KR101288743B1 - Electrode active agent, lithium secondary battery comprising the same - Google Patents
Electrode active agent, lithium secondary battery comprising the same Download PDFInfo
- Publication number
- KR101288743B1 KR101288743B1 KR1020110065034A KR20110065034A KR101288743B1 KR 101288743 B1 KR101288743 B1 KR 101288743B1 KR 1020110065034 A KR1020110065034 A KR 1020110065034A KR 20110065034 A KR20110065034 A KR 20110065034A KR 101288743 B1 KR101288743 B1 KR 101288743B1
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- lithium
- particles
- cathode
- positive electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 활물질 입자 표면에 금속 피복층을 포함하는 양극 활물질과 이를 포함하는 양극, 및 이를 이용한 리튬 이차 전지에 관한 것이다. 본 발명에 따르면, 양극 활물질을 구성하는 활물질 입자의 표면에 금속피복층을 포함함으로써, 전기전도성이 향상되어 출력 및 에너지 밀도를 높일 수 있다. 또한, 상기 금속피복층을 포함하는 활물질 입자를 사용하여 전극 내에 포함되는 도전재의 함량을 줄일 수 있어 단위 체적당 에너지 밀도를 증가시킬 수 있다. 또한, 전극에서 발생된 열을 집전체로 빠르게 전달할 수 있기 때문에 양극에서의 열 폭주를 억제할 수 있는 효과를 가진다.The present invention relates to a cathode active material including a metal coating layer on an active material particle surface, a cathode including the same, and a lithium secondary battery using the same. According to the present invention, by including the metal coating layer on the surface of the active material particles constituting the positive electrode active material, the electrical conductivity is improved, it is possible to increase the output and energy density. In addition, by using the active material particles including the metal coating layer it is possible to reduce the content of the conductive material contained in the electrode can increase the energy density per unit volume. In addition, since heat generated at the electrode can be quickly transferred to the current collector, it has an effect of suppressing thermal runaway at the anode.
Description
본 발명은 전기전도도가 개선된 양극 활물질, 이를 포함하는 리튬 이차 전지에 관한 것이다. The present invention relates to a cathode active material having improved electrical conductivity and a lithium secondary battery including the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있다. 특히, 환경 문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있으나, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. In particular, as interest in environmental problems increases, researches on electric vehicles and hybrid electric vehicles, which can replace vehicles using fossil fuels such as gasoline and diesel vehicles, which are one of the main causes of air pollution, are being conducted. . As a power source of such electric vehicles and hybrid electric vehicles, nickel-metal hydride secondary batteries are mainly used, but researches using lithium secondary batteries with high energy density and discharge voltage have been actively conducted and some commercialization stages are in progress.
리튬 이온 이차전지는 니켈수소 전지 등에 비해 경량, 고전압, 고용량 등의 특성을 구현할 수 있기 때문에 휴대전화, 노트북 PC, 디지털 카메라 등 전자기기의 전원으로서 널리 이용되고 있다. 이에, 사용 편리성을 향상시키기 위한 휴대용 전자기기의 소형화, 경량화 및 충전당 사용 시간의 장시간화 추세 및 점점 더 심각해지고 있는 석유자원의 고갈과 환경 오염 등의 문제로 인해 관심이 증가하고 있는 전기 자동차의 개발은 이들 기기에 사용되는 에너지 저장장치인 이차전지의 고에너지 밀도화를 더욱 강하게 요구하고 있다. Lithium ion secondary batteries are widely used as power sources for electronic devices such as mobile phones, notebook PCs, and digital cameras because they can realize characteristics such as light weight, high voltage, and high capacity compared to nickel hydrogen batteries. Therefore, electric vehicles are increasing interest due to the miniaturization, light weight, and long time of use per charge to improve the convenience of use, and the problem of depletion of petroleum resources and environmental pollution. 'S development calls for greater energy density in secondary batteries, the energy storage devices used in these devices.
이러한 리튬 이차전지는 음극 활물질로는 탄소재료가 주로 사용되고 있고, 리튬 금속, 황 화합물 등의 사용도 고려되고 있다. 또한, 양극 활물질로는 주로 리튬 코발트 산화물(LiCoO2)이 사용되고 있고, 그 외에 층상 결정 구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 망간 산화물, 리튬 니켈 산화물(LiNiO2) 등의 리튬 전이금속 산화물이 사용되고 있다.In such lithium secondary batteries, carbon materials are mainly used as negative electrode active materials, and use of lithium metals, sulfur compounds, and the like is also contemplated. In addition, lithium cobalt oxide (LiCoO 2 ) is mainly used as the positive electrode active material, and in addition, LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure. Lithium manganese oxides, lithium nickel oxides such as (LiNiO 2) has a lithium transition metal oxide is used and the like.
이 중에서 LiCoO2는 안정된 충방전 특성, 우수한 전자전도성, 높은 전지 전압, 높은 안정성, 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이다. 그러나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. 또한, 충전시의 탈 리튬에 의하여 결정 구조가 불안정하여 열적 특성이 매우 열악한 단점을 갖고 있다. Among them, LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high battery voltage, high stability, and flat discharge voltage characteristics. However, Co has low reserves, is expensive, and toxic to humans. Therefore, development of other anode materials is desired. In addition, there is a disadvantage in that the crystal structure is unstable due to de-lithography at the time of charging and the thermal characteristics are very poor.
이를 개선하기 위해, 니켈의 일부를 전이금속 원소로 치환하여, 발열 시작 온도를 고온 측으로 이동시키거나 급격한 발열을 방지하기 위하여 발열 피크를 완만하게(broad)하려는 시도가 많이 이루어지고 있다. 그러나 아직도 만족할 만한 결과는 얻어지고 있지 않다.In order to improve this, many attempts have been made to substitute a portion of nickel with a transition metal element to shift the exothermic start temperature to the high temperature side or to broaden the exothermic peak to prevent the rapid exotherm. But still no satisfactory results are obtained.
