KR101245379B1 - Manufacturing method of azo firm for touch panel by ultraviolet irradation - Google Patents
Manufacturing method of azo firm for touch panel by ultraviolet irradation Download PDFInfo
- Publication number
- KR101245379B1 KR101245379B1 KR1020100081528A KR20100081528A KR101245379B1 KR 101245379 B1 KR101245379 B1 KR 101245379B1 KR 1020100081528 A KR1020100081528 A KR 1020100081528A KR 20100081528 A KR20100081528 A KR 20100081528A KR 101245379 B1 KR101245379 B1 KR 101245379B1
- Authority
- KR
- South Korea
- Prior art keywords
- transparent conductive
- conductive film
- touch panel
- thin film
- azo
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/001—General methods for coating; Devices therefor
- C03C17/002—General methods for coating; Devices therefor for flat glass, e.g. float glass
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Theoretical Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing Of Electric Cables (AREA)
- Physical Vapour Deposition (AREA)
Abstract
본 발명은 터치패널용 투명도전막을 형성하는 방법에 관한 것으로서, 본 발명의 목적은, 물리증착법(PVD)에 의한 코팅을 통해 터치패널용 투명도전막을 유리기판에 형성한 뒤, 자외선을 조사하여 최종적으로 터치패널용 투명도전막을 형성하기 위한, 터치패널용 투명도전막 형성 방법을 제공하는 것이다. 이를 위해 본 발명은, 유리기판 상에 ZnO를 RF 마그네트론-스퍼터링 방법으로 증착하여 투명 도전막을 형성하는 단계; 및 상기 투명 도전막에 자외선을 조사하여 터치패널용 AZO 박막을 형성하는 단계;를 포함하며; 상기 ZnO는 ZnO의 총중량에 대하여 Al2O3가 3Wt%가 도핑되고; 상기 투명 도전막은 150℃의 저온공정에서 0.2 Å/sec의 증착 속도로 1000Å의 두께가 되도록 유리기판 상에 증착하고, 상기 투명 도전막의 자외선 조사는 자외선의 광량을 250eV로 10분간 조사하는 것을 특징으로 한다.The present invention relates to a method for forming a transparent conductive film for a touch panel, and an object of the present invention is to form a transparent conductive film for a touch panel on a glass substrate through a coating by physical vapor deposition (PVD), and then irradiated with ultraviolet rays to finally form The present invention provides a method for forming a transparent conductive film for a touch panel for forming a transparent conductive film for a touch panel. To this end, the present invention comprises the steps of depositing ZnO on a glass substrate by an RF magnetron-sputtering method to form a transparent conductive film; And forming an AZO thin film for a touch panel by irradiating ultraviolet rays to the transparent conductive film. The ZnO is doped with 3 Wt% of Al 2 O 3 based on the total weight of ZnO; The transparent conductive film is deposited on a glass substrate so as to have a thickness of 1000 증착 at a deposition rate of 0.2 에서 / sec in a low temperature process at 150 ° C, and the ultraviolet irradiation of the transparent conductive film is irradiated with a light amount of ultraviolet light at 250 eV for 10 minutes. do.
Description
본 발명은 디스플레이(Display)의 제작 방법에 관한 것으로서, 특히, 유리기판 상에 ZnO 박막을 적층한 후, 자외선 조사에 의한 터치패널용 AZO 박막 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a display, and more particularly, to a method of manufacturing a AZO thin film for a touch panel by ultraviolet irradiation after laminating a ZnO thin film on a glass substrate.
터치 패널(touch panel), PDP(plasma display panel), LCD(liquid crystal display) 등과 같은 디스플레이 소자의 투명 전극으로 이용되는 투명 도전막은 진공에서 물리증착방법 또는 화학기상증착방법(CVD, chemical vapor deposition)으로 형성할 수 있다. 특히, ITO(Indium Tin Oxide), AZO(Aluminum Zine Oxide) 또는 ATO(Antimony Tin Oxide) 타겟을 사용하는 스퍼터링(sputtering), 이온 플레이팅(ion plating), 전자 빔 증착(E-beam evaporation) 등의 여러 가지 물리적 방법(PVD)이 적용되고 있는데, 이들은 주로 20 Ω/Å 이하의 작은 면저항을 갖는 투명도전막 형성에 사용되며, 스퍼터링 방법이 가장 보편적으로 사용되고 있다. Transparent conductive films used as transparent electrodes of display devices such as touch panels, plasma display panels (PDPs), and liquid crystal displays (LCDs) are used for physical vapor deposition or chemical vapor deposition (CVD) in vacuum. It can be formed as. In particular, sputtering, ion plating, and electron beam evaporation using indium tin oxide (ITO), aluminum zine oxide (AZO) or antimony tin oxide (ATO) targets Various physical methods (PVD) have been applied, and they are mainly used to form transparent conductive films having a small sheet resistance of 20 Ω / Å or less, and sputtering methods are most commonly used.
