KR101220708B1 - High manganese and aluminium galvannealed steel sheet having excellent powdering resistance and method for manufacturing the same - Google Patents
High manganese and aluminium galvannealed steel sheet having excellent powdering resistance and method for manufacturing the same Download PDFInfo
- Publication number
- KR101220708B1 KR101220708B1 KR1020100136106A KR20100136106A KR101220708B1 KR 101220708 B1 KR101220708 B1 KR 101220708B1 KR 1020100136106 A KR1020100136106 A KR 1020100136106A KR 20100136106 A KR20100136106 A KR 20100136106A KR 101220708 B1 KR101220708 B1 KR 101220708B1
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- plating
- dip galvanized
- weight
- alloyed hot
- Prior art date
Links
- 239000011572 manganese Substances 0.000 title claims abstract description 76
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 62
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 58
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 47
- 239000010959 steel Substances 0.000 title claims abstract description 47
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 46
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000227 grinding Methods 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 19
- 239000004411 aluminium Substances 0.000 title 1
- 238000007747 plating Methods 0.000 claims abstract description 108
- 229910001335 Galvanized steel Inorganic materials 0.000 claims abstract description 31
- 239000008397 galvanized steel Substances 0.000 claims abstract description 31
- 229910001297 Zn alloy Inorganic materials 0.000 claims abstract description 7
- 238000005275 alloying Methods 0.000 claims description 55
- 229910003271 Ni-Fe Inorganic materials 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- 238000000137 annealing Methods 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 238000005246 galvanizing Methods 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910000617 Mangalloy Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 42
- 238000009792 diffusion process Methods 0.000 description 17
- 229910000937 TWIP steel Inorganic materials 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 229910000905 alloy phase Inorganic materials 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910006776 Si—Zn Inorganic materials 0.000 description 1
- 229910000794 TRIP steel Inorganic materials 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- SFMJNHNUOVADRW-UHFFFAOYSA-N n-[5-[9-[4-(methanesulfonamido)phenyl]-2-oxobenzo[h][1,6]naphthyridin-1-yl]-2-methylphenyl]prop-2-enamide Chemical compound C1=C(NC(=O)C=C)C(C)=CC=C1N1C(=O)C=CC2=C1C1=CC(C=3C=CC(NS(C)(=O)=O)=CC=3)=CC=C1N=C2 SFMJNHNUOVADRW-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
Abstract
본 발명은 고강도 고연성 특성을 갖는 고망간 고알루미늄 강을 도금소재로 한 합금화 용융아연도금강판에 관한 것으로서, 망간 5~35중량%, 알루미늄 최대 6중량%를 포함하는 소지강판과 합금화 용융아연도금층을 포함하고, 상기 합금화 용융아연도금층은 Fe-Mn-Zn 합금층인 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판과 이를 제조하는 방법을 제공한다.The present invention relates to an alloyed hot-dip galvanized steel sheet made of high-manganese high aluminum steel having high strength and high ductility properties as a plating material, and includes a base steel sheet containing 5 to 35% by weight of manganese and up to 6% by weight of aluminum. It includes, The alloyed hot-dip galvanized layer is a Fe-Mn-Zn alloy layer provides a high manganese high aluminum alloyed hot-dip galvanized steel sheet and a method of manufacturing the same.
Description
본 발명은 합금화 용융아연도금강판에 관한 것으로, 보다 상세하게는 자동차 차체 또는 구조재로 사용되는 고강도 고연성 특성을 갖는 고망간 고알루미늄 강을 도금소재로 한 합금화 용융아연도금강판에 관한 것이다.The present invention relates to an alloyed hot-dip galvanized steel sheet, and more particularly, to an alloyed hot-dip galvanized steel sheet made of high-manganese high aluminum steel having high strength and high ductility properties used as a vehicle body or structural material.
자동차 경량화에 의한 연비 향상 및 안정성 관점에서 자동차 차체 및 구조재의 고강도화가 요구됨에 따라 많은 종류의 자동차용 고강도강이 개발되어 왔다. 그러나 대부분의 강판은 고강도화에 따라 연성이 감소하게 되어, 결과적으로 부품으로의 가공에서 많은 제한이 따르게 된다. 이러한 강판의 고강도에 따른 연성 감소를 해결하기 위하여 많은 연구가 진행되어 왔으며, 그 결과 강재에 망간을 5~35% 포함시켜 강재가 소성변형시 쌍정(TWIN)이 유기되도록 함으로써 연성을 획기적으로 향상시킨 오스테나이트계 TWIP강(Twinning Induced Plasticity, 쌍정유기소성강)이 제안되고 있다.
Many types of high strength steels for automobiles have been developed as the strength of automobile bodies and structural materials is required from the viewpoint of fuel efficiency improvement and stability due to light weight of automobiles. However, most steel sheets have reduced ductility with increasing strength, which results in many limitations in machining into parts. In order to solve the decrease in ductility according to the high strength of the steel sheet, many researches have been conducted. As a result, the ductility is significantly improved by incorporating 5 to 35% of manganese into the steel so that the steel is organically deformed. Austenitic TWIP steel (Twinning Induced Plasticity) has been proposed.
이러한 TWIP강은 980MPa의 고강도에서 60%이상의 연성을 가지므로 고강도-고연성의 차세대 자동차용 강판으로 주목되고 있다. 그러나 TWIP강은 시간이 경과함에 따라 수소취성에 의해서 파괴가 일어나는 지연파괴의 문제를 가지고 있어, 이를 방지하기 위하여 고망간강에 Al를 최대 6%까지 첨가한 고망간 고알루미늄형 TWIP강이 제안되고 있다.
Since the TWIP steel has a ductility of 60% or more at a high strength of 980 MPa, it is attracting attention as a next-generation automotive steel sheet having high strength and high ductility. However, the TWIP steel has a problem of delayed fracture due to hydrogen embrittlement over time, and in order to prevent this, a high manganese high aluminum type TWIP steel having up to 6% Al added to the high manganese steel has been proposed. .
고망간 고알루미늄 TWIP강을 도금소재로 한 용융아연도금강판 또는 합금화 용융아연도금강판의 제조시에 재질 확보 및 표면 활성화를 위해서 수소를 포함하는 질소 분위기에서 소둔처리하게 된다. 이러한 분위기는 도금소재인 소지철에 대해서는 환원성 분위기이나, 고망간 고알루미늄의 TWIP강의 Mn, Si, Al 등과 같은 산화가 쉬운 원소에 대해서는 산화성 분위기로 작용하게 된다.
When manufacturing hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet using high manganese high aluminum TWIP steel as a plating material, it is annealed in a nitrogen atmosphere containing hydrogen for material securing and surface activation. This atmosphere acts as a reducing atmosphere for the base iron, which is a plating material, but as an oxidizing atmosphere for elements that are easily oxidized such as Mn, Si, Al, etc., of TWIP steel of high manganese high aluminum.