또한, 스피넬 구조를 갖는 LiMn2O4는 저가격 제품으로 일부 상품화되고 있으나, 이론용량이 148 ㎃h/g 정도로 다른 재료에 비해 작다. 또한, 3차원 터널 구조를 갖기 때문에 리튬 이온의 삽입, 탈리시 확산저항이 커서 확산 계수가 2차원 구조를 갖는 LiCoO2와 LiNiO2에 비해 낮으며, 얀-텔러 효과(Jahn-Teller effect) 때문에 사이클 특성이 좋지 않다. 특히, 55℃ 이상에서의 고온 특성이 LiCoO2에 비해 열악하여 실제 전지에 널리 사용되고 있지 못하고 있는 실정이다.In addition, LiMn 2 O 4 having a spinel structure is partially commercialized as a low-cost product, but its theoretical capacity is smaller than that of other materials at about 148 mAh / g. In addition, since it has a three-dimensional tunnel structure, the diffusion resistance during insertion and desorption of lithium ions is large, and the diffusion coefficient is lower than that of LiCoO 2 and LiNiO 2 having a two-dimensional structure. The property is not good. In particular, the high temperature property at 55 ° C or higher is inferior to LiCoO 2 and is not widely used in actual batteries.
상기 양극 활물질로 사용되는 리튬 전이금속 산화물은 전기 전도성이 낮고, 비수계 전해질을 사용함으로써 나타나는 낮은 이온 전도 특성에 의해 충방전 레이트 특성이 충분히 높지 못하다는 문제점도 존재한다.The lithium transition metal oxide used as the positive electrode active material has a low electrical conductivity, and there is a problem that the charge and discharge rate characteristics are not sufficiently high due to the low ion conduction characteristics exhibited by using a non-aqueous electrolyte.
또한, 통상적으로는 전극에 형성되는 활물질층은 상기 양극 활물질 이외에도 바인더 및 도전재를 첨가하여 슬러리 상태로 제조하고, 이를 전극 집전체 상에 도포시킨다. 그러나, 상기 활물질의 도전성을 높이기 위하여 첨가되는 도전재들은 활물질 슬러리 내에서 차지하는 비중이 높게 되고, 이로 인해 전극의 두께가 증가되고, 도전재 함량 증가로 인해 바인더 함량까지 증가되어 전도성이 저하되는 문제가 있다. In general, the active material layer formed on the electrode is prepared in a slurry state by adding a binder and a conductive material in addition to the positive electrode active material, and coated on the electrode current collector. However, the conductive materials added to increase the conductivity of the active material have a high specific gravity in the active material slurry, thereby increasing the thickness of the electrode and increasing the binder content due to the increase in the content of the conductive material. have.
이러한 문제점을 해결하기 위하여, 일부 선행기술들은 양극의 활물질 표면을 소정의 물질로 코팅하거나 표면 처리하는 기술을 제시하고 있으나, 아직까지 충분한 전지 특성을 발휘하는 양극 활물질은 개발되지 못하고 있는 실정이다. 특히, 상기 양극 활물질 표면을 카본계 물질을 이용하여 코팅하는 경우, 전극 내부로의 전해액의 침투성이 크게 저하되는 문제가 있다. 따라서, 이로 인해 국소적인 반응이 생기고, 특히 음극 표면에서 리튬이 석출하는 문제나, 전해액의 대류가 악화되어 전극 내부에 열이 가득 차 방열성이 저하되어, 전지의 안전성을 저하시키는 원인이 되고 있다. In order to solve this problem, some prior art proposes a technique for coating or surface treatment of the surface of the active material of the positive electrode with a predetermined material, but a positive electrode active material that exhibits sufficient battery characteristics has not been developed yet. In particular, when the surface of the positive electrode active material is coated using a carbon-based material, there is a problem in that the permeability of the electrolyte solution into the electrode is greatly reduced. Therefore, this causes a local reaction, in particular, the problem of precipitation of lithium on the surface of the negative electrode, convection of the electrolyte solution is deteriorated, heat is filled inside the electrode, and heat dissipation is deteriorated, which causes the safety of the battery.
이에, 다양한 접근 방식에서 많은 연구들이 수행되고 있지만, 아직까지 만족할만한 성과를 거두지는 못하고 있는 실정이다. As a result, many studies have been conducted in various approaches, but the results have not been satisfactory.
본 발명에서는 상기와 같은 종래 기술의 문제들을 해결하기 위한 것으로서, 본 발명의 목적은 전기전도성이 우수한 양극 활물질을 제공하는 데 있다. In the present invention to solve the problems of the prior art as described above, an object of the present invention is to provide a positive electrode active material excellent in electrical conductivity.
또한, 본 발명의 다른 목적은 상기 양극 활물질을 포함하는 양극을 제공하는 데도 있다.Another object of the present invention is to provide a positive electrode including the positive electrode active material.
또한, 본 발명의 추가의 다른 목적은 상기 양극을 포함하는 리튬 이차 전지를 제공하는 데도 있다.Further, another object of the present invention is to provide a lithium secondary battery including the positive electrode.
상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 양극 활물질은 활물질 입자 표면에 금속 피복층을 포함하는 것일 수 있다.The positive electrode active material according to an embodiment of the present invention for achieving the above object may include a metal coating layer on the surface of the active material particles.
상기 금속 피복층은 전도성 금속으로 도금된 것일 수 있다. The metal coating layer may be plated with a conductive metal.
상기 전도성 금속은 Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt 및 Pd로 이루어진 그룹으로부터 선택되는 1종 이상일 수 있다. The conductive metal may be at least one selected from the group consisting of Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, and Pd.
상기 금속 피복층의 두께는 10~300nm인 것이 바람직하다. It is preferable that the thickness of the said metal coating layer is 10-300 nm.
상기 활물질 입자로서 올리빈 구조(LiFePO4)의 활물질을 포함할 수 있다.As the active material particles, an active material having an olivine structure (LiFePO 4 ) may be included.