한편, 스퍼터링 방법에 따라 투명도전막의 전도도, 투명도, 표면 조도에서 큰 차이가 나며, 주로 직류 마그네트론 스퍼터링 방법이 선호되고 있다.On the other hand, according to the sputtering method, there is a big difference in conductivity, transparency, and surface roughness of the transparent conductive film, and the direct current magnetron sputtering method is preferred.
현재 저항면 터치스크린에 사용되는 투명 전극은 주로 400Ω/Å 내지 500Ω/Å의 면저항을 갖는 투명 도전막이 사용되고 있으며, 이는 스퍼터링 방법으로 제조되고 있다. Currently, a transparent conductive film having a sheet resistance of 400 Ω / 투명 to 500 Ω / Å is mainly used as a transparent electrode used in a resistive touch screen, which is manufactured by a sputtering method.
도 1은 종래의 터치패널용 투명도전막을 형성하는 방법의 일실시예 흐름도이다.1 is a flowchart illustrating a method of forming a transparent conductive film for a conventional touch panel.
즉, 종래의 터치패널용 투명도전막 형성 방법에 의하면, 유리 기판 상에 투명도전막을 물리증착방법(PVC) 등을 통해 도포한 후(10), 열처리를 실시하고 있다(20). 물리증착방법으로는 상기한 바와 같이, 스퍼터링 등이 이용되고 있다. That is, according to the conventional method for forming a transparent conductive film for a touch panel, the transparent conductive film is applied onto a glass substrate through a physical vapor deposition method (PVC) or the like (10), and then heat treated (20). As described above, sputtering or the like is used as the physical vapor deposition method.
한편, 결정성이 좋은 투명도전막을 형성하기 위한 열처리 온도는 600℃ 이상인 것이 바람직하다(Thin solid films, 411(2002)56-59, 515 (2007) 3797-3801). On the other hand, the heat treatment temperature for forming a transparent conductive film having good crystallinity is preferably 600 ° C. or higher (Thin solid films, 411 (2002) 56-59, 515 (2007) 3797-3801).
그러나, 일반적으로 유리 기판의 연화(softening) 온도가 530 ℃ 이하인 것을 감안하면, 투명도전막의 열처리 과정에서 유리기판의 변형이 일어나므로 열처리 온도를 낮추어야 하는데, 이에 따라, 터치패널용 투명도전막의 특성이 불량해 진다는 문제점이 발생되고 있다.However, in general, considering that the softening temperature of the glass substrate is 530 ° C. or lower, the glass substrate is deformed during the heat treatment of the transparent conductive film, and thus the heat treatment temperature should be lowered. There is a problem of becoming poor.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 물리증착법(PVD)에 의한 코팅을 통해 터치패널용 투명도전막을 유리기판에 형성한 뒤, 자외선을 조사하여 최종적으로 터치패널용 AZO 박막을 형성하기 위한, 자외선 조사에 의한 터치패널용 AZO 박막 제조방법을 제공하는 것이다. An object of the present invention for solving the above problems is to form a transparent conductive film for a touch panel on a glass substrate through a coating by physical vapor deposition (PVD), and then irradiated with ultraviolet rays to finally form the AZO thin film for a touch panel. In order to provide a AZO thin film manufacturing method for a touch panel by ultraviolet irradiation.
상기 목적을 달성하기 위해 본 발명은, 유리기판 상에 ZnO를 RF 마그네트론-스퍼터링 방법으로 증착하여 투명 도전막을 형성하는 단계; 및 상기 투명 도전막에 자외선을 조사하여 터치패널용 AZO 박막을 형성하는 단계;를 포함하며; 상기 ZnO는 ZnO의 총중량에 대하여 Al2O3가 3Wt%가 도핑되고; 상기 투명 도전막은 150℃의 저온공정에서 0.2 Å/sec의 증착 속도로 1000Å의 두께가 되도록 유리기판 상에 증착하고, 상기 투명 도전막의 자외선 조사는 자외선의 광량을 250eV로 10분간 조사하는 것을 특징으로 한다.In order to achieve the above object, the present invention comprises the steps of depositing a transparent conductive film by depositing ZnO on a glass substrate by an RF magnetron-sputtering method; And forming an AZO thin film for a touch panel by irradiating ultraviolet rays to the transparent conductive film. The ZnO is doped with 3 Wt% of Al 2 O 3 based on the total weight of ZnO; The transparent conductive film is deposited on a glass substrate so as to have a thickness of 1000 증착 at a deposition rate of 0.2 에서 / sec in a low temperature process at 150 ° C, and the ultraviolet irradiation of the transparent conductive film is irradiated with a light amount of ultraviolet light at 250 eV for 10 minutes. do.
