KR101162562B1 - Non-inflammably Highly Efficient Heat Insulator and Method for Preparing the Same - Google Patents
Non-inflammably Highly Efficient Heat Insulator and Method for Preparing the Same Download PDFInfo
- Publication number
- KR101162562B1 KR101162562B1 KR1020100051718A KR20100051718A KR101162562B1 KR 101162562 B1 KR101162562 B1 KR 101162562B1 KR 1020100051718 A KR1020100051718 A KR 1020100051718A KR 20100051718 A KR20100051718 A KR 20100051718A KR 101162562 B1 KR101162562 B1 KR 101162562B1
- Authority
- KR
- South Korea
- Prior art keywords
- fiber
- insulation
- performance
- organic
- inorganic
- Prior art date
Links
- 239000012212 insulator Substances 0.000 title claims description 7
- 238000000034 method Methods 0.000 title abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 92
- 238000009413 insulation Methods 0.000 claims abstract description 48
- 239000000835 fiber Substances 0.000 claims abstract description 38
- 239000000843 powder Substances 0.000 claims abstract description 35
- 239000011810 insulating material Substances 0.000 claims abstract description 28
- 239000000654 additive Substances 0.000 claims abstract description 17
- 229920006300 shrink film Polymers 0.000 claims abstract description 17
- 239000012774 insulation material Substances 0.000 claims abstract description 16
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 230000005855 radiation Effects 0.000 claims abstract description 10
- 239000012779 reinforcing material Substances 0.000 claims abstract description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 44
- 239000004698 Polyethylene Substances 0.000 claims description 19
- 238000000465 moulding Methods 0.000 claims description 18
- 239000012783 reinforcing fiber Substances 0.000 claims description 16
- 238000004806 packaging method and process Methods 0.000 claims description 15
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 13
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 13
- 230000000996 additive effect Effects 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 239000004800 polyvinyl chloride Substances 0.000 claims description 5
- 238000007580 dry-mixing Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 239000000454 talc Substances 0.000 claims description 3
- 229910052623 talc Inorganic materials 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 2
- 150000003377 silicon compounds Chemical class 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000004677 Nylon Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 239000000919 ceramic Substances 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 229920001778 nylon Polymers 0.000 claims 1
- 239000012744 reinforcing agent Substances 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract description 9
- 239000000969 carrier Substances 0.000 abstract description 4
- 239000003921 oil Substances 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 208000002193 Pain Diseases 0.000 abstract 1
- 235000019645 odor Nutrition 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 7
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 6
- 239000003063 flame retardant Substances 0.000 description 6
- 238000012856 packing Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 4
- 239000012209 synthetic fiber Substances 0.000 description 4
- 229920002994 synthetic fiber Polymers 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- -1 Polyethylene Polymers 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/06—Quartz; Sand
- C04B14/066—Precipitated or pyrogenic silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
- C04B16/0616—Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/30—Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Insulation (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Building Environments (AREA)
Abstract
본 발명은 기존의 유기, 무기 단열재 대비 우수한 불연성능과 단열성능을 가지고 있는 불연 고성능 단열재 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 무정형계 실리카 분체, 유기 섬유 단독 또는 유기 섬유와 무기 섬유의 혼용섬유로 된 보강섬유, 복사열 차단 첨가제 및 보강재를 건식으로 혼합하고 프레스로 성형시켜, 제조된 성형체를 PE 필름 또는 열수축필름으로 6면 랩핑(Wrapping) 하여 단열재의 강도 및 취급성을 향상시켰으며, 기존의 불연 무기단열재의 단점(따가움, 냄새 등의 취급저하)을 개선하였을 뿐만 아니라, 우수한 단열성능으로 실내 적용시 기존 유,무기단열재 대비 벽체의 총 두께를 감소시켜 내부 실내공간을 넓게 확보할 수 있고, 투습저항을 가진 필름을 적용시 수분(흡습)에 강하고, 시공시 법적 기준(건축물의 에너지 절약 설계기준)인 방습층 공정을 생략하여 시공비를 절감할 수 있는 불연 고성능 단열재 및 그 제조방법에 관한 것이다.
본 불연 고성능 단열재는 기존의 유, 무기 단열재보다 우수한 단열성능으로 건축물 내/외벽 뿐만 아니라 냉동창고, LNG선 및 기타 여러 산업분야에도 효과적으로 사용될 수 있는 단열재이다.The present invention relates to a non-combustible high-performance heat insulating material having a superior non-combustible performance and heat insulating performance compared to the conventional organic and inorganic heat insulating material, and more particularly, to amorphous silica powder, organic fiber alone or mixed of organic fibers and inorganic fibers. The fiber-reinforced fiber, radiation shielding additives and reinforcing materials were mixed dry and molded into a press to wrap the molded product with PE film or heat-shrink film on 6 sides to improve the strength and handleability of the insulation. In addition to improving the shortcomings of the non-combustible inorganic insulation (treatment of stinging, odors, etc.), the excellent insulation performance reduces the total thickness of the wall compared to the existing organic and inorganic insulation materials to ensure a wide interior space. , Resistant to moisture (moisture) when applying film with moisture resistance, and legal standard for construction (saving energy of buildings) Series basis) of omitting the process bangseupcheung incombustible high-performance insulation can reduce the sigongbi and to a method of manufacturing the same.
This non-combustible high-performance insulation is an insulation that can be effectively used not only in the interior and exterior walls of the building but also in refrigerated warehouses, LNG carriers and many other industrial fields with excellent insulation performance than conventional oil and inorganic insulation.
Description
본 발명은 건축자재용 불연 고성능 단열재 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 무정형계 실리카 분체, 유기 섬유 단독 또는 유기 섬유와 무기 섬유가 혼용된 보강섬유, 복사열 차단 첨가제 및 보강재를 건식으로 혼합하고 프레스로 성형시켜, 제조된 성형체를 PE, LLDPE, PP, PVC, PET 중에서 선택되는 열수축필름 등으로 6면 랩핑(Wrapping) 하여 단열재의 강도 및 취급성을 향상시켰으며, 기존의 불연 무기단열재의 단점(따가움, 냄새 등의 취급저하)을 개선하였을 뿐만 아니라, 우수한 단열성능으로 실내 적용시 기존 유,무기단열재 대비 벽체의 총 두께를 감소시켜 내부 실내공간을 넓게 확보할 수 있고, 투습저항을 가진 필름을 적용시 수분(흡습)에 강하고, 시공시 법적 기준(건축물의 에너지 절약 설계기준)인 방습층 공정을 생략하여 시공비를 절감할 수 있는 불연 고성능 단열재 및 그의 제조방법에 관한 것이다. 본 불연 고성능 단열재는 기존의 유, 무기 단열재 보다 우수한 단열성능으로 건축물 내/외벽 뿐만 아니라 냉동창고, LNG선 및 기타 여러 산업분야에도 효과적으로 사용될 수 있는 단열재이다.