또한, 본 발명의 다른 목적을 달성하기 위한 일 실시예에 따른 양극은 금속 피복층을 포함하는 양극 활물질을 포함하는 활물질 슬러리를 도포시킨 것일 수 있다. In addition, the positive electrode according to an embodiment for achieving another object of the present invention may be a coating of an active material slurry comprising a positive electrode active material including a metal coating layer.
상기 금속 피복층을 포함하는 양극 활물질은 전체 양극 활물질 중 10~100중량%로 포함되는 것이 바람직하다. The positive electrode active material including the metal coating layer is preferably contained in 10 to 100% by weight of all the positive electrode active material.
상기 전극 활물질은 전기전도도가 상이한 2종 이상의 활물질을 포함할 수 있다. The electrode active material may include two or more kinds of active materials having different electrical conductivity.
상기 양극 활물질 슬러리는 추가적으로 도전재와 바인더를 포함할 수 있다. The positive electrode active material slurry may further include a conductive material and a binder.
상기 양극 활물질 슬러리에 포함되는 도전재의 함량은 0.5 내지 15 중량%인 것이 바람직하다. The content of the conductive material included in the cathode active material slurry is preferably 0.5 to 15% by weight.
또한, 본 발명의 추가의 다른 목적을 달성하기 위하여 상기 양극을 포함하는 리튬 이차 전지를 제공한다. In addition, to provide a further secondary object of the present invention, a lithium secondary battery comprising the positive electrode is provided.
본 발명에 따르면, 양극 활물질을 구성하는 활물질 입자의 표면에 금속피복층을 포함함으로써, 전기전도성이 향상되어 출력 및 에너지 밀도를 높일 수 있다. According to the present invention, by including the metal coating layer on the surface of the active material particles constituting the positive electrode active material, the electrical conductivity is improved, it is possible to increase the output and energy density.
또한, 상기 금속피복층을 포함하는 활물질 입자를 사용하여 전극 내에 포함되는 도전재의 함량을 줄일 수 있어 단위 체적당 에너지 밀도를 증가시킬 수 있다. 또한, 전극에서 발생된 열을 집전체로 빠르게 전달할 수 있기 때문에 양극에서의 열 폭주를 억제할 수 있는 효과를 가진다.In addition, by using the active material particles including the metal coating layer it is possible to reduce the content of the conductive material contained in the electrode can increase the energy density per unit volume. In addition, since heat generated at the electrode can be quickly transferred to the current collector, it has an effect of suppressing thermal runaway at the anode.
도 1은 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 전압에 따른 용량을 측정한 그래프이다.1 is a graph measuring the capacity according to the voltage of a lithium secondary battery according to an embodiment and a comparative example of the present invention.
이하, 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a,""an," and "the" include singular forms unless the context clearly dictates otherwise. Also, " comprise "and / or" comprising "when used herein should be interpreted as specifying the presence of stated shapes, numbers, steps, operations, elements, elements, and / And does not preclude the presence or addition of one or more other features, integers, operations, elements, elements, and / or groups.
본 발명에 따른 양극 활물질은 통상의 양극 활물질과, 활물질 입자 표면에 금속 피복층을 도포시켜 전기전도도가 향상된 양극 활물질을 포함한다. The positive electrode active material according to the present invention includes a conventional positive electrode active material and a positive electrode active material having improved electrical conductivity by coating a metal coating layer on the surface of the active material particles.
상기 전기전도도가 향상된 양극 활물질은 활물질 입자 표면에 금속 피복층을 도포시킨 것으로, 상기 금속 피복층으로 인하여 양극활물질의 표면에는 조도 나타날 수 있으며, 이로 인하여 전극집전체와의 접착력이 증가할 더욱 증가하는 효과도 있을 수 있다. The positive electrode active material having improved electrical conductivity is a metal coating layer coated on the surface of the active material particles, the surface of the positive electrode active material may appear roughness due to the metal coating layer, thereby increasing the adhesion to the electrode current collector further increases There may be.
상기 활물질 입자 표면에 도포되는 금속 피복층은 전도성 금속을 이용하여 도금시키는 것이 바람직하다. The metal coating layer applied to the surface of the active material particles is preferably plated using a conductive metal.
상기 양극 활물질 입자로서 올리빈 구조(LiFePO4)의 활물질을 포함한 다양한 형태의 양극 활물질을 사용할 수 있으며, 특별히 그 종류가 한정되는 것은 아니다. 그러나, 금속피복층을 도포시켜 활물질의 전기전도도를 향상시키기 위한 것이므로, 전기전도도가 낮은 활물질을 사용하면 더 효과적이라 할 수 있다.As the cathode active material particles, various types of cathode active materials including an active material of an olivine structure (LiFePO 4 ) may be used, and the kind thereof is not particularly limited. However, since it is to improve the electrical conductivity of the active material by applying a metal coating layer, it can be said that using an active material having a low electrical conductivity is more effective.
활물질 입자 표면에 형성되는 금속피복층을 위해 사용되는 상기 전도성 금속은 Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt 및 Pd로 이루어진 그룹으로부터 선택되는 1종 이상일 수 있다. The conductive metal used for the metal coating layer formed on the surface of the active material particles may be at least one selected from the group consisting of Ni, Au, Ag, Cu, Zn, Cr, Al, Co, Sn, Pt, and Pd.
상기 금속을 전극 활물질 입자 표면에 무전해 도금법을 이용하여 금속피복층을 형성할 수 있다. 따라서, 상기 무전해 도금 반응의 촉매 역할을 하는 Pd 입자를 상기 활물질 입자 표면에 석출되게 한다. 이를 위해 상기 양극 활물질 입자를 PdCl2, HCl 및 물의 혼합용액에 수 분 동안 침전시킨 후 원심분리를 통하여 입자를 분리하여 Pd 입자가 표면에 침적된 입자를 얻는다. The metal coating layer may be formed on the surface of the electrode active material particles by using an electroless plating method. Therefore, Pd particles, which serve as catalysts for the electroless plating reaction, are deposited on the surface of the active material particles. To this end, the cathode active material particles are precipitated in a mixed solution of PdCl 2 , HCl, and water for several minutes, and the particles are separated by centrifugation to obtain particles having Pd particles deposited on the surface thereof.
