high temperature while decomposing the constituents of the organic waste to low molecular weight, decomposing odor components including sulfuric acid component to remove the odor. At this time, preferably by using a boiler connected to the reactor, by applying a steam of 200 ~ 250 ℃ to the reactor to the internal pressure of the reactor to 20 to 25 atm, and then by agitating the hydrolysis reaction is made. As shown in FIG. 2, the ionic ([H +] [OH−]) change and the change in permittivity of water were as shown in FIG. 2. As shown in FIG. This appears, and the dielectric constant is lowered to 1/3 to 1/4 level compared to room temperature, so that a potential difference occurs between ions, thereby increasing the organic decomposition ability. When the temperature and pressure range is less than this, the decomposition effect of organic matter and the reduction of odor are reduced, so that a desired effect cannot be obtained, and when the temperature and pressure range are exceeded, energy loss is caused.
또한, 본 발명은 상기 (b)단계에 있어서 증기의 공급은 상기 반응기와 연결된 보일러를 이용하여 공급하도록 하고 있어, 온도가 낮은 유기성 폐기물에 직접 접촉 분사함에 의하여 고온수로 변화하는 과정 없이, 반응기 내의 유기성 폐기물은 보일러로부터 공급된 수증기와 접촉하여 물리화학적인 반응을 일으킬 수 있게 되어 반응의 효율을 현저하게 향상시키게 된다. 또한 상기와 같이 외부로부터 공급되는 보일러를 이용하여 증기를 공급함으로써 고온수와 반응하는 현상이 발생하지 않으므로 반응기 내부에 충전되는 폐기물의 양이 증가되어도 반응을 유지할 수 있게 되어, 처리하고자 하는 폐기물의 혼합물을 반응기의 70~90%에 이르도록 충전하여 수증기와의 접촉반응을 일으킬 수 있게 된다. In addition, the present invention is to supply the steam in the step (b) by using a boiler connected to the reactor, without the process of changing to hot water by direct contact injection to the organic waste of low temperature, The organic wastes can come into contact with the water vapor supplied from the boiler and cause a physicochemical reaction, thereby significantly improving the efficiency of the reaction. In addition, since the phenomenon of reacting with hot water does not occur by supplying steam using a boiler supplied from the outside as described above, the reaction can be maintained even if the amount of waste charged in the reactor is increased, and the mixture of waste to be treated It can be charged to reach 70-90% of the reactor to cause a contact reaction with water vapor.
또한, 상기 가수분해반응은 Fe 계열의 반응기 내부에서 이루어지게 됨에 따라, Fe의 촉매작용으로 특히 반응기 내 포화수증기가 차지하는 영역에서 펩톤반응을 촉진할 수 있어 반응의 효율을 현저하게 높일 수 있게 되고, 반응기의 처리·운전에 따라 반응기 내부에는 1~2mm의 유기막이 형성됨으로써 NaCl 등에 의한 부식이 방지될 수 있도록 한 것이다. In addition, as the hydrolysis reaction is performed in the Fe-based reactor, the catalytic action of Fe can promote the peptone reaction, particularly in the region occupied by saturated steam in the reactor, thereby significantly increasing the efficiency of the reaction. According to the treatment and operation of the reactor, an organic film of 1 to 2 mm is formed inside the reactor so that corrosion by NaCl or the like can be prevented.