The present invention relates to a non-combustible high-performance heat insulating material for building materials and a method for manufacturing the same, more specifically, amorphous silica powder, organic fibers alone or mixed with organic fibers and inorganic fibers mixed with reinforcing fibers, radiation shielding additives and reinforcing materials dry After molding, the molded product was wrapped on a six-sided surface with a heat-shrink film selected from PE, LLDPE, PP, PVC, PET, etc. to improve the strength and handleability of the insulating material. Not only did it improve the disadvantages (handling, deterioration of handling, etc.), but also it has excellent heat insulating performance, which can reduce the total thickness of the wall compared to the existing organic and inorganic insulation materials to secure a wide indoor interior space. When the film is applied, it is resistant to moisture (hygroscopicity), and the construction cost is omitted by omitting the moisture barrier layer process, which is a legal standard (construction of energy saving design of building). It relates to a non-combustible high-performance insulation and a method of manufacturing the same that can be saved. This non-combustible high-performance insulation is an insulation that can be effectively used not only in the interior and exterior walls of the building but also in refrigerated warehouses, LNG carriers and many other industrial fields with better insulation performance than conventional oil and inorganic insulation.
국내 단열재의 단열성능기준은 건축물에너지절약설계기준에 명시하고 있는 단열재의 등급 분류에 의해서 가, 나, 다, 라의 4개의 등급으로 열전도율 성능에 따라서 구분되어 있다. Insulation performance standards of domestic insulation materials are classified into four grades (A, B, C, and D) according to the thermal conductivity performance according to the classification of insulation materials specified in Building Energy Saving Design Standard.
본 발명의 불연 고성능 단열재는 열전도율 값이 상기에서 구분되어 있는 가장 최고등급의 '가'(열전도율값 0.034W/mK 이하) 등급의 단열재들 보다 월등히 뛰어난 0.025W/mK 이하의 성능을 발휘하는 고성능의 단열재이며, 또한 불연 재료로써 화재에 대해서도 매우 안정된 구조를 취하는 것을 특징으로 한다. The non-combustible high performance heat insulating material of the present invention exhibits a high performance of 0.025 W / mK or less, which is superior to those of the highest grade 'ga' (heat conductivity value of 0.034 W / mK or less) grade whose thermal conductivity is classified above. It is a heat insulating material and is characterized by taking a very stable structure against fire as a non-combustible material.
실리카 분체를 이용한 단열재는 실리카의 매우 작은 입자와 입자간의 많은 공간으로 인하여 열의 이동을 최소화 함으로써 뛰어난 단열 성능과 우수한 불연성능을 가진다. Insulation material using silica powder has excellent thermal insulation performance and excellent incombustibility by minimizing heat transfer due to very small particles of silica and a large space between particles.
실리카 분체는 단열성능이 매우 뛰어나나, 무정형의 매우 가벼운 분말형태로 인하여 보드 또는 일정한 판상 형태를 갖추기가 매우 어렵고, 보드형태를 갖추어도 운반이나, 가공 중에 간편하게 취급하기 어려운 단점이 있다.Silica powder has a very excellent thermal insulation performance, it is very difficult to have a board or a plate-like form due to the amorphous, very light powder form, even if the board form has a disadvantage that it is difficult to handle easily during transportation or processing.
미국특허 US03962014호에 개시된 단열체에 대한 제조방법은 유리섬유로 제작된 포장내에 실리카 분체 등의 단열물질을 투입 후 프레스하여 성형제조하는 방법을 언급하고 있다. 그러나, 상기의 방법은 실리카 분체가 유리섬유 포장에서 세어 나오거나, 완성제품의 강도가 약하여, 운반 및 작업시 취급성이 매우 떨어지고, 수분(흡습)에 매우 취약한 단점이 있다. 또한 적용부위가 히터 부위 등으로 국한되어 적용범위가 한정되어 있다.The manufacturing method for the heat insulator disclosed in US Patent US03962014 refers to a method for forming and molding by inserting a heat insulating material such as silica powder into a package made of glass fiber. However, the above method has a disadvantage that the silica powder is counted from the glass fiber packaging, or the strength of the finished product is weak, so that handling and handling are very poor during transportation and work, and are very vulnerable to moisture (hygroscopicity). In addition, the application area is limited to the heater area and the like, the scope of application is limited.
국제특허 WO2004/007394A1호에 개시된 단열성형체에 대한 제조방법은 무기질 바인더인 규산소다(일명 물유리)를 이용하여 혼합 성형제조하는 방법을 언급하고 있다. 그러나, 상기특허에 의하여 제조시 많은 시간의 건조시간 및 공정이 필요하며, 건조 후 밀도가 매우 높아지며(600kg/㎥ 이상), 열전도율 수치도 상대적으로 높아져 실리카 분체를 활용한 단열재로서의 기능이 떨어지는 단점이 있다. The manufacturing method for the heat insulating molded product disclosed in International Patent WO2004 / 007394A1 refers to a method of producing a mixed molding using an inorganic binder, sodium silicate (aka water glass). However, according to the patent, a lot of drying time and process are required for manufacturing, and the density after drying is very high (600kg / m 3 or more), and the thermal conductivity is also relatively high, so that the function as a heat insulating material using silica powder is inferior. have.
대한민국 특허공개 10-2008-0076777호에 개시된 단열재 및 그 제조방법은 단열재의 반송시나 가공시의 파손을 막으며, 피복재의 접착강도를 높이기 위해 프레스 성형한 실리카 분체 성형체에 부직포 등을 유기 증점제로 접착하고 건조하여 제조하는 방법을 언급하고 있다. 그러나, 상기 특허에 의한 제조방법은 단열 성형체에 접착된 부직포는 박리가 되지 않더라도 프레스로 성형된 실리카 성형체가 파손이 될 수 있는 단점이 있다. 또한 성형체를 파손이 되지 않게 하기 위하여 높은 밀도(240kg/㎥)로 가압 성형하여, 결과적으로는 열전도율 수치가 상승되는 단점이 있다. 또한 상기 특허는 수분에 매우 취약하여 수분이 발생되는 콘크리트 벽면 및 기타 습한 곳에는 적용할 수 없는 단점이 있다.The heat insulating material and its manufacturing method disclosed in Korean Patent Publication No. 10-2008-0076777 prevent the breakage during conveyance or processing of the heat insulating material, and adhere the nonwoven fabric or the like with an organic thickener to the press-molded silica powder compact to increase the adhesive strength of the coating material. It is mentioned how to prepare by drying. However, the manufacturing method according to the patent has a disadvantage that the non-woven fabric bonded to the heat insulating molded body may be damaged even if the silica molded body formed by the press is not peeled off. In addition, in order to prevent the molded body from being damaged by pressure molding at a high density (240 kg / m 3), there is a disadvantage in that the thermal conductivity is increased. In addition, the patent has a disadvantage that can not be applied to concrete walls and other moist places where water is very vulnerable to moisture.