본 발명은 유리기판 상에 ZnO의 총중량에 대하여 Al2O3가 3Wt % 도핑된 ZnO를 RF 마그네트론-스퍼터링 방법으로 증착하여 투명 도전막을 형성한 후, 자외선을 조사하여 최종적으로 터치패널용 AZO 박막을 형성함으로써, 물리적 특성이 우수한 터치패널용 AZO 박막을 제작할 수 있다는 우수한 효과를 가지고 있다. The present invention forms a transparent conductive film by depositing ZnO doped with 3 Wt% Al 2 O 3 based on the total weight of ZnO on a glass substrate by RF magnetron-sputtering method, and finally irradiating ultraviolet rays to form an AZO thin film for a touch panel. By forming, it has the outstanding effect that the AZO thin film for touch panels excellent in physical property can be manufactured.
도 1은 종래의 터치패널용 투명도전막을 형성하는 방법의 일실시예 흐름도.
도 2는 본 발명에 따른 터치패널용 AZO 박막 형성 방법의 일실시예 흐름도.
도 3은 본 발명에 따른 터치패널용 AZO 박막 형성 방법에 의한 자외선 조사 후 박막 조사량에 따른 면저항 측정 결과를 나타낸 그래프.
도 4는 본 발명에 따른 터치패널용 AZO 박막 형성 방법에 의한 자외선 조사 후의 AFM 데이터를 나타낸 영상 사진.
도 5는 본 발명에 따른 터치패널용 AZO 박막 형성 방법에 의한 SEM 영상 사진.1 is a flow chart of an embodiment of a method of forming a transparent conductive film for a conventional touch panel.
2 is a flow chart of an embodiment of a method for forming an AZO thin film for a touch panel according to the present invention;
Figure 3 is a graph showing the sheet resistance measurement results according to the irradiation amount of the thin film after ultraviolet irradiation by the AZO thin film forming method for a touch panel according to the present invention.
Figure 4 is an image photograph showing the AFM data after ultraviolet irradiation by the AZO thin film forming method for a touch panel according to the present invention.
Figure 5 is a SEM image by the AZO thin film forming method for a touch panel according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명이 상세히 설명된다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 터치패널용 AZO 박막 형성 방법의 일실시예 흐름도로서, 터치패널용 AZO 박막을 형성하기 위한 과정이 도시되어 있다. 2 is a flowchart illustrating a method of forming an AZO thin film for a touch panel according to the present invention, and a process for forming the AZO thin film for a touch panel is illustrated.
터치패널(touch panel)용 투명도전막은 상기한 바와 같이 물리증착법(PVD) 또는 화학기상증착법(CVD)에 의해 기판상에 형성되고 있다.A transparent conductive film for a touch panel is formed on a substrate by physical vapor deposition (PVD) or chemical vapor deposition (CVD) as described above.
한편, 본 발명은 특히 물리증착법을 이용하여 투명도전막을 형성하는 과정에 적용되는 것으로서, 이를 위해 본 발명은 우선적으로 유리기판 상에 물리증착법을 이용하여 투명도전막을 형성하는 전처리 과정을 수행한다(100). 여기서, 물리증착법(PVD)이란 화학적 반응 없이 증착하는 것으로서, 증발기(Evaporator)나 스퍼터(Sputter) 등을 이용하여 증착하는 방법을 말한다. On the other hand, the present invention is particularly applied to the process of forming a transparent conductive film using a physical vapor deposition method, for this purpose, the present invention first performs a pretreatment process of forming a transparent conductive film using a physical vapor deposition method on a glass substrate (100) ). Here, physical vapor deposition (PVD) is a deposition without a chemical reaction, means a deposition method using an evaporator (Evaporator), a sputter (Sputter) and the like.
이후, 본 발명은 자외선 조사기를 이용하여 상기 과정을 통해 형성된 투명도전막에 자외선을 조사하는 후처리 과정을 수행함으로써, 최종적으로 터치패널용 AZO 박막을 형성한다(200). Thereafter, the present invention performs a post-treatment process of irradiating ultraviolet rays to the transparent conductive film formed through the above process using an ultraviolet irradiator, thereby finally forming an AZO thin film for a touch panel (200).