또한 본 발명에 있어서, 상기 (c)단계는, 상기 반응기 내부의 증기를 배출시켜 반응기 내부를 급감압하여 정치함으로써 상기 (b)단계를 거친 유기성 폐기물을 저분자화하거나, 상기 (b)단계를 거친 도시쓰레기의 비표면적을 증대시켜 파쇄하는 단계로, 고온의 증기로 가압한 상태의 반응물을 순간적으로 급감압함으로써 부피를 증대시켜 저분자화 또는 파쇄하는 단계이다. 이러한 감압단계에 의하여 원료인 도시쓰레기의 부피가 순간적으로 팽창하게 되어 비표면적이 증대됨으로써 함수성 유기물과 반응하면서 건조됨에 따라 건조시간을 상당히 단축하게 되어 건조의 효율을 현저하게 향상시킬 수 있게 되는 바, 상기 반응기 내부의 증기를 10~120초간 배출하여 0.9~1.1 기압이 되도록 급 감압하는 것이 바람직하다. In addition, in the present invention, the step (c) is to discharge the vapor in the reactor to rapidly reduce the inside of the reactor to stand to lower the molecular weight of the organic waste that has passed the step (b), or (b) In this step, the specific surface area of municipal waste is increased to crush. In this step, the reactant in the state of pressurized by high temperature steam is rapidly reduced to increase the volume to lower the molecular weight or crush. By the depressurization step, the volume of urban garbage as a raw material expands instantaneously, and the specific surface area is increased, and the drying time is considerably shortened as it reacts with the water-containing organic material, thereby significantly improving the drying efficiency. It is preferable to discharge the steam in the reactor for 10 to 120 seconds to rapidly reduce the pressure to be 0.9 to 1.1 atm.
또한, 본 발명에 있어서 상기 (d)단계는, 상기 반응기에 진공 또는 차압 조건을 가하여 상기 (c)단계를 거친 반응물의 수분을 제거하는 단계로, 바람직하게는 상기 반응기와 연결된 진공펌프를 이용하여 상기 반응기에 10~15분간 진공 또는 차압 조건을 가함으로써 상기 (c)단계를 거친 반응물에 함유된 수분의 5~10%를 제거하는 것을 특징으로 한다. In the present invention, the step (d) is to remove the water of the reactants passed through the step (c) by applying a vacuum or differential pressure condition to the reactor, preferably by using a vacuum pump connected to the reactor By applying a vacuum or a differential pressure condition for 10 to 15 minutes to the reactor is characterized in that to remove 5 to 10% of the moisture contained in the reactant passed through the step (c).
또한 본 발명에 있어서 상기 (e)단계는, 상기 ⒟단계를 거친 반응물을 자연건조 하여 수분함량이 10~20%인 고형연료를 제조하는 단계로, 바람직하게는 5000 kcal/kg이상의 저위발열량을 갖는 고형연료를 제조하는 것을 특징으로 한다.
In addition, in the present invention, the step (e) is a step of producing a solid fuel having a water content of 10 to 20% by naturally drying the reactant passed through the step ,, preferably having a low calorific value of 5000 kcal / kg or more It is characterized by producing a solid fuel.
또한 다른 양태로서 본 발명은 상기 방법으로 제조된 고형연료를 이용하는 열병합 발전 시스템에 관한 것이다. 즉, 본 발명은 상기 고함수 유기성 페기물과 도시쓰레기로부터 고형연료(RDF)를 제조하고 이를 상기 RDF 전용버너 및 보일러에 공급하여 과열증기를 생산하고 상기 과열증기를 이용하는 스팀발전시스템에 의하여 전력을 생산해낼 수 있는 열병합 발전 시스템을 제공할 수 있게 되는 것이다.
In another aspect, the present invention relates to a cogeneration system using the solid fuel produced by the above method. That is, the present invention produces a solid fuel (RDF) from the high-functional organic waste and municipal waste, and supplies it to the RDF burner and boiler to produce superheated steam and to produce electric power by a steam power generation system using the superheated steam. It will be able to provide a cogeneration system that can do this.
이하, 본 발명을 실시예에 의하여 상세히 설명한다. Hereinafter, the present invention will be described in detail with reference to examples.