이 후, Pd 촉매가 표면에 침적된 입자 표면에 상기 전도성 금속으로 무전해 도금하기 위해 상기 입자를 물에 분산시키고, 전도성 금속염(예를 들어, NiSO4), NaH2PO2, 소듐 시트레이트를 포함하는 도금 용액으로 50~100℃ 및 약산성 조건에서 수분간 도금 후 원심분리를 통하여 전도성 금속이 도금되어 금속 피복층이 도포된 활물질 입자를 회수한다. The particles are then dispersed in water for electroless plating with the conductive metal on the surface of the particles having a Pd catalyst deposited thereon, and conductive metal salts (e.g. NiSO 4 ), NaH 2 PO 2 , sodium citrate The plating solution containing the plating solution for several minutes at 50 ~ 100 ℃ and weakly acidic conditions and then the conductive metal is plated through centrifugation to recover the active material particles coated with a metal coating layer.
상기 도금 용액은 2~10g(L)의 농도가 바람직하다. The plating solution is preferably a concentration of 2 ~ 10g (L).
상기 과정으로 제조된 금속 피복층은 10nm~300nm의 두께를 가지는 것이 바람직하다. 상기 금속 피복층이 10nm 미만인 경우는 피복층이 생성되지 않아 도전성에 문제가 있고, 반대로 300nm를 초과하는 두께로 제조되는 경우에는 중량당 에너지 밀도 감소 문제가 있기 때문에 바람직하지 못하다. The metal coating layer prepared by the above process preferably has a thickness of 10 nm to 300 nm. When the metal coating layer is less than 10 nm, there is a problem in conductivity because no coating layer is generated, and on the contrary, when the metal coating layer is manufactured to a thickness exceeding 300 nm, the energy density per weight is not preferable.
또한, 본 발명은 활물질 입자 표면에 금속피복층을 포함하는 양극 활물질을 포함하는 활물질 슬러리를 도포시킨 양극을 제공하는 데 특징이 있다. In addition, the present invention is characterized by providing a positive electrode coated with an active material slurry containing a positive electrode active material including a metal coating layer on the surface of the active material particles.
본 발명에서는 양극 활물질로서, 상기와 같은 금속 피복층을 포함하는 양극 활물질을 전체 양극 활물질 중 10~100중량%로 포함시킨다. In the present invention, a positive electrode active material including the metal coating layer as described above is included in 10 to 100% by weight of the total positive electrode active material.
또한, 나머지는 금속 피복층을 포함하지 않는 통상의 양극 활물질, 예를 들어, LiCoO2, LiNiO2, LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6, LiN(CF3SO2)2 또는 LiMn2O4 등의 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들의 조합에 의하여 형성되는 복합산화물 등과 같은 리튬흡착물질(lithium intercalation material)이 있으나, 이에 한정되는 것은 아니다. In addition, the remainder is a conventional positive electrode active material that does not include a metal coating layer, for example, LiCoO 2 , LiNiO 2 , LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 Or a lithium intercalation material such as a lithium manganese oxide such as LiMn 2 O 4 , a lithium cobalt oxide, a lithium nickel oxide, a lithium iron oxide, or a composite oxide formed by a combination thereof, but is not limited thereto. .
상기 금속 피복층을 포함하는 양극 활물질의 함량이 10중량% 미만인 경우에는 전기전도도 향상 효과가 미비하기 때문에 바람직하지 못하다.If the content of the positive electrode active material including the metal coating layer is less than 10% by weight, the electrical conductivity improvement effect is not preferable, which is not preferable.
또한, 본 발명의 양극 활물질은 전기전도도가 상이한 2종 이상의 활물질을 포함하는 것이 보다 더 바람직하다. In addition, the cathode active material of the present invention more preferably includes two or more kinds of active materials having different electrical conductivity.
또한, 상기 양극 활물질 슬러리는 추가적으로 도전재와 바인더를 포함할 수 있다. 상기 도전재는 구성된 전지 내에서 화학변화를 일으키지 않는 전자전도성 재료이면 무엇이든지 사용 가능하다. 예를 들면, 아세틸렌블랙, 케첸블랙, 파네스블랙, 서멀블랙 등의 카본블랙; 천연흑연, 인조흑연과 같은 흑연; 탄소 나노튜브나 플러렌 등의 탄소 유도체, 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.In addition, the cathode active material slurry may additionally include a conductive material and a binder. The conductive material can be used as long as it is an electroconductive material that does not cause chemical change in the battery. For example, carbon black, such as acetylene black, Ketjen black, Farnes black, and thermal black; Graphite such as natural graphite and artificial graphite; Carbon derivatives such as carbon nanotubes and fullerenes, conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
본 발명에서는 상기 양극 활물질을 구성하는 활물질 입자 표면을 금속 피복층을 도포하였기 때문에, 양극 활물질 슬러리에 포함되는 도전재의 함량을 줄일 수 있는 효과를 가진다. 따라서, 본 발명의 양극 활물질 슬러리에 포함되는 도전재의 함량은 0.5 내지 15중량%인 것이 바람직하다. 이렇게 활물질층에서 도전재의 함량을 감소시킴으로써 단위 체적당 에너지 밀도를 증가시킬 수 있는 효과를 가진다. In the present invention, since the metal coating layer is coated on the surface of the active material particles constituting the positive electrode active material, the content of the conductive material included in the positive electrode active material slurry can be reduced. Therefore, the content of the conductive material included in the cathode active material slurry of the present invention is preferably 0.5 to 15% by weight. Thus, by reducing the content of the conductive material in the active material layer has an effect that can increase the energy density per unit volume.