즉, 본 발명은 자외선 조사 방법(UV-Irradiation)에 의한 터치패널용 AZO 박막 제조방법에 관한 것으로서, 전처리 과정(100)을 통해 물리증착법(PVD)에 의해 투명도전막을 유리기판 상에 코팅을 한 뒤, 후처리 과정(200)을 통해 자외선 UV-curing 및 Irradiation 법에 의하여 투명도전막을 후처리 함으로써, 물리적 특성이 우수한 AZO 박막을 형성할 수 있다는 특징을 가지고 있다. That is, the present invention relates to a method for manufacturing an AZO thin film for a touch panel by ultraviolet irradiation (UV-Irradiation), the coating of a transparent conductive film on a glass substrate by physical vapor deposition (PVD) through the pre-treatment process (100) Thereafter, by post-treatment of the transparent conductive film by ultraviolet UV-curing and Irradiation method through the post-treatment process 200, it has a feature that can form an AZO thin film excellent in physical properties.
부연하여 설명하면, 본 발명은 자외선 조사 방법에 의한 터치패널용 전극을 제조함으로써 박막의 물성과 특성을 변화시킬 수 있는 것으로서, 자외선 조사 방법(UV-Irradiation)을 사용함으로써 광 특성변화를 조절할 수 있는 정적 밴드갭의 조정이 가능하고, 표면거칠기 제어 및 garinsize 등 물성을 변화시킬 수 있다는 특징을 가지고 있으며, UV-Irradiation 법을 사용함으로써 박막의 낮은 전하이동도를 개선시킬 수 있다는 특징을 가지고 있다. In detail, the present invention can change the physical properties and properties of the thin film by manufacturing the electrode for the touch panel by the ultraviolet irradiation method, it is possible to control the change in the optical characteristics by using the ultraviolet irradiation method (UV-Irradiation) It is possible to adjust the static band gap, to control the surface roughness and to change the physical properties such as garinsize, and to improve the low charge mobility of the thin film by using the UV-Irradiation method.
이하에서는, 본 발명에 따라 형성된 터치패널용 AZO 박막의 특성 검증을 위하여 실시된, 검사의 결과가 설명된다.
In the following, the results of the inspection, carried out for the verification of the properties of the AZO thin film for a touch panel formed according to the present invention, are described.
도 3은 본 발명에 따른 터치패널용 AZO 박 형성 방법에 의한 자외선 조사 후 박막조사량에 따른 면저항 측정 결과를 나타낸 그래프이고, 도 4는 본 발명에 따른 터치패널용 AZO 박 형성 방법에 의한 자외선 조사 후의 AFM 데이터를 나타낸 영상 사진이며, 도 5는 본 발명에 따른 터치패널용 AZO 박 형성 방법에 의한 SEM 영상 사진이다.3 is a graph showing the sheet resistance measurement results according to the irradiation amount of the thin film after ultraviolet irradiation by the AZO foil forming method for a touch panel according to the present invention, Figure 4 is a UV irradiation after the AZO foil forming method for a touch panel according to the present invention It is an image photograph showing the AFM data, Figure 5 is a SEM image photograph by the AZO foil forming method for a touch panel according to the present invention.
상기에서 설명된 본 발명을 통해 형성된 터치패널용 AZO 박의 특성을 검증하기 위하여, PVD 방법으로 1000 두께로 증착된 AZO/GLASS 박막의 표면의 변화 및 물성의 변화를 관찰하고, 터치패널용 AZO 박을 제조하기 위해 PVD 코팅 후 자외선 조사 방법(UV-Irradiation)으로 이온에너지를 조사한 뒤, 투명도전막의 형태의 상관관계를 조사하였다. 여기서, 자외선 조사 방법(UV-Irradiation)에서 조사된 광량이온에너지는 100eV~350eV 범위에서 조사되었으며, 광량에너지의 변화에 따른 AZO 박막의 물성과 특성을 관찰하였다. In order to verify the characteristics of the AZO foil for the touch panel formed through the present invention described above, 1000 by PVD method Observe the surface changes and physical properties of the AZO / GLASS thin film deposited to a thickness, and irradiate ion energy by UV-Irradiation after PVD coating to manufacture the AZO foil for touch panel. Form correlations were investigated. Here, the photocationic energy irradiated by UV-irradiation (UV-Irradiation) was irradiated in the range of 100 eV to 350 eV, and the physical properties and characteristics of the AZO thin film according to the change of the light quantity energy were observed.