<실시예 1>≪ Example 1 >
회분식의 Fe 재질의 5m3크기를 갖는 반응기를 제작하고, 함수율 80~85%인 축산분뇨 3.5톤과 종이류 MSW(도시쓰레기) 0.5~1톤을 가급적 빠른 시간 내에 반응기로 투입한 후 반응기 상부의 투입구를 닫았다. 투입이 완료됨과 동시에 축산분뇨와 MSW를 혼합하고 210℃의 수증기를 공급하여 반응기 내부 압력이 23atm이 되도록 하였다. 이 때 투입되는 포화수증기 혹은 과열수증기는 미리 준비된 반응기 상부의 수증기 공급 전용보일러에서 약 3~5분 내로 반응조건에 도달하여 수증기 공급을 중단하였다. 공급된 수증기와 대상 폐기물 간에 물리·화학적 반응을 일으키도록 10~15rpm으로 교반하였다. 반응이 진행되는 동안 미리 설정한 온도와 압력이하의 조건이 되어졌을 때는 간헐적으로 포화수증기 혹은 과열증기를 공급하여 210℃, 23atm의 분위기를 유지하였다. 위 상태를 처리대상물 물성에 따라 30~60분 정도 유기시켜 충분하게 수증기와 처리대상 유기물, 그리고 Fe계열 반응기에 의한 촉매작용에 의한 펩톤 반응이 충분히 일어나도록 한다.A reactor having a size of 5 m 3 of a batch Fe material was prepared, and 3.5 tons of livestock manure having a water content of 80 to 85% and 0.5 to 1 ton of paper MSW (urban waste) were introduced into the reactor as soon as possible, and then an inlet at the top of the reactor. Closed. At the same time as the feeding was completed, the livestock manure and MSW were mixed and water vapor was supplied at 210 ° C. so that the internal pressure of the reactor was 23 atm. At this time, the saturated steam or superheated steam reached the reaction conditions within about 3 to 5 minutes in the steam supply dedicated boiler at the top of the reactor prepared in advance, and the steam supply was stopped. The reaction mixture was stirred at 10 to 15 rpm to cause a physico-chemical reaction between the supplied steam and the waste. During the reaction, when the temperature and pressure were below the preset temperature, saturated steam or superheated steam was intermittently supplied to maintain the atmosphere at 210 ° C. and 23 atm. The above state is organically treated for about 30 to 60 minutes depending on the properties of the object to be treated to sufficiently generate a peptone reaction by the catalytic action of water vapor, the organic material to be treated, and the Fe-based reactor.
다음으로, 감압밸브를 열어 증기배출구를 통하여 2분 내로 대기압(1기압)이 될 때까지 수증기를 순간적으로 배출하여 위에서 반응 도중 분해되지 않은 유기물, 유기세포 혹은 MSW가 저분자화 또는 파쇄되도록 하였다. 저분자화·파쇄 완료 후에는 고온 진공 혹은 차압조건에서 반응기내 반응물의 수분을 제거하기 위해 외부의 진공(차압)펌프를 이용해서 약 10~15분간 진공(차압)공정을 수행하여 반응물 내 전체 수분의 약 5~10%를 제거하였다. 반응 후 생성된 생성물은 페들식 자연건조장으로 옮긴 후 자연건조를 시킴으로써 함수율 15%의 최종 고체연료를 생성하였다.
Next, the pressure relief valve was opened and vapor was instantaneously discharged through the steam outlet until it reached atmospheric pressure (1 atm) within 2 minutes so that organic matter, organic cells, or MSW that were not decomposed during the above reaction were low-molecularized or crushed. After completion of the low molecular crushing and crushing, a vacuum (differential pressure) process is performed for about 10 to 15 minutes using an external vacuum (differential pressure) pump to remove water in the reactor under high temperature vacuum or differential pressure conditions. About 5-10% were removed. The product produced after the reaction was transferred to a paddle-type dry plant and then dried naturally to produce a final solid fuel having a water content of 15%.
<비교예 1>≪ Comparative Example 1 &
상기 실시예 1의 방법으로 고형연료를 제조하되, 도시쓰레기(MSW)를 첨가하지 않고 고형연료를 제조하였다.
