Nothing Special   »   [go: up one dir, main page]

KR101086772B1 - Method and apparatus for 3d mesh compression based quantization - Google Patents

Method and apparatus for 3d mesh compression based quantization Download PDF

Info

Publication number
KR101086772B1
KR101086772B1 KR1020080125521A KR20080125521A KR101086772B1 KR 101086772 B1 KR101086772 B1 KR 101086772B1 KR 1020080125521 A KR1020080125521 A KR 1020080125521A KR 20080125521 A KR20080125521 A KR 20080125521A KR 101086772 B1 KR101086772 B1 KR 101086772B1
Authority
KR
South Korea
Prior art keywords
information
mesh
mesh model
connection information
model
Prior art date
Application number
KR1020080125521A
Other languages
Korean (ko)
Other versions
KR20090110777A (en
Inventor
이승욱
구본기
김진서
이지형
김호원
추창우
황본우
박정철
박지영
임성재
박일규
최윤석
김갑기
이영직
장의선
김대용
김병준
전재범
손경수
손기석
Original Assignee
한양대학교 산학협력단
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단, 한국전자통신연구원 filed Critical 한양대학교 산학협력단
Priority to KR1020080125521A priority Critical patent/KR101086772B1/en
Priority to US12/988,305 priority patent/US8462149B2/en
Priority to PCT/KR2009/001972 priority patent/WO2009128660A2/en
Publication of KR20090110777A publication Critical patent/KR20090110777A/en
Application granted granted Critical
Publication of KR101086772B1 publication Critical patent/KR101086772B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Or Creating Images (AREA)

Abstract

본 발명은 양자화 기법에 기반한 3차원 메쉬 압축 장치 및 방법에 관한 것으로서, 개시된 압축 장치는 입력된 3차원 메쉬 모델의 데이터를 분석하여 정점 정보, 3차원 메쉬 모델의 특성을 나타내는 속성 정보 및 3차원 메쉬 모델을 구성하는 정점들 간의 연결 정보를 분리하는 데이터 분석부와, 정점 정보, 속성 정보 및 연결 정보를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 생성하는 메쉬 모델 양자화부와, 양자화된 연결 정보를 이용하여 결정 비트를 계산한 후 계산된 결정 비트를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화하는 결정 비트 부호화부를 포함하고, 위상 절개를 수행하지 않으면서 연결 정보를 양자화하여 양자화된 연결 정보를 이용해 결정 비트를 계산한 후에 결정 비트를 이용하여 데이터를 부호화함으로써 3차원 메쉬 모델에 대한 데이터 압축의 복잡도 개선을 통해 압축 속도를 향상시키며, 압축의 복잡도 개선에 따라서 압축된 3차원 모델을 신속하고 정확하게 복원시킬 수 있으므로 압축 데이터의 복원 효율 또한 향상시키는 이점이 있다.The present invention relates to a three-dimensional mesh compression apparatus and method based on the quantization technique, the disclosed compression apparatus analyzes the data of the input three-dimensional mesh model vertex information, property information indicating the characteristics of the three-dimensional mesh model and three-dimensional mesh A data analyzer for separating connection information between vertices constituting the model, a mesh model quantizer for generating quantized vertex information, property information, and connection information using vertex information, property information, and connection information, and quantized connection A decision bit encoder for encoding the quantized vertex information, the attribute information, and the connection information using the calculated decision bit after calculating the decision bit using the information, and quantizing the connection information without performing a phase incision. After calculating the decision bit using the concatenated connection information, the data is encoded using the decision bit. As a result, the compression speed is improved by improving the complexity of data compression for the 3D mesh model, and the compression 3D model can be quickly and accurately restored according to the improvement of the compression complexity, thereby improving the recovery efficiency of the compressed data. .

영상 압축, 3차원 메쉬 모델, 결정 비트 부호화 Image Compression, 3D Mesh Model, Decision Bit Coding

Description

양자화 기법에 기반한 3차원 메쉬 압축 장치 및 방법{METHOD AND APPARATUS FOR 3D MESH COMPRESSION BASED QUANTIZATION}3D mesh compression apparatus and method based on quantization technique {METHOD AND APPARATUS FOR 3D MESH COMPRESSION BASED QUANTIZATION}

본 발명은 영상 압축에 관한 것으로서, 더욱 상세하게는 3차원 메쉬 모델의 정점 정보(vertex information), 속성 정보(property information) 및 연결 정보(connectivity information)를 양자화하여 양자화된 연결 정보를 이용해 할당되어야 하는 비트(결정 비트)를 계산한 후에 결정 비트를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화하는 양자화 기법에 기반한 3차원 메쉬 압축 장치 및 방법에 관한 것이다.The present invention relates to image compression, and more particularly, quantized vertex information, property information and connectivity information of a 3D mesh model to be allocated using quantized connection information. The present invention relates to a three-dimensional mesh compression apparatus and method based on a quantization technique for encoding quantized vertex information, attribute information, and connection information using a decision bit after calculating a bit (decision bit).

본 발명은 정보통신부 및 정보통신연구진흥원의 IT신성장동력핵심기술개발 사업의 일환으로 수행한 연구로부터 도출된 것이다[과제번호 : 2008-F-030-01, 과제명 : 방통융합형 Full 3D 복원 기술 개발].The present invention is derived from the research conducted as part of the IT new growth engine core technology development project of the Ministry of Information and Communication and the Ministry of Information and Telecommunications Research and Development. Development].

현재, 컴퓨터 그래픽스 분야에서 3차원 영상을 표현하는 방법으로, 삼각형 메쉬(triangular mesh)가 널리 이용되고 있다. 삼각형 메쉬 영상은 불균일한 구조로 인해 삼각형을 형성하는 정점들의 위치 정보 및 정점들 간의 연결 정보로 구성 되어, 균일한 구조를 가진 2차원 영상에 비해 데이터량이 매우 크다.Currently, triangular mesh is widely used as a method of representing 3D images in the field of computer graphics. The triangular mesh image is composed of the position information of the vertices forming the triangle and the connection information between the vertices due to the non-uniform structure, so that the amount of data is much larger than the two-dimensional image having the uniform structure.

따라서, 삼각형 메쉬 영상의 저장 및 전송의 문제점을 해소하기 위하여 많은 연구가 활발히 진행되고 있다.Therefore, many studies have been actively conducted to solve the problem of storing and transmitting a triangle mesh image.

이와 같이, 3차원 그래픽스 분야는 최근 들어 많이 사용되고 있으나, 정보량의 방대함 때문에 그 사용 범위가 제한되어 있다.As such, the 3D graphics field has been widely used in recent years, but its use range is limited due to the large amount of information.

이는, 32비트 부동소수점으로 3차원 메쉬 모델의 정점 정보가 표현된다고 가정하면, 하나의 정점 정보를 표현하기 위하여 96비트, 즉 12바이트의 메모리 공간이 필요하다.This assumes that the vertex information of the 3D mesh model is represented by 32-bit floating point, and 96 bits, that is, 12 bytes of memory space are required to represent one vertex information.

이는, 3차원 모델이 정점 정보만을 가지는 1만 개의 정점에 의해 표현된다면 120KB를 필요로 하고, 10만 개의 정점에 의해 표현된다면 1.2MB의 메모리가 필요하게 된다.This requires 120 KB if the 3D model is represented by 10,000 vertices with only vertex information, and 1.2 MB of memory if represented by 100,000 vertices.