활물질 슬러리에 포함되는 상기 바인더로는 열가소성 수지, 열경화성 수지 중 어느 하나를 사용하더라도 좋으며, 이들을 조합하여 사용할 수도 있다. 이들 중에서는 폴리불화비닐리덴(PVdF) 또는 폴리테트라플루오로에틸렌(PTFE)이 바람직하나, 이에 한정되는 것은 아니다. As the binder contained in the active material slurry, any one of a thermoplastic resin and a thermosetting resin may be used, or a combination thereof may be used. Of these, polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE) is preferred, but is not limited thereto.
본 발명은 또한, 상기 양극을 포함하는 리튬 이차전지를 제공한다. 리튬 이차전지는, 예를 들어, 양극, 음극, 분리막, 리튬염 함유 비수 전해액 등으로 구성되어 있다.The present invention also provides a lithium secondary battery including the positive electrode. A lithium secondary battery is comprised with a positive electrode, a negative electrode, a separator, lithium salt containing nonaqueous electrolyte, etc., for example.
양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 충진제를 더 첨가하기도 한다. 상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 상기 집전체는 그 표면에 미세한 요철을 형성하여 전극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode is prepared, for example, by applying a mixture of a positive electrode active material, a conductive material and a binder on a positive electrode current collector, followed by drying, and if necessary, a filler is further added. The cathode current collector generally has a thickness of 3 to 500 mu m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used. The current collector may form fine concavities and convexities on its surface to reinforce the bonding force of the electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
본 발명의 상기 양극은, 활물질을 구성하는 입자의 표면을 미리 금속 피복층을 형성한 다음, 상기 도전재 및 바인더와 혼합하여 슬러리 상태로 제조하여 집전체 상에 도포된다. The positive electrode of the present invention, the surface of the particles constituting the active material in advance to form a metal coating layer, and then mixed with the conductive material and the binder to prepare a slurry and applied on the current collector.
또한, 본 발명의 음극은 또한 음극 집전체 상에 음극 재료를 도포, 건조하여 제작된다. 상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 집전체는 그 표면에 미세한 요철을 형성하여 전극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode of the present invention is also produced by applying and drying a negative electrode material on a negative electrode current collector. The negative electrode current collector is generally made to have a thickness of 3 to 500 mu m. Such an anode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and may be formed of a material such as copper, stainless steel, aluminum, nickel, titanium, fired carbon, surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. The current collector may form fine concavities and convexities on its surface to reinforce the bonding force of the electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
음극 활물질로는, 예를 들어, 천연 흑연, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화성 탄소, 카본블랙, 카본나노튜브, 플러렌, 활성탄 등의 탄소 및 흑연재료; 리튬과 합금이 가능한 Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge,Pb, Pd, Pt, Ti 등의 금속 및 이러한 원소를 포함하는 화합물; 금속 및 그 화합물과 탄소 및 흑연재료의 복합물; 리튬 함유 질화물 등을 들 수 있다. 그 중에서도 탄소계 활물질, 규소계 활물질, 주석계 활물질, 또는 규소-탄소계 활물질이 더욱 바람직하며, 이들은 단독으로 또는 둘 이상의 조합으로 사용될 수도 있다.Examples of the negative electrode active material include carbon and graphite materials such as natural graphite, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotube, fullerene, and activated carbon; Metals such as Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti which can be alloyed with lithium, and compounds containing these elements; Complexes of metals and their compounds and carbon and graphite materials; Lithium-containing nitrides, and the like. Among them, a carbon-based active material, a silicon-based active material, a tin-based active material, or a silicon-carbon based active material is more preferable, and these may be used singly or in combination of two or more.
상기 분리막은 양극과 음극 사이에 개재되며 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머, 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separator is an insulating thin film interposed between the anode and the cathode and having high ion permeability and mechanical strength. The pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 300 mu m. As such a separation membrane, for example, a sheet or a nonwoven fabric made of an olefin-based polymer such as polypropylene which is chemically resistant and hydrophobic, glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
분리막의 또 다른 예로는, 폴리올레핀 계열 분리막 기재, 및 상기 기재의 표면 및 상기 기재에 존재하는 기공부 일부로 구성된 군으로부터 선택된 1종 이상의 영역이 무기물 입자 및 바인더 고분자의 혼합물로 코팅된 활성층을 포함하는 유/무기 복합 다공성 분리막이 사용될 수도 있다. 경우에 따라서는, 상기 무기물 입자가 전극쪽에 코팅될 수도 있다.Another example of the separator may include a polyolefin-based separator substrate and an oil-containing layer comprising an active layer coated with a mixture of inorganic particles and a binder polymer, wherein at least one region selected from the group consisting of a surface of the substrate and a part of pores present in the substrate is coated. Inorganic composite porous separators may also be used. In some cases, the inorganic particles may be coated on the electrode side.
이러한 무기물 입자로는 유전율 상수가 5 이상인 무기물 입자, 압전성(piezoelectricity)을 갖는 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 등이 사용될 수 있다.As such inorganic particles, inorganic particles having a dielectric constant of 5 or more, inorganic particles having piezoelectricity, inorganic particles having lithium ion transfer ability, and the like may be used.
상기 바인더의 예로는 폴리불화비닐리덴, 폴리비닐 알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체, 고분자 고검화 폴리비닐 알코올 등을 들 수 있다.Examples of the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber, fluorine rubber, various copolymers, high polymer high polyvinyl alcohol, and the like.
상기 전해액은 리튬염과 비수성 용매를 포함하며, 상기 리튬염은 상기 비수계 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 상기 리튬염으로는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO3, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬 및 4 페닐 붕산 리튬 등이 사용될 수 있다.The electrolyte solution includes a lithium salt and a non-aqueous solvent, the lithium salt is dissolved in the non-aqueous solvent, and serves as a source of lithium ions in the battery to enable operation of the basic lithium secondary battery, between the positive electrode and the negative electrode It is a substance that plays a role in promoting the movement of lithium ions. The lithium salt may be LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB10Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 3 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenylborate and the like can be used.
또한, 상기 비수계 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.In addition, the non-aqueous organic solvent serves as a medium to move the ions involved in the electrochemical reaction of the battery.