Solid fuel was prepared by the method of Example 1, but solid fuel was prepared without adding municipal waste (MSW).
<비교예 2>Comparative Example 2
상기 실시예 1의 방법으로 고형연료를 제조하되, 가압 후 증기를 배출하여 순간적으로 급감압시키는 과정을 거치지 않고 고형연료를 제조하였다.
Solid fuel was prepared by the method of Example 1, but solid fuel was prepared without undergoing a process of suddenly depressurizing the steam after pressurizing.
실험 및 결과Experiments and results
처리를 하지 않은 고함수 폐기물과, 비교예 1,2를 대조군으로 하여 상기 실시예에 따른 고형연료의 제조시간(건조시간)에 따른 함수량의 변화를 측정하여 하기 표 1에 나타내었다. The change in the water content according to the manufacturing time (drying time) of the solid fuel according to the above example was measured using the high-water waste that was not treated and Comparative Examples 1 and 2 as a control, and are shown in Table 1 below.
(wt%)Wastewater Waste
(wt%)
(wt%)Example 1
(wt%)
(wt%)Comparative Example 1
(wt%)
(wt%)Comparative Example 2
(wt%)
표 1에 나타낸 바와 같이 도시쓰레기를 함유하지 않고 처리한 비교예 1의 경우, 처리를 하지 않은 고함수페기물과 거의 동일한 건조속도를 나타내었다. 이는 유기성 물질의 저분자화 및 분자내 수준의 외부 유출로 인하여 겔 상태 양상이 됨에 따라 겔 상태 상부의 수분만 증발하고 겔 상태 하부의 수분이 증발하지 않기 때문인 것으로 판단된다. 또한 급 감압 공정을 거치지 않고 처리한 비교예 2의 경우, 비표면적의 증가율이 적어 자연건조시의 건조 속도에 영향을 미치는 것으로 확인되었고, 본 발명에 따른 실시예 1의 경우에 약 20시간 경과 후 10% 정도의 함수율을 나타내어 고형연료 제조의 효율이 매우 높음을 확인할 수 있었다.As shown in Table 1, in Comparative Example 1 treated without containing municipal waste, the drying rate was almost the same as that of the non-treated wastewater. This is believed to be due to the evaporation of only the water in the upper gel state and the evaporation of the water in the lower gel state as it becomes a gel state due to the low molecular weight of the organic material and the external outflow of the intramolecular level. In addition, in the case of Comparative Example 2 treated without undergoing a rapid decompression process, it was confirmed that the increase rate of the specific surface area is small, which affects the drying rate during natural drying, and after about 20 hours in the case of Example 1 according to the present invention By showing a water content of about 10% it was confirmed that the efficiency of solid fuel production is very high.
이러한 결과로부터 도시쓰레기를 첨가하여 급감압 및 진공공정을 거침에 따라 함수율이 10%에 이르는 시간이 2배 이상 단축됨을 확인할 수 있었다.
From these results, it was confirmed that the time to reach 10% of the water content was reduced by more than two times by adding urban waste and undergoing rapid pressure reduction and vacuum processes.
또한 상기 실시예 1및 비교예 2에 사용된 도시쓰레기의 성상을 분석한 결과는 다음과 같다. In addition, the results of analyzing the characteristics of the municipal waste used in Example 1 and Comparative Example 2 are as follows.