특성 검사 결과, UV-Irradiation 광량이온에너지의 조사량에 따라 박막의 특성이 변화되었고, UV-Irradiation 광량이온에너지가 조사되지 않은 박막에 비해 현저한 특성이 있었다. 이러한 결과를 알기 위해서, XRD, SEM, AFM, UV-VISIBLE 등의 분석 방법을 통해서 에너지 조사량에 상관관계를 관찰하였고, UV 광량의 따른 표면의 볼륨비의 증가 및 그레인(grain)의 크기의 비율에 따라서 AZO 박막의 터치패널용의 가능성을 확인할 수 있었다.
As a result of the characteristic test, the properties of the thin film were changed according to the irradiation amount of UV-Irradiation light quantity, and the UV-Irradiation light quantity was more significant than the thin film which was not irradiated with ion energy. In order to know these results, correlations were observed in the amount of energy irradiation through analytical methods such as XRD, SEM, AFM, and UV-VISIBLE, and the increase in the volume ratio of the surface according to the amount of UV light and the ratio of grain size Therefore, the possibility for the touch panel of the AZO thin film was confirmed.
본 발명에 의해 형성된 터치패널용 투명도전막의 특성 검사를 위한 구체적인 실험방법은 다음과 같다.Specific test method for the characteristic test of the transparent conductive film for a touch panel formed by the present invention is as follows.
첫 번째 검사 과정은, 상기에서 설명된 전처리 과정을 통해 기판 상에 투명도전막을 형성하는 과정이다. 즉, 특성 검사를 위해 투명도전막의 하나인 ZnO 박막을 유리기판 위에 적층 성장시켰으며, 이때, 물리증착법(PVD)의 하나인 RF 마그네트론-스퍼터링 방법을 이용하였다. 여기서, 타겟의 소스는 Al2O3 가 3% 도핑된 ZnO 타겟을 사용하였다. 박막을 성장시키는데 필요한 기판은 무알카리유리기판을 사용하였다. 기판의 세척순서는 먼저 TCE, 아세톤, 에탄올, 메탄올, 증류수로 각각 10분간 세척을 한 뒤, 마지막으로 de-ionized water로 10분간 기판을 세척을 행하였고 질소를 불어 주어 이를 세척하였다. ZnO 박막의 증착은 고순도 아르곤 가스(99%) 2sccm을 챔버(chamber) 안에 5분간 불어 넣어 준뒤, 플라즈마 방전 전류를 100Kw로 고정시켜 놓고, 증착을 하였다. 비 정질 기판 위의 ZnO 박막의 증착 속도는 석영 진동판(quartoscillator)을 이용한 두께 측정 모니터(thickness monitor) 통하여 0.2 Å/sec로 나타났으며, 모니터에 1000Å의 두께가 측정될 때 까지의 ZnO 박막을 증착시켰다.The first inspection process is a process of forming a transparent conductive film on the substrate through the pretreatment process described above. That is, the ZnO thin film, which is one of the transparent conductive films, was grown on the glass substrate for the property test, and at this time, an RF magnetron-sputtering method, which is one of physical vapor deposition (PVD), was used. Here, the source of the target was a ZnO target doped with Al 2 O 3 3%. An alkali free glass substrate was used as a substrate for growing the thin film. The washing sequence of the substrate was first washed with TCE, acetone, ethanol, methanol, and distilled water for 10 minutes, and finally, the substrate was washed with de-ionized water for 10 minutes and blown with nitrogen. In the deposition of the ZnO thin film, 2 sccm of high purity argon gas (99%) was blown into the chamber for 5 minutes, and the plasma discharge current was fixed at 100 Kw and deposited. The deposition rate of the ZnO thin film on the amorphous substrate was 0.2 sec / sec through a thickness monitor using a quartz diaphragm, and the ZnO thin film was deposited on the monitor until the thickness of 1000 Å was measured. I was.