따라서, 뛰어난 단열 성능과 우수한 불연성능을 갖춘 실리카 분체를 이용한 단열재는 우수한 열전도율 뿐만 아니라, 낮은 밀도, 취급 강도 개선, 내 흡습성 등의 주요 기능을 포함한 저밀도의 불연 고성능 단열재의 개발이 필요한 실정이다. Therefore, a heat insulating material using silica powder having excellent heat insulating performance and excellent incombustibility is required to develop a low density non-combustible high performance heat insulating material including not only excellent thermal conductivity but also low density, improved handling strength, and hygroscopic resistance.
본 발명의 발명자들은 상기한 실리카 분체를 이용한 단열재의 여러 문제점들을 해결하기 위하여 연구 노력한 결과, 프레스로 1차 성형한 실리카 분체 단열 성형체에 PE 필름(Polyethylene), 또는 LLDPE(Linear Low-density polyethylene) 등의 열수축필름을 이용하여 성형체를 6면 랩핑(Wrapping) 포장(1~2회) 하여 실리카 분체 단열재의 강도 및 내 흡습성이 향상되어 낮은 밀도의 불연 고성능의 단열재의 발명을 완성하게 되었다.
The inventors of the present invention, as a result of research efforts to solve the various problems of the heat insulating material using the silica powder, PE film (Polyethylene), LLDPE (Linear Low-density polyethylene), etc. Using the heat-shrink film of the six-side wrapping (wrap 1-2 times) wrap the molded article (1 ~ 2 times) to improve the strength and hygroscopic resistance of the silica powder insulation material to complete the invention of the low-density non-combustible high-performance heat insulating material.
본 발명은 불연성능을 기본으로 고성능의 단열성능, 취급성 향상 및 내 흡습성 등의 주요물성이 향상되어 기존의 유, 무기 단열재보다 우수한 단열성능으로 건축 내/외벽 뿐 만 아니라 냉동창고, LNG선 및 기타 여러 산업분야에 효과적으로 사용될 수 있는 고성능의 단열재를 제공하는데 그 목적이 있다.
The present invention is based on the non-combustible performance of the main properties such as high-performance insulation, improved handling and hygroscopicity is improved, as well as excellent insulation performance than conventional oil and inorganic insulation, as well as freezing warehouse, LNG carrier and Its purpose is to provide a high performance insulation that can be effectively used in many other industries.
상기 목적을 달성하기 위하여 본 발명은, 실리카 분체 40~99중량%, 유기 섬유 단독 또는 유기 섬유와 무기 섬유가 혼용된 보강섬유 0.5~20중량%, 복사열 차단 첨가제 및 보강재 0~50 중량%의 재료를 건식 혼합 및 프레스 성형 후, PE 필름 또는 LLDPE필름 등의 수축필름으로 6면 랩핑(Wrapping) 포장(1~2회)을 한 것을 특징으로 하는 불연 고성능 단열재를 제공한다. In order to achieve the above object, the present invention, 40 to 99% by weight of silica powder, 0.5 to 20% by weight of organic fiber alone or reinforcing fiber mixed with organic fibers and inorganic fibers, radiation shielding additives and 0 to 50% by weight of the reinforcing material After dry mixing and press-molding, it provides a non-flammable high-performance heat insulating material characterized in that the six-side wrapping (wrapping) (1-2 times) with a shrink film such as PE film or LLDPE film.
본 발명은 또한, a)실리카 분체 40~99 중량%, 보강섬유 0.5~20중량%, 복사열 차단 첨가제 및 보강재 0~50 중량%의 재료를 건조하거나 미건조 상태로 건식 혼합기에 투입하는 단계; b) 보강섬유는 유기섬유 단독 또는 유기 섬유와 무기 섬유를 같이 투입하여 건식 혼합하는 단계; c)상기 혼합된 원료를 몰드 프레스 성형 또는 롤러 프레스 성형으로 프레스 성형하는 단계; d) 프레스 성형 제품을 1회 또는 2회 랩핑(Wrapping) 포장하는 단계; 및 e) 상기 d) 단계에서 PE 필름 포장은 프레스 성형 제품을 PE 필름으로 감싸주고 열접착으로 필링 마감 처리하며, LLDPE 등의 수축필름으로 감싸주고 수축포장기를 이용하여 수축포장하는 단계;를 포함하는 불연 고성능 단열재의 제조방법을 제공한다.
The present invention also comprises the steps of: a) 40 to 99% by weight of silica powder, 0.5 to 20% by weight of reinforcing fibers, 0 to 50% by weight of radiant heat shielding additives and reinforcing materials in a dry or undried dry mixer; b) the reinforcing fibers are mixed with the organic fibers alone or dry mixed with organic fibers and inorganic fibers; c) press molding the mixed raw material by mold press molding or roller press molding; d) wrapping the press-formed product once or twice; And e) PE film packaging in step d) is to wrap the press-molded product with a PE film and the heat-sealing peeling finish, wrapping with a shrink film such as LLDPE and shrink wrapping using a shrink wrap machine; including It provides a method for producing a non-combustible high performance insulation.
본 불연 고성능 단열재는 기존의 유, 무기 단열재보다 우수한 단열성능으로 건축물 내/외벽 뿐만 아니라 냉동창고, LNG선 및 기타 여러 산업분야에도 효과적으로 사용될 수 있는 단열재이다.
This non-combustible high-performance insulation is an insulation that can be effectively used not only in the interior and exterior walls of the building but also in refrigerated warehouses, LNG carriers and many other industrial fields with excellent insulation performance than conventional oil and inorganic insulation.