(불연성)Miscellaneous
(nonflammable)
또한 상기 본 발명 실시예 1에서 제조한 고형연료와 비교예 1에서 제조한 고형연료의 발열량을 측정한 결과, 도시쓰레기를 첨가한 실시예 1의 경우가 약 500kcal/kg 높은 5,000kcal/kg의 평균 발열량을 나타내었다. 즉, 도시쓰레기에 포함된 50% 이상의 종이류와 40% 이상의 플라스틱류가 급감압공정에서 비표면적을 향상시켜 건조속도를 높임은 물론이고, 상기 석유계 유기성 물질인 플라스틱류에 의하여 고체 생성물의 발열량을 높일 수 있게 된 것으로 판단된다. 평균 발열량은 하기 표 3에 나타내었다. (단위: kcal/kg)In addition, as a result of measuring the calorific value of the solid fuel prepared in Example 1 of the present invention and the solid fuel prepared in Comparative Example 1, the average of 5,000 kcal / kg of the case of Example 1 with the addition of municipal waste is about 500 kcal / kg The calorific value was shown. That is, more than 50% of papers and 40% or more of plastics contained in urban waste improves the specific surface area in a sudden reduction process, thereby increasing the drying speed, and also generating calorific value of solid products by the petroleum-based organic plastics. It seems to be able to increase. The average calorific value is shown in Table 3 below. (Unit: kcal / kg)
이와 같이 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Therefore, such modifications or variations will have to be belong to the claims of the present invention.
Claims (9)
(b) 상기 반응기에 고온의 증기를 가하여 상기 유기성 폐기물과 도시쓰레기의 혼합물을 가압한 후, 가압상태에서 교반함으로써 상기 혼합물을 가수분해하는 가수분해 단계;
(c) 상기 반응기 내부의 증기를 10~120초간 배출시켜 0.9~1.1 기압이 되도록 반응기 내부를 급감압하여 정치함으로써, 상기 (b)단계를 거친 유기성 폐기물을 저분자화하거나, 상기 (b)단계를 거친 도시쓰레기의 비표면적을 증대시켜 파쇄하는 급감압 단계;
(d) 상기 반응기와 연결된 진공펌프를 이용하여 상기 반응기에 10~15분간 진공 또는 차압 조건을 가함으로써 상기 (c)단계를 거친 반응물에 함유된 수분의 5~10%를 제거하는 진공 또는 차압 단계; 및
(e) 상기 (d)단계를 거친 반응물을 배출한 후, 자연건조시킴으로써 수분함량이 10~20%인 고형연료를 제조하는 고형연료화 단계;를 포함하여 이루어지는, 고함수 유기성 폐기물 및 도시쓰레기를 포함한 폐기물 원료로부터 고형연료 제조방법.(a) At least one selected from animal husbandry, sewage sludge, and food waste, containing high-content organic waste with a water content of 80% or more, and municipal waste including 50-55% by weight of paper (to the total weight of municipal waste); A mixing step of mixing the wastes by mixing them into a single structure reactor made of Fe-based material;
(b) hydrolysis of hydrolyzing the mixture by adding hot steam to the reactor to pressurize the mixture of the organic waste and municipal waste, and then stirring the mixture in a pressurized state;
(c) by discharging the steam inside the reactor for 10 to 120 seconds to rapidly reduce the inside of the reactor to be 0.9 to 1.1 atm, thereby lowering the molecular weight of the organic waste from step (b), or (b) A sudden pressure reduction step of crushing by increasing the specific surface area of the rough urban waste;
(d) applying a vacuum or differential pressure condition to the reactor for 10 to 15 minutes using a vacuum pump connected to the reactor to remove 5 to 10% of the water contained in the reactant after step (c) ; And
(e) a solid fuelization step of producing a solid fuel having a water content of 10 to 20% by natural drying after discharging the reactants passed through the step (d), including the high-functional organic waste and municipal waste Process for producing solid fuel from waste raw materials.
상기 고함수 유기성 폐기물과 도시쓰레기는 3.5~4:0.5~1의 비율로 투입하여 혼합하는 것을 특징으로 하는, 고함수 유기성 폐기물 및 도시쓰레기를 포함한 폐기물 원료로부터 고형연료 제조방법.According to claim 1, wherein the step (a),
The high-functional organic waste and municipal waste is a 3.5 ~ 4: 0.5 ~ 1 in the ratio of the mixture, characterized in that the mixture of high-functional organic waste and municipal waste, including the raw material for producing solid fuel.
