Nothing Special   »   [go: up one dir, main page]

KR101189141B1 - Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber - Google Patents

Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber Download PDF

Info

Publication number
KR101189141B1
KR101189141B1 KR1020090007427A KR20090007427A KR101189141B1 KR 101189141 B1 KR101189141 B1 KR 101189141B1 KR 1020090007427 A KR1020090007427 A KR 1020090007427A KR 20090007427 A KR20090007427 A KR 20090007427A KR 101189141 B1 KR101189141 B1 KR 101189141B1
Authority
KR
South Korea
Prior art keywords
fiber
aloe vera
cell tissue
cellulose
dietary fiber
Prior art date
Application number
KR1020090007427A
Other languages
Korean (ko)
Other versions
KR20100088295A (en
Inventor
이신영
백진홍
곽연길
차태양
김성아
Original Assignee
주식회사김정문알로에
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사김정문알로에 filed Critical 주식회사김정문알로에
Priority to KR1020090007427A priority Critical patent/KR101189141B1/en
Publication of KR20100088295A publication Critical patent/KR20100088295A/en
Application granted granted Critical
Publication of KR101189141B1 publication Critical patent/KR101189141B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/886Aloeaceae (Aloe family), e.g. aloe vera
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/32Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/332Promoters of weight control and weight loss
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/2102Aloe

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 발명은 식이섬유용 알로에 베라 유 세포 조직의 섬유질 제조 방법에 관한 것으로, 완전히 성숙된 신선한 알로에 베라를 수세하여 부착 토양 및 기타 부착물을 제거한 다음, 박피하여 알로인을 제거하고 유 세포 조직의 겔을 얻은 후, 원심분리(8000 x g)하여 알로에 베라의 섬유질과 겔로 분리, 분획하고, 알로에 섬유질 분획을 취하여 동결건조한 다음, 분말화한다. 알로에 베라 유 세포 조직의 섬유질로서 팽윤력, 보수력 및 지방 흡수능이 공지의 알파-셀룰로오스(α-cellulose) 식이섬유 보다 우수하고, 거품형성능을 나타내지 않아 거품안정성이 높으며, 유화능 및 유화 안정능도 우수하고, CMC 함유 용액은 매우 우수한 분산능을 가지며, 1% 이상의 농도에서 알파-셀룰로오스 보다 높은 농도 의존성 및 의가소성의 점도 특성을 나타내어 새로운 식이섬유 소재로서 유용하게 사용될 수 있고, 포도당 흡수지연 효과와 담즙산 흡수지연효과가 우수하며, 비만 및 변비의 개선 효과가 있다.The present invention relates to a method for producing fiber of aloe vera oil cell tissue for dietary fiber, washing with fresh mature aloe vera to remove adherent soil and other deposits, and then peeling to remove alloin and gel of the cell tissue. After obtaining, centrifugation (8000 xg) to separate and fractionate the fiber and gel of aloe vera, fractions of the aloe fibres are taken, lyophilized and powdered. As a fiber of aloe vera oil cell tissue, swelling power, water retention capacity and fat absorption capacity are better than known alpha-cellulose dietary fiber, and it does not show foaming ability, and thus foam stability is high, and emulsification capacity and emulsion stability are also excellent. In addition, the CMC-containing solution has a very good dispersibility, exhibits higher concentration dependence and pseudoplastic viscosity characteristics than alpha-cellulose at a concentration of 1% or more, and thus can be usefully used as a new dietary fiber material. Excellent absorption delay effect, has the effect of improving obesity and constipation.

알로에 베라, 알로에 베라 섬유질, 알로에 베라 셀룰로오스, 식이섬유 Aloe Vera, Aloe Vera Fiber, Aloe Vera Cellulose, Dietary Fiber

Description

식이섬유용 알로에 베라 유 세포 조직의 섬유질 제조 방법{Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber}Method for preparing fiber of Aloe vera oil cell tissue for dietary fiber {Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber}

본 발명은 식이섬유용 알로에 베라 유 세포 조직의 섬유질 제조 방법에 관한 것으로, 좀 더 구체적으로는 완전히 성숙된 신선한 알로에 베라를 수세하여 부착 토양 및 기타 부착물을 제거한 다음, 박피하여 알로인을 제거하고 유 세포 조직의 겔을 얻은 후, 원심분리(8000 x g)하여 알로에 베라의 섬유질과 겔로 분리, 분획하고, 알로에 섬유질 분획을 취하여 동결건조한 다음, 분말화한 알로에 베라 유 세포 조직의 섬유질을 얻는다. 이는 팽윤력, 보수력 및 지방 흡수능이 공지의 알파-셀룰로오스(α-cellulose) 식이섬유 보다 우수하고, 거품형성능을 나타내지 않아 거품안정성이 높으며, 유화능 및 유화 안정능도 우수하고, CMC 함유 용액은 매우 우수한 분산능을 가지며, 1% 이상의 농도에서 알파-셀룰로오스 보다 높은 농도 의존성 및 의가소성의 점도 특성을 나타내어 새로운 식이섬유 소재로서 유용하게 사용될 수 있고, 포도당 흡수지연 효과와 담즙산 흡수지연효과가 우수하며, 비만 및 변비의 개선 효과가 있다. The present invention relates to a method for producing fiber of aloe vera oil cell tissue for dietary fiber, and more specifically, to wash adherent soil and other adherents by washing with freshly mature fresh aloe vera, and then peeling to remove aloin and After obtaining a gel of the cell tissue, centrifugation (8000 xg) to separate and fractionate the fiber and gel of aloe vera, fractionate, take the aloe fiber fraction, lyophilized, and then obtain a powder of the powdered aloe vera cell tissue. It has better swelling power, water holding capacity and fat absorption ability than known alpha-cellulose dietary fiber, high foam stability because it does not show foaming ability, excellent emulsifying and emulsifying stability, and CMC-containing solution is very good. It has excellent dispersibility and shows higher concentration dependence and pseudoplasticity than alpha-cellulose at the concentration of 1% or more, so it can be usefully used as a new dietary fiber material, and has excellent effect of delaying glucose absorption and delaying absorption of bile acid. There is an improvement in obesity and constipation.

백합과에 속하는 알로에는 다년초 식물로, 다즙성의 다육질 잎을 갖는 CAM (Crassulacean Acid Metabolism) 식물이며, 3500년 이상 동안 다목적으로 광범위하게 민간 치료제로서 널리 사용되어 왔다(Reynolds and Dweck, 1999).Aloe belonging to the family Liliaceae is a perennial plant, CAM (Crassulacean Acid Metabolism) plant with succulent fleshy leaves and has been widely used as a folk remedy extensively for more than 3500 years (Reynolds and Dweck, 1999).

알로에에는 400 여종 이상이 알려져 있는 데, 이 중 알로에 베라(Aloe vera Linne), 알로에아보레센스, 알로에사포나리아가 주로 알려져 있고, 알로에 베라의 주스나 겔이 대표적인 건강기능성 식품의 하나이며, 또 제약이나 화장품 원료로서도 가장 널리 사용되어 온 천연 소재의 하나이다(Kawai et al. 1993; Eshun and He, 2004).More than 400 species of aloe are known, including Aloe vera ( Aloe) vera Linne), aloe aborescens and aloe saponaria are mainly known. Aloe vera juice or gel is one of the representative health functional foods and is one of the most widely used natural materials as a pharmaceutical or cosmetic ingredient (Kawai et al. 1993; Eshun and He, 2004).

알로에 베라는 지난 20여 년간 각종 식품 및 화장품 배합에서 톱텐(top 10)의 위치를 지속적으로 유지한 원료 성분이며, 최근 들어 이의 사용이 더욱 증가되어 알로에를 함유한 최종 제품의 수는 1500개 이상이나 되는 것으로 알려지고 있다(www.iasc.org).Aloe vera is a raw ingredient that has consistently maintained the top ten position in various food and cosmetic formulations over the past two decades, and its use has increased in recent years, resulting in more than 1500 final products containing aloe. It is known to become (www.iasc.org).

알로에 베라 잎의 내부 유 세포 조직(parenchyma tissue)은 99% 이상의 물을 함유하며, 다당이 알로에 베라 유 세포조직의 대부분 건물 중량을 차지한다(Grindlay and Reynolds, 1986; Reynolds and Dweck, 1999). 또한, 유 세포 조직 중 섬유질은 겔의 약 10%를 차지하여 수분함량 다음가는 대량 함유 성분이며, 특히, 식이섬유로서의 특징도 크게 기대되지만 그 역할이나 용도 적성이 전혀 규명되지 않은 채 가공 중의 부산물로 폐기되어 왔다.The internal parenchyma tissue of the aloe vera leaves contains more than 99% water, and polysaccharides make up the bulk of the dry weight of the aloe vera flow tissue (Grindlay and Reynolds, 1986; Reynolds and Dweck, 1999). In addition, the fiber in the flow cell tissue occupies about 10% of the gel and is the next-largest component after the water content, especially as a by-product of processing, although the characteristics as a dietary fiber are expected to be great, but its role and aptitude are not clearly identified at all. It has been scrapped.

식이섬유(dietary fiber)는 사람의 소화 효소로는 소화되지 않는 식물 세포의 구조 잔사(structural residue)로, 소화, 흡수되지 않기 때문에 오랫동안 영양적 가치는 없는 것으로 인식되어 왔다. 그러나, 1970년대에 Trowell(1972, 1976), Burkitt et al.,(1974)에 의해서 심장계 질환, 장 질환을 비롯한 비만증, 당뇨병, 담석 등의 질병들이 식이섬유의 섭취 부족과 관련이 있다고 보고된 이래 그 생리적 역할에 대한 연구와 관심이 크게 고조되었다(Schneeman, 1986, 1989; Reiser, 1987).Dietary fiber is a structural residue of plant cells that is indigestible by human digestive enzymes and has long been perceived to be of no nutritional value because it is not digested or absorbed. However, in the 1970s, Trowell (1972, 1976) and Burkitt et al. (1974) reported that diseases such as heart disease, bowel disease, obesity, diabetes, gallstones, and the like were associated with lack of dietary fiber. Since then, research and interest in the physiological role has been greatly increased (Schneeman, 1986, 1989; Reiser, 1987).

식이섬유는 주로 다당류와 리그닌인데, 크게 불용성 및 수용성 식이섬유로 구분되며, 이들의 생리적 효과도 서로 다른 것으로 보고되었다(Kay, 1982; Schneeman, 1987; Prosky, et al., 1988; Lee and Lee, 1996). Dietary fibers are mainly polysaccharides and lignin, which are largely divided into insoluble and water-soluble dietary fibers, and their physiological effects have been reported to be different (Kay, 1982; Schneeman, 1987; Prosky, et al. , 1988; Lee and Lee). , 1996).

수용성 식이섬유는 과일, 보리, 두류 식품 등에 주로 함유되어 있으며, 수분 보유능(water-holding capacity)이 크고, 겔(gel) 형성능이 우수하여 음식물의 점성을 높여 준다. 또, 위에서의 체류시간을 증가시키고, 포만감을 제공하여 영양분의 흡수를 느리게 하며(Krotkiewski, 1987), 이러한 영양소의 소화 및 흡수의 지연은 당뇨병 환자의 혈액 내 포도당 부하(glucose tolerance)를 증진시키는 효과를 가진다고 보고되었다(Jenkins et al., 1976, 1978; Anderson and Chen, 1979). 또한, 담즙산(bile acid)과 결합하여 분변으로 배출됨으로써 체내 담즙산 보충을 위한 콜레스테롤의 소모를 유도한다(Anderson et al., 1984; Van Horn et al., 1986). 이에 따라 혈중 콜레스테롤 값을 저하시키며, 심장병 및 동맥경화를 예방하고 대장암의 발병율을 낮춰 준다고 보고되었다(Koseki, et al., 1990; Kay and Truswell, 1977). Water-soluble dietary fiber is mainly contained in fruits, barley, legumes, foods, water retention capacity (water-holding capacity), the gel (gel) ability to improve the viscosity of the food increases. In addition, it increases the residence time in the stomach, provides a feeling of satiety, slows the absorption of nutrients (Krotkiewski, 1987), and the delay in digestion and absorption of these nutrients increases the glucose tolerance in the blood of diabetics. Have been reported (Jenkins et al ., 1976, 1978; Anderson and Chen, 1979). In addition, by binding to bile acid (bile acid) is excreted in the feces to induce the consumption of cholesterol for bile acid supplementation in the body (Anderson et al. , 1984; Van Horn et al. , 1986). This has been reported to lower blood cholesterol levels, prevent heart disease and atherosclerosis, and lower the incidence of colorectal cancer (Koseki, et al. , 1990; Kay and Truswell, 1977).

반면, 불용성 식이섬유는 주로 식물 세포벽의 구성 성분으로 밀 겨, 옥수수 겨 및 곡류에 함유되어 있으며, 수분 보유능이 커서 위에 포만감을 주고, 변을 묽 게 하여 장에서의 이동시간을 감소시켜 통변을 용이하게 한다(Anderson et al., 1984). 또, 대장 내에서 세균에 의해 일부 분해되어 짧은 사슬 지방산(short chain fatty acid)으로 발효되는 등, 주로 대장 기능에 관련된 효과를 나타내고 있다(Van Horn et al., 1986). 이외에도 식이섬유는 혈압강하 작용을 가지며, 비만에 좋고, 특히, 포도당의 흡수를 지연시켜 인슐린 요구량을 감소시킴으로써 당뇨병의 치료에도 많은 도움이 되는 것으로 잘 알려져 있다(Koseki et al., 1990; Yoon et al., 1987; Torsdottir et al., 1990; Kim et al., 2004). On the other hand, insoluble dietary fiber is mainly composed of plant cell wall, which is contained in wheat bran, corn bran, and grains, and has a large water retention ability to give satiety on the stomach, and to thin the stools, reducing the travel time in the intestine, thereby facilitating bowel movement. (Anderson et al ., 1984). In addition, it is partially decomposed by bacteria in the large intestine and fermented into short chain fatty acids, and thus mainly shows effects on the large intestine function (Van Horn et al. , 1986). In addition, it is well known that dietary fiber has a blood pressure-lowering effect, is good for obesity, and is particularly helpful for the treatment of diabetes by delaying glucose absorption and reducing insulin demand (Koseki et al. , 1990; Yoon et al. ., 1987;. Torsdottir et al , 1990;. Kim et al, 2004).

그러므로, 그 동안 천연의 각종 식이섬유 급원을 대상으로 하여 동물 및 임상실험을 통한 각종 생리기능을 밝히는 연구가 있었으며, 동시에 이들 생리기능성과 관련되는 식이섬유의 대표적 특성으로서 보수력과 졸(sol)의 형성능, 양이온 교환능, 담즙산 결합력 등의 물리화학적 특성에 대한 광범위한 연구들이 이루어져 왔다(Ebihara와 Kiriyama, 1990; Eastwood et al., 1986).Therefore, there have been studies to clarify various physiological functions through animal and clinical experiments for various natural sources of dietary fiber, and at the same time, as a representative characteristic of dietary fiber related to these physiological functions, water retention capacity and sol formation ability Extensive research has been done on physicochemical properties such as cation exchange capacity, bile acid binding capacity (Ebihara and Kiriyama, 1990; Eastwood et al. , 1986).

하지만 알로에 베라의 섬유질은 현재 모든 알로에 가공 업체에서 가공 중의 부산물로 폐기되었으며, 아직 식이섬유로서의 검토는 전혀 이루어 진 바가 없었다. However, aloe vera fiber has now been discarded as a by-product of processing at all aloe processing companies and has not yet been considered as a dietary fiber.