본 발명은 일관점에서 무정형계 실리카, 보강섬유, 복사열 차단 첨가제 및 보강재를 함유하는 실리카 단열재로서, 실리카 분체 40~99중량%, 유기섬유 단독 또는 유기섬유와 무기섬유의 혼용섬유로 된 보강섬유 0.5~20중량%, 복사열 차단 첨가제 및 보강재 0~50 중량%의 재료를 건식으로 혼합하고, 프레스 성형 후, PE필름 또는 LLDPE 등의 수축필름으로 6면 랩핑(Wrapping) 포장 (1~2회)을 한, 불연 고성능 단열재에 관한 것이다. The present invention is a silica heat insulating material containing amorphous silica, reinforcing fibers, radiation heat shielding additives and reinforcing materials at a consistent point, silica powder 40 ~ 99% by weight, organic fibers alone or mixed fibers of organic fibers and inorganic fibers 0.5 ~ 20% by weight, radiant heat shield additive and 0-50% by weight of reinforcement materials are mixed dry, and after press molding, 6-side wrapping wrap (1 ~ 2 times) with shrink film such as PE film or LLDPE It relates to a non-combustible high performance insulation.
이와 같은 본 발명을 상세하게 설명하면 다음과 같다.The present invention will be described in detail as follows.
본 발명은 실리카 분체를 사용한 종래의 실리카 단열재에 있어서, 일반적으로 적용되었던 무기 바인더 사용 및 높은 밀도로 가압 성형 대신에 바인더가 없이 낮은 밀도로 성형하여 PE 필름 또는 LLDPE 등의 수축필름으로 6면 랩핑 포장함으로써 강도 및 내흡습성, 경량성 등의 물성이 우수하고, 건축 내/외벽 뿐 아니라 냉동창고, LNG선 및 기타 여러 산업분야에 효과적으로 사용될 수 있는 불연 고성능 단열재를 제공하는 것이다. The present invention, in the conventional silica heat insulating material using the silica powder, using an inorganic binder that has been generally applied, and instead of press molding at a high density, molded at a low density without a binder to wrap six-side wrapping with a shrink film such as PE film or LLDPE By providing excellent physical properties such as strength, hygroscopicity and light weight, and to provide a non-flammable high-performance insulation material that can be effectively used not only in the building interior / exterior walls, but also in refrigerated warehouses, LNG carriers and many other industrial fields.
본 발명에서 사용되는 실리카 분체는 무정형의 매우 가벼운 분말로 기본입자가 극히 작고 구형의 형태이며 넓은 표면적과 특유의 표면 특성, 그리고 고순도의 규소화합물로서, 구형의 기본입자의 평균직경은 5 ~ 50 ㎚ 의 크기를 가지며, 입자가 작음으로 인해 넓은 표면적을 가지며 그 값은 40 ~ 400 ㎡/g 의 범위에 이르는 분말 형태이다. The silica powder used in the present invention is an amorphous, very light powder with very small basic particles, a spherical shape, a large surface area, a characteristic surface characteristic, and a high purity silicon compound. The average diameter of the spherical basic particles is 5 to 50 nm. It has a size and has a large surface area due to the small particles, the value of which is in the form of a powder ranging from 40 to 400 m 2 / g.
실리카 분체는 실리카 단열재의 전체 조성물 중에 40 ~ 99 중량%를 사용한다. 그 사용량이 40 중량% 미만이면 KS L 9016 보온재의 열전도율 측정방법에 의거하여 측정한 열전도율값이 0.026W/mK 이상으로 되어 단열 성능이 저하되는 문제점이 있으며, 99 중량%를 초과하는 경우에는 상대적으로 성형체의 가장자리 부위의 형태가 저하되는 성형성의 문제점이 있다.Silica powder is used 40 to 99% by weight in the total composition of the silica insulation. If the amount is less than 40% by weight, the thermal conductivity value measured according to the thermal conductivity measurement method of KS L 9016 thermal insulation material becomes 0.026W / mK or more, so that the thermal insulation performance is deteriorated. There is a problem in moldability that the shape of the edge portion of the molded body is lowered.
상기와 같은 실리카 분체를 적정 투입하여 다음과 같은 효과를 얻을 수 있다.The following effects can be obtained by appropriately adding the silica powder as described above.
본 발명에 사용되는 실리카 분체는 입자크기가 매우 작으며 입자간의 공간이 많아 기체에 의한 열의 이동을 최소화 시키며, 무정형 실리카로써 실리카 자체에 의한 열전달 크기는 매우 작다. 다시 말해서 일반 다공질 섬유상 단열재는 기체 분자가 충돌에 의하여 열의 이동이 발생할 수 있으나, 실리카 분체를 이용한 단열재는 미립자간의 공간이 산포되어 있어 미세 공극내의 기체 분자는 평균자유행정(입자의 첫 충돌과 두 번째 충돌 사이의 평균거리)으로 인하여 공중에서 충돌이 발생하지 않으므로 단열 및 차열에 유리한 구조를 가지고 있어 우수한 단열성능을 발현하는 효과를 볼 수 있다. The silica powder used in the present invention has a very small particle size and a large space between particles, thereby minimizing heat transfer by gas, and the size of heat transfer by silica itself is very small as amorphous silica. In other words, in general porous fibrous insulation materials, heat transfer may occur due to collision of gas molecules, but insulators using silica powder are dispersed in spaces between fine particles, so that gas molecules in fine pores have an average free stroke (the first collision of particles and the second Since the collision does not occur in the air due to the average distance between collisions, it has an advantageous structure for heat insulation and heat shielding, and thus it is possible to produce an excellent heat insulation performance.
본 발명에서 사용되는 보강 섬유는 유기 섬유 단독 또는 유기 섬유와 무기 섬유의 혼용섬유를 사용하며, 직경 1~100㎛, 길이 6~40mm인 섬유를 사용하며, 무기섬유는 세락믹 섬유를 사용하고, 유기 합성 섬유는 PAN, PVA, PP 등의 섬유를 사용한다. As the reinforcing fiber used in the present invention, an organic fiber alone or a mixed fiber of an organic fiber and an inorganic fiber is used, and a fiber having a diameter of 1 to 100 μm and a length of 6 to 40 mm is used, and the inorganic fiber uses a ceracic fiber, Organic synthetic fibers use fibers such as PAN, PVA, PP, and the like.