따라서, 상기 분위기에서 Mn과 Al이 다량 첨가된 고망간 고알루미늄 TWIP강을 재결정 소둔하게 되면, 분위기 중에 미량 함유되어 있는 수분이나 산소에 의해서 합금원소가 선택적으로 산화(선택산화)되어 소지(도금소재) 표면에 주로 Mn, Al 및 Si의 표면산화물이 생성된다.
Therefore, when recrystallized annealing the high manganese high aluminum TWIP steel to which a large amount of Mn and Al is added in the atmosphere, the alloying element is selectively oxidized (selective oxidation) by the moisture or oxygen contained in a small amount in the atmosphere (plating material ) Surface oxides of Mn, Al and Si are produced mainly on the surface.
Mn 및 Al을 다량 함유하고 있는 고망간 고알루미늄 TWIP강을 도금소재로 사용하는 경우, 도금 전 공정인 소둔과정에서 형성되는 표면산화물에 의해 미도금이 발생하거나, 도금이 되더라도 도금층/소지철 계면에 존재하는 Al, Si, Mn 등의 산화물 피막이 합금화를 방해하는 장벽으로 작용하여 미합금화를 초래하게 된다.
When high-manganese high aluminum TWIP steel containing a large amount of Mn and Al is used as the plating material, even when plating is performed or unplated by the surface oxide formed during the annealing process, which is a pre-plating process, Existing oxide films such as Al, Si, and Mn act as barriers to prevent alloying, resulting in unalloying.
이를 방지하기 위한 방안으로 Ni 도금을 실시하는 기술이 존재하고 있으나, Ni의 부착량이 증가할수록 Ni 도금층위에 Al 농화가 비례적으로 증가하여 두꺼운 Al 산화피막을 형성하게 되므로 미도금이 발생하게 되고,합금화시에는 Al산화피막 및 Ni도금층이 Fe 및 Mn의 확산을 방해하여 미합금화가 일어나게 된다.
As a method to prevent this, there is a technique of performing Ni plating, but as the deposition amount of Ni increases, Al thickening increases proportionally on the Ni plating layer to form a thick Al oxide film, so that unplating occurs. At the time, Al oxide film and Ni plating layer prevent the diffusion of Fe and Mn, so that unalloyation occurs.
한편, Ni 부착량을 900㎎/㎡이상으로 Ni 도금을 두껍게 행하면, 소둔 중에 Ni 도금층위에 Al 표면농화가 일어나지 않으나, 두꺼운 Ni도금층으로 인해 합금화 지연이 일어나고, 이를 해결하기 위한 높은 합금화 온도 적용은 불균일한 합금화를 초래하고, 이러한 합금화 용융아연도금강판을 가공하게 되면 합금층이 분말상태로 박리되는 파우더링이 발생한다.On the other hand, if Ni plating is performed thicker than 900 mg / m 2, the Al surface concentration does not occur on the Ni plating layer during annealing, but the alloying delay occurs due to the thick Ni plating layer, and application of high alloying temperature to solve this problem is uneven. When the alloying, and the alloyed hot-dip galvanized steel sheet is processed, powdering occurs in which the alloy layer is peeled into a powder state.
본 발명의 일측면은 고망간 고알루미늄 강을 도금소재로 한 합금화 용융아연도금강판에 있어서, 미도금 및 미합금화를 해결하여 우수한 내파우더링성을 갖는 고망간 고알루미늄 합금화 용융아연도금강판과 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention, in the alloyed hot-dip galvanized steel sheet made of high-manganese high aluminum steel plated material, to solve the unplated and unalloyed high-manganese high aluminum alloyed hot-dip galvanized steel sheet having excellent powdering resistance and manufacturing the same It is intended to provide a way to.
본 발명은 망간 5~35중량%, 알루미늄 최대 6중량%를 포함하는 소지강판과 합금화 용융아연도금층을 포함하고, 상기 합금화 용융아연도금층은 Fe-Mn-Zn 합금층인 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판을 제공한다.
The present invention includes a base steel sheet containing 5 to 35% by weight of manganese and up to 6% by weight of aluminum and an alloyed hot dip galvanized layer, wherein the alloyed hot dip galvanized layer is a Fe-Mn-Zn alloy layer having excellent powdering resistance. Provided is a high aluminum alloyed hot dip galvanized steel sheet.
또한, 본 발명은 망간 5~35중량%, 알루미늄 최대 6중량%를 포함하는 소지강판을 Ni-Fe계 도금 또는 Fe 도금하는 단계;In addition, the present invention comprises the step of Ni-Fe-based plating or Fe-plated steel sheet containing 5 to 35% by weight of manganese, up to 6% by weight of aluminum;
상기 도금된 소지강판을 소둔하는 단계; Annealing the plated steel sheet;
상기 소둔된 소지강판을 용융아연도금하는 단계; 및 Hot-dip galvanizing the annealed steel sheet; And
상기 용융아연도금 후 합금화처리하여 합금화 용융아연도금을 제조하는 단계를 포함하는 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판의 제조방법을 제공한다.It provides a method of manufacturing a high manganese high aluminum alloyed hot-dip galvanized steel sheet having excellent powdering resistance, including the step of producing an alloying hot dip galvanizing by alloying after the hot dip galvanizing.
본 발명에 의하면, 합금화 용융아연도금할 수 없었던 5~35%의 망간 및 최대 6%알루미늄을 함유하는 고망간 고알루미늄 강(특히, TWIP강)을 도금소재로 하여 합금화 용융아연도금강판을 제조할 수 있을 뿐만 아니라, Si, Mn, Al 등의 합금원소가 다량 함유된 일반 고강도강(IF고강도강, 2상복합조직강(DP), TRIP강 등)을 도금소재로 사용하여 합금화 용융아연도금강판 제조할 수 있는 장점이 있다.According to the present invention, an alloyed hot-dip galvanized steel sheet can be produced by using a high-manganese high aluminum steel (particularly TWIP steel) containing 5 to 35% of manganese and up to 6% aluminum, which could not be alloyed by hot dip galvanizing. In addition, alloyed hot-dip galvanized steel sheet using general high strength steel (IF high strength steel, two-phase composite steel (DP), TRIP steel, etc.) containing a large amount of alloying elements such as Si, Mn, Al, etc. as a plating material There is an advantage to manufacture.
또한, 합금화에 필요한 Fe를 도금으로부터 공급받을 수 있으므로, 낮은 온도에서도 합금화가 가능하다는 장점이 있다.In addition, since Fe required for alloying can be supplied from the plating, there is an advantage that alloying is possible at low temperatures.