따라서, 본 발명의 목적은 팽윤력, 보수력 및 지방 흡수능이 공지의 알파-셀룰로오스(α-cellulose) 식이섬유 보다 우수하고, 거품형성능을 나타내지 않아 거품안정성이 높으며, 유화능 및 유화 안정능도 우수하고, CMC 함유 용액은 매우 우수한 분산능을 가지며, 1% 이상의 농도에서 알파-셀룰로오스 보다 높은 농도 의존성 및 의가소성의 점도 특성을 나타내어 새로운 식이섬유 소재로서 유용하게 사용될 수 있고, 포도당 흡수지연 효과와 담즙산 흡수지연효과가 우수하며, 비만 및 변비의 개선 효과가 있는 식이섬유용 알로에 베라 유 세포 조직의 섬유질 제조 방법을 제공하는 데 있다.Therefore, the object of the present invention is that the swelling power, water retention capacity and fat absorption ability are better than the known alpha-cellulose (α-cellulose) dietary fiber, it does not show the foaming ability, the foam stability is high, and the emulsification capacity and the emulsion stability is also excellent. , CMC-containing solutions have very good dispersibility, and have higher viscosity dependence and pseudoplasticity than alpha-cellulose at concentrations of 1% or more, and thus can be usefully used as a new dietary fiber material. The present invention provides a method for producing fiber of aloe vera oil cell tissue for dietary fiber, which has excellent delaying effect and has an effect of improving obesity and constipation.

상기 목적 뿐만 아니라 용이하게 표출되는 다른 목적들을 용이하게 달성하기 위하여 본 발명에서는 알로에 베라를 수세한 후 박피하여 알로인을 제거하고 유 세포 조직의 겔을 얻은 후, 원심분리(8000 x g)하여 알로에 베라의 섬유질과 겔로 분리, 분획하고, 알로에 섬유질 분획을 취하여 동결건조한 다음, 분말화한다. 알로에 베라 유 세포 조직의 섬유질을 식이섬유로 사용함으로써 팽윤력, 보수력 및 지방 흡수능이 공지의 알파-셀룰로오스(α-cellulose) 식이섬유 보다 우수하고, 거품형성능을 나타내지 않아 거품안정성이 높으며, 유화능 및 유화 안정능도 우수하고, CMC 함유 용액은 매우 우수한 분산능을 가지며, 1% 이상의 농도에서 알파-셀룰로오스 보다 높은 농도 의존성 및 의가소성의 점도 특성을 나타내어 새로운 식이섬유 소재로서 유용하게 사용될 수 있고, 포도당 흡수지연 효과와 담즙산 흡수지연효과가 우수하며, 비만 및 변비의 개선 효과를 얻을 수 있었다.In order to easily achieve the above object as well as other objects that are easily expressed in the present invention, after washing with aloe vera and peeling to remove the aloe and to obtain a gel of the flow cell tissue, centrifugation (8000 xg) aloe vera The fibrous and gel were separated and fractionated. The aloe fibrous fraction was taken, lyophilized, and powdered. By using fiber of aloe vera oil cell tissue as dietary fiber, swelling power, water retention capacity and fat absorption capacity are better than known alpha-cellulose dietary fiber, it does not show foaming ability, high foam stability, emulsification capacity and Emulsification stability is excellent, CMC-containing solution has a very good dispersibility, has a higher viscosity-dependent viscosity and pseudoplasticity than alpha-cellulose at a concentration of 1% or more, can be useful as a new dietary fiber material, glucose The absorption delay effect and the bile acid absorption delay effect was excellent, and the effect of improving obesity and constipation was obtained.

본 발명에 따른 식이섬유용 알로에 베라 유 세포 조직의 섬유질은 식이섬유로 사용함으로써 팽윤력, 보수력 및 지방 흡수능이 공지의 알파-셀룰로오스(α-cellulose) 식이섬유 보다 우수하고, 거품형성능을 나타내지 않아 거품안정성이 높으며, 유화능 및 유화 안정능도 우수하고, CMC 함유 용액은 매우 우수한 분산능을 가지며, 1% 이상의 농도에서 알파-셀룰로오스 보다 높은 농도 의존성 및 의가소성의 점도 특성을 나타내어 새로운 식이섬유 소재로서 유용하게 사용될 수 있고, 포도당 흡수지연 효과와 담즙산 흡수지연효과가 우수하며, 비만 및 변비의 개선 효과를 얻을 수 있다.The fiber of the aloe vera oil cell tissue for dietary fiber according to the present invention is superior to the known alpha-cellulose dietary fiber, and it does not show the foaming ability by using the fiber as a dietary fiber. It has high stability, excellent emulsifying and emulsifying stability, and CMC-containing solution has a very good dispersing ability, and shows higher concentration dependence and plasticity of viscosity than alpha-cellulose at a concentration of 1% or more. It can be usefully used, excellent in delaying glucose absorption and delaying bile acid absorption, and improving the effect of obesity and constipation.

본 발명에 따른 식이섬유용 알로에 베라 유 세포 조직의 섬유질 제조 방법은 완전히 성숙된 신선한 알로에 베라를 수세하여 부착 토양 및 기타 부착물을 제거한 다음, 박피하여 알로인을 제거하고 유 세포 조직의 겔을 얻은 후, 원심분리(8000 x g)하여 알로에 베라의 섬유질과 겔로 분리, 분획하고, 알로에 섬유질 분획을 취하여 동결건조한 다음, 분말화한 것으로 특징지워진다.In the fiber manufacturing method of aloe vera oil cell tissue for dietary fiber according to the present invention, after washing with fully mature fresh aloe vera to remove adherent soil and other adherents, it is peeled to remove alloin and to obtain gel of milk cell tissue. After centrifugation (8000 xg), the aloe vera fibers and gels were separated and fractionated. The aloe fibrous fractions were taken, lyophilized and then powdered.

본 발명에 있어서 알로에는 출원인의 농장에서 직접 재배한 국내산 알로에 베라(Aloe vera Linne)를 사용하였으며, 4℃의 저온실에 보존하면서 사용하였다.In the present invention, domestic aloe vera ( Aloe vera Linne) grown directly on the applicant's farm was used, and used while preserving in a low temperature room at 4 ° C.

먼저, 성숙되고 신선한 알로에 베라를 선별하고, 2 ~ 3회 수세하여 부착 토양 및 기타 부착물을 제거한 다음, 박피하여 알로인을 제거한다. First, mature and fresh aloe vera is screened, washed 2-3 times to remove adherent soil and other deposits, and then peeled to remove aloin.

알로인은 알로에에서 추출되는 쓴맛을 가지고 있는 노란색 유동액이고, 안트라퀴논 글리코사이드(anthraquinone glycosides)로서 알로에의 껍질에 많이 들어있기 때문에 박피를 행하여 알로인 성분을 제거하여 쓴맛이 없는 알로에 베라 유 세포 조직의 겔을 얻는다. Aloe is a bitter yellow fluid that is extracted from aloe. It is anthraquinone glycosides and is contained in the skin of aloe. Get the gel.

상기에서 얻은 알로에 베라 유 세포 조직의 겔을 원심분리하여 알로에 베라의 섬유질과 겔로 분리, 분획하고, 알로에 섬유질 분획을 취하여 동결건조한 다음, 분말화한다.The gel of the aloe vera flow cell tissue obtained above is centrifuged to separate and fractionate the fiber and gel of the aloe vera. The aloe fiber fraction is taken, lyophilized, and powdered.

원심분리는 섬유질과 겔의 분리가 용이하게 이루어지는 조건으로 행하는 것이 바람직하고, 본 발명에서는 8000 x g의 회전속도로 원심분리하였지만 이에 한정되는 것은 아니고, 회전속도를 향상시키면 원심분리 효과가 향상되지만 고가의 장비를 사용하여야 한다는 단점이 있으며, 회전속도를 낮추게 되면 원심분리에 시간이 많이 소요되고 원심분리가 용이하게 이루어지지 않는다는 문제점이 있다.Centrifugation is preferably carried out under conditions in which fibers and gels are easily separated. In the present invention, centrifugation is performed at a rotational speed of 8000 xg, but the present invention is not limited thereto. There is a disadvantage that the equipment must be used, there is a problem that if the rotational speed is lowered, the centrifugation takes a lot of time and the centrifugation is not easy.

뿐만 아니라, 알로에 베라 유 세포 조직의 섬유질 분획은 동결건조하는 것이 효과적이고, 알로에 베라 유 세포 조직의 섬유질 분획이 변질되지 않는다면 동결건조 이외의 건조 방법을 사용하여 건조할 수도 있으며, 동결건조 조건도 특별히 한정되는 것은 아니지만 본 발명에서는 0.05 토르(torr)에서 24시간 동안 행하는 것이 효과적이었다.In addition, lyophilization of the fibrous fraction of aloe vera flow cell tissue is effective, and if the fibrous fraction of the aloe vera flow cell tissue is not altered, it may be dried using a drying method other than lyophilization. Although not limited, it was effective in the present invention for 24 hours at 0.05 torr.

건조된 알로에 베라 유 세포 조직의 섬유질을 분쇄하여 분말화한다. 본 발명 에 있어서, 분쇄시 분말의 입도는 80메쉬(mesh) 정도로 행하는 것이 효과적이지만, 반드시 이에 한정되는 것이 아니다. The fiber of the dried aloe vera oil cell tissue is ground and powdered. In the present invention, the particle size of the powder during grinding is effective to about 80 mesh, but is not necessarily limited thereto.

상기와 같이 제조된 본 발명에 따른 식이섬유용 알로에 베라 유 세포 조직의 섬유질은 식이섬유로 사용함으로써 팽윤력, 보수력 및 지방 흡수능이 공지의 알파-셀룰로오스(α-cellulose) 식이섬유 보다 우수하고, 거품형성능을 나타내지 않아 거품안정성이 높으며, 유화능 및 유화 안정능도 우수하고, CMC 함유 용액은 매우 우수한 분산능을 가지며, 1% 이상의 농도에서 알파-셀룰로오스 보다 높은 농도 의존성 및 의가소성의 점도 특성을 나타내어 새로운 식이섬유 소재로서 유용하게 사용될 수 있고, 포도당 흡수지연 효과와 담즙산 흡수지연효과가 우수하며, 비만 및 변비의 개선 효과를 얻을 수 있었다.The fiber of the aloe vera oil cell tissue for dietary fiber according to the present invention prepared as described above is superior to the known alpha-cellulose dietary fiber with swelling, water retention, and fat absorption ability by using as a fiber. It shows no foaming ability, high foam stability, excellent emulsifying and emulsifying stability, and CMC-containing solution has very good dispersing ability. It shows higher concentration dependence and pseudoplasticity than alpha-cellulose at 1% or higher concentration. It can be usefully used as a new dietary fiber material, excellent in delaying glucose absorption and delaying bile acid absorption, and improving obesity and constipation.

다음의 실시예 및 실험예는 본 발명을 좀 더 상세히 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다. 실시예 및 실험에에 있어서, 비교 표준시료로는 알파-셀룰로오스(α-cellulose : Sigma-Aldrich사의 제품, Product no. C8002)를 사용하였다.The following Examples and Experimental Examples illustrate the present invention in more detail, but do not limit the scope of the invention. In Examples and Experiments, alpha-cellulose (α-cellulose: product No. C8002, manufactured by Sigma-Aldrich, Inc.) was used as a comparative standard sample.

실시예 1Example 1

알로에 베라 유 세포 조직의 섬유질의 수분, 단백질, 지방, 탄수화물 및 회분함량을 상법에 따라 측정하였으며, 수용성 식이섬유(soluble dietary fiber, SDF) 및 불용성 식이섬유(insoluble dietary fiber, IDF)의 함량을 AOAC에서 공인한 Prosky et al.,(1988)의 방법에 의하여 구하였고, 총 식이섬유(total dietary fiber, TDF) 함량은 불용성 심이섬유와 수용성 식이섬유의 합(TDF, % = IDF+SDF)으 로 계산하여 그 결과를 표 1에 기재하였다.Moisture, protein, fat, carbohydrate and ash content of fiber of Aloe Vera cell tissue were measured according to the conventional method, and the content of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) was measured by AOAC. Prosky e t al. , (1988), and the total dietary fiber (TDF) content was calculated from the sum of insoluble fiber and water soluble fiber (TDF,% = IDF + SDF) and the results are shown in Table 1 It is described in.

또한, 다당류는 알로에의 유효 성분지표인 glucomannan의 결정을 위해 개발한 Ebarandu et al.,(2005)의 비색법에 따라 다음과 같이 측정하였다. 즉, 400㎕의 시료를 1회용 유리 배양관에 옮기고, 각 관에 4㎖의 콩고레드(Congo red : sodium 4,4'- diphenyl-2,2`-diazo-bis-1-naphthalamino-4-sulfonate) 시약을 첨가하여 온화하게 볼텍싱(vortexing)하여 혼합하고, 혼합물을 실온에서 20분간 방치한 후, 이의 흡광도를 540 nm에서 측정하였다. Polysaccharides were also developed for the determination of glucomannan, the active ingredient index of aloe, Ebarandu et al. According to the colorimetric method of, (2005), it was measured as follows. That is, 400 μl of sample was transferred to a disposable glass culture tube, and 4 ml of Congo red (Congo red: sodium 4,4'-diphenyl-2,2`-diazo-bis-1-naphthalamino-4-sulfonate) was placed in each tube. A) reagent was added, gently vortexed and mixed, the mixture was left at room temperature for 20 minutes, and its absorbance was measured at 540 nm.

이 때, 다당의 함량은 별도로 표준 다당을 조제하고 이를 사용하여 작성한 표준곡선으로부터 산출하였다. At this time, the content of the polysaccharide was calculated from a standard curve prepared by separately preparing a standard polysaccharide and using the same.

항목 Item (%, d.b.)(%, d.b.) 수분moisture 1.13±0.031.13 ± 0.03 조 단백질Crude protein 3.93±0.05.3.93 ± 0.05. 조 지방Crude fat 0.31±0.020.31 + 0.02 총 회분Total ash 5.38±0.105.38 ± 0.10 탄수화물carbohydrate 1.76±0.051.76 ± 0.05 불용성 식이섬유Insoluble Dietary Fiber 67.90±1.0467.90 ± 1.04 수용성 식이섬유Water soluble fiber 19.59±0.1319.59 ± 0.13

상기 표 1로부터 알 수 있는 바와 같이, 알로에 베라 유 세포 조직의 섬유질의 수분함량은 1.13%이었으며, 나머지 성분은 건물중량으로 탄수화물의 함량이 89.25%로 가장 높았고, 회분과 조단백질 함량이 각각 5.38 및 3.93%로 다음으로 높았으며, 지방함량은 0.31%에 불과하였다. As can be seen from Table 1, the water content of the fiber of the aloe vera oil cell tissue was 1.13%, the remaining components of the carbohydrate content was the highest as 89.25% by dry weight, ash and crude protein content of 5.38 and 3.93, respectively The percentage was the next highest and the fat content was only 0.31%.

전체 탄수화물 함량 중 총 식이섬유가 차지하는 양은 87.49%가 되어 98%가 기대했던 대로 식이섬유이었다. 불용성 식이섬유는 전체의 77.6%이었고, 수용성 식이섬유는 22.4%로 불용성과 수용성의 비는 약 4:1이었다. The total dietary fiber accounted for 87.49% of total carbohydrate content, which was 98% as expected. The insoluble dietary fiber was 77.6%, and the water-soluble dietary fiber was 22.4%, and the ratio of insoluble to water-soluble was about 4: 1.

한편, 본 발명의 알로에 베라 유 세포 조직의 섬유질의 높은 회분 함량은 섬유질의 미네랄(mineral)과의 친화력이나 결합 때문인 것으로 추정된다. 일반적으로, 셀룰로오스, 헤미셀룰로오스 및 과일이나 야채에 풍부한 식이는 변 중에 Ca, Mg, Zn, Cu 등의 미네랄 함량을 증가시키는 것으로 보고되었다(Kay, 1982). 따라서, 식이섬유가 미네랄의 생물학적 이용 가능성(bioavailability)을 감소시키는 것은 잘 알려진 사실인데, 이는 산성 다당류나 셀룰로오스와 같은 정제 식이섬유가 이온교환능에 의해 1가 또는 2가 이온과 결합함에 기인하는 것으로 보고되었다(Kay, 1982; Harland, 1989).On the other hand, the high ash content of the fiber of the aloe vera oil cell tissue of the present invention is presumably due to the affinity or binding of the fiber mineral. In general, diets rich in cellulose, hemicellulose and fruits or vegetables have been reported to increase mineral content of Ca, Mg, Zn, Cu, etc. in feces (Kay, 1982). Thus, it is well known that dietary fiber reduces the bioavailability of minerals, which is attributed to the binding of monovalent or divalent ions to purified dietary fiber, such as acidic polysaccharides or cellulose, by ion exchange capacity. (Kay, 1982; Harland, 1989).