보강 섬유는 0.5 ~ 20 중량%를 사용한다. 그 사용량이 0.5 중량% 미만이면 보강 섬유에 의한 강도 발현 효과 및 성형성이 저하되는 문제점이 있으며, 20 중량%를 초과하는 경우에는 상대적으로 KS L 9016 보온재의 열전도율 측정방법에 의거하여 측정한 열전도율값이 0.026W/mK 이상으로 되어 단열 성능이 저하되는 문제점이 있다. 또한 길이 6 ㎜ 미만의 섬유를 사용시에는 섬유에 의한 보강 효과가 떨어지며, 길이 40 ㎜ 초과의 섬유를 사용시에는 실리카 분체 등과의 건식혼합시에 섬유의 분산이 어렵고, 섬유 자체의 뭉침현상이 발생하여 제품 성형성이 저하되는 문제를 발생시킨다. Reinforcing fibers use from 0.5 to 20% by weight. If the amount is less than 0.5% by weight, there is a problem in that the strength expression effect and formability by the reinforcing fiber is lowered, and when it exceeds 20% by weight, the thermal conductivity value measured based on the method of measuring the thermal conductivity of the KS L 9016 thermal insulation material is relatively high. Since this becomes 0.026 W / mK or more, there exists a problem that heat insulation performance falls. In addition, when the fiber length of less than 6 mm is used, the reinforcing effect of the fiber is inferior, and when the fiber length of 40 mm or more is used, the fiber is difficult to disperse during dry mixing with silica powder, and the agglomeration of the fiber itself occurs. A problem arises in that moldability deteriorates.
보강 섬유는 고루 분산되어 실리카 분체 응집체와의 일체화된 결합체를 형성하여 본 단열재의 일차적인 성형성 및 강도 증진 효과를 발휘하는 것을 목적으로 하며 무기 섬유와 유기 합성 섬유를 단독 및 혼용해서 사용할 수 있다. The reinforcing fibers are evenly dispersed to form an integrated bond with the silica powder aggregate to exhibit the primary formability and strength enhancing effect of the present heat insulating material, and inorganic fibers and organic synthetic fibers may be used alone or in combination.
본 발명에서 사용되는 복사열 차단 첨가제 및 보강재는 불투명화제로, 불투명화제는 복사열을 산란시켜 복사열을 차단시키는 장점이 있다. 복사열 차단 첨가제 및 보강재는 활석, 탄화규소, 산화철, 산화지르코늄, 흑연 등을 사용하며 단열재 전체 조성물 중에 0 ~ 50 중량%를 사용한다. 본 단열재가 상온에서 사용시에는 복사열 차단 첨가제의 투입은 필요하지 않으나, 고온, 특히 복사열에 의한 단열이 필요한 경우에는 그 사용량이 50 중량%를 초과하지 않는다. 50 중량%를 초과하는 경우에는 상대적으로 KS L 9016 보온재의 열전도율 측정방법에 의거하여 측정한 열전도율값이 0.026W/mK 이상으로 되어 단열 성능이 저하되는 문제점이 있다. 또한 활석, 탄화규소, 산화철, 산화지르코늄, 흑연 등은 본 단열재가 건축용 자재로서 일정 강도를 가질 수 있는 보강재로서의 기능도 부여하게 된다. Radiation shielding additives and reinforcing materials used in the present invention is an opaque agent, the opaque agent has the advantage of blocking the radiant heat by scattering the radiant heat. Radiant heat shield additives and reinforcing materials use talc, silicon carbide, iron oxide, zirconium oxide, graphite and the like, and 0 to 50% by weight of the total composition of the insulation. When the heat insulator is used at room temperature, it is not necessary to add the radiation shielding additive, but the amount of the heat insulator does not exceed 50% by weight when heat insulation is required, especially when radiant heat is required. When it exceeds 50% by weight, the thermal conductivity value measured based on the thermal conductivity measurement method of KS L 9016 thermal insulation material becomes 0.026W / mK or more, and thus there is a problem that thermal insulation performance is deteriorated. In addition, talc, silicon carbide, iron oxide, zirconium oxide, graphite, and the like also give a function as a reinforcing material that the heat insulating material can have a certain strength as a building material.
본 발명에서 사용되는 6면 랩핑(Wrapping) 포장에는 PE 필름 또는 LLDPE, PE, PP, PVC, PET 중에서 선택되는 열수축필름을 사용하며, 내습성능이 요구되는 단열재에서는 필름의 투습도가 24시간당 30 g/㎡ 이하 또는 투습계수가 0.28 g/㎡?h?㎜Hg 이하의 투습저항을 가진 필름을 사용하며, 랩핑(Wrapping) 포장은 1회 또는 2회 실시한다. PE 필름포장은 실리카 단열재 성형체를 PE 필름으로 감싸주고 열접착으로 씰링 처리하며, LLDPE 등의 수축필름 포장은 실리카 단열재 성형체를 LLDPE 등의 수축필름으로 감싸주고 수축포장기를 이용하여 수축포장한다. In the six-side wrapping packaging used in the present invention, PE film or a heat-shrink film selected from LLDPE, PE, PP, PVC, PET is used, and in the heat insulating material requiring moisture resistance, the moisture permeability of the film is 30 g / 24 hours A film having a moisture permeability of not more than 2 m 2 or of not more than 0.28 g / m 2 · h · mmHg is used. Wrapping is carried out once or twice. PE film packaging wraps the silica insulation molded body with PE film and seals it with heat adhesion. Shrink film packaging such as LLDPE wraps the silica insulation molded body with the shrink film such as LLDPE and shrink wraps using a shrink wrap machine.
PE, LLDPE, PP, PVC, PET 중에서 선택되는 열수축필름으로 6면 랩핑 포장하여 휨강도 및 내흡습성, 경량성 등의 물성 개선을 가능하게 하였다. 또한 투습저항을 가진 필름을 사용시에는 '건축물의 에너지 절약 설계기준' 방습층 기준을 만족하고 건물 내벽에 단열재 시공시 방습필름을 설치하는 공정을 생략함으로써, 공사 현장 적용시 시공 기간 단축 및 인건비 절감의 효과를 가져올 수 있다.Six-side wrapping wrapped with heat-shrink film selected from PE, LLDPE, PP, PVC, PET to improve the physical properties such as bending strength, hygroscopicity, light weight. In addition, when using a moisture-permeable film, it satisfies the 'Energy-saving Design Standards for Buildings' moisture-proof floor standard and omits the process of installing a moisture-proof film when installing insulation on the inner wall of a building, thereby reducing the construction period and reducing labor costs when applying the construction site. Can be imported.
이하, 본 발명을 실시예 및 비교예에 의거하여 구체적으로 설명하는 바, 본 발명이 실시예 또는 비교예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to Examples or Comparative Examples.