또한, 연결 정보는 2번 이상의 중복을 허용하기 때문에 다각형 메쉬에 의한 3차원 모델을 저장하기 위해서는 매우 많은 메모리를 필요로 하게 된다.In addition, since the connection information allows two or more overlaps, very much memory is required to store the 3D model by the polygon mesh.

따라서, 이러한 정보들의 방대함으로 인하여 3차원 영상의 압축에 있어서 부호화의 필요성이 대두 되었다. 이를 위하여, MPEG-4(Moving Picture Expert Group-4) - 3DGC(3 Dimensional Graphics Compression) 분야에서 ISO/IEC(International Organization for Standardization/International Electrotechnical Compression)의 표준안으로 채택된 3차원 메쉬 코딩(3D Mesh Coding: 3DMC) 방식은 가상 언어 모델링 언어(Virtual Reality Modeling Language: VRML) 파일 내에 인덱스드페이스셋(IndexedFaceSet: IFS)으로 표현되는 3차원 모델의 메쉬 정보를 부호화 및 복호 화함으로써 3차원 메쉬 정보에 대한 데이터의 전송 효율을 향상시킨다.Therefore, the enormous amount of such information has led to the need for encoding in the compression of 3D images. To this end, MPEG-4 (Moving Picture Expert Group-4)-3D Mesh Coding has been adopted as a standard of ISO / IEC (International Organization for Standardization / International Electrotechnical Compression) in the field of 3 Dimensional Graphics Compression (3DGC). : 3DMC) method encodes and decodes the mesh information of a three-dimensional model represented by an indexed faceset (IFS) file in a Virtual Reality Modeling Language (VRML) file. To improve the transmission efficiency.

도 1은 종래의 3차원 메쉬 코딩 부호화 장치의 블록도를 도시한 것이다.1 is a block diagram of a conventional three-dimensional mesh coding encoding apparatus.

도 1을 참조하면, 종래의 3차원 메쉬 코딩 부호화 장치(110)는 정점 정보와 연결 정보 및 속성 정보를 포함하는 원본 데이터인 3차원 메쉬 모델을 2차원 메쉬 구조로 분해하는 위상 절개(Topological Surgery: TS) 모듈(111), 2차원 메쉬 구조로 분해된 정점 정보를 부호화하는 정점 정보 부호화 모듈(112), 2차원 메쉬 구조로 분해된 연결 정보를 부호화하는 연결 정보 부호화 모듈(113), 2차원 메쉬 구조로 분해된 속성 정보를 부호화하는 속성 정보 부호화 모듈(114), 정점 정보 부호화 모듈(112)과 연결 정보 부호화 모듈(113) 및 속성 정보 부호화 모듈(114)에서 부호화된 결과를 통합적으로 압축하여 3차원 메쉬 코딩 비트스트림(bitstream)을 생성하는 엔트로피 부호화(entropy encoder) 모듈(115)을 포함하여 이루어진다.Referring to FIG. 1, the conventional 3D mesh coding encoding apparatus 110 includes a topological surgery for decomposing a 3D mesh model, which is original data including vertex information, connection information, and attribute information, into a 2D mesh structure. TS) module 111, vertex information encoding module 112 for encoding vertex information decomposed into a two-dimensional mesh structure, connection information encoding module 113 for encoding connection information decomposed into a two-dimensional mesh structure, two-dimensional mesh The result encoded by the attribute information encoding module 114, the vertex information encoding module 112, the connection information encoding module 113, and the attribute information encoding module 114, which encodes the attribute information decomposed into a structure, is compressed. And an entropy encoder module 115 for generating a dimensional mesh coding bitstream.

3차원 메쉬 코딩 부호화 장치(110)에 의해 수행되는 3차원 메쉬 코딩 부호화의 주요 특징은 압축률 최대화를 위하여 위상 절개 모듈(111)에 의해 수행되는 위상 절개 동작이다. 위상 절개 동작은 주어진 3차원 모델의 메쉬를 구와 위상기하학적으로 동일하다고 가정한 후, 메쉬를 절단 에지(cutting edge)에 따라 절단함으로써 3차원 모델을 2차원 메쉬 구조로 분해하는 방법이다.The main feature of the 3D mesh coding encoding performed by the 3D mesh coding encoding apparatus 110 is a phase cutting operation performed by the phase cutting module 111 to maximize the compression ratio. The phase cutting operation is a method of decomposing a three-dimensional model into a two-dimensional mesh structure by assuming that a mesh of a given three-dimensional model is topologically identical to a sphere, and then cutting the mesh according to a cutting edge.

도 2는 도 1에 대응되는 3차원 메쉬 코딩 복호화 장치의 블록도를 도시한 것이다.FIG. 2 is a block diagram of a 3D mesh coding decoding apparatus corresponding to FIG. 1.

도 2를 참조하면, 3차원 메쉬 코딩 복호화 장치(210)는 엔트로피 복호화 모듈(211), 정점 정보 복호화 모듈(212), 연결 정보 복호화 모듈(213), 속성 정보 복 호화 모듈(214) 및 위상 합성 모듈(215)을 포함하며, 부호화된 3차원 메쉬 코딩 비트스트림으로부터 3차원 모델 데이터를 복원한다.Referring to FIG. 2, the 3D mesh coding decoding apparatus 210 includes an entropy decoding module 211, a vertex information decoding module 212, a connection information decoding module 213, an attribute information decoding module 214, and a phase synthesis. Module 215 to recover three-dimensional model data from the encoded three-dimensional mesh coding bitstream.

도 3은 도 1에 의해 생성된 3차원 모델의 메쉬 정보의 부호화된 비트스트림의 전체적인 구조를 도시한 것이다.FIG. 3 illustrates the overall structure of a coded bitstream of mesh information of the 3D model generated by FIG. 1.

도 3을 참조하면, 3차원 모델의 메쉬 정보의 부호화된 비트스트림은 삼각형 스트립으로 이루어진 이진 트리 구조의 삼각형 최소신장 그래프를 포함하는 삼각형 트리(Triangle Tree: TT)(303), 삼각형 트리에 대한 정보값(Triangle Data: TD)(305) 및 3차원 모델의 메쉬를 절단하는 경로를 정점 간의 연결 구조로 나타내는 정점 그래프(Vertex Graph: VG)(301)를 포함한다.Referring to FIG. 3, a coded bitstream of mesh information of a three-dimensional model includes a triangular tree (TT) 303 including a triangular minimum elongation graph of a binary tree structure consisting of triangular strips, and information about a triangular tree. A vertex graph (VG) 301 representing a value (Triangle Data (TD)) 305 and a path for cutting the mesh of the three-dimensional model as a connection structure between the vertices.

도 4a 내지 도 4d는 종래의 3차원 모델의 메쉬에 대한 위상 절개의 수행 과정을 도시한 것이다.4A to 4D illustrate a process of performing phase cutting on a mesh of a conventional 3D model.