실시예 2Example 2

알로에 베라 유 세포 조직의 섬유질에 대한 물성 특성을 알아보기 위해 결정 및 표면구조의 관찰, 보수력, 보유능, 유화능 및 안정성, 거품 형성능과 안정성 및 점도 특성 등을 다음과 같이 측정하였다. In order to investigate the physical properties of fiber of aloe vera oil cell tissues, the observation of crystal and surface structure, water retention, retention capacity, emulsification capacity and stability, foam formation ability and stability and viscosity characteristics were measured as follows.

(1) 결정 및 표면구조 (1) crystal and surface structure

결정구조는 X선 회절계(X-ray diffractometer : Bruker model D5005)로 관찰하였다. 조작조건은 40kV/ 30mA에서 대음극으로 동(Cu Kα)관을 사용하였고, step size 0.04로 2θ=10 ~ 60˚까지 회절시켰고, 그 결과를 표 2에 기재 및 도 2에 도시하였다. The crystal structure was observed by X-ray diffractometer (Bruker model D5005). The operating conditions were copper (Cu K α ) tube as a large cathode at 40kV / 30mA, and diffraction to 2θ = 10 ~ 60˚ with step size 0.04, the results are shown in Table 2 and shown in FIG.

또한, 표면구조는 주사형 전자현미경(Hitachi SEM model S-4300)으로 관찰하였다. 즉, 시료를 양면 접착 테이프에 얇게 분산시킨 후, Au로 진공증착(100Å 두께)하여 전압 5kV, 시료 경사 30o의 조건에서 1,000 ~ 20,000배로 촬영하여 관찰하였고, 그 결과를 도 3에 도시하였다. In addition, the surface structure was observed with a scanning electron microscope (Hitachi SEM model S-4300). That is, the sample was thinly dispersed on a double-sided adhesive tape, vacuum-deposited (100 kPa thick) with Au, and photographed and observed at 1,000 to 20,000 times under conditions of a voltage of 5 kV and a sample inclination of 30 o , and the results are shown in FIG. 3.

(2) FT-IR 분석 (2) FT-IR analysis

FT-IR(Fourier transformed infra red) spectra는 동결건조한 UF 전후 시료 2mg을 함유한 KBr 다스크(disc)를 조제하고, 3cm-1의 해상도로 Bio-Rad Model Excaliber(Cambridge, USA) 기기를 사용하여 얻었으며, 그 결과를 도 1에 도시하였다. Fourier transformed infra red (FT-IR) spectra were prepared using a Bio-Rad Model Excaliber (Cambridge, USA) instrument with a resolution of 3 cm -1 prepared with KBr discs containing 2 mg of lyophilized UF samples. Was obtained and the result is shown in FIG.

(3) 보수력(water holding capacity; WHC)(3) water holding capacity (WHC)

AACC 방법(1981)을 사용하여 결정하였다. 즉, 시료 5g을 칭량하여 미리 칭량한 50㎖ 원심분리관에 넣고, 각 시료에 증류수를 소량 가한 후 유리봉으로 저어주었다. It was determined using the AACC method (1981). That is, 5 g of the sample was weighed into a 50 ml centrifuge tube previously weighed, and a small amount of distilled water was added to each sample, followed by stirring with a glass rod.

혼합물이 완전히 젖은 후 2000g에서 10분간 원심분리한 다음, 상징액 액체의 량을 측정하였고, 보수력(시료 고형분 g당 물의 g)을 다음 식으로 구하였다.After the mixture was completely wet, the mixture was centrifuged at 2000 g for 10 minutes, and then the amount of the supernatant liquid was measured, and the water holding capacity (g of water per g of sample solids) was obtained by the following equation.

WHC = (WWHC = (W 22 -W-W 1One )/W) / W o o

여기서, Wo는 건조시료 중량(g), W1은 관과 시료의 무게(g), W2는 관과 침전물의 무게(g)이며, 각 시료에 대해 3회 반복 실험하고, 그 결과를 표 3에 기재하였다. Where W o is the dry sample weight (g), W 1 is the weight of the tube and the sample (g), W 2 is the weight of the tube and the sediment (g), and the test is repeated three times for each sample. It is shown in Table 3.

(4) 보유능(oil absorption capacity; OAC)(4) oil absorption capacity (OAC)

보유능은 Chakraborty의 방법(1986)으로 측정하였다. 시료 1g을 칭량하여 미리 칭량된 50㎖ 원심분리관에 넣고, 10㎖의 콩기름(soybean oil) 또는 미강유(rice bran oil)와 완전하게 혼합하였다. 시료-오일 혼합물을 1600g에서 10분간 원심분리하고 상징액을 제거하여 관 무게를 측정하였으며, 지방 흡수능(시료 고형분 g당 오일 g)을 다음과 같이 계산하였다. Retention capacity was measured by Chakraborty's method (1986). 1 g of sample was weighed and placed in a pre-weighed 50 ml centrifuge tube and mixed thoroughly with 10 ml soybean oil or rice bran oil. The sample-oil mixture was centrifuged at 1600 g for 10 minutes and the supernatant was removed to determine the tube weight, and the fat absorption capacity (g oil per g solid sample) was calculated as follows.

OAC =(WOAC = (W 22 -W-W 1One )/W) / W oo

여기서, Wo는 건조시료 중량(g), W1은 관과 시료의 무게(g), W2는 관과 침전물의 무게(g)이며, 각 시료에 대해 3회 반복 실험하고, 그 결과를 표 3에 기재하였다. Where W o is the dry sample weight (g), W 1 is the weight of the tube and the sample (g), W 2 is the weight of the tube and the sediment (g), and the test is repeated three times for each sample. It is shown in Table 3.

(5) 유화능 및 안정성(emulsifying capacity and stability)(5) emulsifying capacity and stability

유화능(EC) 및 유화 안정성(ES)은 Yasumatsu et al., 방법(1972)에 따라 3회 반복 실험하였다. 각 시료 8g을 칭량하고 혼합기(blender)로 옮겨 증류수 100㎖ 및 대두유 100㎖와 혼합하고 고속으로 1분간 혼합하여 유화액을 형성하였다. 각 시료에 대해 유화액의 고정량(40㎖, Vt)를 취하여 50㎖ 원심분리관에 옮기고 1475g에서 5분간 원심분리하였다. 유화 분획의 부피(Vf1)을 기록하고 O/W 유화분획을 포함한 관은 80℃ 수욕(water bath)에서 30분간 가열한 후, 실온으로 냉각하였으며, 이를 원심분리(1475 x g, 5분)후 남아있는 유화분획의 부피(Vf2)를 기록하였다. EC 및 ES는 각각 다음 식으로 나타내었고, 그 결과를 도 2에 도시하였다. The emulsification capacity (EC) and emulsification stability (ES) were determined by Yasumatsu et al. , Was repeated three times according to the method (1972). 8 g of each sample was weighed, transferred to a blender, mixed with 100 ml of distilled water and 100 ml of soybean oil, and mixed at high speed for 1 minute to form an emulsion. For each sample, a fixed amount of emulsion (40 ml, Vt) was taken, transferred to a 50 ml centrifuge tube, and centrifuged at 1475 g for 5 minutes. The volume of the emulsion fraction (V f1 ) was recorded and the tube containing the O / W emulsion fraction was heated in an 80 ° C. water bath for 30 minutes and then cooled to room temperature, which was centrifuged (1475 xg, 5 minutes). The volume of remaining emulsion fraction (V f2 ) was recorded. EC and ES are respectively represented by the following formulas, and the results are shown in FIG.

EC(%) = (V f1 /Vt) x 100 EC (%) = (V f1 / Vt) x 100

ES(%) = (V f2 /Vt) x 100 ES (%) = (V f2 / Vt) x 100

(6) 거품 형성능과 안정성(foaming capacity and stability)(6) foaming capacity and stability

거품 형성능(FC) 및 거품 안정성(FS)은 Mitchell의 방법 (1986)을 사용하여 3회 반복 실험하였다. 0 ~ 3wt%의 시료(1% 난알부민(egg albumin) + 0.5% CaCl2 함유) 수용액 75㎖(Vi)를 고속 균질기로 3분간 혼합하였다. 메스실린더에 붓고 즉각 거품 부피(Vf)를 측정하였다. 거품은 25℃에서 30분간 그대로 방치하였고, 거품 밑에 생성된 액체부피(Vo)를 측정한 다음, FC(액체 ㎖당 거품 ㎖) 및 FS(초기부피 ㎖당 거품에 남아있는 액체의 ㎖)를 다음 식에 의해 각각 구하고, 실험 결과를 도 3 및 도 4에 도시하였다.Foam forming ability (FC) and foam stability (FS) were repeated three times using Mitchell's method (1986). 75 ml (Vi) of an aqueous solution of 0 to 3 wt% (containing 1% egg albumin + 0.5% CaCl 2 ) was mixed for 3 minutes using a high-speed homogenizer. Pour into the measuring cylinder and measure the foam volume (V f ) immediately. The foam was left to stand at 25 ° C. for 30 minutes and the volume of liquid (Vo) produced under the foam was measured, followed by FC (ml of foam per ml of liquid) and FS (ml of liquid remaining in foam per ml of initial volume). Each was calculated | required by the formula, and the experimental result is shown in FIG. 3 and FIG.

FC = VFC = V f f / Vi/ Vi

FS = (Vi-Vo) / Vi                      FS = (Vi-Vo) / Vi

(7) 점도 특성 측정 (7) Viscosity Characteristic Measurement

시료 그대로 또는 시료에 0.1 ~ 0.5%의 안정제(CMC)를 혼합하고, 증류수에 현탁시켜 1 ~ 3% 현탁액으로 하였다. 60℃로 가온하고, 다시 30℃로 냉각하여 회전점도계(Brookfield DV-II+, Brookfield Eng. Labs Inc.)를 사용하여 spindle No. 1으로 점도를 측정하고, 그 결과를 도 5 및 도 6에 도시하였다.0.1-0.5% of stabilizer (CMC) was mixed with the sample as it was or suspended in distilled water to obtain a 1-3% suspension. Warm to 60 ° C. and cool to 30 ° C. again using a spindle viscometer (Brookfield DV-II +, Brookfield Eng. Labs Inc.). The viscosity was measured by 1 and the results are shown in FIGS. 5 and 6.

Position
(2θ)
Position
(2θ)
Height
(cts)
Height
(cts)
Full width at half maximum
(2θ)
Full width at half maximum
(2θ)
d-spacing
(Å)
d-spacing
(A)
Relative Intensity
(%)
Relative Intensity
(%)
Tip width
(2.θ)
Tip width
(2.θ)
15.0615.06 93.0193.01 0.800.80 5.885.88 27.4427.44 0.960.96 21.6421.64 338.96338.96 2.682.68 4.114.11 100.00100.00 3.213.21 24.8224.82 102.10102.10 0.400.40 3.593.59 30.1230.12 0.480.48 26,2726,27 144.41144.41 0.130.13 3.393.39 42.6142.61 0.160.16

팽윤력
(㎖/g)
Swelling force
(Ml / g)
보수력
(물 g/고형분 g)
Conservative
(Water g / solid content g)
보유능
(오일 g/고형분 g)
Ability
(Oil g / solid content g)
본 발명의 섬유질Fiber of the Invention 27.33 ± 0.7627.33 ± 0.76 6.40 ± 0.196.40 ± 0.19 10.32 ± 0.2910.32 ± 0.29 비교 표준시료Comparative Standard Sample 8.33 ± 0.298.33 ± 0.29 4.43 ± 0.134.43 ± 0.13 4.92 ± 0.084.92 ± 0.08

본 발명의 알로에 베라 유 세포 조직의 섬유질은 성분 분석 결과, 식이섬유인 것으로 나타났는데, 통상 식이섬유는 다당류와 리그닌으로 나뉘며, 다시 다당류는 셀룰로오스와 비-셀룰로오스 다당류로 나뉜다(Kay, 1982), 본 발명의 알로에 베라 유 세포 조직의 섬유질은 FT-IR 특성을 조사한 결과, 도 1에 도시된 바와 같이, 전형적인 다당의 IR 흡수 특성을 나타내었다. 따라서, 본 발명의 알로에 베라 유 세포 조직의 섬유질은 리그닌이 아닌 다당인 것으로 추정되고, 불용성 식이섬유가 주였으므로 셀룰로오스일 가능성이 높다. 따라서, 이를 보다 더 명확히 확인하기 위해 이의 결정구조를 X-선 회절에 의해 조사하였다. As a result of the component analysis, the fiber of the aloe vera oil cell tissue of the present invention was found to be a dietary fiber. In general, dietary fiber is divided into polysaccharides and lignin, and polysaccharides are divided into cellulose and non-cellulose polysaccharides (Kay, 1982). The fiber of the aloe vera oil cell tissue of the invention showed the IR absorption characteristics of typical polysaccharides, as shown in Figure 1, by examining the FT-IR characteristics. Therefore, the fiber of the aloe vera oil cell tissue of the present invention is assumed to be polysaccharide rather than lignin, and insoluble dietary fiber is most likely to be cellulose. Thus, to more clearly confirm this, its crystal structure was examined by X-ray diffraction.

일반적으로 2θ= 10 ~ 40o 범위에서 결정성분에 유래하는 피크는 7개인데, 이 중 천연 셀룰로오스에 특징적인 것은 4개(2θ≒15, 17, 22, 34)이며, 2θ=22 o부근에 나타나는 회절은 셀룰로오스 섬유표면의 석출에 기인한다고 알려지고 있다(Wada et al., 1994). In general, there are seven peaks derived from the crystalline component in the range of 2θ = 10 to 40 o , of which four are characteristic of natural cellulose (2θ ≒ 15, 17, 22, 34), and around 2θ = 22 o The diffraction that appears is known to be due to the precipitation of the surface of cellulose fibers (Wada et al ., 1994).

도 2에 도시된 바와 같이, 본 발명의 알로에 베라 유 세포 조직의 섬유질에 대한 회절 피크의 2θ는 15.0, 21.6, 24.8 및 26.2로 2θ=14.6, 16.6 및 22.6의 셀룰로오스-I의 회절양상과 차이를 나타내었다. 오히려 2θ=15.4 및 22.2의 알파-셀룰로오스와 같은 셀룰로오스 IV의 회절양상에 가까웠으나, 표 2에 기재된 바와 같이, 셀룰로오스 III의 암모니아 셀룰로오스나 폴리(에틸렌 글리콜) 셀룰로오스의 2θ 피크를 보여 알파-셀룰로오스와 차이를 보였다. As shown in Figure 2, the 2θ of the diffraction peaks for the fiber of the aloe vera flow cell tissue of the present invention is 15.0, 21.6, 24.8 and 26.2, the difference between the diffraction pattern of cellulose-I of 2θ = 14.6, 16.6 and 22.6 Indicated. Rather, it was close to the diffraction pattern of cellulose IV such as alpha-cellulose of 2θ = 15.4 and 22.2, but as shown in Table 2, it showed 2θ peak of ammonia cellulose or poly (ethylene glycol) cellulose of cellulose III and was different from alpha-cellulose. Showed.

한편, 도 3으로부터 알 수 있는 바와 같이 본 발명의 알로에 베라 유 세포 조직의 섬유질의 표면구조를 주사형 전자현미경을 이용하여 100배 및 500배 배율로 관찰하였을 때 미세 섬유상 구조를 나타내었다.On the other hand, as can be seen from Figure 3 when the surface structure of the fiber of the aloe vera oil cell tissue of the present invention was observed at 100 and 500 times magnification using a scanning electron microscope showed a fine fibrous structure.