실시예 1 ~ 5 및 비교예 1 ~ 5Examples 1-5 and Comparative Examples 1-5
다음 표 1 및 표 2 에 나타낸 바와 같은 성분과 함량으로 건식혼합하여 실리카 단열재를 제조하였으며, 제조방법은 상기 발명의 상세한 설명에 기재한 방법에 준하였다.Next, the silica insulating material was manufactured by dry mixing the ingredients and contents as shown in Table 1 and Table 2, and the manufacturing method was based on the method described in the detailed description of the present invention.
[물성측정][Measurement of properties]
다음에 나타낸 각 방법으로 상기 실시예 1 ~ 5 및 비교예 1 ~ 5 에 따라 제조된 실리카 단열재의 물성을 측정하였으며, 그 결과는 다음 표 1과 표 2에 각각 나타내었다.The physical properties of the silica insulation prepared according to Examples 1 to 5 and Comparative Examples 1 to 5 were measured by the following methods, and the results are shown in Tables 1 and 2, respectively.
<측정 방법> <Measurement method>
1.밀도1.density
밀도는 KS M 3808 에 의거하여 측정하였으며, 다음 식을 통하여 계산하였다.The density was measured based on KS M 3808 and calculated by the following equation.
2.휨강도(굴곡강도)2. Flexural Strength (Bending Strength)
휨강도는 KS M 3808 에 의거하여 측정하였으며, 다음 식을 통하여 계산하였다.Flexural strength was measured based on KS M 3808 and calculated by the following equation.
시험편은 6면 랩핑 포장된 시편을 사용한다.The specimens shall use specimens wrapped in six sides.
W : 최대하중(N)W: Maximum load (N)
ℓ : 지점간 거리(㎝)ℓ: Distance between points (cm)
b : 시험편 나비(㎝)b: test piece butterfly (cm)
h : 시험편 두께(㎝)h: test piece thickness (cm)
3. 흡습율 3. Hygroscopicity
흡습율 시험은 ASTM C 1104 에 의거하여 측정하였으며, 다음 식을 통하여 계산하였다. Hygroscopicity test was measured according to ASTM C 1104, it was calculated through the following equation.
시험편은 투습저항이 있는 6면 랩핑 포장된 시험편을 사용하였다.As the test piece, a six-side wrapped packaged test piece having moisture resistance was used.
4. 열전도율4. Thermal conductivity
열전도율 시험은 KS L 9016 에 의거하여 측정하였다.Thermal conductivity test was measured according to KS L 9016.
5. 성형성5. Formability
성형성은 실리카 단열재 생판을 육안을 통하여 표면상태 등의 불량요소를 판단하여 완제품의 성형상태를 판단하였다. The moldability was judged by the visual inspection of the silica thermal insulation plate to determine the molding state of the finished product by determining the defects such as the surface state.
6. 치수6. Dimension
두께, 길이, 나비 등의 치수는 KS M 3808 에 의거하여 측정하였다.Dimensions of thickness, length, butterfly, and the like were measured according to KS M 3808.
7. 난연성능7. Flame retardant performance
난연성능은 건축물 내부 마감재료의 난연성능기준(건설교통부 고시 제 2006-476호) 에 의거한 KS F ISO 1182(건축재료의 불연성시험방법) 와 KS F 2271(가스유해성시험) 에 의거해서 측정하였다. Flame retardant performance was measured in accordance with KS F ISO 1182 (non-flammability test method of building materials) and KS F 2271 (gas hazard test) according to the flame retardant performance standard of building interior finishing materials (Notice No. 2006-476 of Ministry of Construction and Transportation). .
(중량%)Ingredient
(weight%)
(중량%)Ingredient
(weight%)
<실시예 및 비교예> ≪ Examples and Comparative Examples &
상기 표 1과 표 2에 나타낸 바와 같이, 실리카 단열재를 조성의 함량 및 포장의 방법과 횟수를 변경 조합한 형태로 하여 실리카 단열재를 제조하였다. As shown in Table 1 and Table 2, the silica heat insulating material was prepared in the form of a combination of varying the content of the composition, the method and the number of packaging.
상기한 바와 같이 실리카 분체의 함량이 커지면 제조된 실리카 단열재의 열전도율 값이 낮아져 단열성능이 향상되는 경향을 나타내고 있으며, 복사열 차단 첨가제 및 섬유의 함량이 증가될수록 열전도율 값은 증가되어 단열성능은 저하되는 경향을 나타내고 있다. As described above, when the content of the silica powder is increased, the thermal conductivity of the manufactured silica insulation material is lowered, and the thermal insulation performance is improved. As the content of the radiation shielding additive and the fiber is increased, the thermal conductivity value is increased and the thermal insulation performance is lowered. Indicates.
실시예 1 ~ 5에 의해서 제조된 실리카 단열재는 열전도율 값이 모두 0.025W/mK 이하로 고성능의 단열 성능을 발현하였으며, 밀도도 200 kg/㎥ 이내로 유지하였다.Silica heat insulating materials prepared by Examples 1 to 5 all exhibited high performance heat insulating performance of 0.025W / mK or less, and the density was maintained within 200 kg / m 3.
필름 포장의 경우는 실시예에서 나타낸 것과 같이 1회 포장 대비 2회 포장이 휨강도는 약 10%이상 향상되는 결과를 나타내며, 흡습율 또한 20% 정도 향상되는 결과를 나타내었다. 그러나, 필름 포장의 경우는 1회 포장시에도 기존의 무기 단열재 대비 우수한 흡습율 및 단열 성능을 발휘한다. In the case of the film packaging, as shown in the examples, the bending strength of the two-packing compared to the first-packing resulted in a result of about 10% or more improvement, and the moisture absorption rate also showed a result of about 20% improvement. However, in the case of film packaging, even when packaging once, it exhibits excellent moisture absorption and heat insulating performance compared to the existing inorganic insulating material.
비교예 1과 같이 실리카 분체의 함유량이 40% 이하로 사용되었을 경우는 열전도율 값이 상승하여 단열성능이 저하되는 결과를 나타내었다. 고성능 단열재에서 낮은 열전도율 값을 얻기 위해서는 실리카 분체를 일정 함유량 이상 투입하는 것이 필요하며, 또한 복사열 차단 첨가제(불투명화제) 및 보강섬유의 함유량도 본 발명의 범위를 초과하였을 시(비교예 3, 비교예 5) 단열성능이 저하되는 것을 알 수 있다. When the content of the silica powder was used at 40% or less as in Comparative Example 1, the thermal conductivity value was increased, resulting in a decrease in thermal insulation performance. In order to obtain a low thermal conductivity value in a high-performance heat insulating material, it is necessary to add a certain amount of silica powder, and also when the content of the radiation shielding additive (opaque agent) and the reinforcing fiber exceeds the scope of the present invention (Comparative Example 3, Comparative Example) 5) It can be seen that the thermal insulation performance is lowered.