우선, 도 4a에 도시된 바와 같이 3차원 모델의 메쉬를 굵은 선으로 정의된 절단 에지(cutting edge)를 따라 절단한 후, 도 4b에 도시된 바와 같이 삼각형 트리를 구성한다.First, as shown in FIG. 4A, the mesh of the three-dimensional model is cut along a cutting edge defined by a thick line, and then a triangular tree is formed as shown in FIG. 4B.

일반적으로, 그래픽의 빠른 처리를 위해서는 모델링되는 단위가 삼각형이며, 이러한 삼각형들이 랜덤하게 구성되어 있는 것이 아닌 스트립(strip)이나 팬(fan)의 형태로 삼각형 상호 간에 연결되어 있는 것이 바람직하다. 또한 그래픽은 심볼이 반복되어 표현된 것일수록 데이터 압축률이 우수하므로, 종래의 3차원 모델의 메쉬에 대한 위상 절개에서는 도 4b에 도시된 바와 같이 3차원 모델의 메쉬를 절단 에지를 따라 절단하고, 삼각형 트리를 구성한다.In general, for fast processing of graphics, the modeled unit is a triangle, and it is preferable that the triangles are connected to each other in the form of strips or fans, rather than randomly configured. In addition, the more the symbol is repeatedly represented, the more excellent the data compression ratio is. Therefore, in the phase cutting of the mesh of the conventional 3D model, the mesh of the 3D model is cut along the cutting edge as shown in FIG. Construct a tree.

그런 다음, 도 4c에 도시된 바와 같이, 삼각형 트리에서 기준이 되는 기준점을 선정하고, 선정된 기준점과 분기된 삼각형의 최외곽 정점을 연결하여 정점 그래프를 형성한다.Then, as shown in Figure 4c, the reference point is selected in the triangle tree, and the vertex graph is formed by connecting the selected reference point and the outermost vertex of the branched triangle.

그런 다음, 도 4d에 도시된 바와 같이, 정점 그래프를 이용하여 바운딩 루프(bounding loop)를 형성한다.Then, as shown in FIG. 4D, a bounding loop is formed using the vertex graph.

이와 같이, 현재의 MPEG-4 3차원 메쉬 코딩 방법에서는 인덱스드페이스셋 노드에 의해 표현되는 3차원 모델을 압축하기 위하여 3차원 모델의 메쉬 구조를 2차원 메쉬 맵 구조로 분해하기 위하여 위상 절개 과정을 거친다.As described above, in the current MPEG-4 three-dimensional mesh coding method, in order to decompose a three-dimensional model represented by an indexed faceset node, a phase incision process is performed to decompose the three-dimensional model's mesh structure into a two-dimensional mesh map structure. Rough

상술한 바와 같이, 3차원 메쉬 구조를 정점 그래프와 삼각형 트리 구조로 표현함으로써 3차원 모델에 대해 매우 높은 압축률을 보장하지만, 이는 3차원 모델의 원래의 정점의 위치 정보를 변경시키는 문제점이 있다.As described above, the three-dimensional mesh structure is represented by a vertex graph and a triangular tree structure to guarantee a very high compression ratio for the three-dimensional model, but this has a problem of changing the position information of the original vertex of the three-dimensional model.

즉, 위상 절개 과정을 거친 후, 더욱 높은 압축률을 위하여 정점의 위치 정보를 부호화 측에서 새롭게 인덱싱을 하여 복호화 측에 전송하게 된다.That is, after undergoing a phase cutting process, the position information of the vertices is newly indexed by the encoding side and transmitted to the decoding side for higher compression ratio.

이로 인하여 디코더 측에서는 3차원 모델이 가지고 있던 정점의 원래의 위치 정보를 알지 못하기 때문에 애니메이션과 같이 정점의 순서 정보를 이용해야 하는 경우 현재의 3차원 메쉬 코딩 방법으로는 이를 지원할 수 없다.For this reason, since the decoder side does not know the original position information of the vertices of the 3D model, when the order information of the vertices such as animation is used, the current 3D mesh coding method cannot support this.

그리고, 3차원 메쉬에서 3차원 연결 정보를 분해하고 2차원의 메쉬 맵(map), 삼각형 트리, 정점 그래프를 생성시키는 과정은 압축률을 매우 높일 수 있는 효율적인 방법이지만 그런 만큼 복잡한 연산이 많기 때문에 전체 압축 과정에서 복잡도의 많은 부분을 차지하여 위상 절개 과정은 매우 복잡하여 시간과 자원의 소모가 크다.The process of decomposing three-dimensional connection information and generating two-dimensional mesh maps, triangle trees, and vertex graphs from a three-dimensional mesh is an efficient way to increase the compression rate. As the process takes up a large part of the complexity, the phase incision process is very complicated and consumes time and resources.

앞서 설명한 바와 같이 종래 기술에 따른 3차원 모델의 메쉬 정보의 압축은 3차원 메쉬 구조를 정점 그래프와 삼각형 트리 구조로 표현함으로써 3차원 모델에 대해 매우 높은 압축률을 보장하지만, 3차원 모델의 원래의 정점 위치 정보를 변경시키는 문제점이 있고, 전체 압축 과정에서 위상 절개 과정이 매우 복잡하여 시간과 자원의 소모가 큰 문제점이 있다.As described above, the compression of the mesh information of the three-dimensional model according to the prior art guarantees a very high compression ratio for the three-dimensional model by representing the three-dimensional mesh structure as a vertex graph and a triangular tree structure, but the original vertex of the three-dimensional model There is a problem of changing the location information, and the phase cutting process is very complicated in the entire compression process, so there is a problem in that time and resource consumption are large.

본 발명은 이와 같은 종래 기술의 문제점을 해결하기 위해 제안한 것으로서, 위상 절개를 수행하지 않으면서 3차원 메쉬 모델의 정점 정보, 속성 정보 및 연결 정보를 양자화하여 양자화된 연결 정보를 이용해 결정 비트를 계산한 후에 결정 비트를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화함으로써 3차원 메쉬 모델에 대한 데이터 압축의 복잡도를 개선하여 압축 속도를 향상시킬 수 있는 3차원 메쉬 압축 장치를 제공한다.The present invention has been proposed to solve the problems of the prior art, and quantizes vertex information, property information, and connection information of a three-dimensional mesh model without performing a phase incision to calculate decision bits using quantized connection information. Later, by encoding the quantized vertex information, the attribute information and the connection information using the decision bit to provide a three-dimensional mesh compression apparatus that can improve the compression speed by improving the complexity of data compression for the three-dimensional mesh model.

그리고, 본 발명은 3차원 메쉬 압축 장치를 이용한 3차원 메쉬 모델의 압축 방법을 제공한다.In addition, the present invention provides a compression method of a three-dimensional mesh model using a three-dimensional mesh compression apparatus.

또한, 본 발명은 3차원 메쉬 압축 방법을 컴퓨터에서 수행할 수 있는 프로그램으로 기록된 기록매체를 제공한다.The present invention also provides a recording medium recorded by a program that can perform a three-dimensional mesh compression method on a computer.