Lee et al.,(2005)은 biocellulose의 경우 섬유상 구조를 가지나 α-cellulose는 겔 유사 구조를 갖는다고 하였는데, 본 발명의 알로에 베라 유 세포 조직의 섬유질의 표면구조는 α-cellulose와 비슷한 것으로 생각된다. 특히, Lee et al.,(2005)은 10,000배 이상으로 관찰한 결과, biocellulose는 α-cellulose와는 달리 표면에 불규칙한 많은 다공성을 갖는 모자이크 유사구조를 나타냄을 관찰할 수 있었는데 본 발명의 알로에 베라 유 세포 조직의 섬유질의 경우는 5,000배 배율에서 이러한 다공성은 관찰되지 않았다. 표면구조의 이러한 차이는 biocellulose에서 나타나고 있다. 즉, 세균 셀룰로오스의 형태는 서로 다른 배양계에 기초하여 아주 달라서 정치 배양에서는 공기/액체 계면에서는 세균 셀룰로오스의 젤라틴성 막이 형성되는 반면, 교반배양에서는 높은 전단력에 기인하여 섬유 형태가 얻어지는 것으로 보고되었다(Chao et al., 2000, 2001).Lee e t al. (2005) said that biocellulose has a fibrous structure, but α-cellulose has a gel-like structure. The surface structure of the fiber of the aloe vera oil cell tissue of the present invention is thought to be similar to that of α-cellulose. In particular, Lee et al. (2005) observed 10,000 times more than biocellulose, which showed a mosaic-like structure with a lot of irregular porosity on the surface, unlike α-cellulose. In the case of the fiber of the aloe vera oil cell tissue of the present invention, This porosity was not observed at 5,000 times magnification. This difference in surface structure is seen in biocellulose. In other words, the morphology of bacterial cellulose is very different based on different culture systems, and it has been reported that in stationary culture, a gelatinous membrane of bacterial cellulose is formed at the air / liquid interface, while a fibrous form is obtained due to high shear force in agitated cultures ( Chao et al ., 2000, 2001).

한편, MaConnell et al.,(1974)에 의하면 수분 흡착력은 식이섬유의 종류, 함량, 입자크기에 따라 크게 영향을 받는다. 주로 식이섬유의 구성성분, 입도, pH 및 이온강도가 주요인으로 보고되고 있는데(Eastwood, 1986), 셀룰로오스의 경우는 높은 결정성을 가지면 직접적인 수소결합에 의해 물의 결합이 적어진다.Meanwhile, Ma Connell et al. According to (1974), the water adsorption capacity is greatly influenced by the type, content and particle size of the dietary fiber. The composition, particle size, pH and ionic strength of dietary fiber are reported to be the main factors (Eastwood, 1986). In the case of cellulose, if the crystallinity is high, the water bond is reduced by direct hydrogen bonding.

통상, 식이섬유원의 수분 흡착력은 소화력의 저하, 변의 부피와 무게 증가, 혈청 트리글리세라이드(triglyceride)를 낮추는 기전과 관련이 있는 것으로 잘 알려지고 있다(Schneeman, 1987).Typically, the water adsorption capacity of dietary fiber sources is well known to be related to the mechanism of lowering digestion, increasing stool volume and weight, and lowering serum triglyceride (Schneeman, 1987).

따라서, 식이섬유의 보수력은 생리기능의 지표로서 중요한 의미를 가진다고 볼 수 있으므로 본 발명의 알로에 베라 유 세포 조직의 섬유질의 보수력을 알파-셀룰로오스와 비교하면서 보수력을 측정하였다.Therefore, the water retention of dietary fiber can be seen to have an important meaning as an indicator of physiological function, and the water retention was measured while comparing the water retention of the fiber of the aloe vera oil cell tissue of the present invention with alpha-cellulose.

표 3으로부터 알 수 있는 바와 같이 본 발명의 알로에 베라 유 세포 조직의 섬유질 및 알파-셀룰로오스의 보수력은 각각 6.40 ± 0.19 및 4.43 ± 0.13(물 g/고형분 g)으로 시판 알파-셀룰로오스 식이섬유보다 1.4배 더 우수한 것으로 나타났다. 이러한 결과는 비교적 높은 값 범위의 보수력으로, Ang(1991)은 셀룰로오스의 경우 입자크기가 작을수록 보수성이 증가하여 섬유길이에 따라 4 ~ 10배를 유지한다고 보고하였는데, 알파 셀룰로오스의 보수력은 이와 비교적 잘 일치하는 값 범위이었고, 시판용 펙틴과 비슷하였다. 반면, 본 발명의 알로에 베라 유 세포 조직의 섬유질은 약 6.4배의 물을 흡착하므로 통상의 식이섬유의 물 흡착력이 약 4배임을 고려할 때(Cadden, 1987), 비교적 높은 물을 흡수하는 특징을 갖는 것을 확인하였다.As can be seen from Table 3, the retention capacity of the fiber and alpha-cellulose of the aloe vera oil cell tissue of the present invention was 6.40 ± 0.19 and 4.43 ± 0.13 (water g / g solids), 1.4 times higher than commercial alpha-cellulose fiber. Appeared to be better. This result is a relatively high value of the water holding capacity, Ang (1991) reported that the smaller the particle size of the cellulose increases the water retention, maintaining 4 to 10 times depending on the fiber length, the water holding capacity of alpha cellulose is relatively well It was a consistent range of values, similar to a commercial pectin. On the other hand, since the fiber of the aloe vera oil cell tissue of the present invention absorbs about 6.4 times of water, considering that the water adsorption power of conventional dietary fiber is about 4 times (Cadden, 1987), it has a characteristic of absorbing relatively high water. It was confirmed.

또한, 본 발명의 알로에 베라 유 세포 조직의 섬유질 및 알파-셀룰로오스의 보유능은 각각 10.32±0.29 및 4.92±0.08(g oil retained/g solid)로, 보유능이 보수력에 비하여 상대적으로 높게 나타났으며, 본 발명의 알로에 베라 유 세포 조직의 섬유질이 시판 알파-셀룰로오스 보다 약 2배 높은 값을 나타내었다.In addition, the retention capacity of the fiber and alpha-cellulose of the aloe vera oil cell tissue of the present invention is 10.32 ± 0.29 and 4.92 ± 0.08 (g oil retained / g solid), respectively, the retention capacity was relatively higher than the water retention capacity. The fiber of the aloe vera flow cell tissue of the invention showed about 2 times higher value than commercial alpha-cellulose.

일반적으로 보유능은 보수력에 비하여 상대적으로 낮게 나타나며, 그 범위는 30 ~ 80%로 알려지고 있는데(Lee et al., 2005), 분말 셀룰로오스의 경우 Ang(1991)은 보유력이 약 2.5 ~ 8.5배라 하였다. 따라서, 본 발명의 알로에 베라 유 세포 조직의 섬유질은 높은 보유력을 가지며, 보유력이 보수능보다 큰 특징을 나타냄을 확인하였다. In general, the holding capacity is relatively low compared to the water holding capacity, and the range is known to be 30 to 80% (Lee et al. , 2005) . In the case of powdered cellulose, Ang (1991) has a holding capacity of 2.5 to 8.5 times. Therefore, it was confirmed that the fiber of the aloe vera oil cell tissue of the present invention has high retention, and the retention capacity is greater than the water retention capacity.

한편, 팽윤력(SW)은 알로에 건조 제품에서 보수능 및 보유능과 같은 수화 관련 성질의 기능성으로 중요한 성질로 그 값이 클수록 탈수 중 물리화학적변화가 적고, 건조 손상이 적은 것으로 알려져 있다(Femenia et al., 2003; Simal et al., 2000). On the other hand, swelling power (SW) is an important property of the hydration-related properties such as water retention and retention capacity in aloe dried products, the higher the value is known to be less physical and chemical changes during dehydration and less dry damage (Femenia et al. ., 2003;. Simal et al , 2000).

본 발명의 알로에 베라 유 세포 조직 섬유질의 팽윤력은 27.33 ± 0.76㎖/g으로 알파-셀룰로오스(8.33 ± 0.29㎖/g)보다 약 3.3배나 높은 특징을 보였다. The swelling power of the aloe vera oil cell tissue fiber of the present invention was 27.33 ± 0.76 mL / g, which was about 3.3 times higher than the alpha-cellulose (8.33 ± 0.29 mL / g).

일반적으로 전분의 경우 팽윤력은 전분 입자내의 강한 미셀(micelle)구조를 갖는 경우가 제한을 받게 되며, 결합력이 약한 것을 의미한다(Elliason, 1980). 따라서, 본 발명의 알로에 베라 유 세포 조직 섬유질은 알파-셀룰로오스 보다 결합력이 약한 것으로 생각되었으며, 이에 따라 물의 흡수능(보수능)이 더 높아지게 되므로 본 발명의 알로에 베라 유 세포 조직 섬유질이 알파-셀룰로오스 보다 더 높은 보수력을 나타낸 결과와 잘 일치한다. In general, in the case of starch, the swelling force is limited to have a strong micelle structure in the starch particles, which means that the binding force is weak (Elliason, 1980). Therefore, the aloe vera oil cell tissue fiber of the present invention was considered to have a weaker binding force than alpha-cellulose, and thus the water absorption capacity (water retention capacity) is higher, so the aloe vera oil cell tissue fiber of the present invention is more than the alpha-cellulose. The results are in good agreement with the results of high water retention.

또한, O/W 유화액은 oil/water 계면에서 계면활성제 또는 유화제에 의해 안정화된 물 속에 지방 방울이 부유된 현탁액이다. 단백질의 경우, 유화제로 작용하는 능력은 용해도, 표면변성 정도, 지방/단백질비, 유화액 점성에 대한 효과와 더불어 양쪽성 특성에 의존한다. O / W emulsions are also suspensions in which fat droplets are suspended in water stabilized by a surfactant or emulsifier at the oil / water interface. For proteins, the ability to act as an emulsifier depends on the amphoteric properties, with effects on solubility, degree of surface denaturation, fat / protein ratio, emulsion viscosity.

유화 안정제로 널리 사용되는 0.5% 잔탄검(xanthan gum)의 첨가에 따른 유화능 및 유화 안정성을 조사한 결과는 도 4와 같으며, 본 발명의 알로에 베라 유 세포 조직 섬유질의 유화능은 약 65%로 잔탄검(약 90%) 보다는 낮았으나 알파-셀룰로오스 보다는 약 2배나 높았다. 또, 잔탄검 무첨가의 대조구는 유화 직후 수분 이내에 물과 기름이 분리된 반면, 0.5% 잔탄검 첨가구는 24시간까지도 전혀 분리되지 않고 높은 유화 안정성을 보였다. 잔탄검의 높은 유화안정성은 높은 항복응력 및 정지상태 하에서의 응집력에 기인하는 것으로 밝혀졌는데, 일반적으로 다당류와 같은 고분자 물질은 물과 기름의 분산매속에서 녹아 점도를 높임으로써 크리이밍을 방지하거나 점성 및 탄성이 강한 흡착층을 만들어 기름입자간의 합일을 방지하여 유화안정성을 높인다고 보고되었다(Hennock et al., 1984). As a result of examining the emulsification capacity and emulsion stability of the addition of 0.5% xanthan gum which is widely used as an emulsion stabilizer is shown in Figure 4, the emulsification capacity of the aloe vera oil cell tissue fiber of the present invention is about 65% It was lower than xanthan gum (about 90%) but about twice as high as alpha-cellulose. In the control group without xanthan gum, water and oil were separated within a few minutes immediately after emulsification, while the 0.5% xanthan gum addition group showed no emulsification at all until 24 hours and showed high emulsification stability. Xanthan gum's high emulsification stability has been found to be due to high yield stress and cohesiveness under static conditions. In general, high molecular weight materials such as polysaccharides are dissolved in water and oil dispersion medium to increase the viscosity to prevent creaming or increase viscosity and elasticity. It has been reported that this strong adsorption layer enhances emulsion stability by preventing coalescence between oil particles (Hennock et al ., 1984).

뿐만 아니라, 거품은 물리적 교반 및 통기에 의해 공기가 수용액에 혼입된 것으로 식품의 부드러움(smoothness), 밝기(lightness), 향미, 분산 및 감칠맛에 기여한다. 더 작은 공기세포의 형성조직 및 입안에서의 느낌을 향상시키며, 지방구 주위의 물상(water phase)을 조직화하는 것으로 알려지고 있다. 특히, 단백질 용액의 거품은 많은 식품 응용에서 바람직한데, 높은 거품 형성능과 거품 안정성은 케이크, 빵, 휩 토핑(whipped topping), 아이스크림, 디저트에서 요구된다(Dickinson, 1989).In addition, the foam is incorporated into the aqueous solution by physical stirring and aeration, contributing to the smoothness, lightness, flavor, dispersion and flavor of the food. It is known to enhance the formation of smaller air cells in the tissue and mouth and to organize the water phase around fat globules. In particular, the foaming of protein solutions is desirable in many food applications, with high foaming capacity and foam stability being required in cakes, breads, whipped topping, ice creams and desserts (Dickinson, 1989).

일반적으로 거품에서 단백질의 1차적 기능은 공기/액체 계면에서 표면장력을 감소시켜 액상으로 공기의 혼입을 용이하게 하고 공기방울 주위에 응집 필름을 형성함으로서 거품을 안정화시키는 것이므로, 본 발명의 알로에 베라 유 세포 조직 섬유질 및 알파-셀룰로오스의 거품형성능과 거품 안정성을 조사하였다.In general, the primary function of proteins in the foam is to reduce the surface tension at the air / liquid interface to facilitate the incorporation of air into the liquid phase and to stabilize the foam by forming agglomerated films around the droplets. The foaming ability and foam stability of cellular fibers and alpha-cellulose were investigated.

도 5 및 도 6에 도시된 바와 같이, 본 발명의 알로에 베라 유 세포 조직 섬유질은 2%(w/v)의 농도에서는 알파-셀룰로오스와 마찬가지로 거품 형성능을 나타내지 않았으나 농도가 낮아질수록 거품형성능이 오히려 증가되어 거품 형성능을 나타내었다. 특히, 대조구보다 약 3배의 거품안정성을 향상시켰으며, 알파-셀룰로오스보다는 약 2배나 높았다. As shown in Figure 5 and Figure 6, the aloe vera oil cell tissue fiber of the present invention did not show the foaming ability like alpha-cellulose at a concentration of 2% (w / v), but the foaming ability is increased as the concentration is lowered It showed foaming ability. In particular, the foam stability was improved about three times than the control, and about two times higher than the alpha-cellulose.

일반적으로 거품형성은 주로 분자간의 빠른 흡착과 재배열에 관계되는 반면, 중력 및 기계적 응력에 대해 거품을 안정화시키는 안정능은 계면에서 유연성 응집필름의 형성에 의해 부여되는 것으로 알려지고 있다(Dickinson, 1989). In general, foaming is mainly related to rapid intermolecular adsorption and rearrangement, while stability of foam stabilization against gravity and mechanical stress is known to be imparted by the formation of a flexible cohesive film at the interface (Dickinson, 1989). .

한편, 점성 및 겔 형성능을 갖는 식이섬유는 소화관 내용물의 점도를 높여줌으로써 내용물의 소화관 이동속도 및 흡수에 대해 영향을 주는데, 소장 내용물의 점도에 대한 영향은 식이섬유의 종류에 따라 다른 것으로 알려지고 있다(Ebihara and Kiriyama, 1990). On the other hand, the dietary fiber having viscosity and gel formation ability increases the viscosity of the digestive tract contents and affects the speed and absorption of the digestive tract of the contents. (Ebihara and Kiriyama, 1990).