본 발명에서 실리카 분체의 함유량이 99 중량% 초과시에는 비교예 2에서 나타낸 바와 같이 열전도율 값은 매우 우수하나, 단열재 제품의 성형 품질을 만족하지 못하였으며, 비교예 3에서 나타낸 바와 같이 복사열 차단 첨가제의 함유량이 본 발명의 범위를 초과하였을 시에도 성형 품질은 다소 떨어지는 결과를 나타내었다. When the content of the silica powder in the present invention exceeds 99% by weight, as shown in Comparative Example 2, the thermal conductivity value is very good, but the molding quality of the insulation product is not satisfied, and as shown in Comparative Example 3, the content of the radiation shielding additive Even when the range of the present invention was exceeded, the molding quality was somewhat reduced.
비교예 2, 비교예 3, 비교예 4 에서 나타낸 바와 같이 보강 섬유 함량에 의한 보강효과보다는 필름포장이 휨강도 발현에 상당부분 차지하는 것을 확인할 수 있었다. 물론 필름포장과 보강 섬유의 적절한 함유량으로 인해서 휨강도, 즉 취급강도가 나타나는 것을 알 수 있었다. As shown in Comparative Example 2, Comparative Example 3, and Comparative Example 4, it was confirmed that the film packaging occupies a considerable part in the flexural strength expression rather than the reinforcing effect by the reinforcing fiber content. Of course, it was found that the flexural strength, that is, the handling strength, appeared due to the proper content of the film packaging and the reinforcing fiber.
비교예 4에 나타낸 바와 같이 실리카 단열재에 6면 필름 포장을 하지 않는 경우는 휨강도가 저하되는 문제점이 있으며, 또한 흡습율이 필름으로 2회 포장 되어진 단열재 대비 약 6배 이상 증가되는 결과를 나타내어 내흡습 품질이 떨어질 수 있으며, 내 단열 시공시 별도의 방습층 공사를 추가로 진행해야 되므로 시공비 증가의 한 원인이 될 수 있다. As shown in Comparative Example 4, when the six-side film packaging is not applied to the silica heat insulating material, there is a problem in that the bending strength is lowered, and the moisture absorption rate is about 6 times higher than that of the heat insulating material packed twice as a film. The quality may be deteriorated and may be a cause of an increase in construction cost because additional moisture proof layer construction must be additionally carried out in the insulation construction.
난연성능은 실시예 및 비교예 전 항에서 나타낸 것처럼 불연재료 성능으로 발현 되었다.Flame retardant performance was expressed as non-combustible material performance as shown in the previous section of the Examples and Comparative Examples.
따라서, 우수한 단열 성능과 불연 성능을 가지고 있으나, 건식 성형으로 성형하거나 판상으로 성형 및 취급하기 어려운 실리카 분체를 여러 산업 분야에 적용 가능하도록 판상의 단열재를 만들기 위해서는 실리카 분체 40~99중량%, 유기섬유 단독 또는 유기섬유와 무기섬유의 혼용섬유로 된 보강섬유 0.5~20중량%, 복사열 차단 첨가제 (불투명화제) 0~50중량%의 재료를 함유하며 PE, PP, PVC, PET 중에서 선택되는 수축필름으로 6면 랩핑(Wrapping) 포장(1~2회)을 하여 성형성 개선과 낮은 열전고율에 의한 고성능의 단열 성능, 취급 강도 향상 및 불연재로서의 우수한 성능 등의 불연 고성능 단열재의 품질을 확보할 수 있음을 확인할 수 있었다. Therefore, in order to make a plate insulation material that has excellent heat insulation performance and non-combustible performance, but is difficult to be molded by dry molding or plate-shaped and handled in various industries, silica powder is 40 to 99% by weight, organic fiber Shrink film selected from PE, PP, PVC, PET, containing 0.5 ~ 20% by weight of reinforcing fiber made of mixed fiber of organic or inorganic fiber and 0 ~ 50% by weight of radiant heat blocking additive (opaque agent). It is possible to secure the quality of non-combustible high-performance insulation materials such as high-performance insulation performance, improved handling strength, and excellent performance as non-combustible materials by improving the formability and low thermal conductivity by applying 6-side wrapping wrap (1 ~ 2 times). I could confirm it.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above in detail the specific parts of the present invention, for those skilled in the art, these specific descriptions are only preferred embodiments, which are not intended to limit the scope of the present invention. Will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.
Claims (6)
Heat shrink film after dry mixing and press molding 40 ~ 99% by weight of silica powder, 0.5 ~ 20% by weight of reinforcing fiber made of organic fiber alone or mixed fiber of organic fiber and inorganic fiber, 0 ~ 50% by weight of radiant heat blocking additive and reinforcing material Non-flammable, high-performance insulation material characterized in that the wrapper (wrapping) 6 times (1 ~ 2 times), the thermal conductivity value is less than 0.025W / mK.
According to claim 1, wherein the silica powder is a spherical amorphous high-purity silicon compound, non-flammable, high performance, characterized in that the spherical basic particles of the powder form of 5 ~ 50 nm, specific surface area 40 ~ 400 m 2 / g insulator.
The fiber according to claim 1, wherein the reinforcing fiber is an organic fiber alone or a mixed fiber of an organic fiber and an inorganic fiber, and is a fiber having a diameter of 1 to 100 µm and a length of 6 to 40 mm, and includes glass fiber, ceramic fiber, PAN, Nylon, PVA, Non-flammable, high performance insulation material, characterized in that the fiber selected from PP.
The non-combustible high performance insulator according to claim 1, wherein the radiation shielding additive and the reinforcing agent are selected from talc, silicon carbide, iron oxide, zirconium oxide, and graphite as an opaque agent.
According to claim 1, wherein the six-side wrapping (Wrapping) packaging using a heat-shrink film selected from PE, LLDPE, PP, PVC, PET, moisture permeability 30 g / ㎡ or less per 24 hours or water vapor transmission coefficient of 0.28 g / ㎡ A non-flammable, high performance insulating material characterized by using a film having a moisture resistance of? h? mmHg or less.