5~35중량%의 망간과 최대 6중량%의 알루미늄을 함유하는 고망간 고알루미늄 강(특히, TWIP강)을 소지강판(도금소재)로 하는 합금화 용융아연도금강판 제조를 위해, 통상적인 도금공정이나 Ni도금을 실시한 경우에는 도금전 소둔공정에서 소지철 표면에 형성되는 필름형의 알루미늄 산화물(Al-O) 피막에 의한 젖음력 저하로 도금층/소지철 계면에 계면억제층(Inhibition Layer)이 형성되지 않는 것이 확인되었다.
Conventional plating process for the production of alloyed hot-dip galvanized steel sheet containing high manganese high aluminum steel (particularly TWIP steel) containing 5 to 35% by weight of manganese and up to 6% by weight of aluminum as the base steel plate (plating material) Or Ni plating, an inhibition layer is formed at the plating layer / ferrous iron interface due to the decrease in the wettability caused by the film-type aluminum oxide (Al-O) film formed on the surface of the iron in the annealing process before plating. Not confirmed.
특히, 5~35중량%의 망간 및 최대 6중량%를 함유하는 고망간 고알루미늄 강을 도금소재로 사용하는 경우에는 Ni 도금 부착량이 증가하면 할수록 미도금 및 도금박리가 심하게 발생하였다. 이는 Ni도금한 고망간 고알루미늄 강을 도금전 소둔처리하게 되면, Ni도금층이 소지로 확산하여 소지 직하에 Ni-Fe-Mn 등의 합금상을 형성하게 되고, 이와 반대로 소지성분에 가장 활성원소인 Al이 소지에서 Ni도금층을 걸쳐 Ni도금층 표면으로 확산 및 농화하기 때문이다. 그 원인은 소지의 Al이 Ni도금층 표면 위로 확산되는 것은 소지의 고용 Al농도가 높고, Ni에서의 Al의 확산속도가 빠르기 때문인 것으로 판단된다.
In particular, when using a high manganese high aluminum steel containing 5 ~ 35% by weight of manganese and up to 6% by weight as a plating material, as the amount of Ni plating adhesion increased, unplating and plating peeling occurred. When Ni-plated high-manganese high aluminum steel is annealed before plating, the Ni-plated layer diffuses into the base to form an alloy phase such as Ni-Fe-Mn directly under the base. This is because Al diffuses and thickens across the Ni plating layer to the surface of the Ni plating layer. The reason is that the Al spreaded on the surface of the Ni plating layer is because the solid solution Al concentration is high, and the diffusion rate of Al in Ni is high.
실제 고망간 고알루미늄강인 강(특히, TWIP강)에서 Ni 도금 부착량이 증가하게 되면, Mn 및 Si의 표면농화는 비례적으로 감소하나, Al는 비례적으로 증가하게 된다. 이는 Ni도금층이 Mn 및 Si의 확산은 방지할 수 있으나, Al의 확산을 방지하지 못하고 오히려 조장하기 때문이다.
As the Ni plating adhesion increases in steel, especially TWIP steel, which is actually a high manganese high aluminum steel, the surface concentration of Mn and Si decreases proportionally, but Al increases proportionally. This is because the Ni plating layer can prevent the diffusion of Mn and Si, but rather prevents the diffusion of Al.
따라서 단순히 망간의 농도가 높은 고망간강에서는 Ni도금에 의해서 Mn의 표면확산을 방지할 수 있기 때문에 Mn산화물 형성에 의한 도금성 저하를 방지할 수 있으나, 강중 Al농도가 최대 6중량% 함유되는 고망간 고알루미늄 강에서는 Ni도금 부착량이 증가하게 되면, 소지 Al이 비례적으로 표면농화 및 산화가 증가하여 두꺼운 Al산화피막을 형성하게 되므로 미도금이 발생하고 합금화 처리는 의미가 없게 된다.
Therefore, in the high manganese steel with high concentration of manganese, it is possible to prevent the surface diffusion of Mn by Ni plating, thereby preventing the deterioration of plating property due to the formation of Mn oxide, but high manganese containing up to 6% by weight of Al concentration in the steel In high aluminum steel, when the Ni plating adhesion increases, the base Al increases in proportion to the surface thickening and oxidation to form a thick Al oxide film, so that unplating occurs and the alloying treatment becomes meaningless.
이에, 본 발명자들은 고망간 고알루미늄 강 소둔시 형성되는 Al농화 및 Al산화물(Al-O) 피막 형성을 방지할 수 있는 방안에 대해 연구한 결과, Ni도금 대신에 적정량의 Ni-Fe도금 또는 Fe도금 실시하는 것으로 Al의 표면농화 및 Al산화피막 형성을 방지하여 미도금을 방지할 수 있었으며, 또한 아연도금층(Zn층)의 합금화 처리(Zn-Fe)시 필요한 Fe를 도금층에서 공급받기 때문에 낮은 합금화 온도에서 합금화가 가능하고, Ni-Fe 도금의 Fe피막을 통한 Mn의 확산으로 합금층은 통상적인 Fe-Zn합금층과 달리 연성이 우수한 Fe-Mn-Zn의 복합 합금층을 가지기 때문에 가공시 합금층의 분말박리(파우더링)이 발생하지 않는 장점을 인지하고, 본 발명에 이르게 되었다.
Therefore, the present inventors studied a method for preventing Al thickening and Al oxide (Al-O) film formation formed during annealing of high manganese high aluminum steel, an appropriate amount of Ni-Fe plating or Fe instead of Ni plating By plating, it was possible to prevent the unplating by preventing the surface concentration of Al and the formation of Al oxide film. Also, since the Fe needed in the alloying treatment (Zn-Fe) of the zinc plating layer (Zn layer) was supplied from the plating layer, low alloying was achieved. Alloying is possible at temperatures, and due to diffusion of Mn through the Ni-Fe plated Fe film, the alloy layer has a high ductility Fe-Mn-Zn composite alloy layer unlike the conventional Fe-Zn alloy layer. Recognizing the advantage that powder separation (powdering) of the layer does not occur, the present invention has been achieved.
이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명 합금화 용융아연도금강판은 망간 5~35중량%, 알루미늄 최대 6중량%를 포함하는 소지강판과 합금화 용융아연도금층을 포함하고, 상기 합금화 용융아연도금층은 Fe-Mn-Zn 합금층을 포함한다.
The alloyed hot-dip galvanized steel sheet of the present invention comprises a base steel sheet containing 5 to 35% by weight manganese, up to 6% by weight of aluminum and an alloyed hot-dip galvanized layer, the alloyed hot-dip galvanized layer comprises a Fe-Mn-Zn alloy layer. .