따라서, 본 발명의 알로에 베라 유 세포 조직 섬유질 및 알파-셀룰로오스의 점도를 3 ~ 100rpm에서 회전점도계를 이용하여 측정한 결과, 도 7에 도시된 바와 같이 본 발명의 알로에 베라 유 세포 조직 섬유질 및 알파-셀룰로오스 자체만으로는 물에의 분산능을 나타내지 못하므로 안정제(0.3% CMC) 용액 중의 1.5%(w/v) 분산액의 유동 거동을 조사하였는데, 0.5 ~ 1.5%(w/v) CMC를 함유한 본 발명의 알로에 베라 유 세포 조직 섬유질 및 알파-셀룰로오스의 점도는 모두 점도계 회전속도(rpm)의 증가에 따라 급격히 감소하고 의가소성 성질을 나타내었다. Therefore, the viscosity of the aloe vera oil cell tissue fibers and alpha-cellulose of the present invention was measured using a rotational viscometer at 3 to 100 rpm, and as shown in FIG. Since cellulose itself does not show the ability to disperse in water, the flow behavior of the 1.5% (w / v) dispersion in the stabilizer (0.3% CMC) solution was investigated, but the present invention contained 0.5 to 1.5% (w / v) CMC. The viscosity of aloe vera oil cell tissue fiber and alpha-cellulose of the aloe vera oil showed a sharp decrease with increasing the rotational speed (rpm) and showed pseudoplastic properties.

농도가 높아질수록 대응하는 전단속도에서 본 발명의 알로에 베라 유 세포 조직 섬유질은 더 높은 점도를 나타내었으므로 도 8에 도시된 바와 같이, 회전속도 60rpm에서의 점도값은 0.5-1.5%(w/v)의 알로에 베라 유 세포 조직 섬유질의 점도는 0.5%에서는 알파-셀룰로오스와 비슷한 반면, 이 보다 농도가 증가하게 되면 알파-셀룰로오스와는 달리 농도 의존성의 점도 증가현상을 보였다. 특히, 알로에 베라 유 세포 조직 섬유질은 농도에 따른 점도의 증가 현상이 현저하여 1.5% 농도에서 0.5%보다 약 1.8배의 점도 증가를 보였고, 양호한 분산능을 보였다. As the concentration increased, the aloe vera oil cell tissue fibers of the present invention showed a higher viscosity at the corresponding shear rate. As shown in FIG. 8, the viscosity value at a rotational speed of 60 rpm was 0.5-1.5% (w / v). Viscosity of aloe vera oil cell tissue fiber of) was similar to that of alpha-cellulose at 0.5%, whereas the concentration-increased viscosity increased, unlike alpha-cellulose. In particular, aloe vera oil cell tissue fiber showed a significant increase in viscosity with concentration, showing a viscosity increase of about 1.8 times higher than 0.5% at 1.5% concentration and good dispersibility.

실시예 3Example 3

알로에 베라 유 세포 조직 섬유질의 생리기능성 특성을 알아보기 위해 글루코오스(glucose) 및 담즙산(bile acid)의 흡수 지연효과를 측정하였다.To investigate the physiological functional characteristics of aloe vera oil cell tissue fiber, delayed absorption of glucose and bile acid was measured.

(1) In vitro 법에 의한 글루코오스 흡수 지연 효과(1) Delayed Effect of Glucose Absorption by In vitro Method

글루코오스 흡수 지연 효과는 유리상태의 글루코오스는 투석막을 그대로 통과하지만 고분자 물질에 흡착된 글루코오스는 투석막을 통과하지 못하므로 투석 외액의 글루코오스 농도를 분석하여 측정하였다(Adiotomre et al., 1990). 넓이 3.2㎝2, 길이 10 ㎝의 투석막(Sigma D7884 : M.W. cut-off〈1200)을 0.1% 소듐 아지드(sodium azide) 용액에 하룻밤 담근 후 사용하였다. 투석막의 한쪽 끝을 목면실로 단단하게 묶은 후, 투석막 내부에 시료 0.2g을 넣고, 여기에 glucose 36㎎을 용해시킨 0.1% 소듐아지드 용액 6㎖를 넣었다. 반대편의 투석막 끝도 단단히 묶은 후 150㎖ 용량의 용기에 넣고 14시간 동안 수화시켰으며, 이 때 대조구의 경우는 시료만을 제외하여 마찬가지 방법으로 실시하였다. 수화 종료 후 용기에 0.1% 소듐 아지드 용액 100㎖ 첨가하였으며, 이를 37℃로 유지한 진탕 항온조에서 100rpm으로 24시간 동안 투과실험을 실시하였다. 일정 시간(30분 ~ 24시간) 간격으로 투석 외액 1㎖씩을 취하여 글루코오스 함량을 측정하고, 흡수 지연 효과를 다음 식에 의해 계산하였으며, 그 결과를 표 7에 기재하였고, 글루코오스 투과율의 경시변화를 도 9에 도시하였다.The effect of delaying glucose absorption was measured by analyzing the glucose concentration of the dialysis external fluid because glucose in the free state passes through the dialysis membrane as it is, but glucose adsorbed on the polymer material does not pass through the dialysis membrane (Adiotomre et al. , 1990). A dialysis membrane (Sigma D7884: MW cut-off <1200) having a width of 3.2 cm 2 and a length of 10 cm was used after soaking in 0.1% sodium azide solution overnight. After one end of the dialysis membrane was tightly bound with a cotton thread, 0.2 g of the sample was placed in the dialysis membrane, and 6 ml of 0.1% sodium azide solution in which 36 mg of glucose was dissolved therein. The dialysis membrane on the other side was also tightly bound, placed in a 150 ml container, and hydrated for 14 hours. The control was performed in the same manner except for the sample. After completion of the hydration, 100 ml of 0.1% sodium azide solution was added to the vessel, and a permeation experiment was performed for 24 hours at 100 rpm in a shaking thermostat maintained at 37 ° C. Glucose content was measured by taking 1 ml of the dialysis external solution at regular intervals (30 minutes to 24 hours), and the delayed absorption effect was calculated by the following equation. The results are shown in Table 7, and the change in glucose permeability over time was plotted. 9 is shown.

글루코오스 흡수지연율(%) = 100 -(섬유질을 함유하는 투석막으로부터 투과된 총 글루코오스의 양/섬유질을 함유하지 않은 투석막으로부터 투과된 총 글루코오스의 양 × 100) % Glucose Absorption Delay Rate = 100-(Total Glucose Permeated from Fiber-Containing Dialysis Membrane / Total Glucose Permeated from Fiber-Free Dialysis Membrane × 100)

이 때, 글루코오스 함량은 DNS 또는 ABTS법(White and Kennedy, 1981)에 따라 측정하였다. ABTS 법에서는 0.1% 소듐아지드 용액에 용해시킨 시료 및 표준 글루코오스 용액 1㎖에 ABTS 시약(글루코오스 옥시다제(glucose oxidase) 60㎎, 퍼옥시다제(peroxidase) 6㎎ 및 ABTS 50㎎을 0.12M 포스페이트 완충용액(phosphate buffer) 250㎖에 용해한 것) 5㎖를 첨가한 후, 실온에서 30 ~ 40분간 방치하였고, 450nm에서의 흡광도를 측정하였다.At this time, the glucose content was measured according to DNS or ABTS method (White and Kennedy, 1981). In the ABTS method, ABTS reagent (60 mg of glucose oxidase, 6 mg of peroxidase, and 50 mg of ABTS were buffered in 0.12 M phosphate in a sample dissolved in 0.1% sodium azide solution and 1 ml of standard glucose solution. After 5 ml of the solution (dissolved in 250 ml of phosphate buffer) was added, the mixture was left at room temperature for 30 to 40 minutes and absorbance at 450 nm was measured.

(2) In vitro 법에 의한 담즙산 흡수 지연효과(2) Effect of delaying bile acid absorption by in vitro method

담즙산 흡수 지연효과는 글루코오스의 경우와 마찬가지로, Adiotomre et al., 방법(1990)에 따라 측정하였다. 유리상태의 답즙산은 투석막을 빠져나오므로 투석막 내부에 시료 0.2g을 넣고 0.1% 소듐아지드 용액으로 조제한 0.05M 포스페이트 완충용액(pH 7.0)에 1ℓ당 15mmol의 타우로콜산(taurocholic acid : Sigma T-4009)을 녹인 용액 6㎖를 넣어 투석막 끝을 단단히 묶었다. 이를 150㎖ 용량의 용기에 넣어 14시간 동안 수화시켰으며, 대조구의 경우는 시료만을 제외하여 마찬가지로 실시하였다. 여기에 0.1% 소듐 아지드 용액으로 조제한 0.05M 포스페이트 완충용액(pH 7.0) 100㎖를 첨가한 후, 37℃의 항온수조에서 100rpm으로 72시간 동안 진탕하였다. 일정 시간 간격으로 1㎖씩을 취하여 담즙산 함량을 측정하고, 그 결과를 도 10에 도시하였으며, 담즙산 흡수 지연 효과는 다음 식에 의해 계산하고 그 결과를 표 8에 기재하였다.The effect of delaying bile acid absorption is similar to that of glucose, according to Adiotomre et al. , According to the method (1990). Since free bile acid leaves the dialysis membrane, 15 mmol of taurocholic acid (taurocholic acid: Sigma T-) per 1 liter in 0.05 M phosphate buffer solution (pH 7.0) prepared by adding 0.2 g of sample inside the dialysis membrane and prepared with 0.1% sodium azide solution. 6 ml of the solution dissolved in 4009) was added and the end of the dialysis membrane was tightly bound. It was hydrated for 14 hours in a 150 ml container, and the control was carried out in the same manner except for the sample. 100 ml of 0.05 M phosphate buffer (pH 7.0) prepared with 0.1% sodium azide solution was added thereto, followed by shaking at 100 rpm in a constant temperature water bath at 37 ° C. for 72 hours. The bile acid content was measured by taking 1 ml at regular time intervals, and the results are shown in FIG. 10. The bile acid absorption retardation effect was calculated by the following equation, and the results are shown in Table 8.

담즙산 흡수지연율(%) = 100 -(섬유질을 함유하는 투석막으로부터 투과된 총 담즙산의 양/섬유질을 함유하지 않은 투석막으로부터 투과된 총 담즙산의 양 × 100) Delay rate of bile acid absorption (%) = 100-(total amount of bile acid permeated from the dialysis membrane containing fiber / total amount of bile acid permeated from the dialysis membrane without fiber × 100)

이 때, 담즙산 함량은 Boyd et al., 방법(1966)에 따라 측정하였다. 즉, 담즙산(Sigma B-8756) 용액 1㎖에 70% H2SO4 용액 5㎖를 넣고 5분 후에 0.25% furfural 용액 1㎖를 각각 첨가하였다. 60분간 방치하여 분홍색이 최대로 발색된 후의 최대 흡수 파장인 510 nm에서 흡광도를 측정하였다.At this time, the bile acid content is Boyd et al. , According to the method (1966). That is, 5 ml of 70% H 2 SO 4 solution was added to 1 ml of bile acid (Sigma B-8756) solution, and 5 minutes later, 1 ml of 0.25% furfural solution was added. After leaving for 60 minutes, the absorbance was measured at 510 nm, the maximum absorption wavelength after the maximum color development of pink.

(3) 동물실험에 의한 비만 및 변비개선 효과 (3) Effect of improving obesity and constipation by animal experiment

알로에 베라 유 세포 조직 섬유질의 비만 및 변비 개선 효과를 조사하기 위하여 흰쥐를 대상으로 다음과 같이 동물실험을 실시하였다. To investigate the effects of aloe vera oil cell tissue fiber on the improvement of obesity and constipation, the following animal experiments were conducted in rats.

실험동물 : 생후 6주령 된 수컷 흰쥐(Sprague Dawley)를 효창사이언스로부터 구입하여 1주일 적응기간 후 사용하였다. Experimental animals: Male rats (Sprague Dawley), 6 weeks old, were purchased from Hyochang Science and used after 1 week of adaptation.

실험 식이의 조제 : 동물실험에 사용한 식이는 비만 유도 및 변비유발을 위한 고지방 사료인 오픈 소오스 다이어트(open source diet : D12492, Research diet, Inc. New Bruswick, USA)이었으며, 표준 식이조성(%)은 표 4와 같다. 이 때, 실험 식이는 알로에 베라 유 세포 조직 섬유질을 사용하였고, 첨가 수준은 5%이었다. Formulation of the experimental diet: The diet used in the animal experiment was an open source diet (D12492, Research diet, Inc. New Bruswick, USA), a high-fat diet for obesity induction and constipation induction. Table 4 is as follows. At this time, the experimental diet used aloe vera oil cell tissue fiber, the addition level was 5%.

사육조건 및 시험군 : 실험동물은 온도 20.7 ~ 22.1℃, 상대습도 49.9 ~ 54.2%, 환기횟수 10 ~ 15회 및 12시간(오전 8시 ~ 오후 8시) 주기의 명암(조도 200 ~ 300 Lux) 환경의 동물 사육실에서 사육하였다. 1주간 동안 적응시킨 후 와이어 케이지(wire cage)에서 3 ~ 4마리씩 격리하여 일반사료 처리군, 고지방사료 처리군 및 고지방사료+식이섬유(5%) 처리군으로 나누어 다시 30일간 실험식이로 사육하였다. 이때, 각 군은 체중이 비슷한 10마리를 1군으로 하였다. Breeding conditions and test groups: Experimental animals have a temperature of 20.7 to 22.1 ℃, relative humidity of 49.9 to 54.2%, 10 to 15 times of ventilation, and 12 hours (8 am to 8 pm). It was raised in the environment animal breeding room. After one week of adaptation, three to four animals were isolated from the wire cage and divided into a general feed group, a high fat feed group, and a high fat feed + dietary fiber (5%) group. . At this time, each group was a group of 10 horses with similar weight.

한편, 음용수는 증류수를 사용하였고, 음용수와 식이는 자유로이 섭취토록 하였다. 식이 섭취량은 주 2 ~ 3회 측정하여 일 섭취량으로 환산하였고, 체중은 실험식이 투여 개시 직전 및 투여 30일 후에 측정하고, 그 결과를 표 9에 기재하였다. Meanwhile, distilled water was used as drinking water, and drinking water and diet were freely consumed. Dietary intake was measured 2-3 times a week and converted to daily intake, and body weight was measured immediately before the start of the experimental diet and 30 days after administration, and the results are shown in Table 9.

시료의 채취 : 30일간의 실험식이 사육이 끝난 실험동물은 12시간 절식시킨 후 에틸에테르로 가볍게 마취시켜 주사기로 복대동맥으로부터 약 5 ~ 7㎖의 혈액을 채취하였다. 이 전혈은 항응고제(heparin : Sigma H7005)가 들어 있는 마이크로 히메토크리트 튜브(micro hematocrit tube : GRAF Cat. No. 5.530-06)를 통과시킨 후, 3000rpm(4℃)에서 10분간 원심분리하여 혈장을 분리하였고, 혈장분석의 시료로 하였다. Sampling : After 30 days of experimental diets, animals were fasted for 12 hours and anesthetized with ethyl ether, and blood was collected from the abdominal aorta with about 5-7 ml of blood. The whole blood was passed through a micro hematocrit tube (GRAF Cat. No. 5.530-06) containing an anticoagulant (heparin: Sigma H7005), followed by centrifugation at 3000 rpm (4 ° C) for 10 minutes. It was isolated and used as a sample of plasma analysis.

한편, 해부 후 간, 비장, 신장, 고환 등 장기를 절취하였으며, 적출 후 식염수로 처리하고 여과지(Whatman No. 2)로 수분을 제거한 다음, 무게를 측정하였다. On the other hand, after dissection, the organs such as liver, spleen, kidney, testicles were cut out, and after extraction, treated with saline solution, water was removed with filter paper (Whatman No. 2), and then weighed.

또한, 지방조직은 내장지방(Inguinal fat pads)을 절취하고 무게를 측정하였으며, 대장 및 간 조직은 무작위로 약 0.5 ~ 1cm 정도를 절취하여 조직학적 소견을 확인하기 위해 10% 포르말린 용액에 고정하였으며, RNA 등의 추출용은 분석 시까지 액체질소에 동결하여 보관하였다. In addition, adipose tissue was excised and weighed visceral fat (Inguinal fat pads), colon and liver tissue was randomly cut about 0.5 ~ 1cm and fixed in 10% formalin solution to confirm histological findings, RNA extracts were stored frozen in liquid nitrogen until analysis.