본 발명의 제 1 관점으로서 양자화 기법에 기반한 3차원 메쉬 압축 장치는, 입력된 3차원 메쉬 모델의 데이터를 분석하여 정점 정보, 상기 3차원 메쉬 모델의 특성을 나타내는 속성 정보 및 상기 3차원 메쉬 모델을 구성하는 정점들 간의 연결 정보를 분리하는 데이터 분석부와, 상기 정점 정보, 속성 정보 및 연결 정보를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 생성하는 메쉬 모델 양자화부와, 상기 양자화된 연결 정보를 이용하여 결정 비트를 계산한 후 계산된 상기 결정 비트를 이용하여 상기 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화하는 결정 비트 부호화부를 포함한다.As a first aspect of the present invention, a three-dimensional mesh compression apparatus based on a quantization technique analyzes data of an input three-dimensional mesh model and vertex information, attribute information representing characteristics of the three-dimensional mesh model, and the three-dimensional mesh model. A data analyzer for separating connection information between constituent vertices, a mesh model quantization unit for generating quantized vertex information, property information, and connection information using the vertex information, property information, and connection information, and the quantized connection And a decision bit encoder for encoding the quantized vertex information, the attribute information, and the connection information using the determined decision bit after calculating the decision bit using the information.

여기서, 상기 데이터 분석부는, 상기 3차원 메쉬 모델의 복잡도를 연산하는 연산부를 포함하며, 상기 연산부는, 연산한 상기 3차원 메쉬 모델의 복잡도 값과 미리 설정한 복잡도 값을 비교한 결과에 의거하여 상기 3차원 메쉬 모델을 복수 개의 부분 메쉬로 분할한다. 상기 복잡도는, 상기 3차원 메쉬 모델을 형성하는 페이스셋의 개수에 따라 결정된다. 상기 연결 정보는, 복수 개의 정점 정보가 하나의 다각형을 형성하는 인덱스 리스트로 표현된다. 상기 속성 정보는, 상기 다각형으로 이루어진 3차원 메쉬 모델의 법선, 색상 및 텍스처 좌표를 포함한다. 상기 데이터 분석부는, 상기 3차원 메쉬 모델의 정점 정보, 속성 정보 및 연결 정보에 대한 데이터를 저장하는 헤더를 포함한다.Here, the data analysis unit includes a calculation unit for calculating the complexity of the three-dimensional mesh model, the calculation unit, based on a result of comparing the complexity value of the calculated three-dimensional mesh model and a preset complexity value Split a 3D mesh model into a plurality of partial meshes. The complexity is determined according to the number of facesets forming the three-dimensional mesh model. The connection information is represented by an index list in which a plurality of vertex information forms one polygon. The attribute information includes normals, colors, and texture coordinates of the 3D mesh model made of the polygon. The data analyzer includes a header that stores data about vertex information, attribute information, and connection information of the 3D mesh model.

본 발명의 제 2 관점으로서 양자화 기법에 기반한 3차원 메쉬 압축 방법은, 입력된 3차원 메쉬 모델의 데이터를 분석하여 정점 정보, 상기 3차원 메쉬 모델의 특성을 나타내는 속성 정보 및 상기 3차원 메쉬 모델을 구성하는 정점들 간의 연결 정보를 분리하는 단계와, 상기 정점 정보, 속성 정보 및 연결 정보를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 생성하는 단계와, 상기 양자화된 연결 정보를 이용하여 결정 비트를 계산한 후 계산된 상기 결정 비트를 이용하여 상기 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화하는 단계를 포함한다.According to a second aspect of the present invention, a three-dimensional mesh compression method based on a quantization technique analyzes data of an input three-dimensional mesh model and vertex information, attribute information representing characteristics of the three-dimensional mesh model, and the three-dimensional mesh model. Separating connection information between constituent vertices, generating quantized vertex information, attribute information, and connection information using the vertex information, attribute information, and connection information, and determining using the quantized connection information. Encoding the quantized vertex information, the attribute information, and the connection information using the determined bits calculated after calculating a bit.

여기서, 상기 정점들 간의 연결 정보를 분리하는 단계는, 상기 3차원 메쉬 모델의 복잡도를 연산하는 단계와, 연산된 상기 3차원 메쉬 모델의 복잡도 값과 미리 설정한 복잡도 값을 비교한 결과에 의거하여 상기 3차원 메쉬 모델을 복수 개의 부분 메쉬로 분할하는 단계를 포함한다. 상기 복잡도는, 상기 3차원 메쉬 모델을 형성하는 페이스셋의 개수에 따라 결정된다. 상기 연결 정보는, 복수 개의 정점 정보가 하나의 다각형을 형성하는 인덱스 리스트로 표현된다. 상기 속성 정보는, 상기 다각형으로 이루어진 3차원 메쉬 모델의 법선, 색상 및 텍스처 좌표를 포함한다. 상기 정점들 간의 연결 정보를 분리하는 단계는, 상기 3차원 메쉬 모델의 정점 정보, 속성 정보 및 연결 정보에 대한 데이터를 저장하는 단계를 포함한다.The separating of the connection information between the vertices may include calculating a complexity of the 3D mesh model based on a result of comparing the calculated complexity value of the 3D mesh model and a preset complexity value. Dividing the three-dimensional mesh model into a plurality of partial meshes. The complexity is determined according to the number of facesets forming the three-dimensional mesh model. The connection information is represented by an index list in which a plurality of vertex information forms one polygon. The attribute information includes normals, colors, and texture coordinates of the 3D mesh model made of the polygon. Separating the connection information between the vertices includes storing data about vertex information, property information, and connection information of the 3D mesh model.

본 발명의 제 3 관점으로서 상기의 양자화 기법에 기반한 3차원 메쉬 압축 방법을 수행하는 컴퓨터 프로그램이 기록된 기록매체를 제공한다.As a third aspect of the present invention, there is provided a recording medium having a computer program recorded thereon which performs a three-dimensional mesh compression method based on the above quantization technique.

본 발명에 의하면, 위상 절개를 수행하지 않으면서 3차원 메쉬 모델의 정점 정보, 속성 정보 및 연결 정보를 양자화하여 양자화된 연결 정보를 이용해 결정 비 트를 계산한 후에 결정 비트를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화함으로써 3차원 메쉬 모델에 대한 데이터 압축의 복잡도 개선을 통해 압축 속도를 향상시킨다.According to the present invention, quantized vertex information, attribute information, and connection information of a three-dimensional mesh model without performing a phase incision, and after calculating the decision bit using the quantized connection information, the quantized vertex information using the decision bit. By encoding the attribute information and the connection information, the compression speed is improved by improving the complexity of data compression for the 3D mesh model.

나아가, 압축의 복잡도 개선에 따라서 압축된 3차원 모델을 신속하고 정확하게 복원시킬 수 있으므로 압축 데이터의 복원 효율 또한 향상시키는 효과가 있다.In addition, since the compressed three-dimensional model can be quickly and accurately restored according to the improvement of the compression complexity, the recovery efficiency of the compressed data is also improved.

이하, 본 발명의 바람직한 실시예를 첨부도면에 의거하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형할 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공된다.However, embodiments of the present invention illustrated below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the invention are provided to more fully illustrate the invention to those skilled in the art.

도 5는 본 발명에 따른 양자화 기법에 기반한 3차원 메쉬 압축 장치의 블록도를 도시한 것이다.5 is a block diagram of a three-dimensional mesh compression apparatus based on a quantization technique according to the present invention.