상기 합금층의 Mn의 함량은 1중량% 이상인 것이 바람직하며, Fe 및 Mn의 합이 12중량% 이하인 것이 바람직하다. 상기 합금층의 Mn은 합금층의 연성을 향상시키는 원소로 합금층 중의 Mn 함량이 1중량% 미만인 경우에는 미합금화로 합금화 용융아연도금강판이 아니며, 합금층 중의 Fe 및 Mn의 합이 12중량%를 초과하게 되면 과합금화로 가공시 도금층이 분말 형태로 탈락하는 파우더링이 발생할 우려가 있다.
The content of Mn in the alloy layer is preferably 1% by weight or more, and the sum of Fe and Mn is preferably 12% by weight or less. Mn of the alloy layer is an element that improves the ductility of the alloy layer, when the Mn content in the alloy layer is less than 1% by weight, the alloy is not an alloyed hot-dip galvanized steel sheet, and the sum of Fe and Mn in the alloy layer is 12% by weight. If it exceeds, there is a concern that powdering may occur in which the plating layer is dropped in powder form when processed by over alloying.
상기 소지강판은 고망간 고알루미늄을 포함하는 강이면 특별히 한정하는 것은 아니며, 상기 소지강판의 바람직한 조성범위의 일예를 들면, 중량%로 C: 0.1~1.5%, Mn: 5~35%, Si: 0.1~3%, Al: 0.01~6%, Ni: 0.01~1%, Ti: 0.01~0.2%, B: 0005~0.006%, 나머지는 Fe 및 기타 불가피한 불순물을 포함하는 것이 바람직하다.
The base steel sheet is not particularly limited as long as it is a steel containing high manganese high aluminum. Examples of the preferred composition range of the base steel sheet include, by weight, C: 0.1 to 1.5%, Mn: 5 to 35%, and Si: 0.1 to 3%, Al: 0.01 to 6%, Ni: 0.01 to 1%, Ti: 0.01 to 0.2%, B: 0005 to 0.006%, and the rest preferably contains Fe and other unavoidable impurities.
이하, 본 발명 합금화 용융아연도금강판의 제조방법에 대하여 상세히 설명한다.Hereinafter, the manufacturing method of the alloying hot-dip galvanized steel sheet of the present invention will be described in detail.
먼저, 망간 5~35중량%, 알루미늄 최대 6중량%를 포함하는 고망간 고알루미늄 소지강판 표면에 Ni-Fe계 도금 또는 Fe계 도금을 행한다.First, Ni-Fe-based plating or Fe-based plating is performed on the surface of a high manganese high aluminum base steel sheet containing 5 to 35 wt% manganese and up to 6 wt% aluminum.
상기 Ni-Fe계 도금을 행하는 것은 도금소재인 고망간 고알루미늄 강 소둔시 형성되는 Al농화 및 Al산화물(Al-O) 피막 형성을 방지하기 위한 것이다. 이는 Ni 도금시 발생하는 Al의 표면농화 및 산화피막 형성을 방지할 수 없으나, 또 다른 합금원소인 Mn, Si의 표면농화를 방지할 수 있기 때문에 Ni계 도금을 기본으로 하고, 여기에 Al의 표면확산을 방지하고, 용융도금시 도금층/소지철 계면의 계면억제층 형성 및 합금화시 필요한 Fe를 외부에서 공급받기 때문에 낮은 합금화 온도에서 합금화가 가능하고, Ni-Fe 도금의 Fe피막을 통한 Mn의 확산이 용이하기 때문에 Fe계 도금을 함께 실시한 것이다.
The Ni-Fe-based plating is performed to prevent Al concentration and Al oxide (Al-O) film formation formed during annealing of high manganese high aluminum steel, which is a plating material. It can not prevent the surface concentration of Al and the oxide film formation that occurs during Ni plating, but it is based on Ni-based plating because it can prevent the surface concentration of Mn, Si, another alloying element, and the surface of Al It is possible to prevent diffusion and alloying at low alloying temperature because Fe is required from the outside to form interfacial inhibition layer at the plating layer / ferrous iron interface and alloying during hot dip plating, and diffusion of Mn through Fe-coated Ni-Fe plating For this reason, Fe-based plating was performed together.
상기 Ni-Fe계 도금한 고망간 고알루미늄 소지강판을 소둔하게 되면, Al의 표면농화 뿐만 아니라 Mn, Si 등의 합금원소의 농화가 감소하게 되고 분위기중의 수분이나 산소가 Ni-Fe도금층에 의해서 차단되기 때문에 Mn, Al, Si 등의 합금원소의 표면산화가 방지되어 Mn-Ni-Fe-Al-Si의 다원계 합금상이 형성된다. 이러한 다원계 합금상이 형성된 고망간 고알루미늄 소지강판을 도금욕에 침적하게 되면, 다원계의 합금상이 도금욕의 활성원소인 Al과 우선적으로 반응하여 도금층과 소지철 계면에 Mn-Ni-Fe-Al-Si-Zn의 계면합금상을 형성하게 된다. 이러한 계면합금층이 형성되면, 용융아연과의 젖음성이 향상되어 미도금이 발생되지 않게 된다.
When the Ni-Fe-based plated high manganese high aluminum base steel sheet is annealed, not only the surface concentration of Al but also the concentration of alloying elements such as Mn and Si is reduced, and the moisture and oxygen in the atmosphere are caused by the Ni-Fe plating layer. Because of the blocking, surface oxidation of alloying elements such as Mn, Al, and Si is prevented to form a multi-alloy phase of Mn-Ni-Fe-Al-Si. When the high manganese high aluminum base steel plate having such a multi-phase alloy phase is deposited in the plating bath, the multi-phase alloy phase preferentially reacts with Al, which is an active element of the plating bath, and thus Mn-Ni-Fe-Al is formed at the interface between the plating layer and the base iron. An interfacial alloy phase of -Si-Zn is formed. When such an interfacial alloy layer is formed, the wettability with the molten zinc is improved, so that unplating is not generated.
이렇게 제조된 용융아연도금강판을 합금화 처리하게 되면, 합금화 처리시 필요한 Fe를 Ni-Fe계 및 Fe계 도금층에서 공급받기 때문에 낮은 합금화 온도에서 합금화가 가능하고, Ni-Fe 도금의 Fe피막을 통한 Mn의 확산으로 합금층은 통상적인 Fe-Zn합금층과 달리 연성이 우수한 Fe-Mn-Zn의 복합 합금층을 가지기 때문에 가공시 합금층의 분말박리(파우더링)이 발생하지 않는 장점을 갖는다.
When the hot-dip galvanized steel sheet thus prepared is alloyed, Fe can be alloyed at a low alloying temperature because Fe is supplied from the Ni-Fe-based and Fe-based plating layers, and Mn through the Ni-Fe-plated Fe film. Due to the diffusion of the alloy layer has a high ductility Fe-Mn-Zn composite alloy layer, unlike the conventional Fe-Zn alloy layer has the advantage that powder peeling (powdering) of the alloy layer does not occur during processing.