조직화학적 검사 : 대장과 간 조직을 절취 후 10% 포르말린 용액(dissolved in phosphate buffer pH 7.4)에 고정(48시간 이상) 후 수세과정을 거친 다음, 파라핀 포매과정을 실시하였다. 이후 마이크로톰(microtome)을 사용하여 5 ~ 7㎛ 두께로 조직 절편을 만든 후 염색하였다. 염색 후 수분을 제하고 카나디아발산을 이용하여 포매과정을 거쳤다. Histochemical analysis : Colon and liver tissues were excised, fixed in 10% formalin solution (dissolved in phosphate buffer pH 7.4) and washed with water, followed by paraffin embedding. Then, using a microtome (microtome) to make a tissue section to a thickness of 5 ~ 7㎛ and then stained. After dyeing, moisture was removed and embedding was carried out using canadia acid.

탈 파라핀 후 헤마토실린(Hematoxilin)에 약 10분 염색한 다음 수세하고 에오신(eosin)에 5분간 염색하는 방법으로 Hematoxilin-Eosin(HE) 염색한 후 광학현미경으로 관찰하였다. After deparaffinization, hematoxilin was stained for about 10 minutes, washed with water, and stained with eosin for 5 minutes. Hematoxilin-Eosin (HE) staining was then observed under an optical microscope.

한편, 대장 질환과 관련된 단백질 발현을 조사하기 위한 면역조직화학실험(immunohistochemistry)을 수행하였다. 즉, 탈 파라핀 후, PBST를 이용하여 퍼옥시다제 블로킹(peroxidase blocking)을 하고, 1차 항체(antibody)를 처리 후 블로킹(blocking) 과정을 거친 다음 2차 항체를 처리하였으며, 수세 후 발색반응을 실시하였다. 이 때 사용된 항체는 항체는 표 5와 같다.Meanwhile, an immunohistochemistry experiment was performed to investigate protein expression related to colon disease. That is, after deparaffinization, peroxidase blocking was performed using PBST, the first antibody was treated, and after blocking, the second antibody was treated. Was carried out. The antibody used in this case is shown in Table 5.

RT-PCR : 변비 관련 전사 발현 인자의 측정을 위해 대장을 액체질소를 이용하여 분쇄한 다음, 트리졸 시약(TRizol reagent : Invitrogen, USA)를 이용하여 RNA를 분리하였으며, 이후 Tong 등(2005)의 방법에 준하여 RT(reverse transcription) 반응 수행 및 PCR 과정을 수행하였다. RT-PCR : To measure constipation-related transcription expression factors, the large intestine was pulverized with liquid nitrogen, and RNA was isolated using TRIZOL reagent (Invitrogen, USA), followed by RT according to the method of Tong et al. (2005). (reverse transcription) reaction and PCR were performed.

검지 전사발현 인자 및 이를 위해 사용한 프라이머(primer)는 표 6과 같다.Detection transcriptional expression factors and primers used for the same are shown in Table 6.

통계처리 : 본 실험에 대한 모든 실험 결과는 평균치와 표준편차로 나타내었고, 통계적 유의성은 Sigma Stat 3.1로 One Way ANOVA를 이용하여 검정하였다. Statistical processing : All experimental results for this experiment were expressed as mean and standard deviation, and statistical significance was tested by Sigma Stat 3.1 using One Way ANOVA.

(g/1kg diet) (g / 1kg diet) 성분ingredient 식이조성 Diet ND ND HFDHFD HFD+ADF HFD + ADF 카제인(80메쉬)(Casein, 80mesh)Casein (80 mesh) (Casein, 80mesh) 200200 200200 200200 L-시스테인(L-Cystine)L-Cystine 33 33 33 옥수수전분(Corn Starch)Corn Starch 245245 00 00 말토덱스트린 10(Maltodextrin 10)Maltodextrin 10 125125 125125 125125 슈크로오스(Sucrose)Sucrose 68.868.8 68.868.8 18.818.8 셀룰로오스(Cellulose), BW200Cellulose, BW200 5050 5050 5050 대두유(Soybean Oil)Soybean Oil 2525 2525 2525 라드(Lard) Lard -- 245245 245245 미네랄 혼합물(Mineral Mix), S10026Mineral Mix, S10026 1010 1010 1010 디칼슘 포스페이트(DiCalcium Phosphate)DiCalcium Phosphate 1313 1313 1313 칼슘 카보네이트(Calcium Carbonate)Calcium Carbonate 5.55.5 5.55.5 5.55.5 포타슘 시트레이트(Potassium Citrate), 1H2OPotassium Citrate, 1H 2 O 16.516.5 16.516.5 16.516.5 비타민 혼합물(Vitamin Mix), V10001Vitamin Mix, V10001 1010 1010 1010 콜린 바이타르트레이트(Choline Bitartrate)Choline Bitartrate 22 22 22 FD&C Blue Dye #1FD & C Blue Dye # 1 0.050.05 0.050.05 0.050.05 알로에 베라 유 세포 조직 섬유질
(Aloe Dietary Fiber)
Aloe vera milk cell tissue fiber
(Aloe Dietary Fiber)
-- -- 5050
합계(Total) Total 773.85773.85 773.85773.85 773.85773.85

ND : 일반 사료(Normal diet), HFD : 고지방 사료(High fat diet), ADF : 고지방사료 + 알로에 베라 유 세포 조직 섬유질(Aloe dietary fiber).ND: Normal diet, HFD: High fat diet, ADF: High fat diet + Aloe vera milk cell tissue fiber.

AntibodyAntibody SourceSource Binding siteBinding site Anti-smooth muscle myosin heavy chain(SMMHC)Anti-smooth muscle myosin heavy chain (SMMHC) Sigma M-7786Sigma M-7786 Myosin heavy chain polypeptides of 204 and 200kDaMyosin heavy chain polypeptides of 204 and 200kDa Anti-smoothelin(R4A)(SM)Anti-smoothelin (R4A) (SM) Santacruz
smoothelin : SC-28562
Santacruz
smoothelin: SC-28562
Polypeptide of c. 60kDa(cytoskeleton-associated protein)Polypeptide of c. 60 kDa (cytoskeleton-associated protein)

프라이머(F/R)Primer (F / R) 크기(bp)Size (bp) Rat Prox1Rat Prox1 5'-AAG CCA GCG GAC TCT CTA GC-3'
5'-ACA GGT CGC CAT CTT CAT CA-3'
5'-AAG CCA GCG GAC TCT CTA GC-3 '
5'-ACA GGT CGC CAT CTT CAT CA-3 '
518518
Rat c-KitRat c-kit 5'-ATCTGCTCTGCGTCCTGTTG-3'
5'-GTTGGGGACGAACTTCAGGT-3'
5'-ATCTGCTCTGCGTCCTGTTG-3 '
5'-GTTGGGGACGAACTTCAGGT-3 '
491491
Rat GAPDHRat GAPDH 5'-TGT CAG CAA TGC ATC CTG CAC CAC C-3'
5'-GAA GTC ACA GGA GAC AAC CTG GTC C-3'
5'-TGT CAG CAA TGC ATC CTG CAC CAC C-3 '
5'-GAA GTC ACA GGA GAC AAC CTG GTC C-3 '
420420


투석 30분 후30 minutes after dialysis 투석 1시간 후1 hour after dialysis 투석 2시간 후2 hours after dialysis
투석액의
글루코오스
(%, w/v)
Dialysate
Glucose
(%, w / v)
GDRI(%)2 GDRI (%) 2 투석액의
글루코오스
(%, w/v)
Dialysate
Glucose
(%, w / v)
GDRI(%)2 GDRI (%) 2 투석액의
글루코오스
(%, w/v)
Dialysate
Glucose
(%, w / v)
GDRI(%)2 GDRI (%) 2
대조군Control group 1.26 ± 0.111) 1.26 ± 0.11 1) 00 1.35 ± 0.02 1.35 ± 0.02 00 1.48 ± 0.13 1.48 ± 0.13 00 알로에 베라 유 세포 조직 섬유질Aloe vera milk cell tissue fiber 0.80 ± 0.07 0.80 ± 0.07 35.24 ± 0.0935.24 ± 0.09 1.01 ± 0.06 1.01 ± 0.06 25.73 ± 0.0625.73 ± 0.06 1.18 ± 0.08 1.18 ± 0.08 20.32 ± 0.0220.32 ± 0.02 알파-셀룰로오스Alpha-cellulose 1.06 ± 0.04 1.06 ± 0.04 13.69 ± 0.0413.69 ± 0.04 1.18 ± 0.02 1.18 ± 0.02 12.82 ± 0.0212.82 ± 0.02 1.36 ± 0.12 1.36 ± 0.12 8.24 ± 0.098.24 ± 0.09

1) 평균 ± 표준편차1) mean ± standard deviation

2) 글루코오스 흡수지연율2) glucose absorption delay rate


투석 1시간 후1 hour after dialysis 투석 2시간 후2 hours after dialysis
투석액의 담즙산(%, w/v)Bile acid in dialysate (%, w / v) BDRI(%)2 BDRI (%) 2 투석액의 담즙산(%, w/v)Bile acid in dialysate (%, w / v) BDRI(%)2 BDRI (%) 2 대조군Control group 0.33 ± 0.031 0.33 ± 0.03 1 00 0.53 ± 0.07 0.53 ± 0.07 00 알로에 베라 유 세포 조직 섬유질Aloe vera milk cell tissue fiber 0.15 ± 0.03 0.15 + 0.03 53.13 ± 0.253.13 ± 0.2 0.38 ± 0.03 0.38 ± 0.03 28.30 ± 0.0828.30 ± 0.08 알파-셀룰로오스Alpha-cellulose 0.30 ± 0.03 0.30 ± 0.03 9.09 ± 0.19.09 ± 0.1 0.40 ± 0.04 0.40 ± 0.04 24.53 ± 0.1024.53 ± 0.10

1) 평균 ± 표준편차1) mean ± standard deviation

2) 담즙산 흡수지연율2) delay of bile acid absorption

시험군1 Test group 1 초기체중(g)Initial weight (g) 최종체중(g)Final weight (g) 증체량(g/일)Weight gain (g / day) 식이섭취량
(g/일)
Dietary Intake
(g / day)
식이효율(%)2 Dietary Efficiency (%) 2
NDND 266.70 ±
10.893
266.70 ±
10.89 3
403.10 ±
32.43
403.10 ±
32.43
4.55 ±
0.96b4
4.55 ±
0.96 b4
22.76 ±
2.22a
22.76 ±
2.22 a
20.26 ±
2.03b
20.26 ±
2.03 b
HFDHFD 266.80 ±
8.49
266.80 ±
8.49
455.43 ±
21.10
455.43 ±
21.10
6.29 ±
1.06a
6.29 ±
1.06 a
18.72 ±
2.16b
18.72 ±
2.16 b
34.35 ±
0.09a
34.35 ±
0.09 a
HFD+ADFHFD + ADF 266.60 ±
8.86
266.60 ±
8.86
456.61 ±
10.21
456.61 ±
10.21
6.33 ±
0.60a
6.33 ±
0.60 a
19.42 ±
1.57b
19.42 ±
1.57 b
32.75 ±
0.043a
32.75 ±
0.043 a

1) ND : 일반 사료(Normal diet), HFD : 고지방 사료(High fat diet), ADF : 고지방사료 + 알로에 베라 유 세포 조직 섬유질(Aloe dietary fiber 5%, w/w).1) ND: Normal diet, HFD: High fat diet, ADF: High fat diet + Aloe vera oil cell tissue fiber (Aloe dietary fiber 5%, w / w).

2) 식이효율(%) = (증체량/식이섭취량) × 1002) Dietary efficiency (%) = (weight gain / food intake) × 100

3) 값은 평균 ± 표준편차(n=10)임.3) The value is mean ± standard deviation (n = 10).

4) 동일 칸내에서 다른 첨자를 갖는 값은 던칸 멀티플 레인지 테스트(Duncan's multiple range test)에 의한 ANOVA테스트에서 p<0.01으로 유의성 있게 다른 것이다.4) The values with different subscripts in the same column are significantly different as p <0.01 in ANOVA test by Duncan's multiple range test.

도 9로부터 알 수 있는 바와 같이 대조구의 글루코오스 투과율은 투석 초기 6시간까지 급격히 증가하여 약 85%에 달하였고, 이후 미미하게 증가하여 24시간 후에는 약 90%에 달하였다. 반면, 알로에 베라 유 세포 조직 섬유질 첨가구는 6시간 후 약 75%에 도달하였고, 이후 서서히 증가하여 24시간 후 약 80%에 달하였다.As can be seen from FIG. 9, the glucose transmission rate of the control group increased rapidly to the initial 6 hours of dialysis and reached about 85%, and then increased slightly to 24% after 24 hours. On the other hand, aloe vera oil cell tissue fiber addition group reached about 75% after 6 hours, and gradually increased to about 80% after 24 hours.

따라서. 알로에 베라 유 세포 조직 섬유질은 글루코오스의 투과 지연효과를 나타냄을 확인할 수 있었으며, 이는 알로에 베라 유 세포 조직 섬유질이 그 구조내에 글루코오스를 가두어 두는 가둠효과(entrapping effect)에 기인한 것으로 추정된다(Schneeman, 1987).therefore. It could be confirmed that Aloe vera oil cell tissue fiber showed a delayed effect of glucose, which is probably due to the entrapping effect that traps glucose in its structure (Schneeman, 1987). ).

투석초기의 글루코오스 흡수 지연율은 글루코오스의 흡수지연효과를 판단하는 지표로 사용되므로 30분, 1시간 및 2시간에서의 글루코오스 흡수 억제지수를 구하였으며, 표 7로부터 알 수 있는 바와 같이, 알로에 베라 유 세포 조직 섬유질은 투석막을 이용한 2시간 동안의 in vitro 글루코오스 흡수 지연 실험에서 20.32 ~ 35.20%의 흡수지연효과를 보였으며, 이는 비교 표준품인 알파-셀룰로오스 보다 약 2.5배 더 높은 우수한 결과이었다. Glucose absorption delay rate at the beginning of dialysis was used as an indicator for determining the delayed effect of glucose absorption. Therefore, the glucose absorption inhibition index was calculated at 30 minutes, 1 hour, and 2 hours. As can be seen from Table 7, aloe vera oil cells Tissue fiber showed a 20.32 to 35.20% delay in absorption in the 2-hour in vitro glucose uptake experiment using dialysis membrane, which was about 2.5 times higher than the comparative standard alpha-cellulose.

현재 시판용 식이섬유 중 수용성 식이섬유인 알긴산(alginic acid), 구아검(guar gum), 카르복시메틸셀룰로오스(CM-cellulose) 및 감귤류 펙틴(citrus pectin)의 투석 30분 경과시 글루코오스 흡수 억제지수는 약 30% 수준이므로 알로에 베라 유 세포 조직 섬유질은 이들 값 이상으로 매우 높은 글루코오스 흡수지연 효과가 있어 글루코오스의 흡수억제에 의한 항 당뇨효과가 기대된다.Glucose absorption inhibition index is about 30 minutes after dialysis of the water-soluble dietary fiber alginic acid, guar gum, carboxymethyl cellulose (CM-cellulose) and citrus pectin among commercial fiber. As a% level, aloe vera oil cell tissue fiber has a very high delay in glucose absorption above these values, and antidiabetic effect by inhibition of glucose absorption is expected.