도 5를 참조하면, 본 발명에 따른 3차원 메쉬 압축 장치는 데이터 분석부(510), 메쉬 모델 양자화부(520), 결정 비트 부호화부(530)를 포함한다.Referring to FIG. 5, the 3D mesh compression apparatus according to the present invention includes a data analyzer 510, a mesh model quantizer 520, and a decision bit encoder 530.

본 발명에 따른 3차원 메쉬 모델의 압축 장치에 있어서, 데이터 분석부(510)는 입력되는 3차원 메쉬 모델의 데이터를 분석하여 메쉬 모델 고유의 정점 정보(511), 3차원 메쉬 모델의 고유의 특성을 나타내는 속성 정보(512), 3차원 메쉬 모델을 구성하는 정점들 간의 연결 정보(513)를 분리한다.In the apparatus for compressing a 3D mesh model according to the present invention, the data analyzer 510 analyzes data of an input 3D mesh model and vertices information 511 inherent to the mesh model and peculiar characteristics of the 3D mesh model. The attribute information 512 representing the symbol information and the connection information 513 between the vertices constituting the 3D mesh model are separated.

이 중에서, 정점 정보(511)는 3차원 메쉬 모델을 구성하는 정점의 3차원 위치를 나타내는 좌표 정보로 표현될 수 있다. 좌표 정보는 부동 소수점으로 표현되는 3차원의 좌표로 표현될 수 있으며, x, y, z의 각 축에 정렬되어 각 축에 실수 값을 가지는 좌표로 표현된다.Among these, the vertex information 511 may be represented by coordinate information indicating the three-dimensional position of the vertex constituting the three-dimensional mesh model. Coordinate information may be expressed in three-dimensional coordinates represented by floating point, and is represented by coordinates having a real value on each axis aligned with each axis of x, y, and z.

속성 정보(512)는 3차원 메쉬 모델을 구성하는 페이스셋(FaceSet)의 법선, 색상 및 텍스처 좌표를 포함할 수 있다.The attribute information 512 may include normals, colors, and texture coordinates of a faceset constituting the 3D mesh model.

연결 정보(513)는 3개 이상의 정점 정보가 하나의 다각형을 이루는 인덱스 리스트로 표현될 수 있으며, 본 발명에서는 이를 인덱스드페이스셋(IndexedFaceSet) 또는 페이스셋이라 칭하기로 한다.The connection information 513 may be expressed as an index list in which three or more vertex information forms a polygon, which will be referred to as an indexed faceset or a faceset in the present invention.

그리고, 데이터 분석부(510)는 3차원 메쉬 모델의 복잡도를 연산하는 연산부(미도시)를 포함할 수 있으며, 이러한 연산부는 예컨대, 마이크로 프로세서로 구현할 수 있다. 이 마이크로 프로세서는 3차원 메쉬 모델의 복잡도 값과 외부에서 미리 설정한 복잡도 값을 비교하며, 3차원 메쉬 모델의 복잡도 값이 외부에서 미리 설정한 복잡도 값을 초과하는 경우에 3차원 메쉬 모델을 복수 개의 부분 메쉬로 분할할 수 있다. 아울러 데이터 분석부(510)는 3차원 메쉬 모델의 정점 정보, 속성 정보 및 연결 정보에 대한 데이터를 저장하는 헤더(미도시)를 포함할 수 있다.The data analyzer 510 may include a calculator (not shown) that calculates a complexity of the 3D mesh model, and the calculator may be implemented by, for example, a microprocessor. The microprocessor compares the complexity value of the three-dimensional mesh model with the externally set complexity value, and when the complexity value of the three-dimensional mesh model exceeds the externally set complexity value, Can be split into partial meshes. In addition, the data analyzer 510 may include a header (not shown) that stores data about vertex information, attribute information, and connection information of the 3D mesh model.

실질적으로, 3차원 메쉬 모델이 상당한 수의 정점으로 표현될 경우에 3차원 메쉬 모델을 부호화하는 과정에 있어서 과다한 연산량으로 인한 3차원 메쉬 모델의 압축 장치에서 과부하를 일으켜 부호화에 오류가 발생할 우려가 있고, 부호화의 속 도가 현저히 감소하는 것을 방지하기 위하여 외부에서 미리 설정한 복잡도 값을 초과하는 경우, 복수 개의 부분 메쉬로 분할하여 압축 장치의 과부하 및 연산 속도 감소를 방지할 수 있다.Substantially, when the 3D mesh model is represented by a significant number of vertices, there is a possibility that an error occurs in encoding due to an overload in the compression apparatus of the 3D mesh model due to an excessive amount of computation in the process of encoding the 3D mesh model. In order to prevent the encoding speed from being significantly reduced, when the complexity value is externally set, the partial compression may be divided into a plurality of partial meshes to prevent the compression apparatus from overloading and reducing the computation speed.

한편, 복잡도는 3차원 메쉬 모델을 형성하는 페이스셋의 개수에 따라 결정할 수 있으며, 압축 장치의 사용 환경이나 실시 형태에 따라 다양하게 변형 가능하다.The complexity may be determined according to the number of facesets forming the 3D mesh model, and may be variously modified according to the use environment and the embodiment of the compression apparatus.

한편, 메쉬 모델 양자화부(520)는 데이터 분석부(510)로부터 분석된 3차원 메쉬 모델의 정점 정보(511), 속성 정보(512) 및 3차원 메쉬 모델의 정점들 간의 연결 정보(513)를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 생성할 수 있다.Meanwhile, the mesh model quantization unit 520 may extract vertex information 511, attribute information 512, and connection information 513 between vertices of the 3D mesh model analyzed by the data analyzer 510. The quantized vertex information, the attribute information, and the connection information may be generated.

메쉬 모델 양자화부(520)에서 각 값에 대한 양자화를 수행하는 수식은 하기의 수학식 1과 같이 표현될 수 있다.The equation for performing quantization on each value in the mesh model quantization unit 520 may be expressed as in Equation 1 below.

Figure 112008085153093-pat00001
Figure 112008085153093-pat00001

수학식 1에서 floor[]는 내림 연산을 나타내고, Xi는 양자화기 입력값, t는 양자화 파라메터를 의미한다. max와 min은 입력값의 최대, 최소값을 나타낸다In Equation 1, floor [] denotes a rounding operation, Xi denotes a quantizer input value, and t denotes a quantization parameter. max and min represent the maximum and minimum values of the input

그리고, 결정 비트 부호화부(530)는 메쉬 모델 양자화부(520)에 의해 양자화된 연결 정보의 개수에 대해

Figure 112008085153093-pat00002
연산을 하여 결정 비트를 계산하며, 계산된 결정 비트를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화하여 부호화된 데이터를 비트스트림 형태로 출력한다. 여기서 ceil[]은 올림 연산을 의 미하고, N은“정점의 개수”의 값을 가진다.In addition, the decision bit encoder 530 may determine the number of connection information quantized by the mesh model quantizer 520.
Figure 112008085153093-pat00002
The operation calculates the decision bit by using the operation, and encodes the quantized vertex information, the attribute information, and the connection information using the calculated decision bit, and outputs the encoded data in the form of a bitstream. Where ceil [] means the rounding operation and N has the value of "number of vertices".