비수계 용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란유도체, 에테르, 피로피온산 메틸, 및 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다. As the non-aqueous solvent, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyl Low lactone, 1,2-dimethoxy ethane, tetrahydroxyfranc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxorone, aceto Nitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative Aprotic organic solvents such as tetrahydrofuran derivative, ether, methyl pyroionate, and ethyl propionate can be used.
상기 유기 용매를 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있으며, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.The mixing ratio in the case of mixing one or more of the organic solvents can be appropriately adjusted according to the desired battery performance, which can be widely understood by those skilled in the art.
상기 유기용매는 양극의 제조를 위한 슬러리의 제조시 사용되는 분산매일 수 있으며, 예를 들어, 물; 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올, s-부탄올, t-부탄올, 펜타놀, 이소펜타놀, 헥사놀 등의 알코올류; 아세톤, 메틸에틸케톤, 메틸프로필케톤, 에틸프로필케톤, 시클로펜타논, 시클로헥사논, 시클로헵타논 등의 케톤류; 메틸에틸에테르, 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 디부틸에테르, 디이소부틸에테르, 디n-아밀에테르, 디이소아밀에테르, 메틸프로필에테르, 메틸이소프로필에테르, 메틸부틸에테르, 에틸프로필에테르, 에틸이소부틸에테르, 에틸n-아밀에테르, 에틸이소아밀에테르, 테트라하이드로퓨란 등의 에테르류; 감마-부틸로락톤, 델타-부틸로락톤 등의 락톤류; 베타-락탐 등의 락탐류; 시클로펜탄, 시클로헥산, 시클로헵탄 등의 환상 지방족류; 벤젠, 톨루엔, o-크실렌, m-크실렌, p-크실렌, 에틸벤젠, 프로필벤젠, 이소프로필벤젠, 부틸벤젠, 이소부틸벤젠, n-아밀벤젠 등의 방향족탄화수소류; 헵탄, 옥탄, 노난, 데칸 등의 지방족탄화수소류; 디메틸포름아미드, N-메틸피롤리돈 등의 쇄상 및 환상의 아미드류; 유산(乳酸)메틸, 유산에틸, 유산프로필, 유산부틸, 안식향산메틸 등의 에스테르류; 후술하는 전해액의 용매를 이루는 액상물질 등을 들 수 있지만, 이들만으로 한정되는 것은 아니며, 상기 분산매를 2 ~ 5종 정도 혼합하여 사용할 수도 있다.
The organic solvent may be a dispersion medium used in the production of a slurry for the production of a positive electrode, for example, water; Alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, s-butanol, t-butanol, pentanol, isopentanol and hexanol; Ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, ethyl propyl ketone, cyclopentanone, cyclohexanone and cycloheptanone; Methyl ethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diisobutyl ether, din-amyl ether, diisoamyl ether, methylpropyl ether, methyl isopropyl ether, methyl butyl ether, Ethers such as ethyl propyl ether, ethyl isobutyl ether, ethyl n-amyl ether, ethyl isoamyl ether and tetrahydrofuran; Lactones such as gamma-butyrolactone and delta-butyrolactone; Lactams such as beta-lactam; Cyclic aliphatic compounds such as cyclopentane, cyclohexane and cycloheptane; Aromatic hydrocarbons such as benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, propylbenzene, isopropylbenzene, butylbenzene, isobutylbenzene, n-amylbenzene; Aliphatic hydrocarbons such as heptane, octane, nonane and decane; Linear and cyclic amides such as dimethylformamide and N-methylpyrrolidone; Esters such as methyl lactate, ethyl lactate, propyl lactate, butyl lactate, and methyl benzoate; Although the liquid substance which comprises the solvent of the electrolyte solution mentioned later is mentioned, It is not limited only to these, You may use it, mixing about 2-5 types of said dispersion mediums.
본 발명에 따른 리튬 이차전지는 당업계에 공지되어 있는 통상적인 방법에 의해 제조될 수 있다. 또한, 본 발명에 따른 리튬 이차전지에서 상기 양극, 음극 및 분리막의 구조는 특별히 제한되지 않으며, 예를 들어, 이들 각각의 시트를 권회식(winding type) 또는 적층식(stacking type)으로 원통형, 각형 또는 파우치형의 케이스에 삽입한 형태일 수 있다.The lithium secondary battery according to the present invention can be manufactured by a conventional method known in the art. In addition, the structure of the positive electrode, the negative electrode, and the separator in the lithium secondary battery according to the present invention is not particularly limited, and, for example, each of these sheets in a winding type (winding type) or stacking (stacking type) cylindrical, rectangular Or it may be a form inserted into the case of the pouch type.
본 발명에 따른 리튬 이차전지는 예를 들어, 전기적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electirc Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart) 등이 있으나, 이에 한정되는 것은 아니다.
The lithium secondary battery according to the present invention includes, for example, a power tool moving by being driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Electric motorcycle including E-bike, E-scooter; Electric golf carts, and the like, but are not limited thereto.
이하 실시예에 의해 본 발명을 설명한다. 그러나, 본 발명이 이에 한정되는 것으로 이해되어서는 안 된다.
Hereinafter, the present invention will be described by way of examples. However, it should not be understood that the present invention is limited thereto.
실시예Example
(1) 금속 피복층이 도포된 양극 활물질의 제조 (1) Preparation of positive electrode active material to which metal coating layer was applied
양극 활물질 LiFePO4는 아래와 같은 방법으로 Ni 도금하였다. The positive electrode active material LiFePO 4 was Ni plated in the following manner.
PdCl2 2g, HCl 20ml, 물 1000ml의 혼합액 50ml를 첨가하여 상온에서 5분 동안 반응시켰다. 반응 종료 후 원심분리를 통하여 입자를 분리하였다. 분리된 입자를 다시 NiSO4 5g/l, NaH2PO2 3g/l, 소듐 시트레이트 4g/l를 포함하는 니켈도금 용액으로 80℃, pH=4.5에서 10분 도금 후 원심분리를 통하여, 상기 LiFePO4 표면에 Ni 금속이 도금된 입자를 회수하였다.