그동안 알로에 겔이나 전립 추출물에 대해서는 당뇨에 관하여 동물 및 임상시험이 있었다. Okyar et al.,(2001)은 ND(non-diabetic), type I(IDDM; insulin dependent diabetes millitus) 및 type II(NIDDM; (non-insulin dependent diabetes millitus) 쥐를 사용하여 알로에 베라의 잎과 겔의 추출물을 사용하여 실험한 결과, 정상 쥐에서는 혈당 수준을 낮추는 효과가 없었다고 하였다. 그러나, 알로에 베라의 잎과 겔의 추출물은 IDDM 및 NIDDM 주에서 혈당강하 활성을 보였으며, 혈당강하제인 글리벤클라미드(glibenclamide)와 비교하여 type II 당뇨에서 향상된 효능이 있다고 하였다. 반면, 겔 추출물에서는 NIDDM 주에서만 혈당강하를 보였으며, 겔이 없는 알로에 베라 잎의 펄프(pulp)가 NIDDM의 치료에 유용하다고 하였다.In the meantime, there have been animal and clinical studies of diabetes in aloe gel or prostate extract. Okyar e t al. (2001) used extracts of leaves and gels of aloe vera using ND (non-diabetic), type I (IDDM; insulin dependent diabetes millitus) and type II (NIDDM; (non-insulin dependent diabetes millitus) mice. The results showed that the rats had no effect of lowering blood glucose levels, but the extracts of leaves and gels of Aloe vera showed hypoglycemic activity in the IDDM and NIDDM strains, and the hypoglycemic agent, glibenclamide. In contrast, the gel extract showed lowering blood glucose only in the NIDDM strain, and the gel-free pulp of Aloe Vera leaves was useful for the treatment of NIDDM.

Rajendran et al.,(2007)도 A. vera sap으로 처리한 당뇨쥐는 체중 및 간의 glycogen을 현저히 증가시키며, 혈중 포도당, 뇨의 당 수준 및 혈중 지질을 다른 군에 비해 현저한 감소를 보인다고 하였다.Rajendran e t al. (2007) also reported that diabetic rats treated with A. vera sap significantly increased glycogen in body weight and liver, and significantly decreased blood glucose, urine glucose levels and blood lipids compared to other groups.

한편, 알로에 베라 유 세포 조직 섬유질의 in vitro법에 의한 담즙산 흡수 지연 효과를 알아보기 위하여 투석막을 통해 투석되는 담즙산의 양을 72시간 동안 경시적으로 측정하여 조사한 결과인 도 10으로부터 알 수 있는 바와 같이 대조구의 담즙산 투과율은 초기 3시간까지 비교적 급격히 증가하다가 이후 72시간까지 서서히 증가하여 72시간 후에 거의 90%이상 투과하였다. 이러한 경향은 글루코오스 투과와 비슷하였다. On the other hand, in order to determine the effect of delaying the bile acid absorption by the in vitro method of aloe vera oil cell tissue fiber as measured from the measurement of the amount of bile acid dialyzed through the dialysis membrane over time for 72 hours as shown in Figure 10 The bile acid permeation rate of the control group increased relatively rapidly until the first 3 hours and then gradually increased to 72 hours, and nearly 90% after 72 hours. This trend was similar to glucose permeation.

따라서, 시료 첨가구의 경우는 대응하는 시간에서 담즙산의 투과를 지연시킴을 알 수 있었는데, 담즙산의 흡수 지연효과를 보다 명확히 알아보기 위하여 투석 초기 1 ~ 2시간 사이의 담즙산 흡수 억제지수(bile acid retardation index, %)를 구한 결과를 나타내는 표 8에 기재된 바와 같이 투석막을 이용한 2시간 동안의 in vitro 담즙산의 흡수지연 효과는 53.13 ~ 28.30%로 매우 높았다. 이는 비교 표준품인 알파=셀룰로오스 보다 담즙산 흡수지연효과가 최소 약 1.2배에서 최대 6배까지도 높은 값이었다.Therefore, it was found that the sample addition delays the permeation of bile acids at the corresponding time. To further clarify the delayed absorption of bile acids, the bile acid retardation index between 1 and 2 hours at the beginning of dialysis ,%), The delayed absorption effect of in vitro bile acid for 2 hours using dialysis membrane was very high (53.13 ~ 28.30%). The delayed effect of bile acid absorption was at least 1.2 to 6 times higher than that of the comparative standard alpha = cellulose.

보고된 시판용 식이섬유 중 수용성 식이섬유의 담즙산 흡수 억제지수가 감귤류 펙틴 30.4%, 구아검 22.3%, 알긴산 17.0% 및 사과 펙틴 13.4%임을 고려할 때(Lee and Lee, 1996), 본 발명의 알로에 베라 유 세포 조직 섬유질의 값은 월등하게 높은 값으로 담즙산 흡수 지연 효과가 뛰어남을 알 수 있다. Considering that the bile acid absorption inhibition index of the water-soluble dietary fiber in the reported commercial fiber is 30.4% of citrus fruits, guar gum 22.3%, 17.0% of alginic acid and 13.4% of apple pectin (Lee and Lee, 1996), the aloe vera oil of the present invention Cellular fiber value is significantly higher, it can be seen that the bile acid absorption delay effect is excellent.

Story(1985)는 점질성의 식이섬유는 장에서 당 흡수를 지연시켜 혈중 인슐린값을 감소시킬 뿐만 아니라, 담즙산과의 결합에 의해 유리 상태의 담즙산 함량을 감소시켜 재흡수되는 담즙산의 함량에 변화를 줌으로써 궁극적으로 지방대사에 영향을 미쳐 콜레스테롤 합성을 저하시킨다고 하였고, Dixit and Joshi(1983)는 동물실험에서 알로에 베라의 잎 추출물이 대조구에 비해 LDL과 VLDL-cholesterol을 각각 79% 및 37.5%나 감소시키고 HDL/총 콜레스테롤 비를 초기 수준에 비해 현저히 증가시킨다고 보고한 바 있다. Story (1985) suggests that viscous dietary fiber delays the absorption of glucose in the intestine, thereby reducing the insulin level in the blood, as well as reducing the free bile acid content by binding to bile acids, thereby changing the content of bile acids that are reabsorbed. Dixit and Joshi (1983) reported that aloe vera leaf extracts reduced LDL and VLDL-cholesterol by 79% and 37.5%, respectively, and decreased HDL in animal experiments. It has been reported that the total cholesterol ratio is significantly increased compared to the initial level.

따라서, 알로에 베라 유 세포 조직 섬유질의 매우 우수한 글루코오스 및 담즙산의 흡수지연효과는 당뇨 및 동맥경화 억제의 효과로 발현될 수 있을 것으로 판단하였다. Therefore, it was determined that the delayed absorption of glucose and bile acids of Aloe vera milk cell tissue fiber could be expressed as an effect of inhibiting diabetes and atherosclerosis.

또한, 표 9로부터 알 수 있는 바와 같이 실험 전 흰쥐의 평균 체중은 실험군 간의 차이없이 265 ~ 266.7g의 비슷한 값 범위이었다. 그러나, 사육 30일 후 평균 체중은 일반식이군이 403.10 ± 32.43g, 고지방식이군이 455.43 ± 21.10g으로 고지방식이군에서 더 높은 체증 증가를 나타내었다.In addition, as can be seen from Table 9, the average weight of the rats before the experiment ranged from 265 to 266.7 g with similar values without any difference between the groups. However, after 30 days of breeding, the mean weight was 403.10 ± 32.43g in the normal diet group and 455.43 ± 21.10g in the high-fat diet group, which showed a higher weight gain in the high-fat diet group.

체중 증가량은 고지방식이군이 6.29 ± 1.06g/day, 일반식이군이 4.55 ± 0.96g/day로, 체중 증가율로 환산하면 고지방식이군은 일반식이군에 비해 체중 증가율이 약 23.6% 증가하였으며, 따라서 4주간의 고지방식 공급으로 체중이 현저히 증가하고 비만이 유도됨을 알 수 있었다. 반면, 알로에 베라 유 세포 조직 섬유질 첨가군의 평균 체중 증가율은 6.33 ± 0.60g/day로 고지방 식이군과 마찬가지 값을 보여 기대와는 달리, 체중 감량 효과를 보이지 않았으며, 통계적으로 유의하였다(p<0.01). 하지만, 고지방식의 높은 칼로리에 기인하여 식이섭취량은 고지방식이군이 일반식이군에 비해 섭취량이 적은 반면, 식이효율은 오히려 더 높게 나타났다. 백분율로 계산한 알로에 베라 유 세포 조직 섬유질 첨가군의 식이효율은 약 32.75%이었으며, 이 값은 일반식이군(20.26 ± 2.03%)보다는 높지만 고지방식이군(34.35 ± 0.09%)보다는 다소 낮아서 알로에 베라 유 세포 조직 섬유질의 첨가가 다소의 체중증가를 억제하는 효과가 있는 것으로 추정된다. The weight gain was 6.29 ± 1.06 g / day in the high-fat diet group and 4.55 ± 0.96 g / day in the general diet group. The weight gain rate of the high-fat diet group was about 23.6% higher than that of the normal diet group. Four weeks of high-fat diet significantly increased body weight and obesity was induced. On the other hand, the average weight gain rate of the Aloe vera oil-tissue fiber-added group was 6.33 ± 0.60g / day, which was the same as that of the high-fat diet group, which did not show the weight loss effect, which was statistically significant (p < 0.01). However, due to the high calorie of the high-fat diet, the dietary intake was higher in the high-fat diet group than in the general diet, but the dietary efficiency was higher. The dietary efficiency of Aloe vera oil cell tissue fiber supplemented group was about 32.75%, which is higher than that of general diet group (20.26 ± 2.03%) but slightly lower than that of high-fat diet group (34.35 ± 0.09%). The addition of cellular fiber is believed to have the effect of inhibiting some weight gain.

뿐만 아니라, 도 11로부터 알 수 있는 바와 같이 고지방식이는 일반식이군에서보다 간, 비장, 신장 및 고환의 무게를 다소 증가시켰다. 반면, 알로에 베라 유 세포 조직 섬유질 첨가군의 장기 무게는 일반식이군과 비슷한 수준이었다. 고지방식이에 의한 무게의 증가가 가장 큰 장기는 상대적으로 간인 것으로 나타났는데, 간의 무게는 고지방식이에서 11.6 ± 0.92g으로 일반식이군의 9.9 ± 1.31g 보다 약 17% 증가되었으나 알로에 베라 유 세포 조직 섬유질 첨가군은 평균 10.3g으로 일반식이군 수준을 나타내었다. In addition, as can be seen from Figure 11, high fat diet slightly increased the weight of the liver, spleen, kidney and testicles than in the general diet group. On the other hand, the organ weight of the aloe vera oil-tissue fibrous supplemented group was similar to that of the normal diet group. The organs with the largest weight gain by the high-fat diet were relatively hepatic. The liver weight was 11.6 ± 0.92 g in the high-fat diet, which was about 17% higher than the 9.9 ± 1.31 g in the normal diet, but aloe vera oil cells Tissue fiber added group showed an average diet level of 10.3 g.

한편, 자료로 나타내지는 않았으나 혈액분석을 통해 AST(aspartate aminotransferase)와 ALT(alanine transaminase)를 조사한 결과에서도 이와 비슷하게 일반식이군에 비해 고지방식이군에서 증가하고 알로에 베라 유 세포 조직 섬유질 첨가로 다시 감소하였다. 하지만, 오차범위가 비교적 크고 통계적인 유의성은 없었다.Although not shown in the data, the results of the analysis of aspartate aminotransferase (AST) and alanine transaminase (ALT) were similarly increased in the high-fat diet group compared to the general diet group and decreased again by the addition of aloe vera oil cell tissue fiber. . However, the error range was relatively large and there was no statistical significance.

이러한 간 무게의 증가가 간 조직의 지방 축적과 관계되는 것으로 생각되어 간 조직 내의 지방 침착도를 조사하였으며, 그 결과를 나타내는 도 12로부터 알 수 잇는 바와 같이 고지방식이군은 지방과립의 분포가 관찰(도 12의 ↗ 참조)되나 알로에 베라 유 세포 조직 섬유질 첨가군에서는 일반식이군과 마찬가지로 지방구의 존재를 관찰할 수 없었는 바, 알로에 베라 유 세포 조직 섬유질의 첨가로 고지방식이에 따른 간 조직내 지방침착도를 크게 완화하여 지방간을 줄일 수 있을 것으로 추측되며, 이는 알로에 베라 유 세포 조직 섬유질이 지방의 흡수를 억제하여 간의 지방 축적을 억제하기 때문이라 추정된다.This increase in liver weight was thought to be related to the accumulation of fat in liver tissue, and the fat deposition in liver tissue was examined. As can be seen from FIG. 12 showing the results, the distribution of fat granules was observed in the high-fat diet group. However, in the aloe vera oil cell tissue fiber addition group, the presence of fat globules could not be observed in the aloe vera oil cell tissue fiber addition group, as in the general diet group. It is presumed that the fatty liver can be reduced by greatly relieving the degree, which is because aloe vera oil cell tissue fiber inhibits fat absorption by inhibiting fat absorption.

한편, 지방조직으로 내장지방(Inguinal fat pads)의 무게를 측정한 결과인 도 13으로부터 알 수 있는 바와 같이 일반식이군의 내장지방 무게는 5.2 ± 1.12g이었으나 고지방식이를 섭취한 군에서는 10.2 ± 1.82g으로 내장지방의 무게가 약 2배나 증가하는 것으로 나타났다. 하지만, 고지방식이에 알로에 베라 유 세포 조직 섬유질을 첨가한 군에서는 약 10%의 내장지방이 감소하였으며, 통계적인 유의성(p<0.05)을 나타내어 알로에 베라 유 세포 조직 섬유질이 내장 지방의 축적을 억제하는 것으로 나타났다. On the other hand, as shown in Figure 13, the result of measuring the weight of the inguinal fat (Inguinal fat pads) with adipose tissue, the weight of the visceral fat of the general diet group was 5.2 ± 1.12g, but in the group fed high-fat diet 10.2 ± The weight of visceral fat was about twice that of 1.82g. However, in the high fat diet group, aloe vera oil cell fiber was reduced by about 10%, and showed a statistical significance (p <0.05), indicating that the aloe vera cell tissue fiber inhibited the accumulation of visceral fat. Appeared to be.

실험동물의 해부 전 24시간 절식시킨 다음, 실험 마지막 날에 대장 내 변의 이동이 어느 정도 이루어 졌는지를 알아보기 위해 잔류 변의 개수를 측정한 결과를 나타내는 도 14로부터 알 수 있는 바와 같이 일반 식이를 섭취한 경우 약 2.5개의 변이 대장 내에서 발견되었으나, 고지방을 식이한 경우는 4.2개의 변이 관찰되어, 고지방식이군에서 변이 약 1.7배나 느리게 이동하는 것으로 나타났다. 반면, 알로에 베라 유 세포 조직 섬유질을 섭취한 군에서는 3.6개로 식이섬유의 섭취가 변의 이동속도를 다소 빠르게 하는 것으로 생각되었다. 통계적인 유의성이 없어 자료화하지는 않았으나 12시간 절식 후 10% comassie brilliant blue dye 1g을 혼합하여 변이 푸른색으로 나오는 시간을 측정하여 구한 장 통과시간도 비슷한 경향을 나타내었으며, 일반식이군과 알로에 베라 유 세포 조직 섬유질 첨가군은 고지방식이군과 약 2 ~ 3배의 시차가 있었다. After fasting 24 hours before dissection of the animals, the general diet was ingested as shown in FIG. 14, which shows the result of measuring the number of residual stools to determine how much the stool movement in the colon was made on the last day of the experiment. In the case of about 2.5 stools found in the large intestine, 4.2 stools were observed in the diet of high fat, and the stools shifted about 1.7 times slower in the high-fat diet group. On the other hand, in the group of aloe vera oil cell fiber intake was 3.6, dietary fiber intake was thought to speed up the movement of the stool slightly. Although it was not documented due to lack of statistical significance, the intestinal transit time obtained by measuring the time of mutant blue after mixing with 1 g of 10% comassie brilliant blue dye after 12 hours of fasting showed similar trends. The tissue fiber added group had a time difference of about 2-3 times that of the high fat diet group.