Ni-Fe계 도금에서도 상기와 같은 효과를 나타내기 위해서는 도금층의 Ni분율이 30중량%이하인 것이 바람직하다. 이는 도금층 중의 Ni분율이 30중량%를 초과하면 Al의 표면확산 및 산화피막 형성으로 미도금이 발생하고, 또 이를 방지하기 위하여 도금부착량을 증가시키면 미합금화가 발생하며, 합금화 온도를 높이면 불균일한 합금화로 파우더링이 일어나기 때문에 Ni의 함량이 30중량%이하인 것이 바람직하다.
In order to exhibit the same effect in Ni-Fe plating, it is preferable that the Ni fraction of a plating layer is 30 weight% or less. This means that if the Ni fraction in the plating layer exceeds 30% by weight, unplating occurs due to the surface diffusion of Al and the formation of an oxide film, and to prevent this, unplating occurs when the coating deposition amount is increased, and uneven alloying occurs when the alloying temperature is increased. Since powdering occurs, the content of Ni is preferably 30% by weight or less.
또한, Ni-Fe계 도금을 행할 경우에는 도금 부착량이 50~700㎎/㎡ 인 것이 바람직하다. 도금 부착량이 50㎎/㎡ 미만에서는 상기와 같은 Al의 표면확산 및 Al산화피막 형성을 방지할 수 없기 때문에 용융도금시 미도금이 발생하게 되고, 도금 부착량이 700㎎/㎡를 초과하면 두꺼운 도금 피막이 Mn의 확산을 제한하기 때문에 미합금화가 발생하게 된다. 따라서, 50~700㎎/㎡으로 하는 것이 바람직하다.
Moreover, when performing Ni-Fe plating, it is preferable that plating adhesion amount is 50-700 mg / m <2>. If the plating adhesion amount is less than 50 mg / m 2, the surface diffusion of Al and Al oxide film formation cannot be prevented as described above. Therefore, unplating occurs during hot dip plating. If the plating adhesion amount exceeds 700 mg / m 2, a thick plating film is formed. Unalloying occurs because of the limited diffusion of Mn. Therefore, it is preferable to set it as 50-700 mg / m <2>.
또한 단독 Fe계 도금시에는 상기와 같은 Ni-Fe계의 도금계의 효과를 나타내기 위해서는 Fe도금 부착량이 적어도 300㎎/㎡ 이상이 요구되는 것이 바람직하다. 이는 Fe계 도금은 Ni-Fe계 도금 대비 Al의 표면확산을 방지하는 데는 유리하나, Si 및 Mn의 표면확산을 방지하는 데는 불리하므로 이를 방지하기 위해서는 보다 두꺼운 Fe 도금층이 요구되기 때문이다. 따라서 본 발명의 Fe도금 부착량은 300㎎/㎡ 이상인 것이 바람직하다.
In addition, at the time of single Fe plating, in order to exhibit the effect of the Ni-Fe plating system described above, it is preferable that at least 300 mg / m 2 or more of Fe plating deposition is required. This is because Fe-based plating is advantageous to prevent the surface diffusion of Al compared to Ni-Fe-based plating, but because it is disadvantageous to prevent the surface diffusion of Si and Mn, a thicker Fe plating layer is required to prevent this. Therefore, it is preferable that the Fe plating adhesion amount of this invention is 300 mg / m <2> or more.
상기 도금을 행한 소지강판을 소둔처리한다. 상기 소둔처리는 특별히 한정하는 것은 아니며, 통상의 소둔방법에 의한다. 바람직한 일예로는 소둔 분위기 이슬점 온도가 0~-60℃이고, 소둔온도가 750~900℃인 조건에서 행한다.
An annealing treatment is carried out on the base steel sheet subjected to the plating. The annealing treatment is not particularly limited and is based on the usual annealing method. As a preferable example, annealing atmosphere dew point temperature is 0-60 degreeC and annealing temperature is performed on the conditions of 750-900 degreeC.
상기 소둔된 소지강판을 용융아연도금한다. 상기 용융아연도금의 도금욕 Al농도는 0.08~0.13중량%으로 하는 것이 바람직하다. 도금욕의 Al농도가 0.08% 미만일 경우에는 불균일한 계면형성으로 Ni-Fe피막이 형성되지 않은 부분에서 우선적으로 합금화가 일어나 국부적으로 과합금화가 발생하게 되고, 도금욕의 Al농도가 0.13%를 초과하는 경우에는 Ni-Fe피막이 형성되지 않은 부분뿐만 아니라 Ni-Fe피막이 형성된 부분에도 계면억제층이 형성되어 합금반응을 지연시켜 합금화 온도를 높이고 파우더링을 유발하게 되므로 바람직하지 않다.
The annealed steel sheet is hot dip galvanized. The plating bath Al concentration of the hot dip galvanizing is preferably 0.08 to 0.13% by weight. If the Al concentration of the plating bath is less than 0.08%, alloying occurs preferentially at the portion where the Ni-Fe film is not formed due to non-uniform interface formation, and locally overalloysed, and the Al concentration of the plating bath exceeds 0.13%. In this case, an interface inhibitor layer is formed not only at the portion where the Ni-Fe film is not formed but also at the portion where the Ni-Fe film is formed, thus delaying the alloy reaction to increase the alloying temperature and causing powdering.
상기 용융아연도금을 행한 다음, 합금화 처리를 행한다. 합금화 온도는 합금화 초기 Ni-Fe피막에서 Fe의 공급과 소지철에서의 Fe의 지속적인 공급으로 인하여 Ni계 도금 처리재 대비 낮은 500~540℃에서 행하는 것이 바람직하다. 합금화 온도 500℃ 미만에서는 Ni피막 및 계면억제층이 아연도금층과 Fe 및 Mn과의 상호확산을 방해하여 도금층 전체를 합금화하는 것이 불가능하고, 합금화 온도 540℃를 초과하는 경우에는 Ni피막 및 계면억제층의 파괴는 물론 과잉의 상호확산에 의한 과합금화로 가공시 파우더링 등의 표면결함이 발생하기 때문에 바람직하지 않다.
After the hot dip galvanizing, an alloying treatment is performed. The alloying temperature is preferably performed at 500 to 540 ° C. lower than that of the Ni-based plating material due to the supply of Fe in the initial Ni-Fe coating and the continuous supply of Fe in the base iron. If the alloying temperature is lower than 500 ° C, the Ni film and the interfacial inhibition layer prevent the alloying of the entire plating layer by interfering with the zinc plating layer and Fe and Mn, and the Ni film and the interfacial inhibition layer when the alloying temperature exceeds 540 ° C. It is not preferable because the surface defects such as powdering occurs during processing due to over alloying by excessive diffusion and of mutual diffusion.