상기 고함수 유기성 폐기물과 도시쓰레기를, 70~90%의 충진률로 상기 Fe 계열의 반응기에 투입하여 혼합하는 것을 특징으로 하는, 고함수 유기성 폐기물 및 도시쓰레기를 포함한 폐기물 원료로부터 고형연료 제조방법.According to claim 1, wherein the step (a),
And mixing the high-functional organic waste and municipal waste into the Fe-based reactor at a filling rate of 70 to 90%, and mixing the high-functional organic waste and municipal waste.
상기 반응기와 연결된 보일러를 이용하여, 상기 반응기에 200~250℃의 증기를 가하여 반응기 내부압력이 20~25기압이 되도록 상기 유기성 폐기물과 도시쓰레기의 혼합물을 가압하는 것을 특징으로 하는, 고함수 유기성 폐기물 및 도시쓰레기를 포함한 폐기물 원료로부터 고형연료 제조방법.According to claim 1, wherein step (b) is,
Using a boiler connected to the reactor, by applying a steam of 200 ~ 250 ℃ to the reactor to pressurize the mixture of the organic waste and municipal waste so that the internal pressure of the reactor to 20 to 25 atm, high-functional organic waste And a method for producing solid fuel from waste raw materials including municipal waste.
상기 (e)단계에서 제조되는 고형연료는 5000 kcal/kg이상의 저위발열량을 갖는 것을 특징으로 하는, 고함수 유기성 폐기물 및 도시쓰레기를 포함한 폐기물 원료로부터 고형연료 제조방법.The method of claim 1,
The solid fuel produced in step (e) is characterized in that it has a low calorific value of more than 5000 kcal / kg, solid fuel manufacturing method from the waste raw materials including high-functional organic waste and municipal waste.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120052662A KR101313314B1 (en) | 2012-05-17 | 2012-05-17 | Manufacturing method for refuse derived fuel using highly water-contained waste, and cogeneration system using the rdf |
CN201380025548.5A CN104508093A (en) | 2012-05-17 | 2013-05-15 | Environmentally friendly and high efficiency solid fuel production method using high-water-content organic waste, and combined heat and power system using same |
RU2014145949/04A RU2586332C1 (en) | 2012-05-17 | 2013-05-15 | Eco-friendly and highly effective method for preparing solid fuel using organic waste with high water content and combine thermoelectric power system operating with fuel described |
ES201490128A ES2526716B1 (en) | 2012-05-17 | 2013-05-15 | Production process of solid fuels of high efficiency and respectful with the environment that uses organic waste of high water content, and combined system of thermal energy and electrical energy that uses said procedure. |
PCT/KR2013/004323 WO2013172661A1 (en) | 2012-05-17 | 2013-05-15 | Environmentally friendly and high efficiency solid fuel production method using high-water-content organic waste, and combined heat and power system using same |
US14/401,607 US20150143809A1 (en) | 2012-05-17 | 2013-05-15 | Environmentally friendly and high efficiency solid fuel production method using high-water-content organic waste, and combined heat and power system using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120052662A KR101313314B1 (en) | 2012-05-17 | 2012-05-17 | Manufacturing method for refuse derived fuel using highly water-contained waste, and cogeneration system using the rdf |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101313314B1 true KR101313314B1 (en) | 2013-09-30 |
Family
ID=49456985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120052662A KR101313314B1 (en) | 2012-05-17 | 2012-05-17 | Manufacturing method for refuse derived fuel using highly water-contained waste, and cogeneration system using the rdf |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150143809A1 (en) |
KR (1) | KR101313314B1 (en) |
CN (1) | CN104508093A (en) |
ES (1) | ES2526716B1 (en) |
RU (1) | RU2586332C1 (en) |
WO (1) | WO2013172661A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102107704B1 (en) * | 2019-05-22 | 2020-05-07 | 주식회사 네오디아 | Apparatus for manufacturing fuel using sewage sludge |