50 g of a mixed solution of 2 g of PdCl 2 , 20 ml of HCl, and 1000 ml of water were added thereto, and reacted at room temperature for 5 minutes. After the reaction was completed, the particles were separated by centrifugation. The separated particles were again plated with nickel plating solution containing NiSO 4 5g / l, NaH 2 PO 2 3g / l and sodium citrate 4g / l at 80 ° C., pH = 4.5 for 10 minutes, and then centrifuged to separate LiFePO. 4 Particles with Ni metal plated on the surface were recovered.
(2) 양극의 제조: (2) Preparation of the anode:
상기 Ni 금속 피복한 LiFePO4 30 중량%와 Li[Ni1 /3Co1 /3Mn1 /3]O2 70 중량%로 혼합한 양극활물질 95 중량%, 도전재로서 카본블랙 1 중량%, 바인더로서 PVDF 4중량%를 혼합하고 NMP를 용매로 첨가하여 슬러리를 제조하였다. 마티스 코터를 사용하여 100㎛ 두께로 20㎛ 두께의 Al foil 위에 상기 전극 슬러리를 코팅한 후 130℃에서 60분간 건조하여 양극을 제조하였다.
The Ni metal covering the LiFePO 4 30% by weight of Li [Ni 1/3 Co 1 /3 Mn 1/3] O 2 a positive electrode active material 95% by weight mixed with 70% by weight, 1% by weight of carbon black as a conductive material, a binder, Slurry was prepared by mixing 4 wt% PVDF as and NMP as solvent. A positive electrode was prepared by coating the electrode slurry on a 20 μm thick Al foil using a mattress coater and drying at 130 ° C. for 60 minutes.
(3) 리튬 이차전지 제조(3) lithium secondary battery manufacturing
- 상기와 같이 제조된 양극을 포함하고, 흑연을 기반으로 한 음극 사이에 양 전극 사이에 폴리프로필렌/폴리에틸렌/폴리프로필렌(PP/PE/PP)으로 구성된 다공성 분리막을 삽입한 후 1 몰의 리튬헥사플로로포스페이트(LiPF6)이 용해된 에틸렌카보네이트/프로필렌카보네이트/디에틸카보네이트(EC/PC/DEC=30/20/50중량%)의 혼합 용액인 전해액을 주입하여 폴리머 타입 리튬 이차전지를 제작하였다. 1 mole of lithium hexa containing a positive electrode prepared as described above, and inserting a porous separator composed of polypropylene / polyethylene / polypropylene (PP / PE / PP) between the two electrodes between the graphite-based negative electrode A polymer type lithium secondary battery was prepared by injecting an electrolyte solution of a mixed solution of ethylene carbonate / propylene carbonate / diethyl carbonate (EC / PC / DEC = 30/20/50% by weight) in which fluorophosphate (LiPF 6 ) was dissolved. .
상기 폴리머 타입 리튬 이차전지를 4.2V까지 포메이션 한 뒤, 4.2V와 2.5V 사이에서 충방전을 진행하였다(C-rate =1C).
After the polymer type lithium secondary battery was formed to 4.2V, charge and discharge were performed between 4.2V and 2.5V (C-rate = 1C).
비교예Comparative example
상기 실시예에서 LiFePO4의 표면에 금속피복층이 없는 것을 제외하고는 상기 실시예와 동일한 방법으로 양극 활물질을 제조하고, 이를 양극 집전체 상에 도포시켜 양극을 제조하였다.
Except that there is no metal coating layer on the surface of LiFePO 4 in the above embodiment, a positive electrode active material was prepared in the same manner as in the above embodiment, and was coated on a positive electrode current collector to prepare a positive electrode.
실험예Experimental Example
상기 실시예 및 비교예에 의해 제작된 풀 셀(full cell) 리튬 이차 전지에 대해 4.2V-2.5V의 전압범위에서 전압에 따른 충방전 용량을 측정하여 도 1에 나타내었다. 도 1에 나타낸 데이터는 하나의 예시일 뿐, 전압에 따른 세부적인 용량 수치는 셀의 스펙에 따라 달라질 것인바, 세부적 수치보다는 그래프의 경향이 중요하다고 할 수 있다.
The charge and discharge capacity of the full cell lithium secondary battery prepared by the above Examples and Comparative Examples was measured in the voltage range of 4.2V-2.5V and is shown in FIG. 1. The data shown in FIG. 1 is just one example, and the detailed capacitance value according to the voltage will vary depending on the specification of the cell. Therefore, the trend of the graph is more important than the detailed value.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석 되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but are intended to be described. The scope of the present invention should be interpreted by the following claims, and all technical spirits within the equivalent scope thereof are It should be interpreted as being included in the scope of the present invention.
Claims (23)
The cathode of claim 6, wherein the active material slurry further comprises a conductive material and a binder.
The cathode of claim 9, wherein the conductive material is included in an amount of 0.5 to 15 wt%.
A lithium secondary battery comprising the positive electrode according to claim 6.
The medium-large battery module or battery pack of claim 11, comprising two or more lithium secondary batteries electrically connected to each other.