이와 같이, Ni-Fe계 또는 Fe계 도금 처리 고망간 고알루미늄 합금화 용융아연도금강판은 합금화에 필요한 Fe를 도금층에서 공급받기 때문에 낮은 합금화 온도에서 합금화가 가능하고 Ni-Fe 도금의 Fe피막을 통한 Mn의 용이한 확산으로 합금층은 통상적인 Fe-Zn합금층과 달리 연성이 우수한 Fe-Mn-Zn의 복합 합금층을 가지기 때문에 가공시 합금층의 분말박리(파우더링)이 발생하지 않는 장점을 갖는다.
As such, Ni-Fe- or Fe-based high-manganese high aluminum alloyed hot dip galvanized steel sheet is supplied with Fe required for alloying from the plating layer, so that alloying is possible at a low alloying temperature and Mn through a Ni-Fe-plated Fe film. Due to its easy diffusion, the alloy layer has a ductile Fe-Mn-Zn composite alloy layer unlike the conventional Fe-Zn alloy layer, so that powder peeling (powdering) of the alloy layer does not occur during processing. .
이하, 본 발명의 실시예에 대하여 상세히 설명한다. 하기 실시예는 본 발명의 바람직한 일예를 보여주기 위한 것으며, 하기 실시예에 의해서 본 발명이 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. The following examples are intended to illustrate one preferred embodiment of the present invention, the present invention is not limited by the following examples.
(실시예 1)(Example 1)
실시예 1에서는 고망간 고알루미늄 강을 소지강판(도금소재)으로 하여, 각각 50%Ni-50%Fe, 30%Ni-70%Fe인 Ni-Fe계 및 100%Fe계 도금을 행한 경우의 각 합금화 용융아연도금강판에서의 도금품질 및 내파우더링성을 평가하고, 그 결과를 표 1에 나타내었다.
In Example 1, high-manganese high aluminum steel is used as the base steel sheet (plating material), and Ni-Fe-based and 100% Fe-based plating with 50% Ni-50% Fe and 30% Ni-70% Fe, respectively, is performed. The plating quality and powder resistance of each alloyed hot dip galvanized steel sheet were evaluated, and the results are shown in Table 1.
상기 소지강판(도금소재)은 두께 1.2mm의 고망간 고알루미늄 강의 냉연강판을 사용하였으며, Ni-Fe계 도금 및 Fe 도금은 표 1의 도금 부착량으로 도금하였으며, 이렇게 Ni도금된 냉연강판을 수소가 15%이고 나머지가 질소이고, 이슬점 온도가 -40℃인 환원성분위기에서 소둔온도 800℃인 소둔조건에서 40초간 유지하여 재결정 소둔처리한 후 도금욕 Al농도가 0.07~0.14%인 아연도금욕에 침적하여 한 면의 도금부착량이 60g/㎡ 되도록 에어나이프로 조정하여 용융도금을 실시하였다. 상기 용융아연도금을 실시한 후, 연속적으로 합금화 처리를 행하였다. 이때 합금화 처리 온도는 480~560℃에서 35초간 실시하였다.
The base steel sheet (plating material) was used as a cold rolled steel sheet of high manganese high aluminum steel having a thickness of 1.2mm, Ni-Fe-based plating and Fe plating was plated by the coating weight of Table 1, Ni-plated cold-rolled steel sheet hydrogen After 15%, the rest is nitrogen, and the dew point temperature is -40 ℃, it is maintained in annealing conditions at annealing temperature of 800 ℃ for 40 seconds, then recrystallized annealing, and deposited in zinc plating bath with Al concentration of 0.07 ~ 0.14% Then, the plating was carried out by adjusting the air knife so that the amount of plating on one side was 60 g / m 2. After performing the hot dip galvanizing, alloying treatment was performed continuously. At this time, alloying treatment temperature was performed at 480-560 degreeC for 35 second.
하기 표 1의 결과에서, 미도금 정도는 용융아연도금후 표면외관을 화상처리하여 미도금 부분의 면적을 구하여 아래의 기준으로 등급을 부여하였다. In the results of Table 1 below, the degree of unplating was graded by obtaining the area of the unplated portion by image treatment of the surface appearance after hot dip galvanizing.
-1등급 : 미도금 결함 없음-1 grade: no plating defect
-2등급 : 미도금 평균지름이 1mm 미만-2 grade: uncoated average diameter less than 1mm
-3등급 : 미도금 평균지름이 1~2mm분포-3 grade: uncoated average diameter 1 ~ 2mm distribution
-4등급 : 미도금 평균지름이 2~3mm 분포-4 grade: Uncoated average diameter is 2 ~ 3mm distribution
-5등급 : 미도금 평균지름이 3mm이상
-5 grade: Unplated average diameter is over 3mm
합금화 용융아연도금강판의 내파우더링성 평가 공정은 1)시편을 60도 V-가공함. 2)V가공 시편을 다시 평탄하게 펼침. 3)투명셀로판테이프를 V가공 내권부에 부착함. 4)투명셀로판테이프를 시편에서 분리한 후 흰 종이를 부착함. 5)영상처리로 합금층 박리폭을 측정하였다.In the process of evaluating the powder resistance of alloyed hot-dip galvanized steel sheet, 1) V-machining the specimen at 60 degrees. 2) Flatten the V-processed specimen again. 3) A transparent cellophane tape is attached to the inner V-processing part. 4) Separate the transparent cellophane tape from the specimen and attach white paper. 5) The peeling width of the alloy layer was measured by image processing.
합금화 용융아연도금강판의 파우더링성 발생 정도는 이렇게 측정한 합금층의 박리 폭을 아래의 기준으로 등급을 부여하였다. (소재두께:0.9~1.2mm)The degree of powdering of the alloyed hot-dip galvanized steel sheet was graded based on the peeling width of the alloy layer thus measured. (Material thickness: 0.9-1.2mm)
-1등급 : 박리폭이 3.5mm이하-1 grade: Peel width less than 3.5mm
-2등급 : 박리폭이 3.51~5.5mm-2 grade: Peel width 3.51 ~ 5.5mm
-3등급 : 박리폭이 5.51~6.5mm-3 grade: Peel width 5.51 ~ 6.5mm
-4등급 : 박리폭이 6.51~8mm-4 grade: Peel width 6.51 ~ 8mm
-5등급 : 박리폭이 8.01mm이상
-5 grade: Peel width more than 8.01mm
(㎎/㎡) Plating weight
(Mg / ㎡)
(℃)Temperature
(℃)
(s)time
(s)
(℃)dew point
(℃)
(wt%)Al
(wt%)
(℃)Temperature
(℃)
(℃)Temperature
(℃)
(s)time
(s)
30Ni-70Fe계를 도금으로 하여, 50~700㎎/㎡ 실시한 경우(1-6 내지 1-9 시편) 및 100Fe계 도금을 300㎎/㎡ 이상 실시한 경우(1-12 내지 1-14시편)에서는 모두 Mn의 합금화도가 우수하여 연성이 향상되어, 내파우더링성이 우수한 것을 확인할 수 있었다.