장내 변의 개수 및 장 통과 시간의 결과는 알로에 베라 유 세포 조직 섬유질의 배변활동 개선효과를 유추할 수 있으므로 변비관련 전사 발현인자를 조사하였다.Constipation-related transcriptional expression factors were investigated because the number of bowel stools and the intestinal transit time could infer the effect of improving the bowel activity of aloe vera oil cell tissue fiber.

최근, c-kit 유전자는 변비 환자에서 발현이 감소하는 것으로 알려졌고, Prox 1 유전자는 대장암이 유발되었을 때 발현하는 유전자로 알려졌다(Tong et al., 2005; Shimoda et al., 2006; Petrova et al., 2008; ).Recently, the c-kit gene has been known to reduce expression in constipation patients, and the Prox 1 gene has been known to be expressed when colon cancer is induced (Tong et al ., 2005; Shimoda et al ., 2006; Petrova et al. ., 2008;).

GAPDH (glyceraldehydes-3-phosphate dehydrogenase)를 대조로 일반식이군, 고지방 식이군 및 알로에 베라 유 세포 조직 섬유질 첨가군의 c-kit와 Prox 1 유전자의 발현을 조사한 결과인 도 15로부터 알 수 있는 바와 같이 각 군별로 3마리씩의 대장에서 확인한 결과, 개체별 차이가 심하게 나타나는 것으로 확인되었다. 그러나, 대체로 일반식이군 및 알로에 베라 유 세포 조직 섬유질 첨가군은 고지방식이군과 c-kit 유전자의 발현 정도가 달랐다. As can be seen from FIG. 15, the expressions of c-kit and Prox 1 genes of the general diet group, the high fat diet group, and the aloe vera oil cell tissue fiber addition group were compared with GAPDH (glyceraldehydes-3-phosphate dehydrogenase). As a result of confirming in three colons of each group, it was confirmed that the individual differences were severe. However, the general diet group and the aloe vera oil cell fiber-added group showed different expression levels of the high-fat diet group and the c-kit gene.

또, 대장암 유발시 발되는 prox-1 유전자는 고지방식이군에서는 증가하는 양상을 보이나, 알로에 베라 유 세포 조직 섬유질군에서는 증가하지 않는 것으로 관찰되었다. In addition, the prox-1 gene induced by colon cancer was increased in the high fat diet group, but not in the aloe vera cell tissue fiber group.

한편, 대장질환(colorectal moltility dsiorders)에서 평활근의 myosin heavy chain(SMMHC)과 smoothelin(SM)은 대장 상피의 이상성과 관련되는 marker로 알려져 있다(Wedel et al., 2006). Wedel 등(2006)의 보고에 의하면 이들 단백질의 면역반응성(immunoreactivity)은 변비(slow-transit constipation)에서 70% 수준인 것으로 알려져 있다.On the other hand, myosin heavy chain (SMMHC) and smoothelin (SM) of smooth muscle in colorectal moltility dsiorders are known as markers related to the abnormality of colonic epithelium (Wedel et al ., 2006). Wedel et al. (2006) report that the immunoreactivity of these proteins is 70% in slow-transit constipation.

따라서, 이들 단백질의 발현을 대장조직검사(immunohistochemistry)하여 조사하였으며, 도 16으로부터 알 수 있는 바와 같이 Myosin의 경우 각 군간의 큰 차이를 보이지는 않았으나 식이에 따른 대장 상피 내 myosin의 positive cell을 counting 한 결과, 전반적으로 고지방식이군에서는 대장 상피에서 약간 감소한 반면, 알로에 베라 유 세포 조직 섬유질 섭취 군에서는 약간 증가하는 경향을 나타내었다. Therefore, the expression of these proteins was examined by immunohistochemistry. As can be seen from FIG. 16, in the case of Myosin, the counting of positive cells of myosin in the colonic epithelium was not significant. The results showed that there was a general decrease in colon epithelium in the high-fat diet group and a slight increase in the aloe vera oil cell tissue fiber intake group.

한편, smoothelin은 고지방식이군의 대장 상피 쪽에서 일반식이군보다 감소하는 경향을 나타내었다. 반면, 알로에 베라 유 세포 조직 섬유질 첨가군에서는 약간의 발현차이는 있으나 증가하는 경향을 보였다. 발현 정도는 일반식이군 > 알로에 베라 유 세포 조직 섬유질 첨가군 >고지방식이군이었다. On the other hand, smoothelin showed a tendency to decrease in the colon epithelium of the high-fat diet group than the general diet group. On the other hand, aloe vera oil cell tissue fiber addition group showed a tendency to increase although there is a slight difference in expression. The expression level was general diet group> aloe vera oil cell tissue fiber addition group> high fat diet group.

이상의 실험 결과들을 종합해 볼 때 고지방식으로 유도한 식이성 비만 흰쥐에 고지방식이와 함께 알로에 베라 유 세포 조직 섬유질을 첨가하여 섭취시킬 경우, 어느 정도 비만 및 변비의 개선 효과가 있음을 추론할 수 있었다. Based on the above results, it can be inferred that dietary obesity-induced rats fed with high-fat diet and aloe vera oil cell fibrous fiber had some effects on improving obesity and constipation. there was.

통상, 이러한 동물실험에서 식이섬유의 첨가수준은 5 ~ 20% 수준이며, 농도 의존적으로 그 효과가 증가된다. 본 실험의 경우 알로에 베라 유 세포 조직 섬유질의 첨가량은 최소 수준인 5%이었으므로 그 첨가량을 높여주면 더욱 향상된 결과를 얻을 것으로 기대된다.Normally, in these animal experiments, the level of dietary fiber addition is 5-20%, and the effect is increased depending on the concentration. In this experiment, the amount of aloe vera oil cell tissue fiber added was 5%, which is the minimum level.

도 1은 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 FT-IR 스펙트럼을 나타내는 그래프이고,1 is a graph showing the FT-IR spectrum of aloe vera oil cell tissue fiber according to the present invention,

도 2는 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 X-선 회절 분석 결과를 나타내는 그래프이며,2 is a graph showing the results of X-ray diffraction analysis of aloe vera oil cell tissue fiber according to the present invention,

도 3은 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 주사현미경 사진이고,Figure 3 is a scanning micrograph of the aloe vera oil cell tissue fiber according to the present invention,

도 4는 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 유화능 및 유화안정성을 나타내는 그래프이고,Figure 4 is a graph showing the emulsification capacity and emulsion stability of the aloe vera oil cell tissue fiber according to the present invention,

도 5는 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 거품 형성능을 나타내는 그래프이며,5 is a graph showing the foaming ability of the aloe vera oil cell tissue fiber according to the present invention,

도 6은 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 거품 안정성을 나타내는 그래프이고,6 is a graph showing the foam stability of the aloe vera oil cell tissue fiber according to the present invention,

도 7은 회전점도계로 측정된 본 발명에 따른 알로에 베라 유 세포 조직 섬유질과 알파-셀룰로오스의 점도를 나타내는 그래프로서, 왼쪽은 알파-셀룰로오스, 오른쪽은 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 점도이며,7 is a graph showing the viscosity of aloe vera oil cell tissue fibers and alpha-cellulose according to the present invention measured by a rotational viscometer, the left is alpha-cellulose, the right is the viscosity of the aloe vera oil cell tissue fibers according to the present invention ,

도 8은 회전속도 60rpm에서의 본 발명에 따른 알로에 베라 유 세포 조직 섬유질과 알파-셀룰로오스의 점도를 나타내는 그래프이고,8 is a graph showing the viscosity of aloe vera oil cell tissue fiber and alpha-cellulose according to the present invention at a rotational speed of 60rpm,

도 9는 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 글루코오스 투과율 경시변화를 나타내는 그래프이며,9 is a graph showing changes in glucose permeability over time of aloe vera oil cell tissue fibers according to the present invention,

도 10은 본 발명에 따른 알로에 베라 유 세포 조직 섬유질의 담즙산 투과율 경시변화를 나타내는 그래프이고,10 is a graph showing the change over time of bile acid permeability of aloe vera oil cell tissue fiber according to the present invention,

도 11은 본 발명에 따른 알로에 베라 유 세포 조직 섬유질을 섭취한 흰쥐의 장기 무게를 측정한 결과를 나나태는 그래프이며,11 is a graph showing the results of measuring the weight of the organs of rats fed aloe vera oil cell tissue fiber according to the present invention,

도 12는 본 발명에 따른 알로에 베라 유 세포 조직 섬유질을 섭취한 흰쥐의 간 조직내의 지방침적도 확인하기 위한 사진이고,12 is a photograph for confirming the fate in the liver tissue of rats ingested aloe vera oil cell tissue fiber according to the present invention,

도 13은 본 발명에 따른 알로에 베라 유 세포 조직 섬유질을 섭취한 흰쥐의 지방내장 무게를 측정한 결과를 나타내는 그래프이며,Figure 13 is a graph showing the results of measuring the weight of fat gut in rats ingested aloe vera oil cell tissue fiber according to the present invention,

도 14는 본 발명에 따른 알로에 베라 유 세포 조직 섬유질을 섭취한 흰쥐의 대장 내 잔류 변의 개수를 측정한 결과를 나타내는 그래프이고,14 is a graph showing the results of measuring the number of residual feces in the large intestine of rats fed aloe vera oil cell tissue fiber according to the present invention,

도 15는 본 발명에 따른 알로에 베라 유 세포 조직 섬유질을 섭취한 흰쥐의 c-kit와 Prox 1 유전자 발현을 확인할 수 있는 사진이며,15 is a photograph showing the expression of c-kit and Prox 1 gene in rats fed aloe vera oil cell tissue fiber according to the present invention.

도 16은는 본 발명에 따른 알로에 베라 유 세포 조직 섬유질을 섭취한 흰쥐의 대장조직검사 사진이다. Figure 16 is a colon biopsy photograph of rats ingested aloe vera oil cell tissue fiber according to the present invention.

Claims (5)

알로에 베라를 수세한 후 박피하여 알로인을 제거하고 유 세포 조직의 겔을 얻은 후, 원심분리하여 알로에 베라의 섬유질과 겔로 분리, 분획하고, 알로에 섬유질 분획을 취하여 동결건조한 다음, 분말화 하는 것을 특징으로 하는 식이섬유용 알로에 베라 유 세포 조직의 섬유질 제조 방법.After washing with aloe vera, it is peeled to remove alloin and obtained a gel of flow cell tissue, followed by centrifugation to separate and fractionate the fiber and gel of aloe vera, take the aloe fiber fraction and freeze-dry it, and then powder it. Fiber manufacturing method of aloe vera oil cell tissue for dietary fiber. 청구항 1의 방법으로 제조된 알로에 베라 유 세포 조직의 섬유질을 유효 성분으로 하는 글루코오스 흡수 지연용 식이 섬유 조성물.A dietary fiber composition for delaying glucose absorption comprising as an active ingredient the fiber of aloe vera oil cell tissue prepared by the method of claim 1. 청구항 1의 방법으로 제조된 알로에 베라 유 세포 조직을 유효 성분으로 하는 담즙산 흡수 지연용 식이 섬유 조성물.A dietary fiber composition for delaying bile acid absorption comprising aloe vera oil cell tissue prepared by the method of claim 1 as an active ingredient. 청구항 1의 방법으로 제조된 알로에 베라 유 세포 조직의 섬유질을 유효 성분으로 하는 비만 개선용 식이 섬유 조성물.Dietary fiber composition for improving obesity comprising the fiber of aloe vera oil cell tissue prepared by the method of claim 1 as an active ingredient. 청구항 1의 방법으로 제조된 알로에 베라 유 세포 조직의 섬유질을 유효 성분으로 하는 변비 개선용 식이 섬유 조성물.Dietary fiber composition for improving constipation comprising the fiber of the aloe vera oil cell tissue prepared by the method of claim 1 as an active ingredient.
KR1020090007427A 2009-01-30 2009-01-30 Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber KR101189141B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090007427A KR101189141B1 (en) 2009-01-30 2009-01-30 Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090007427A KR101189141B1 (en) 2009-01-30 2009-01-30 Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber

Publications (2)

Publication Number Publication Date
KR20100088295A KR20100088295A (en) 2010-08-09
KR101189141B1 true KR101189141B1 (en) 2012-10-10

Family

ID=42754530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090007427A KR101189141B1 (en) 2009-01-30 2009-01-30 Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber

Country Status (1)

Country Link
KR (1) KR101189141B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517940B1 (en) 2013-05-30 2015-05-06 주식회사김정문알로에 Method for manufacturing aloe gel modified by PEG(polyethylen glycol) using DIS(dewatering and impregnation soaking) process and cosmetic composition for moisturizing effect on skin including aloe gel modified by PEG manufactured thereby
KR20160017173A (en) * 2014-07-31 2016-02-16 주식회사김정문알로에 Method for manufacturing aloe gel concentrated by DIS(dewatering and impregnation soaking) process using semipermeable membrane and functional food including the same manufactured thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100288117B1 (en) * 1999-04-15 2001-04-16 한수길 Cacao extract including dietary fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100288117B1 (en) * 1999-04-15 2001-04-16 한수길 Cacao extract including dietary fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517940B1 (en) 2013-05-30 2015-05-06 주식회사김정문알로에 Method for manufacturing aloe gel modified by PEG(polyethylen glycol) using DIS(dewatering and impregnation soaking) process and cosmetic composition for moisturizing effect on skin including aloe gel modified by PEG manufactured thereby
KR20160017173A (en) * 2014-07-31 2016-02-16 주식회사김정문알로에 Method for manufacturing aloe gel concentrated by DIS(dewatering and impregnation soaking) process using semipermeable membrane and functional food including the same manufactured thereby
KR101711201B1 (en) 2014-07-31 2017-03-03 주식회사김정문알로에 Method for manufacturing aloe gel concentrated by DIS(dewatering and impregnation soaking) process using semipermeable membrane and functional food including the same manufactured thereby

Also Published As

Publication number Publication date
KR20100088295A (en) 2010-08-09

Similar Documents

Publication Publication Date Title
Behera et al. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care
EP0873054B1 (en) Dietary fiber gels for preparing calorie reduced foods
Sáenz et al. Opuntia spp mucilage's: a functional component with industrial perspectives
FI87303C (en) High-absorbency, nutrient-poor, plant-based fiber, in diet useful fiber product
Liu et al. The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls
Abirami et al. Measurement of functional properties and health promoting aspects-glucose retardation index of peel, pulp and peel fiber from Citrus hystrix and Citrus maxima
Mrabet et al. Date palm fruits as a potential source of functional dietary fiber: A review
US20150376301A1 (en) Method of preparing fibre-containing pectin product and pectin products hereof
CN105747235B (en) A kind of dietary composition that can improve metabolic syndrome symptom
KR101189141B1 (en) Method for preparing fiber of Aloe vera Linne parenchyma tissue for the dietary fiber
KR100288117B1 (en) Cacao extract including dietary fiber
Singh et al. A review on dietary fiber in cereals and its characterization
Sáenz et al. Chemical and physical characterization of cactus cladode (Opuntia ficus-indica) powder
Qi Sunflower stalk pith fibre: Investigation on oil holding capacity, oil-fibre interaction, and related application in food
CN114173799A (en) Oral physiological activator containing modified konjac flour
Liu et al. Polysaccharides from Soybean Hulls and Their Functional Activities
小嶋道之 et al. Physico-chemical properties and digestibility of pulse starch after four different treatments
عرفه et al. Influence of Jerusalem Artichoke Tubers (Helianthus tuberosus L.) on Rats Suffering from Diabetes and its Complications
CN108936673A (en) For toxin-expelling and face nourishing, the food therapeutic composition of weight-reducing and preparation method thereof
CN117918500A (en) Chinese yam powder with low glycemic index as well as preparation method and application thereof
Fatima et al. Okra: Mucilage extraction, composition, applications, and potential health benefits
JP4445145B2 (en) Oral composition
Geethalaxmi et al. Tamarind seed polysaccharides, proteins, and mucilage: extraction, modification of properties, and their application in food
JPH0653052B2 (en) Manufacturing method of new dietary fiber material
CN114376178A (en) Appetite-suppressing konjak powder and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171113

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 8