KR102198208B1 (en) | 2020-07-13 | 2021-01-04 | 채재우 | A lot of water waste recycling and incineration equipment |
KR102319903B1 (en) * | 2020-12-03 | 2021-11-01 | 하재현 | Household waste hydrolysis pellet fuel-conversion system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CL2016000931A1 (en) * | 2016-04-19 | 2016-11-11 | Antonio Caraball Ugarte Jose | Solid biofuel comprising lignin obtained from cattle manure and a method for obtaining it. |
CN106753676A (en) * | 2017-01-03 | 2017-05-31 | 苏州草宝能源科技有限公司 | A kind of method that high temperature wet dries house refuse |
CN109943380A (en) * | 2019-02-22 | 2019-06-28 | 佐古猛 | A kind of solid fuel manufacturing method and manufacturing device |
JP7285729B2 (en) * | 2019-08-08 | 2023-06-02 | 三菱重工業株式会社 | waste treatment equipment |
CN110564431B (en) * | 2019-09-10 | 2024-07-12 | 上海环境卫生工程设计院有限公司 | Wet garbage dehydration pyrolysis method and system |
CN111112276A (en) * | 2019-11-25 | 2020-05-08 | 林赞德 | Waste treatment method |
CN114433596B (en) * | 2022-01-25 | 2023-04-18 | 上海汉怡环保科技有限公司 | Organic garbage treatment process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007000197A (en) * | 2005-06-21 | 2007-01-11 | Neos Co Ltd | Persistent organic halide processing method |
JP2010106133A (en) * | 2008-10-30 | 2010-05-13 | Kubota Kankyo Service Kk | Process and apparatus for making waste into fuel |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69522341T2 (en) * | 1994-12-07 | 2002-05-08 | Controlled Environmental Systems Corp., Birmingham | PROCESSING SYSTEM FOR SOLID HOUSEHOLD WASTE AND PROCESS FOR THE COMMERCIAL PRODUCTION OF LACTIC ACID |
KR100356966B1 (en) * | 2002-04-16 | 2002-10-19 | Halla Engineering & Ind Develo | Apparatus and method for integrated treatment of garbage and livestock excretions by two stage anaerobic digestion |
AU2002358010A1 (en) * | 2002-11-14 | 2004-06-03 | David Systems Technology, S.L. | Method and device for integrated plasma-melt treatment of wastes |
PL1951618T4 (en) * | 2005-10-17 | 2019-02-28 | Synpet Teknoloji Gelistirme A.S. | Process of conversion of shredder residue into useful products |
KR100841335B1 (en) * | 2007-03-08 | 2008-06-26 | 한국에너지기술연구원 | Development on the utilization and fuelization technologies of organic wastes such as piggery waste, food waste and swage sludge using cogeneration system including high pressure steam drying, gasification and power generation processes |
US20110158858A1 (en) * | 2007-04-18 | 2011-06-30 | Alves Ramalho Gomes Mario Luis | Waste to liquid hydrocarbon refinery system |
RU2326900C1 (en) * | 2007-04-20 | 2008-06-20 | Валерий Григорьевич Лурий | Processing of organic carbonaceous waste and carbonaceous moulding |
WO2009072454A1 (en) * | 2007-12-03 | 2009-06-11 | Cdm Consulting Co., Ltd | Method of treating biomass |
US8057639B2 (en) * | 2008-02-28 | 2011-11-15 | Andritz Inc. | System and method for preextraction of hemicellulose through using a continuous prehydrolysis and steam explosion pretreatment process |
JP2013511386A (en) * | 2009-11-24 | 2013-04-04 | 株式会社北斗興業 | Waste to energy conversion by hydrothermal decomposition and resource regeneration methods. |
-
2012
- 2012-05-17 KR KR1020120052662A patent/KR101313314B1/en active IP Right Grant
-
2013
- 2013-05-15 WO PCT/KR2013/004323 patent/WO2013172661A1/en active Application Filing
- 2013-05-15 ES ES201490128A patent/ES2526716B1/en active Active
- 2013-05-15 CN CN201380025548.5A patent/CN104508093A/en active Pending
- 2013-05-15 RU RU2014145949/04A patent/RU2586332C1/en active