50-700 mg / m2 (1-6 to 1-9) specimens with 30Ni-70Fe-based plating and 300 mg / m2 or more (1-12 to 1-14 specimens) In all, it was confirmed that alloying degree of Mn was excellent, ductility improved, and powdering resistance was excellent.
그러나, Ni의 함량을 과량 첨가한 도금(1-2 내지 1-4 시편) 및 상기 도금부착량의 범위를 벗어난 경우에는 미합금화가 발생하거나 과합금화로 가공시 파우더링이 발생하여 바람직하지 않은 것을 확인할 수 있었다.
However, if the plating content (1-2 to 1-4 specimens) to which the excessively high content of Ni is added and the plating deposition amount is out of the range, unalloying occurs or powdering occurs during processing with overalloying, which is undesirable. Could.
(실시예 2)(Example 2)
실시예 2에서는 도금욕 중 Al의 조건 및 합금화 공정의 조건을 달리하는 경우의 도금특성에 대하여 관찰하고 그 결과를 표 2에 나타내었다. 도금욕 중 Al의 농도 변화 및 합금화 조건의 온도 변화는 표 2에 나타낸 바와 같으며, 이에 대한 합금화 특성 평가는 전술한 실시예 1과 동일하게 평가하였다.
In Example 2, the plating properties when the conditions of Al in the plating bath and the conditions of the alloying process were changed were observed and the results are shown in Table 2. The change in the concentration of Al in the plating bath and the change in temperature of the alloying conditions are as shown in Table 2, and the alloying properties thereof were evaluated in the same manner as in Example 1 above.
(㎎/㎡)30Ni-70Fe plating weight
(Mg / ㎡)
(℃)Temperature
(℃)
(s)time
(s)
(℃)dew point
(℃)
(wt%)Al
(wt%)
(℃)Temperature
(℃)
(℃)Temperature
(℃)
(s)time
(s)
상기 표 2에 나타난 바와 같이, 도금욕의 Al 함량이 0.08~0.13중량%를 만족하는 경우(2-2 내지 2-4시편)와, 합금화 온도가 500~540℃를 만족하는 경우(2-7 내지 2-9시편)에는 합금층에 연성이 우수한 망간이 일정량 함유하게 되어 내파우더링성이 우수한 고망간 고알루미늄 강의 합금화 용융아연도금강판 제조가 가능한 것을 확인할 수 있었다.
As shown in Table 2, when the Al content of the plating bath satisfies 0.08 ~ 0.13% by weight (2-2 to 2-4 specimens), and the alloying temperature satisfies 500 ~ 540 ℃ (2-7 2-9 specimens), it was confirmed that the alloy layer contains a certain amount of ductility excellent in ductility, it is possible to manufacture a hot-dip galvanized steel sheet of high manganese high aluminum steel with excellent powdering resistance.
반면, 상기 도금욕 조건 또는 합금화 조건을 벗어나는 경우에는 미합금화가 발생하거나, 과도한 합금화로 인해 오히려 가공시 파우더링이 발생하여 바람직하지 않은 것을 확인할 수 있었다.On the other hand, when out of the plating bath conditions or alloying conditions, unalloyed, or due to excessive alloying, rather than powdering during processing was confirmed that it was not preferable.
Claims (10)
Manganese steel sheet containing 5 to 35% by weight, up to 6% by weight of aluminum and an alloyed hot-dip galvanized layer, the alloyed hot-dip galvanized layer is a Fe-Mn-Zn alloy layer, the Mn content of the alloy layer is 1 weight A high manganese high aluminum alloyed hot-dip galvanized steel sheet having a powder resistance of more than% and excellent in powdering resistance of a sum of Mn and Fe of 12% by weight or less.
상기 소지강판은 중량%로 C: 0.1~1.5%, Mn: 5~35%, Si: 0.1~3%, Al: 0.01~6%, Ni: 0.01~1%, Ti: 0.01~0.2%, B: 0005~0.006%, 나머지는 Fe 및 기타 불가피한 불순물을 포함하는 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판.
The method according to claim 1,
The base steel sheet by weight% C: 0.1 ~ 1.5%, Mn: 5 ~ 35%, Si: 0.1 ~ 3%, Al: 0.01 ~ 6%, Ni: 0.01 ~ 1%, Ti: 0.01 ~ 0.2%, B : 0005 ~ 0.006%, high manganese high aluminum alloyed hot dip galvanized steel sheet with excellent powdering resistance including Fe and other unavoidable impurities.
상기 도금된 소지강판을 소둔하는 단계;
상기 소둔된 소지강판을 용융아연도금하는 단계; 및
상기 용융아연도금 후 합금화처리하여 합금화 용융아연도금을 제조하는 단계
를 포함하는 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판의 제조방법.
Ni-Fe-based plating or Fe-plating the steel sheet containing 5 to 35% by weight of manganese, up to 6% by weight of aluminum;
Annealing the plated steel sheet;
Hot-dip galvanizing the annealed steel sheet; And
Preparing an alloyed hot dip galvanized by alloying after the hot dip galvanizing.
Method for producing a high manganese high aluminum alloyed hot-dip galvanized steel sheet having excellent powdering resistance.
상기 Ni-Fe계 도금은 Ni함량이 30중량% 이하인 것을 포함하는 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판의 제조방법.
The method according to claim 5,
The Ni-Fe-based plating is a method of manufacturing a high manganese high aluminum alloyed hot-dip galvanized steel sheet having excellent powdering resistance, including that the Ni content is 30% by weight or less.
상기 Ni-Fe계 도금은 도금 부착량이 50~700㎎/㎡의 범위로 행하는 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판의 제조방법.
The method of claim 6,
The Ni-Fe-based plating is a method for producing a high manganese high aluminum alloyed hot-dip galvanized steel sheet excellent in powdering resistance, the plating adhesion is carried out in the range of 50 ~ 700mg / ㎡.
상기 Fe계 도금은 도금 부착량 300㎎/㎡ 이상의 범위로 행하는 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판의 제조방법.
The method according to claim 5,
The Fe-based plating is a method of producing a high manganese high aluminum alloyed hot-dip galvanized steel sheet excellent in powdering resistance to be carried out in the plating coating amount of 300 mg / ㎡ or more.
상기 용융아연도금시 도금욕의 Al 농도는 0.1~0.25중량%인 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판의 제조방법.