두 번째 검사 과정은, 상기 첫 번째 검사 과정에서 형성된 투명도전막에, 상기에서 설명된 후처리 과정을 통해 자외선을 조사한 후 물성을 측정하는 과정이다. 즉, 물리증착법에 의해 형성된 투명도전막에 UV-curimg 장비를 이용하여 광량을 50eV~350eV 까지 변화하였고, UV-Irradiation 조사를 10분간 행한 다음, 박막의 물성을 고찰하였다. 박막의 결정성은 X선 회절분석기(Rigaku X-ray diffractor- RINI/DAX 2500)을 사용하여 관찰을 하였고 박막의 표면 및 단면의 모양을 관찰하기 위해 전계 주사 현미경 FE-SEM(Marker : Hitachi S-4200 Field-Emission Scanning Electron Microscopy)을 이용하였고, 표면의 형상을 관찰하기 위하여 AFM(Atomic Force Microscopy:PSI)을 이용하였다. 또한, 증착된 박막을 van der pauw 4-point 측정법을 이용하여 전기적인 특성을 고찰하여 보았다. The second inspection process is a process of measuring physical properties after irradiating ultraviolet rays to the transparent conductive film formed in the first inspection process through the post-treatment process described above. That is, the amount of light was changed from 50 eV to 350 eV by using UV-curimg equipment on the transparent conductive film formed by physical vapor deposition, and UV-Irradiation irradiation was performed for 10 minutes, and then the physical properties of the thin film were examined. The crystallinity of the thin film was observed with an X-ray diffractor (RINI / DAX 2500), and the field scanning microscope FE-SEM (Marker: Hitachi S-4200) was used to observe the shape of the surface and cross section of the thin film. Field-Emission Scanning Electron Microscopy (AFM) was used, and AFM (Atomic Force Microscopy (PSI)) was used to observe the shape of the surface. In addition, the deposited thin films were examined for their electrical characteristics using van der pauw 4-point measurement.
한편, 구체적인 분석을 위해서 Haze meter(HM-150, MCRL, japan) 및 UV-VISIBLE, XRD, SEM, AFM 등의 분석기기가 이용되었으며, 투명도전막의 박막 두께는 1000로 하였다. Meanwhile, analyzers such as Haze meters (HM-150, MCRL, Japan) and UV-VISIBLE, XRD, SEM, and AFM were used for specific analysis. The thin film thickness of the transparent conductive film was 1000 It was set as.
UV 조사 시간을 10분으로 한 경우에, UV-Irradiation의 조사광량 및 범위 및 투과율 측정값은 아래의 [표 1]과 같다.
In the case where the UV irradiation time is 10 minutes, the irradiation light amount and range and transmittance measurement values of UV-Irradiation are shown in Table 1 below.
또한, UV 조사후 박막조사량에 따른 면 저항 측정결과는 도 3에 도시된 바와 같고, 자외선 조사 후의 AFM 데이터를 나타낸 영상 사진은 도 4에 도시된 바와 같으며, SEM 영상 사진은 도 5에 도시된 바와 같다.
In addition, the surface resistance measurement results according to the irradiation amount of the thin film after UV irradiation is as shown in Figure 3, the image photograph showing the AFM data after the ultraviolet irradiation is shown in Figure 4, the SEM image is shown in Figure 5 As shown.
상기한 바와 같이, 본 발명에 의해 형성된 터치패널용 AZO 박막의 특성 검증을 위해, Al2O3(3wt%)가 도핑된 ZnO 박막을 150℃ 저온공정에서 유리기판 위에 RF 마그네트론-스퍼터링 방법으로 증착하였으며, 동시에 자외선 조사 방법(UV-Irradiation)을 이용하여 이온에너지를 변화시켜가면서 AZO 광학적 결정구조, 미세구조, 표면형상의 구조를 분석하였는바, 그 결과는 다음과 같다.
As described above, in order to verify the properties of the AZO thin film for the touch panel formed by the present invention, a ZnO thin film doped with Al 2 O 3 (3wt%) is deposited on the glass substrate by RF magnetron-sputtering method at 150 ° C. low temperature process. At the same time, AZO optical crystal structure, microstructure, and surface shape were analyzed while changing ion energy using UV-irradiation. The results are as follows.
첫째, 자외선 조사 방법(UV-Irradiation)에 의해 자외선을 조사한 결과, AZO 박막은 이온의 에너지에 큰 의존성을 나타내었으며, 이온조사농도에 따라 표면의 이동도의 증가와 결함에 의하여 영향을 받았다. 이온에너지 증가에 따라 미세한 그레인 형성으로 변화하였으며, 이온에너지(자외선 조사광량)가 225eV 경우 박막의 도메인(domain) 구조를 갖는 미세구조와 표면거칠기의 제어가 나타났다. 작은 표면거칠기는 표면의 산란을 제어하여 광투과도를 나타내었으나, 이온빔의 에너지가 증가함에 따라 도메인 구조는 파괴되고, 미세구조로 전환되었다. 이는 이온빔의 데미지에 따른 그레인의 미세구조로 나타낼 수 있다.First, as a result of UV irradiation by UV-irradiation method, AZO thin film showed a large dependence on the energy of ions and was affected by the increase of surface mobility and defects according to the ion irradiation concentration. As the ion energy increased, it changed to fine grain formation, and when the ion energy (ultraviolet radiation dose) was 225 eV, the microstructure having the domain structure of the thin film and the control of the surface roughness appeared. The small surface roughness showed light transmittance by controlling the scattering of the surface, but as the energy of the ion beam increased, the domain structure was destroyed and converted into a microstructure. This may be represented by the microstructure of the grain according to the damage of the ion beam.