도 6은 본 발명에 적용되는 양자화 방법에 대한 일실시예를 도시한 것이다.6 illustrates an embodiment of a quantization method applied to the present invention.

도 6에 도시된 바와 같이, 최소값이 -0.5837이고, 최대값을 0.8576이라고 하면, 전체 구간의 크기는 0.8576 - ( - 0.5837) = 1.4413이 전체 구간의 크기가 된다. 전체 구간에 대하여 양자화 레벨이 10이라고 하면, 전체 구간의 크기인 1.1443을 1024개의 구간으로 나누면 한 구간의 크기는 0.0019가 되고, -0.1849의 값은 수학식 1의 연산 방법에 의하여 283이 된다.As shown in FIG. 6, if the minimum value is -0.5837 and the maximum value is 0.8576, the size of the entire section becomes 0.8576-(−0.5837) = 1.4413. If the quantization level is 10 for the entire interval, when 1.1443, the size of the entire interval, is divided into 1024 intervals, the size of one interval is 0.0019, and the value of -0.1849 becomes 283 by the calculation method of Equation 1.

도 6은 -0.1849의 양자화 값을 연산한 결과이고, 수학식 1의 정리는 x, y, z의 각 축에 대한 각각의 양자화 레벨을 적용하여 일반화한 식이다.6 is a result of calculating a quantization value of -0.1849, and the theorem of Equation 1 is a generalized expression by applying respective quantization levels for each axis of x, y, and z.

도 7은 본 발명에 따른 3차원 메쉬 모델의 압축 방법의 흐름도를 도시한 것이다.7 is a flowchart illustrating a compression method of a 3D mesh model according to the present invention.

도 7을 참조하면, 우선, 입력된 3차원 메쉬 모델로부터 3차원 메쉬 모델의 고유의 정점 정보, 3차원 메쉬 모델의 고유의 특성을 나타내는 속성 정보 및 3차원 메쉬 모델을 구성하는 정점들 간의 연결 정보로 분리한다(S610).Referring to FIG. 7, first, vertex information unique to the 3D mesh model, attribute information representing characteristics of the 3D mesh model, and connection information between vertices constituting the 3D mesh model from the input 3D mesh model Separate (S610).

즉, 3차원 메쉬 모델은 정점 정보, 속성 정보 및 연결 정보로 구성되어 있다. 이 중에서, 정점 정보는 3차원 메쉬 모델을 구성하는 정점의 3차원의 위치를 나타내는 좌표 정보로 표현될 수 있다. 좌표 정보는 부동 소수점으로 표현되는 삼차원의 좌표로 표현될 수 있으며, x, y, z의 각 축에 정렬되어 각 축에 실수 값을 가지는 좌표로 표현된다.That is, the 3D mesh model is composed of vertex information, attribute information, and connection information. Among them, the vertex information may be represented by coordinate information indicating the three-dimensional position of the vertex constituting the three-dimensional mesh model. Coordinate information may be expressed in three-dimensional coordinates expressed in floating point, and is expressed in coordinates having a real value in each axis aligned with each axis of x, y, and z.

그리고, 속성 정보는 3차원 메쉬 모델을 구성하는 페이스셋의 법선, 색상 및 텍스처 좌표를 포함할 수 있다.The attribute information may include normals, colors, and texture coordinates of a face set constituting the 3D mesh model.

또한, 연결 정보는 3개 이상의 정점 정보가 하나의 다각형을 이루는 인덱스 리스트로 표현될 수 있으며, 이를 인덱스드페이스셋(IndexedFaceSet)이라고 칭할 수 있다.In addition, the connection information may be expressed as an index list in which three or more vertex information forms one polygon, which may be referred to as an indexed faceset.

여기서, 정점들 간의 연결 정보로 분리하는 단계는, 3차원 메쉬 모델의 정점 정보, 속성 정보 및 연결 정보에 대한 데이터를 저장하는 단계를 포함한다.Here, the separating of the connection information between the vertices may include storing data on the vertex information, the attribute information, and the connection information of the 3D mesh model.

그리고, 정점들 간의 연결 정보로 분리하는 단계는, 3차원 메쉬 모델의 복잡도를 연산하는 단계, 및 연산된 3차원 메쉬 모델의 복잡도 값이 사용자가 미리 설정한 복잡도 값을 초과하는 경우에 3차원 메쉬 모델을 복수 개의 부분 메쉬로 분할하는 단계를 더 포함할 수 있다.The step of separating the connection information between the vertices may include calculating a complexity of the 3D mesh model, and when the complexity value of the calculated 3D mesh model exceeds a complexity value preset by the user. The method may further include dividing the model into a plurality of partial meshes.

이는 상술한 바와 같이, 3차원 메쉬 모델이 상당한 수의 정점으로 표현될 경우 3차원 메쉬 모델을 부호화하는 과정에 있어서 과다한 연산량으로 인한 3차원 메쉬 모델의 압축 장치에 과부하를 일으켜 부호화에 오류가 발생할 우려가 있고, 부호화의 속도가 현저히 감소하는 것을 방지하기 위하여 외부에서 미리 설정한 복잡도 값을 초과하는 경우, 복수 개의 부분 메쉬로 분할하여 압축 장치의 과부하 및 연산 속도 감소를 방지하도록 할 수 있다.As described above, if the three-dimensional mesh model is represented by a significant number of vertices, the encoding apparatus may overload the compression apparatus of the three-dimensional mesh model due to an excessive amount of computation in the process of encoding the three-dimensional mesh model, thereby causing an error in encoding. In order to prevent the encoding speed from being significantly reduced, when exceeding a complexity value previously set externally, it may be divided into a plurality of partial meshes so as to prevent an overload of the compression device and a reduction in arithmetic speed.

한편, 복잡도는 3차원 메쉬 모델을 형성하는 페이스셋의 개수에 따라 결정할 수 있으며, 압축 장치의 사용 환경이나 실시 형태에 따라 다양하게 변형 가능하다.The complexity may be determined according to the number of facesets forming the 3D mesh model, and may be variously modified according to the use environment and the embodiment of the compression apparatus.

그 다음, 분리된 3차원 메쉬 모델의 정점 정보, 속성 정보 및 3차원 메쉬 모델의 정점들 간의 연결 정보를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 생성한다. 각 값에 대한 양자화를 수행하는 수식은 상기의 수학식 1과 같이 표현될 수 있으며, 양자화 레벨에 따라 양자화된 정점 정보, 속성 정보 및 연결 정보를 생성하게 된다(S620).Next, the quantized vertex information, the attribute information, and the connection information are generated using the vertex information, the attribute information of the separated three-dimensional mesh model, and the connection information between the vertices of the three-dimensional mesh model. The equation for performing quantization for each value may be expressed as in Equation 1 above, and generates quantized vertex information, attribute information, and connection information according to the quantization level (S620).

마지막으로, 양자화된 연결 정보의 개수에 대해

Figure 112008085153093-pat00003
연산을 하여 결정 비트를 계산하며, 계산된 결정 비트를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화하여 부호화된 데이터를 비트스트림 형태로 출력한다(S630).Finally, for the number of quantized connection information
Figure 112008085153093-pat00003
The operation calculates the decision bit, encodes the quantized vertex information, the attribute information, and the connection information using the calculated decision bit, and outputs the encoded data in the form of a bit stream (S630).