The method according to claim 5,
The Al concentration of the plating bath during the hot dip galvanizing is a method of manufacturing a high manganese high aluminum alloyed hot dip galvanized steel sheet excellent in powdering resistance of 0.1 to 0.25% by weight.
상기 합금화는 500~540℃의 온도범위에서 행하는 내파우더링성이 우수한 고망간 고알루미늄 합금화 용융아연도금강판의 제조방법.The method according to claim 5,
The alloying method of producing a high manganese high aluminum alloyed hot-dip galvanized steel sheet excellent in powdering resistance performed in the temperature range of 500 ~ 540 ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100136106A KR101220708B1 (en) | 2010-12-27 | 2010-12-27 | High manganese and aluminium galvannealed steel sheet having excellent powdering resistance and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100136106A KR101220708B1 (en) | 2010-12-27 | 2010-12-27 | High manganese and aluminium galvannealed steel sheet having excellent powdering resistance and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120074144A KR20120074144A (en) | 2012-07-05 |
KR101220708B1 true KR101220708B1 (en) | 2013-01-09 |
Family
ID=46708402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100136106A KR101220708B1 (en) | 2010-12-27 | 2010-12-27 | High manganese and aluminium galvannealed steel sheet having excellent powdering resistance and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101220708B1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6275248B2 (en) * | 2013-09-18 | 2018-02-07 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | Method and apparatus for determining the wear characteristics of a coated flat product |
KR102148062B1 (en) * | 2013-09-18 | 2020-08-25 | 티센크루프 스틸 유럽 악티엔게젤샤프트 | Method and device for determining the abrasive-wear properties of galvannealed flat steel products |
WO2018115945A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | A method for the manufacture of a galvannealed steel sheet |
CA3076581A1 (en) | 2017-10-24 | 2019-05-02 | Arcelormittal | A method for the manufacture of a coated steel sheet |
KR102383618B1 (en) * | 2017-10-24 | 2022-04-08 | 아르셀러미탈 | Method for manufacturing hot-dip galvanized steel sheet |
CA3076998C (en) | 2017-10-24 | 2023-08-22 | Arcelormittal | A method for the manufacture of a coated steel sheet |
US11566310B2 (en) | 2017-11-17 | 2023-01-31 | Arcelormittal | Method for the manufacturing of liquid metal embrittlement resistant zinc coated steel sheet |
EP3889314A4 (en) * | 2018-11-30 | 2021-11-10 | Posco | Steel sheet plated with al-fe alloy for hot press forming having excellent corrosion resistance and heat resistance, hot press formed part, and manufacturing method therefor |
CN112853027A (en) * | 2021-01-06 | 2021-05-28 | 鞍钢股份有限公司 | Smelting process of high-manganese high-aluminum steel |
CN113832378B (en) * | 2021-08-16 | 2022-11-08 | 舞阳钢铁有限责任公司 | Steelmaking method of high manganese steel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009521602A (en) * | 2005-12-26 | 2009-06-04 | ポスコ | High manganese steel strips with excellent plating properties and surface properties, plated steel strips using steel strips, and methods for producing these steel strips |
KR20090070504A (en) * | 2007-12-27 | 2009-07-01 | 주식회사 포스코 | Manufacturing method of high manganese steel sheet and coated steel sheet with excellent coatability |
-
2010
- 2010-12-27 KR KR1020100136106A patent/KR101220708B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009521602A (en) * | 2005-12-26 | 2009-06-04 | ポスコ | High manganese steel strips with excellent plating properties and surface properties, plated steel strips using steel strips, and methods for producing these steel strips |
KR20090070504A (en) * | 2007-12-27 | 2009-07-01 | 주식회사 포스코 | Manufacturing method of high manganese steel sheet and coated steel sheet with excellent coatability |
Also Published As
Publication number | Publication date |
---|---|
KR20120074144A (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101220708B1 (en) | High manganese and aluminium galvannealed steel sheet having excellent powdering resistance and method for manufacturing the same | |
KR101079472B1 (en) | Method for Manufacturing High Manganese Hot Dip Galvanizing Steel Sheet with Superior Surface Property | |
KR101329925B1 (en) | High manganese steel having good adhesiveness of coating layer and method for manufacturing galvanized steel therefrom | |
US7556865B2 (en) | Hot-dip coating method in a zinc bath for strips of iron/carbon/manganese steel | |
TWI314955B (en) | Hot-dip galvanizing steel sheet and method for manufacturing a coated steel sheet | |
KR101207767B1 (en) | High manganese and aluminium galvanizing steel sheet having excellent galvanizing proprety and method for manufacturing the same | |
KR101500043B1 (en) | Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same | |
EP4023787A1 (en) | Hot stamp molded body | |
EP3034646A1 (en) | Production method for high-strength hot-dip galvanized steel sheets and production method for high-strength alloyed hot-dip galvanized steel sheets | |
EP3239343A1 (en) | High strength galvanized steel sheet having excellent surface quality, plating adhesion, and formability, and method for manufacturing same | |
KR101428151B1 (en) | Zn-coated hot rolled steel sheet having high mn and method for manufacturing the same | |
KR101528010B1 (en) | High manganese hot dip galvanized steel sheet with superior weldability and method for manufacturing the same | |
KR101242859B1 (en) | Galvanized steel sheet containing high manganese with excellent galvanizing properties and coating adhesion and method for manufacturing the same | |
KR101253820B1 (en) | High manganese galvanized hot rolled steel sheet and galvanized cold rolled steel sheet and method for manufacturing the same | |
KR101115741B1 (en) | Method for manufacturing high manganese hot dip galvanized steel sheet with superior weldability | |
EP3901324A1 (en) | Plated steel material having excellent adhesion to plating and corrosion resistance, and manufacturing method for same | |
KR101188065B1 (en) | Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same | |
JP2525165B2 (en) | Method for manufacturing high strength galvanized steel sheet | |
JP2020105554A (en) | Alloyed hot-dip galvanized film | |
JPH09137267A (en) | Alloyed zinc-magnesium base plated steel sheet excellent in corrosion resistance and its production | |
KR102031459B1 (en) | Ultra high strength high manganese galvanized steel sheet having excellent coatability and method of manufacturing the same | |
KR20130026133A (en) | Hot dip galvanized steel sheet containing high manganese content having coatability excellent coatability and surface appearance and method for manufacturing the same | |
KR102175731B1 (en) | Alloyed aluminium coated steel sheet having excellent weldability and phosphating properties and method of manufacturing the same | |
KR100685034B1 (en) | Method for manufacturing high strength galvannealed steel sheet | |
KR20230129272A (en) | hot stamped molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20151210 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170103 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20171214 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190103 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20200103 Year of fee payment: 8 |