- 2013-05-15 US US14/401,607 patent/US20150143809A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007000197A (en) * | 2005-06-21 | 2007-01-11 | Neos Co Ltd | Persistent organic halide processing method |
JP2010106133A (en) * | 2008-10-30 | 2010-05-13 | Kubota Kankyo Service Kk | Process and apparatus for making waste into fuel |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102107704B1 (en) * | 2019-05-22 | 2020-05-07 | 주식회사 네오디아 | Apparatus for manufacturing fuel using sewage sludge |
KR102198208B1 (en) | 2020-07-13 | 2021-01-04 | 채재우 | A lot of water waste recycling and incineration equipment |
KR102319903B1 (en) * | 2020-12-03 | 2021-11-01 | 하재현 | Household waste hydrolysis pellet fuel-conversion system |
Also Published As
Publication number | Publication date |
---|---|
ES2526716R1 (en) | 2015-02-04 |
WO2013172661A1 (en) | 2013-11-21 |
ES2526716A2 (en) | 2015-01-14 |
ES2526716B1 (en) | 2015-11-17 |
CN104508093A (en) | 2015-04-08 |
RU2586332C1 (en) | 2016-06-10 |
US20150143809A1 (en) | 2015-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101313314B1 (en) | Manufacturing method for refuse derived fuel using highly water-contained waste, and cogeneration system using the rdf | |
Mäkelä et al. | Hydrothermal carbonization of industrial mixed sludge from a pulp and paper mill | |
KR101024447B1 (en) | Production of refuse derived fuel with biomass using microbial materials | |
KR101315807B1 (en) | Production of Refuse Derived Fuel and Treatment of Biomass with zero discharge system Using Microbial Materials | |
Shah et al. | Biomass pretreatment technologies | |
JP5334388B2 (en) | Energy recovery system from food waste and sludge | |
KR101539224B1 (en) | Method for preparing biomass solid refuse fuel | |
US20110239620A1 (en) | Method for processing organic waste and a device for carrying out said method | |
Pauline et al. | Hydrothermal carbonization of oily sludge for solid fuel recovery–investigation of chemical characteristics and combustion behaviour | |
KR102014980B1 (en) | A manufacturing method for solid refuse fuel comprising wastewater sludge | |
KR100894154B1 (en) | Apparatus and methods of a successive treatment of organic sludges for producing solid-liquid slurry containing solids and secessional liquids from organic sludge | |
KR101584621B1 (en) | Mixing dry apparatus and mathod of manufacturing fuel using sewage sludge | |
KR100953061B1 (en) | An apparatus and method of dehydrating treatment in high moisture content sludge | |
JP2005205252A (en) | High-concentration slurry containing biomass, method for preparing high-concentration slurry and method for manufacturing biomass fuel | |
KR20150093073A (en) | solid fuel | |
KR20150106563A (en) | Fuel from sewage sludge | |
JP2011207920A (en) | Method and apparatus for producing fuel oil from biomass material | |
CN202461100U (en) | Hydrothermal reactor for treating biomass pollutants | |
EP0566419B1 (en) | Method of making refuse derived fuels | |
KR100991483B1 (en) | Biomass drying method using microwave drying device & oil | |
KR101990885B1 (en) | Method for preparation biomethane using organic material | |
KR20140132615A (en) | Highly water contained waste drying apparatus, and manufacturing method for refuse derived fuel using highly water contained waste, pretreatment method for highly water contained waste | |
KR100417983B1 (en) | Manufacturing method of solid fuel using food waste | |
JP2003103299A (en) | Treatment method of high concentration sludge and its apparatus | |
Periyasamy et al. | Biogas recovery from sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160924 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20191125 Year of fee payment: 7 |
|
R401 | Registration of restoration |