본 발명에 따른 양자화 기법에 기반한 3차원 메쉬 압축 방법 및 이를 이루는 각 단계는 일반적인 프로그래밍 방법을 이용하여 소프트웨어적으로 또는 하드웨어적으로 다양하게 구현할 수 있다는 것은 이 기술분야에 통상의 기술을 가진 자라면 용이하게 할 수 있는 것이다.Three-dimensional mesh compression method based on the quantization technique according to the present invention and each step of making it can be implemented in a variety of software or hardware using a general programming method is easy for those of ordinary skill in the art It can be done.

그리고, 본 발명의 양자화 기법에 기반한 3차원 메쉬 압축 방법 및 이를 이루는 각 단계들은, 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 모두 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, CD-RW, 자기 테이프, 플로피디스크, HDD, 광 디스크, 광자기 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드로 저장되고 실행될 수 있다.In addition, the three-dimensional mesh compression method based on the quantization technique of the present invention and each of the steps thereof may be implemented as computer readable codes on a computer readable recording medium. Computer-readable recording media include all types of recording devices that store data that can be read by a computer system. Examples of computer-readable recording media include ROM, RAM, CD-ROM, CD-RW, magnetic tape, floppy disks, HDDs, optical disks, magneto-optical storage devices, and carrier wave (eg, Internet It also includes the implementation in the form of (transmission through). The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

지금까지 실시예를 통해 설명한 본 발명은 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 본 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 상기의 설명에 포함된 예들은 본 발명에 대한 이해를 위해 도입된 것이며, 이 예들은 본 발명의 사상과 범위를 한정하지 아니한다. 상기의 예들 외에도 본 발명에 따른 다양한 실시예가 가능하다는 것은, 본 발명이 속한 기술 분야에서 통상의 지식을 가진 자에게는 자명할 것이다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.It will be appreciated by those skilled in the art that the present invention described through the embodiments can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. Examples included in the above description are introduced for the understanding of the present invention, and these examples do not limit the spirit and scope of the present invention. It will be apparent to those skilled in the art that various embodiments of the present invention in addition to the above examples are possible. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

도 1은 종래의 3차원 메쉬 코딩 부호화 장치의 블록도.1 is a block diagram of a conventional three-dimensional mesh coding encoding apparatus.

도 2는 도 1에 대응되는 3차원 메쉬 코딩 복호화 장치의 블록도.FIG. 2 is a block diagram of a 3D mesh coding decoding apparatus corresponding to FIG. 1. FIG.

도 3은 도 1에 의해 생성된 3차원 모델의 메쉬 정보의 부호화된 비트스트림의 전체적인 구조를 도시한 도면.3 is a diagram showing the overall structure of a coded bitstream of mesh information of the three-dimensional model generated by FIG.

도 4a 내지 도 4d는 종래의 3차원 모델의 메쉬에 대한 위상 절개의 수행 과정을 도시한 도면.4A through 4D are diagrams illustrating a process of performing phase cutting on a mesh of a conventional three-dimensional model.

도 5는 본 발명에 따른 양자화 기법에 기반한 3차원 메쉬 압축 장치의 블록도.5 is a block diagram of a three-dimensional mesh compression apparatus based on a quantization technique according to the present invention.

도 6은 본 발명에 적용되는 양자화 방법에 대한 일실시예를 도시한 도면.6 is a diagram illustrating an embodiment of a quantization method applied to the present invention.

도 7은 본 발명에 따른 양자화 기법에 기반한 3차원 메쉬 모델의 압축 방법의 흐름도.7 is a flowchart of a compression method of a three-dimensional mesh model based on a quantization technique according to the present invention.

Claims (13)