둘째, 자외선 조사 방법(UV-Irradiation)의 10분 조사결과에 따라 이온에너지가 225eV 경우, 광투과율이 85% 이상, 면저항 98~12-Ω/a를 범위를 갖는 터치패널용 AZO 박막의 가능성을 보였다.
Second, according to the 10-minute irradiation result of UV-Irradiation, if the ion energy is 225 eV, the possibility of the AZO thin film for touch panel having a light transmittance of 85% or more and a sheet resistance of 98 to 12-Ω / a Seemed.
즉, 상기한 바와 같은 결과들을 통해, 본 발명에 따른 터치패널용 AZO 박막 제조방법은 자외선 조사시간을 5분 ~ 10분으로 한 경우에 성능이 우수함을 알 수 있으며(상기 특성 검사에서는 5분을 기준으로 하였음), 광량은 50eV ~ 350eV(특히, 250eV)로 유지한 경우에 그 성능이 가장 우수함을 알 수 있었다. That is, through the results as described above, it can be seen that the AZO thin film manufacturing method for a touch panel according to the present invention has excellent performance when the UV irradiation time is 5 minutes to 10 minutes (5 minutes in the characteristic test). It was found that the best performance when the amount of light is maintained at 50eV ~ 350eV (especially 250eV).
한편, 종래의 터치패널용 투명도전막 형성 방법의 후처리 과정에서 적용되었던 열처리과정은, 표면의 거칠기를 제어하는 방법이 어려웠으나, 자외선 조사 방법을 이용하고 있는 본 발명은, 조사광량에 따라 표면거칠기 및 입자 사이즈를 제어하여 다양하게 변경시킬 수 있다는 장점을 가지고 있다. 예를 들어, 도 5의 SEM 사진을 보면, 입자의 크기 사이즈가 달라지는 것을 알 수 있다. 즉, 자외선(UV) 조사량이 적당하면 원자의 이동도 증가에 의해 입자의 사이즈가 커지고, 조사량의 세기가 커지면 입자의 사이즈가 작아지는데, 이는 자외선(UV) 조사이온에 따라 ZnO 입자가 이온의 광량의 데미지의 손실로 인해 새로운 입자의 핵형성이 일어나고, 이로 인해 입자의 새로운 형성 및 많은 그레인 들이 형성이 되어 입자가 작게 되고, 그레인 경계의 증가로 인해 전자의 이동도가 감소하게 되는 것이다.On the other hand, the heat treatment process applied in the post-treatment process of the conventional transparent conductive film forming method for the touch panel, it was difficult to control the surface roughness, the present invention using the ultraviolet irradiation method, the surface roughness according to the irradiation light amount And it has the advantage that it can be changed in various ways by controlling the particle size. For example, looking at the SEM photograph of Figure 5, it can be seen that the size of the particle size is different. In other words, when the amount of UV radiation is appropriate, the particle size increases due to the increase in the mobility of atoms, and when the intensity of the radiation amount increases, the particle size decreases. The loss of damage results in nucleation of new particles, which results in new formation of particles and the formation of many grains, resulting in smaller particles and an increase in grain boundaries, resulting in reduced electron mobility.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여 져야만 할 것이다. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification, but should be defined by the claims.