Pd 입자가 표면에 침적된 LiFePO4 입자를 전도성 금속으로 무전해 도금하여 전도성 금속으로 도금된 LiFePO4 입자를 제조하는 단계; 및
상기 전도성 금속으로 도금된 LiFePO4 입자, 리튬-전이금속 복합 산화물 입자 및 용매를 혼합하여 양극 활물질 슬러리를 제조하는 단계를 포함하는 양극 활물질 슬러리의 제조방법.Depositing Pd particles on the surface of LiFePO 4 particles;
Electroless plating LiFePO 4 particles having Pd particles deposited on the surface thereof with a conductive metal to prepare LiFePO 4 particles plated with a conductive metal; And
A method of manufacturing a cathode active material slurry comprising the steps of preparing a cathode active material slurry by mixing LiFePO 4 particles, lithium-transition metal composite oxide particles and a solvent plated with the conductive metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110065034A KR101288743B1 (en) | 2011-06-30 | 2011-06-30 | Electrode active agent, lithium secondary battery comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110065034A KR101288743B1 (en) | 2011-06-30 | 2011-06-30 | Electrode active agent, lithium secondary battery comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130003592A KR20130003592A (en) | 2013-01-09 |
KR101288743B1 true KR101288743B1 (en) | 2013-07-23 |
Family
ID=47835767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110065034A KR101288743B1 (en) | 2011-06-30 | 2011-06-30 | Electrode active agent, lithium secondary battery comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101288743B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101551682B1 (en) * | 2014-01-21 | 2015-09-09 | 경상대학교산학협력단 | Electrode and method of manufacturing an active material for the electrode |
EP3657576A1 (en) * | 2018-11-20 | 2020-05-27 | Samsung Electronics Co., Ltd. | Electrode structure and method of manufacturing the same, and secondary battery including the electrode structure |
JP2020532825A (en) * | 2017-08-31 | 2020-11-12 | エー123 システムズ エルエルシーA123 Systems LLC | Electrochemically active powder metallization process |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101539962B1 (en) * | 2013-07-01 | 2015-07-29 | 한국과학기술연구원 | Cathode active material coated with metallic mixed metal oxide, preparation method for the same and rechargeable lithium batteries including the same |
CN105637677B (en) * | 2013-10-18 | 2018-03-13 | 株式会社Lg化学 | Barrier film and the lithium-sulfur cell for including it |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100277795B1 (en) * | 1998-10-13 | 2001-02-01 | 김순택 | Cathode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery |
KR100420034B1 (en) | 2001-10-17 | 2004-02-25 | 삼성에스디아이 주식회사 | A method of preparing a positive active material for a lithium secondary battery |
KR20040096203A (en) * | 2003-05-07 | 2004-11-16 | 한국과학기술연구원 | A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof |
-
2011
- 2011-06-30 KR KR1020110065034A patent/KR101288743B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100277795B1 (en) * | 1998-10-13 | 2001-02-01 | 김순택 | Cathode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery |
KR100420034B1 (en) | 2001-10-17 | 2004-02-25 | 삼성에스디아이 주식회사 | A method of preparing a positive active material for a lithium secondary battery |
KR20040096203A (en) * | 2003-05-07 | 2004-11-16 | 한국과학기술연구원 | A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101551682B1 (en) * | 2014-01-21 | 2015-09-09 | 경상대학교산학협력단 | Electrode and method of manufacturing an active material for the electrode |
JP2020532825A (en) * | 2017-08-31 | 2020-11-12 | エー123 システムズ エルエルシーA123 Systems LLC | Electrochemically active powder metallization process |
JP7116159B2 (en) | 2017-08-31 | 2022-08-09 | エー123 システムズ エルエルシー | Electrochemically active powder metallization process |
EP3657576A1 (en) * | 2018-11-20 | 2020-05-27 | Samsung Electronics Co., Ltd. | Electrode structure and method of manufacturing the same, and secondary battery including the electrode structure |
US11715823B2 (en) | 2018-11-20 | 2023-08-01 | Samsung Electronics Co., Ltd. | Electrode structure and method of manufacturing the same, and secondary battery including the electrode structure |
Also Published As
Publication number | Publication date |
---|---|
KR20130003592A (en) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101108441B1 (en) | Cathode Materials and Lithium Secondary Battery Containing the Same | |
US9899682B2 (en) | Electrode including coating layer for preventing reaction with electrolyte solution | |
KR101159100B1 (en) | Cathode Active Material for Lithium Secondary Battery | |
KR101134397B1 (en) | Cathode Materials and Lithium Secondary Battery Containing the Same | |
KR101451196B1 (en) | Cathode Active Material and Lithium Secondary Battery Employed with the Same | |
US11223040B2 (en) | Negative active material and lithium battery including the same | |
KR102229452B1 (en) | Seperator and lithium sulfur battery comprising the same | |
KR101545886B1 (en) | Multi Layered Electrode and the Method of the Same | |
KR101658510B1 (en) | The Cathode Electrodes For Secondary Battery and the Secondary Battery Comprising the Same | |
KR101799923B1 (en) | Electrode active material slurry for a lithium secondary battery comprise dispersant agent and lithium secondary battery using same | |
KR102359813B1 (en) | Anode Coated with Primer Layer Comprising CNT and Method of Manufacturing the Same | |
KR101590678B1 (en) | Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same | |
KR101623724B1 (en) | Anode Mixture for Secondary Battery Having Improved Structural Safety and Secondary Battery Having the Same | |
EP3503257A1 (en) | Separator for lithium secondary battery and lithium secondary battery comprising same | |
CN112005407A (en) | Negative electrode comprising graphite and silicon-based material having different diameters and lithium secondary battery comprising same | |
KR101225879B1 (en) | Polar material of lithium secondary battery for a large output and lithium secondary battery comprising thereof | |
KR101852762B1 (en) | Anode Active Material Comprising Porous Silicon and Lithium Secondary Battery Having the Same | |
KR101288743B1 (en) | Electrode active agent, lithium secondary battery comprising the same | |
KR101495302B1 (en) | Multi Layered Electrode and the Method of the Same | |
KR101772420B1 (en) | Anode Comprising Anode Active Material having Large Specific Surface Area and Method of Manufacturing the Same | |
US20150072233A1 (en) | Negative active material and lithium battery containing the negative active material | |
KR20120111508A (en) | Electrode current collector for secondary battery and lithium secondary battery comprising the same | |
KR20140025102A (en) | Cathode active material for lithium secondary battery and manufacturing method thereof | |
KR101495301B1 (en) | The Electrodes For Secondary Battery and the Secondary Battery Comprising the Same | |
KR101613089B1 (en) | Method for Preparation of Cathode Mixture and Secondary Battery Prepared by the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160718 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170717 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180619 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190625 Year of fee payment: 7 |