(a) 제 1 항의 모든 원료를 건조하거나 미건조 상태로 건식 혼합기에 투입하는 단계;
(b) 보강 섬유는 유기 섬유 단독 또는 유기 섬유와 무기 섬유를 같이 투입하여 건식 혼합하는 단계;
(c) 상기 혼합된 원료를 몰드 프레스 성형 또는 롤러 프레스 성형으로 프레스 성형하는 단계;
(d) 프레스 성형 제품을 1회 또는 2회 랩핑(Wrapping) 포장하는 단계 및
(e) 상기 (d)단계에서 PE, LLDPE, PP, PVC, PET 중에서 선택되는 열수축필름으로 감싸주고 수축포장기를 이용하여 수축포장하는 단계; 또는 프레스 성형 제품을 PE 필름으로 감싸주고 열접착으로 씰링 마감 처리하는 단계를 포함하는 불연 고성능 단열재의 제조방법. In the method of manufacturing a non-combustible high performance insulation,
(a) introducing all the raw materials of claim 1 to a dry mixer in a dry or undry state;
(b) reinforcing fibers by mixing organic fibers alone or by adding organic fibers and inorganic fibers together;
(c) press molding the mixed raw material by mold press molding or roller press molding;
(d) wrapping the press-molded product once or twice;
(e) wrapping with a heat shrink film selected from PE, LLDPE, PP, PVC, PET in step (d) and shrink wrapping using a shrink wrap machine; Or wrapping the press-formed product with a PE film and sealing finishing by heat bonding.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090049999 | 2009-06-05 | ||
KR1020090049999 | 2009-06-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100131361A KR20100131361A (en) | 2010-12-15 |
KR101162562B1 true KR101162562B1 (en) | 2012-07-05 |
Family
ID=43507429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100051718A KR101162562B1 (en) | 2009-06-05 | 2010-06-01 | Non-inflammably Highly Efficient Heat Insulator and Method for Preparing the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101162562B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102215724B1 (en) | 2020-09-15 | 2021-02-16 | 주식회사 청우산업 | Apparatus and method for manufacturing semi-combustible insulation materials |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104086116A (en) * | 2014-07-11 | 2014-10-08 | 平顶山新型耐材股份有限公司 | Nano microporous heat insulation board and preparation method thereof |
KR102396362B1 (en) * | 2020-03-16 | 2022-05-12 | 주식회사 엠앤에스 | Regenerative Electric Steamer with Nonflammable and Insulated Ceramic Fiber-mat plate |
CN116102356A (en) * | 2023-03-08 | 2023-05-12 | 山东迈凯诺安防科技有限公司 | A kind of graphite silicon refractory heat insulation board and its preparation process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100666385B1 (en) | 1998-12-19 | 2007-01-09 | 프로매트 인터내셔널 엔.브이. | Microporous Insulator |
JP2009041649A (en) * | 2007-08-08 | 2009-02-26 | Panasonic Corp | Vacuum heat insulating material and method for manufacturing vacuum heat insulating material |
-
2010
- 2010-06-01 KR KR1020100051718A patent/KR101162562B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100666385B1 (en) | 1998-12-19 | 2007-01-09 | 프로매트 인터내셔널 엔.브이. | Microporous Insulator |
JP2009041649A (en) * | 2007-08-08 | 2009-02-26 | Panasonic Corp | Vacuum heat insulating material and method for manufacturing vacuum heat insulating material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102215724B1 (en) | 2020-09-15 | 2021-02-16 | 주식회사 청우산업 | Apparatus and method for manufacturing semi-combustible insulation materials |
Also Published As
Publication number | Publication date |
---|---|
KR20100131361A (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101162562B1 (en) | Non-inflammably Highly Efficient Heat Insulator and Method for Preparing the Same | |
KR101575989B1 (en) | Lightweight, Sound absorbing And Thermal Insulating Panel with Expaned Graphite And Manufacturing Method of The Same | |
KR101468780B1 (en) | Eco building interior boards and method for manufacturing thereof | |
KR20130036016A (en) | Insulation having a layered structure | |
KR101866426B1 (en) | Aluminum Composite Panel Using Incombustible Plastic And Method for Manufacturing the Same | |
US20170146179A1 (en) | Hybrid high temperature insulation | |
PL192902B1 (en) | Microporous heat insulating body | |
KR101190081B1 (en) | InnerDuramen of Vacuum Heat Insulator Using Synthetic Silica, Methodl for Preparing the Same and Vacuum insulation panel that uses this | |
KR20190056138A (en) | Silica aerogel blanket with low dust and method for preparing the same | |
JPH0348095A (en) | Compact for heat insulation and manufacturing method of the same | |
CN106801476B (en) | Composite evacuated heat insulating thermal preserving board of fiber reinforcement type cement mortar and preparation method thereof | |
KR101519864B1 (en) | Sound absorbing and adiabatic material having lightweight fireproof using expandable graphite and manufacturing method of the same | |
KR101452211B1 (en) | Core material for vacuum insulator and vacuum insulator using the same | |
KR101215844B1 (en) | Vacuum Heat Insulator Applied for Spandrel Glass or Panel and Method for Preparing the Same | |
KR101906045B1 (en) | nonflammable heat insulator using expandable insulation material | |
KR20190139116A (en) | A semi-inflammable insulation material and manufacturing method for it | |
KR102340672B1 (en) | Composition Comprising Non-flammable Inorganic Coating Agent for Air Blocking and Electrically Insulating Wall Formation, and Application to Styrofoam and Cable | |
US6723268B2 (en) | Method of manufacturing ocherous panels for use as an interior building material | |
KR100479970B1 (en) | Inorganic Insulation Including Inorganic Foam Material and Method of Manufacturing Thereof | |
KR102125544B1 (en) | Flame Retardant Ceramic Panel | |
KR101190082B1 (en) | Vacuum Heat Insulator for a Door and Method for Preparing the Same | |
KR100985136B1 (en) | Ceramic Forms for Construction | |
JP2002308669A (en) | (calcium silicate)-silica composite formed body | |
KR20040090613A (en) | Porous ceramic internal and external material composition for construction and method for preparing the same | |
KR101345275B1 (en) | Core material for vacuum insulator using fumed silica with high purity and vacuum insulator using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20100601 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20111111 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20120626 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20120628 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20120629 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20150603 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20150603 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160512 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20160512 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170317 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20170317 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180319 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20180319 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190320 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20190320 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20200318 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20210331 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20220308 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20230308 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20240312 Start annual number: 13 End annual number: 13 |