Claims (5)
상기 투명 도전막에 자외선을 조사하여 터치패널용 AZO 박막을 형성하는 단계;를 포함하며;
상기 ZnO는 ZnO의 총중량에 대하여 Al2O3가 3Wt%가 도핑되고;
상기 투명 도전막은 150℃의 저온공정에서 0.2 Å/sec의 증착 속도로 1000Å의 두께가 되도록 유리기판 상에 증착하고,
상기 투명 도전막의 자외선 조사는 자외선의 광량을 250eV로 10분간 조사하는 것을 특징으로 하는 자외선 조사에 의한 터치패널용 AZO 박막 제조방법.Depositing ZnO on a glass substrate by an RF magnetron-sputtering method to form a transparent conductive film; And
Irradiating ultraviolet rays to the transparent conductive film to form an AZO thin film for a touch panel;
The ZnO is doped with 3 Wt% of Al 2 O 3 based on the total weight of ZnO;
The transparent conductive film is deposited on a glass substrate to a thickness of 1000 Å at a deposition rate of 0.2 Å / sec in a low temperature process of 150 ℃,
Ultraviolet irradiation of the transparent conductive film is a method of manufacturing an AZO thin film for a touch panel by ultraviolet irradiation, characterized in that for 10 minutes to irradiate the amount of ultraviolet light at 250eV.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100081528A KR101245379B1 (en) | 2010-08-23 | 2010-08-23 | Manufacturing method of azo firm for touch panel by ultraviolet irradation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100081528A KR101245379B1 (en) | 2010-08-23 | 2010-08-23 | Manufacturing method of azo firm for touch panel by ultraviolet irradation |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120018593A KR20120018593A (en) | 2012-03-05 |
KR101245379B1 true KR101245379B1 (en) | 2013-03-19 |
Family
ID=46127811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100081528A KR101245379B1 (en) | 2010-08-23 | 2010-08-23 | Manufacturing method of azo firm for touch panel by ultraviolet irradation |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101245379B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950014928B1 (en) * | 1992-02-27 | 1995-12-18 | 스미도모 킨조구 고오상 가부시끼가이샤 | Transparent electric conduction substrate and process for making the same |
-
2010
- 2010-08-23 KR KR1020100081528A patent/KR101245379B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950014928B1 (en) * | 1992-02-27 | 1995-12-18 | 스미도모 킨조구 고오상 가부시끼가이샤 | Transparent electric conduction substrate and process for making the same |
Also Published As
Publication number | Publication date |
---|---|
KR20120018593A (en) | 2012-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101156945B1 (en) | A transparent conductive film and method for manufaturing the same for touchpanel | |
Chang et al. | Effects of post-annealing on the structure and properties of Al-doped zinc oxide films | |
TWI621724B (en) | Transparent conductive film and method of producing the same | |
US9805837B2 (en) | Transparent conductive film and production method therefor | |
CN115335924B (en) | Transparent conductive film | |
Ma et al. | A study of indium tin oxide thin film deposited at low temperature using facing target sputtering system | |
Lu et al. | Remote plasma sputtering deposited Nb-doped TiO2 with remarkable transparent conductivity | |
US9624573B2 (en) | Production method for transparent conductive film | |
Huang et al. | Comparative study of amorphous indium tin oxide prepared by pulsed-DC and unbalanced RF magnetron sputtering at low power and low temperature conditions for heterojunction silicon wafer solar cell applications | |
Yeadon et al. | Remote plasma sputtering of indium tin oxide thin films for large area flexible electronics | |
Kiristi et al. | Radio frequency-H2O plasma treatment on indium tin oxide films produced by electron beam and radio frequency magnetron sputtering methods | |
Huang et al. | Influence of discharge power and annealing temperature on the properties of indium tin oxide thin films prepared by pulsed-DC magnetron sputtering | |
JP2009295545A (en) | Transparent conductive film and method for manufacturing the same | |
Huang et al. | Ion behavior impact on ITO thin film fabrication via DC magnetron sputtering with external anode | |
Lee et al. | Enhancement of barrier properties of aluminum oxide layer by optimization of plasma-enhanced atomic layer deposition process | |
Shin et al. | Effect of deposition power on structural and electrical properties of Al-doped ZnO films using pulsed direct-current magnetron sputtering with single cylindrical target | |
Zhang et al. | Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma | |
Hudaya et al. | Characteristics of fluorine-doped tin oxide as a transparent heater on PET prepared by ECR-MOCVD | |
KR101245379B1 (en) | Manufacturing method of azo firm for touch panel by ultraviolet irradation | |
WO2008072900A1 (en) | Transparent conductive membrane of high resistance touch panel of capacitance and manufacture method thereof | |
JP5390776B2 (en) | Method for producing transparent conductive film and transparent conductive film produced according to the method | |
Kashyout et al. | Studying the Properties of RF‐Sputtered Nanocrystalline Tin‐Doped Indium Oxide | |
CN104681208A (en) | Method for improving conductivity of nano-silver thin films | |
KR20150107684A (en) | Preparation method of transparent conductive substrate | |
Yang et al. | Deposition of indium tin oxide thin films by cathodic arc ion plating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160310 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170310 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180312 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190311 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20200310 Year of fee payment: 8 |