입력된 3차원 메쉬 모델의 데이터를 분석하여 정점 정보, 상기 3차원 메쉬 모델의 특성을 나타내는 속성 정보 및 상기 3차원 메쉬 모델을 구성하는 정점들 간의 연결 정보를 분리하는 데이터 분석부와,A data analysis unit for analyzing the data of the input 3D mesh model to separate vertex information, attribute information representing characteristics of the 3D mesh model, and connection information between vertices constituting the 3D mesh model; 상기 정점 정보, 속성 정보 및 연결 정보를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 생성하는 메쉬 모델 양자화부와,A mesh model quantizer configured to generate quantized vertex information, attribute information, and connection information using the vertex information, attribute information, and connection information; 상기 양자화된 연결 정보를 이용하여 결정 비트를 계산한 후 계산된 상기 결정 비트를 이용하여 상기 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화하는 결정 비트 부호화부A decision bit encoder configured to calculate a decision bit using the quantized connection information and then encode the quantized vertex information, attribute information, and connection information using the calculated decision bit. 를 포함하는 양자화 기법에 기반한 3차원 메쉬 압축 장치.3D mesh compression apparatus based on a quantization technique comprising a. 제 1 항에 있어서,The method of claim 1, 상기 데이터 분석부는, 상기 3차원 메쉬 모델의 복잡도를 연산하는 연산부를 포함하며,The data analysis unit includes a calculation unit for calculating the complexity of the three-dimensional mesh model, 상기 연산부는, 연산한 상기 3차원 메쉬 모델의 복잡도 값과 미리 설정한 복잡도 값을 비교한 결과에 의거하여 상기 3차원 메쉬 모델을 복수 개의 부분 메쉬로 분할하는The calculating unit may divide the three-dimensional mesh model into a plurality of partial meshes based on a result of comparing the calculated complexity value of the three-dimensional mesh model with a preset complexity value. 양자화 기법에 기반한 3차원 메쉬 압축 장치.3D mesh compression device based on quantization technique. 제 2 항에 있어서,The method of claim 2, 상기 복잡도는, 상기 3차원 메쉬 모델을 형성하는 페이스셋의 개수에 따라 결정되는The complexity is determined according to the number of facesets forming the three-dimensional mesh model. 양자화 기법에 기반한 3차원 메쉬 압축 장치.3D mesh compression device based on quantization technique. 제 1 항에 있어서,The method of claim 1, 상기 연결 정보는, 복수 개의 정점 정보가 하나의 다각형을 형성하는 인덱스 리스트로 표현되는The connection information is represented by an index list in which a plurality of vertex information forms one polygon. 양자화 기법에 기반한 3차원 메쉬 압축 장치.3D mesh compression device based on quantization technique. 제 4 항에 있어서,The method of claim 4, wherein 상기 속성 정보는, 상기 다각형으로 이루어진 3차원 메쉬 모델의 법선, 색상 및 텍스처 좌표The attribute information includes normals, colors, and texture coordinates of the 3D mesh model composed of the polygons. 를 포함하는 양자화 기법에 기반한 3차원 메쉬 압축 장치.3D mesh compression apparatus based on a quantization technique comprising a. 제 1 항에 있어서,The method of claim 1, 상기 데이터 분석부는, 상기 3차원 메쉬 모델의 정점 정보, 속성 정보 및 연결 정보에 대한 데이터를 저장하는 헤더The data analyzer includes a header for storing data about vertex information, property information, and connection information of the 3D mesh model. 를 포함하는 양자화 기법에 기반한 3차원 메쉬 압축 장치.3D mesh compression apparatus based on a quantization technique comprising a. 입력된 3차원 메쉬 모델의 데이터를 분석하여 정점 정보, 상기 3차원 메쉬 모델의 특성을 나타내는 속성 정보 및 상기 3차원 메쉬 모델을 구성하는 정점들 간의 연결 정보를 분리하는 단계와,Analyzing the data of the input 3D mesh model to separate vertex information, attribute information representing characteristics of the 3D mesh model, and connection information between vertices constituting the 3D mesh model; 상기 정점 정보, 속성 정보 및 연결 정보를 이용하여 양자화된 정점 정보, 속성 정보 및 연결 정보를 생성하는 단계와,Generating quantized vertex information, attribute information, and connection information using the vertex information, the attribute information, and the connection information; 상기 양자화된 연결 정보를 이용하여 결정 비트를 계산한 후 계산된 상기 결정 비트를 이용하여 상기 양자화된 정점 정보, 속성 정보 및 연결 정보를 부호화하는 단계Calculating a decision bit using the quantized connection information and encoding the quantized vertex information, attribute information, and connection information using the calculated decision bit. 를 포함하는 양자화 기법에 기반한 3차원 메쉬 압축 방법.3D mesh compression method based on the quantization technique comprising a. 제 7 항에 있어서,The method of claim 7, wherein 상기 정점들 간의 연결 정보를 분리하는 단계는,Separating the connection information between the vertices, 상기 3차원 메쉬 모델의 복잡도를 연산하는 단계와,Calculating a complexity of the three-dimensional mesh model; 연산된 상기 3차원 메쉬 모델의 복잡도 값과 미리 설정한 복잡도 값을 비교 한 결과에 의거하여 상기 3차원 메쉬 모델을 복수 개의 부분 메쉬로 분할하는 단계Dividing the three-dimensional mesh model into a plurality of partial meshes based on a result of comparing the calculated complexity value of the three-dimensional mesh model with a preset complexity value 를 포함하는 양자화 기법에 기반한 3차원 메쉬 압축 방법.3D mesh compression method based on the quantization technique comprising a. 제 8 항에 있어서,The method of claim 8, 상기 복잡도는, 상기 3차원 메쉬 모델을 형성하는 페이스셋의 개수에 따라 결정되는The complexity is determined according to the number of facesets forming the three-dimensional mesh model. 양자화 기법에 기반한 3차원 메쉬 압축 방법.3D mesh compression method based on quantization technique. 제 7 항에 있어서,The method of claim 7, wherein 상기 연결 정보는, 복수 개의 정점 정보가 하나의 다각형을 형성하는 인덱스 리스트로 표현되는The connection information is represented by an index list in which a plurality of vertex information forms one polygon. 양자화 기법에 기반한 3차원 메쉬 압축 방법.3D mesh compression method based on quantization technique. 제 10 항에 있어서,11. The method of claim 10, 상기 속성 정보는, 상기 다각형으로 이루어진 3차원 메쉬 모델의 법선, 색상 및 텍스처 좌표The attribute information includes normals, colors, and texture coordinates of the 3D mesh model composed of the polygons. 를 포함하는 양자화 기법에 기반한 3차원 메쉬 압축 방법.3D mesh compression method based on the quantization technique comprising a. 제 7 항에 있어서,The method of claim 7, wherein 상기 정점들 간의 연결 정보를 분리하는 단계는, 상기 3차원 메쉬 모델의 정점 정보, 속성 정보 및 연결 정보에 대한 데이터를 저장하는 단계The separating of the connection information between the vertices may include storing data about vertex information, property information, and connection information of the 3D mesh model. 를 포함하는 양자화 기법에 기반한 3차원 메쉬 압축 방법.3D mesh compression method based on the quantization technique comprising a. 제 7 항 내지 제 12 항 중 어느 한 항의 양자화 기법에 기반한 3차원 메쉬 압축 방법을 수행하는 컴퓨터 프로그램이 기록된 기록매체.A recording medium on which a computer program for performing a three-dimensional mesh compression method based on the quantization technique according to any one of claims 7 to 12 is recorded.
KR1020080125521A 2008-04-18 2008-12-10 Method and apparatus for 3d mesh compression based quantization KR101086772B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020080125521A KR101086772B1 (en) 2008-04-18 2008-12-10 Method and apparatus for 3d mesh compression based quantization
US12/988,305 US8462149B2 (en) 2008-04-18 2009-04-16 Method and apparatus for real time 3D mesh compression, based on quanitzation
PCT/KR2009/001972 WO2009128660A2 (en) 2008-04-18 2009-04-16 Method and apparatus for real time 3d mesh compression, based on quanitzation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080036372 2008-04-18
KR1020080125521A KR101086772B1 (en) 2008-04-18 2008-12-10 Method and apparatus for 3d mesh compression based quantization

Publications (2)

Publication Number Publication Date
KR20090110777A KR20090110777A (en) 2009-10-22
KR101086772B1 true KR101086772B1 (en) 2011-11-25

Family

ID=41538588

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080125521A KR101086772B1 (en) 2008-04-18 2008-12-10 Method and apparatus for 3d mesh compression based quantization

Country Status (1)

Country Link
KR (1) KR101086772B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY190934A (en) * 2015-12-14 2022-05-23 Panasonic Ip Corp America Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device

Also Published As

Publication number Publication date
KR20090110777A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
US8462149B2 (en) Method and apparatus for real time 3D mesh compression, based on quanitzation
JP5033261B2 (en) Low-complexity three-dimensional mesh compression apparatus and method using shared vertex information
KR100910031B1 (en) Apparatus and Method of encoding 3 dimensional mesh model and Recording medium thereof
KR101715962B1 (en) Compression of 3d meshes with repeated patterns
US10032309B2 (en) Predictive position decoding
EP2813076B1 (en) Efficient compression of 3d models based on octree decomposition
US20140376827A1 (en) Predictive position encoding
Mamou et al. TFAN: A low complexity 3D mesh compression algorithm
KR100927601B1 (en) Method and apparatus for encoding / decoding of 3D mesh information
EP2783353B1 (en) Position coding based on spatial tree with duplicate points
US20090080516A1 (en) Method of encoding and decoding texture coordinates in three-dimensional mesh information for effective texture mapping
US20090278844A1 (en) Method and apparatus for encoding/decoding 3d mesh information including stitching information
KR20100007685A (en) Fast 3d mesh coding apparatus using connectivity analysis and method thereof
Pavez et al. Dynamic polygon cloud compression
JP2008538435A (en) Apparatus and method for encoding and decoding three-dimensional mesh information
KR102608160B1 (en) Point cloud geometry upsampling
KR101086774B1 (en) Method and apparatus for low complexity 3d mesh compression
KR101086772B1 (en) Method and apparatus for 3d mesh compression based quantization
KR100294923B1 (en) 3-D mesh coding/decoding method and apparatus for error resilience and incremental rendering
JP2024533637A (en) Compressing point cloud data frames
Lincoln et al. Plane-Tree Low-Bitrate Mesh Compression
CN116800970A (en) Encoding and decoding methods, devices and equipment
CN116233387A (en) Point cloud coding and decoding methods, devices and communication equipment
Peng et al. Progressive lossless 3D mesh encoder with octree-based space partitioning

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141027

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151030

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee