Nothing Special   »   [go: up one dir, main page]

KR101066608B1 - Near infrared ray spectroscopic apparatus for egg blood spot - Google Patents

Near infrared ray spectroscopic apparatus for egg blood spot Download PDF

Info

Publication number
KR101066608B1
KR101066608B1 KR1020090010948A KR20090010948A KR101066608B1 KR 101066608 B1 KR101066608 B1 KR 101066608B1 KR 1020090010948 A KR1020090010948 A KR 1020090010948A KR 20090010948 A KR20090010948 A KR 20090010948A KR 101066608 B1 KR101066608 B1 KR 101066608B1
Authority
KR
South Korea
Prior art keywords
egg
blood
eggs
measuring
near infrared
Prior art date
Application number
KR1020090010948A
Other languages
Korean (ko)
Other versions
KR20100091651A (en
Inventor
김상호
강근호
김지혁
한이진
Original Assignee
한이진
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한이진, 대한민국(농촌진흥청장) filed Critical 한이진
Priority to KR1020090010948A priority Critical patent/KR101066608B1/en
Publication of KR20100091651A publication Critical patent/KR20100091651A/en
Application granted granted Critical
Publication of KR101066608B1 publication Critical patent/KR101066608B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/26Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/08Eggs, e.g. by candling

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

계란의 내부 품질요소 중 하나인 혈반을 비침습적으로 검출할 수 있는 근적외선 측정장치가 개시된다. 본 발명에 따른 계란 내 혈액 측정을 위한 비침습 근적외선 측정장치는 계란내 혈액을 측정하기 위해 계란에 근적외선을 주사하기 위한 광원모듈과, 계란으로부터 확산 및 반사되는 근적외선을 수집하여 스펙트럼 데이터로 출력하는 광검출모듈과, 수집된 스펙트럼 데이터를 분석하여 혈란을 판단하는 데이터분석모듈을 포함하여, 계란을 파괴하지 않고 혈란을 판단할 수 있다. 따라서 종래의 무작위 추출방식에 의한 파괴적인 측정방법에 비해 생산된 계란 전체를 대상으로 혈반검사가 가능하다는 효과가 있으며, 또한 종래의 계란 선별장치에 적용이 용이하기 때문에 현재 시범적으로 실시하고 있는 계란 등급제 확대도 용이하다. 특히 생산 농가에서 자체적인 품질관리가 가능하기 때문에 상품에 대한 소비자의 신뢰도를 향상시킬 수 있다. A near-infrared measuring apparatus capable of non-invasive detection of blood spots, one of the internal quality factors of eggs, is disclosed. Non-invasive near-infrared measuring apparatus for measuring blood in eggs according to the present invention is a light source module for scanning near-infrared into the egg to measure blood in the egg, and the light to collect the near-infrared diffused and reflected from the egg and output the spectrum data Including a detection module and a data analysis module for analyzing the collected spectrum data to determine the egg, it is possible to determine the egg without destroying the egg. Therefore, compared to the destructive measuring method by the conventional randomized extraction method, it is effective to test blood spots on all the eggs produced, and it is also easy to apply to the conventional egg sorting device, which is currently being tested. Grade expansion is easy. In particular, since quality control is possible in production farms, it is possible to improve the consumer's confidence in the product.

Description

계란내 혈액 측정을 위한 비침습 근적외선 측정장치{Near infrared ray spectroscopic apparatus for egg blood spot}Near-infrared ray spectroscopic apparatus for egg blood spot

본 발명은 근적외선 측정장치에 관한 것으로서, 더욱 상세하게는 계란을 파괴하지 않고 계란 내 혈반을 비침습적으로 측정할 수 있는 근적외선 분광분석 시스템에 관한 것이다.The present invention relates to a near-infrared measuring apparatus, and more particularly, to a near-infrared spectroscopic analysis system capable of non-invasive measurement of blood spots in eggs without destroying the eggs.

계란의 이물질 포함 여부는 계란의 내부 품질을 좌우하는 요인 중 하나이다. 내부 이물질은 육반과 혈반으로 이루어지는데, 이 가운데 혈반은 계란 형성과정 중에 닭의 혈액이 계란으로 들어가서 발생한다. 혈반이 존재하는 계란(혈란)은 소비자가 제기하는 가장 큰 제품 불만요소이다. 혈란은 계란 노른자가 난소에서 배란될 때 발생하게 되는데, 스트레스나 환경적인 요인으로 언제든지 발생하기 때문에 이를 제품 출시 전에 골라내기는 어려운 실정이다. Inclusion of foreign objects in eggs is one of the factors that affect the quality of eggs. Internal foreign substances are made up of flakes and blood spots, which are caused by the chicken's blood entering the egg during egg formation. Eggs with blood spots (eggs) are the biggest consumer complaints. The egg yolk occurs when the egg yolk is ovulated in the ovary, and it occurs at any time due to stress or environmental factors, so it is difficult to select it before the product is released.

계란 내 혈액을 판별하는 장비로는 백색란의 경우 가시광선용 할로겐램프를 사용하여 백색란 중에서 붉은 색깔의 분석이 가능하며, 수분 영향을 최소로 받는 광파장 570nm부터 600nm대역에서 측정하는 시스템이 유일하다. In the case of white eggs, the white eggs can be analyzed in red color using a halogen lamp for visible light, and the only system that measures light wavelengths from 570nm to 600nm which is minimally affected by moisture.

그러나 이 분석법은 한국 내수 시장의 대부분을 차지하고 있는 갈색 계란의 경우 계란 난각색인 갈색계란과 헤모글로빈 색깔이 유사하기 때문에, 정상적인 계란과 혈액이 있는 계란이 혼용되어 측정될 수 있어, 오차율이 매우 높다는 문제점이 있었다. However, in this method, brown eggs, which occupy most of the domestic market in Korea, have similar egg eggshell brown eggs and hemoglobin color. Therefore, normal eggs and eggs with blood can be mixed and measured, and the error rate is very high. there was.

또한, 현재 계란등급을 결정하는 데 주로 이용되는 육안 검사법의 경우에는 전체 계란의 일부를 샘플링하여 검사하는 것이기 때문에, 사실상 전수 조사가 불가능하다. 계란은 각각이 독립적인 상품이기 때문에 전수조사가 필수적임에도 불구하고, 현재 이를 정확하게 뒷받침할만한 시스템은 없는 실정이다.In addition, the visual inspection method, which is mainly used to determine the egg grade, is because a part of the whole egg is sampled and inspected. Although eggs are independent commodities, a complete investigation is essential, but at present there is no system to support them accurately.

본 발명은 상기 종래 기술에서 착안한 것으로서, 본 발명의 목적은 계란의 내부 품질 중 하나인 혈반을 비침습적으로 검출할 수 있는 비침습 근적외선 측정장치를 제공하는 데 있다. The present invention has been made in view of the prior art, and an object of the present invention is to provide a non-invasive near-infrared measuring apparatus capable of non-invasive detection of blood plate, one of the internal quality of the egg.

아울러, 본 발명은 광파장 1,100 ~ 1,700nm의 근적외선 범위대에서 계란을 깨지 않고 계란내 혈액 함유 여부를 분석하는 시스템이다. 계란의 품질을 좌우하는 것 중에서는 계란 난각의 파각과 계란 난중의 혈액 있는 일명 혈란이 내부 품질을 좌우하는데 매우 중요한 역할을 한다. 비침습 장비중에서 근적외선 파장 대역은 다른 파장 대역에 비해서 몇가지 장점이 있다. 첫 번째로는 다른 파장 대역에 비해서 광이 시료 내로 주사되는 주사 깊이가 가장 깊다. 두 번째는 수분에 대한 영향을 최소로 받으므로 해서 다른 성분 분석에 적합하다. 세 번째로는 유기물 분석이 가능하므로 해서 헤모글로빈 측정하는 데는 매우 적합하다. 따라서, 계란 내에 헤모글로빈인 유기물 분석하는 데 있어 다른 분석 방법에 비해서 난각색에 대한 영향을 최소로 받고 난중 내에 난황과 난백의 영향을 최소로 받기 때문에, 이러한 점을 적극 활용하여 본 발명은 근적외선 파장 대역을 사용하여 계란 내의 혈액을 분석하도록 구성하였다.In addition, the present invention is a system for analyzing the presence of blood in eggs without breaking eggs in the near infrared range of the light wavelength of 1100 ~ 1700nm. Among the egg quality control, egg shell breaking and egg egg blood, known as egg eggs, play an important role in determining the internal quality. Among non-invasive equipment, the near infrared wavelength band has several advantages over other wavelength bands. The first is the deepest scanning depth at which light is scanned into the sample compared to other wavelength bands. The second is minimally impacted by water, making it suitable for analysis of other components. Thirdly, it is very suitable for measuring hemoglobin because it allows analysis of organic matter. Therefore, the analysis of the organic material of hemoglobin in eggs is less affected by egg shell color and less affected by egg yolk and egg white in egg weight compared to other analytical methods. Was used to analyze blood in eggs.

상기 목적을 달성하기 위한 본 발명에 따른 계란 내 혈액 측정을 위한 비침습 근적외선 측정장치는 계란내 혈액을 측정하기 위해 계란에 근적외선을 주사하기 위한 광원모듈과, 계란으로부터 확산 및 반사되는 근적외선을 수집하여 스펙트럼 데이터로 출력하는 광검출모듈과, 수집된 스펙트럼 데이터를 분석하여 혈란을 판단하는 데이터분석모듈을 포함한다. Non-invasive near infrared measurement apparatus for measuring blood in the egg according to the present invention for achieving the above object is collected by collecting a light source module for scanning near infrared to the egg to measure blood in the egg, and near infrared rays diffused and reflected from the egg It includes a light detection module for outputting the spectral data, and a data analysis module for analyzing the collected spectral data to determine the blood flow.

또한 본 발명에 따른 계란 내 혈액 측정을 위한 비침습 근적외선 측정장치는 상기 모듈들이 설치되어 있는 본체와, 계란을 상기 본체로 이송하기 위한 이송 컨베이어와, 상기 이송 컨베이어를 통해 계란이 상기 본체의 시료 도입부로 공급되는 것을 인식하기 위한 트리거를 포함하고, 상기 이송 컨베이어는 장방형으로 마련되어 네 모서리에 돌출 마련되는 돌기를 구비하되, 돌기는 수직돌기와 경사돌기가 한 쌍씩 마련된다. In addition, the non-invasive near-infrared measuring apparatus for measuring blood in the egg according to the present invention, the main body is installed the module, a transfer conveyor for transferring the egg to the main body, the egg through the transfer conveyor sample introduction portion of the main body It includes a trigger for recognizing being supplied to, the conveying conveyor is provided in a rectangle is provided with projections protruding at four corners, the projections are provided with a pair of vertical projections and inclined projections.

또한 본 발명에 따른 계란 내 혈액 측정을 위한 비침습 근적외선 측정장치에 있어서 상기 광원모듈은 네 개의 램프를 구비하되, 계란의 이송방향에 대해 한 쌍씩 마련되는 전후방 램프는 120° 간격으로 대향 배치되고, 상기 전후방 램프는 서로 60°간격으로 배치된다. In addition, in the non-invasive near infrared measurement apparatus for measuring blood in the egg according to the present invention, the light source module is provided with four lamps, the front and rear lamps provided in pairs with respect to the feeding direction of the eggs are disposed facing each other at 120 ° intervals, The front and rear lamps are arranged at 60 ° intervals from each other.

또한 본 발명에 따른 계란 내 혈액 측정을 위한 비침습 근적외선 측정장치에 있어서 상기 광검출모듈은 상기 광원모듈에 대해 수직하게 마련되며, 측정 계란으로부터 120mm 이격하여 배치된다. In addition, in the non-invasive near infrared measurement apparatus for measuring blood in the egg according to the present invention, the light detection module is provided perpendicular to the light source module, and is spaced 120 mm from the measuring egg.

본 발명에 따른 본 발명에 따른 계란 내 혈액 측정을 위한 비침습 근적외선 측정장치는 계란내 혈반을 측정함에 있어서 종래의 무작위 추출방식에 의한 파괴적인 측정방법에 비해 생산된 계란 전체를 대상으로 혈반검사가 가능하다는 효과가 있다. 또한, 종래의 계란 선별장치에 적용이 용이하기 때문에 현재 시범적으로 실시하고 있는 계란 등급제 확대도 용이하며, 특히 생산 농가에서 자체적인 품질관리가 가능하기 때문에 상품에 대한 소비자의 신뢰도를 향상시킬 수 있다. Non-invasive near-infrared measuring apparatus for measuring blood in eggs according to the present invention according to the present invention is a blood plate test for the whole egg produced in comparison with the destructive measuring method by the conventional random sampling method in measuring blood in the egg There is an effect that it is possible. In addition, since it is easy to apply to the conventional egg sorting device, it is also easy to expand the egg grading system that is currently being piloted, and in particular, it is possible to improve the consumer's confidence in the product because the self-quality control is possible in the production farm. .

이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 계란내 혈액 측정을 위한 비침습 근적외선 분광 분석 장치(이하 측정장치)를 도시한 사시도이며, 도 2는 도 1의 평면도, 도 3은 도 1의 측단면도이다.1 is a perspective view showing a non-invasive near infrared spectroscopy apparatus (hereinafter, referred to as a measuring device) for measuring blood in eggs according to the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a side cross-sectional view of FIG.

도면들을 참조하면, 본 실시예에 따른 비침습 근적외선 측정장치는 복수의 계란을 측정장치 본체로 순차적으로 이송하기 위한 이송 컨베이어(10)와, 본체에 마련되는 복수의 광원모듈(20)과, 광검출모듈(30)과 분석모듈(미도시)을 포함한다. Referring to the drawings, the non-invasive near-infrared measuring apparatus according to the present embodiment is a transport conveyor 10 for sequentially transferring a plurality of eggs to the measuring device main body, a plurality of light source modules 20 provided in the main body, and the light It includes a detection module 30 and an analysis module (not shown).

이송 컨베이어(10)는 복수의 계란을 수평으로 눕혀 순차적으로 이송할 수 있도록 네 개의 바(12,14)가 모서리에 돌출된 장방형 형태의 체인으로 마련된다. 네 개의 바(12,14) 중 두 개(12)는 돌기가 연직방향으로 수직하게 마련되며, 다른 두개(14)는 상대적으로 낮은 높이를 가짐과 동시에 경사면을 가져 작업자가 계란을 파손 없이 쉽게 거치할 수 있다. 계란은 이송 컨베이어(10)의 이송 방향에 대해 계란의 장축이 직각 상태(횡방향)를 가지도록 거치된다.The transport conveyor 10 is provided with a rectangular chain having four bars 12 and 14 protruding at the corners so as to sequentially lay a plurality of eggs horizontally. Two (12) of the four bars (12, 14) is provided with a vertical projection in the vertical direction, the other two (14) has a relatively low height and at the same time have an inclined surface so that the operator can easily place the egg without damage can do. The egg is placed so that the long axis of the egg has a right angle (lateral direction) with respect to the conveying direction of the conveying conveyor 10.

측정장치로 유입되는 계란은 본체에 마련되는 트리거(22)에 의해 인식된다. 트리거(22)는 일정 간격으로 도입되는 계란을 인식하여 측정장치의 광원모듈(20)에 전원을 공급되도록 한다. Eggs introduced into the measuring device are recognized by the trigger 22 provided in the main body. The trigger 22 recognizes eggs introduced at regular intervals so that power is supplied to the light source module 20 of the measuring device.

본 실시예에 따르면, 광원모듈(20)은 총 네 개의 근적외선용 램프가 사용된다. 각 램프(24a~24d)는 브라켓(25)의 슬릿을 통해 측정장치 본체에 높낮이를 조절 가능하게 설치된다. 램프(24)는 이송 컨베이어(10)의 이송 방향에 대해 양측에 두 개씩 대향 배치된다. 도 2를 참조하면, 계란 이송방향의 전후방에 대향 배치되는 램프(24a,24b) 또는 램프(24c,24d)의 사이는 120°간격으로 배치되며, 전후방으로 위치하는 램프(24a,24d)와 램프(24b,24c) 사이는 각각 60°간격으로 배치된다. 이와 같은 배치하게 되면, 횡방향으로 눕혀 이송되는 계란 내의 혈액을 앞뒤 모두 측정할 수 있다. According to the present embodiment, the light source module 20 uses a total of four near infrared lamps. Each lamp 24a to 24d is installed to adjust the height of the measuring apparatus main body through the slit of the bracket 25. Two lamps 24 are disposed opposite to each other with respect to the conveying direction of the conveying conveyor 10. Referring to Figure 2, between the lamps 24a, 24b or lamps 24c, 24d disposed opposite to the front and rear of the egg feeding direction are arranged at intervals of 120 degrees, and the lamps 24a, 24d and the lamps located in the front and rear directions Between 24b and 24c, it is arrange | positioned at 60 degrees spaces, respectively. With this arrangement, it is possible to measure both the blood back and forth in the egg transported in the transverse direction.

광검출모듈(30)은 계란으로부터 확산 및 반사되어 나온 근적외선광을 수집하기위한 광수집기(32)와, 수집된 광을 스펙트럼으로 분해하기 위한 스펙트로미터(36)를 구비한다. 광수집기(32)는 램프(24)에 대해 90° 수직 방향에 설치되며, 계란과 광수집기(32) 간 간격은 120mm로 마련된다. 이러한 배치 구조가 계란 내 혈액을 측정하는 데 가장 높은 신뢰성을 가짐을 실험을 통해 확인하였다. 광수집기(32)와 스펙트로미터(36)는 광손실을 최소화하기 위해 광섬유(34)로 연결되는 것이 바람직하다. 광신호는 스펙트로미터(36)로 도입되면서 각 파장별로 광이 분해되어 전기적 신호로 전환되고, 전기적 신호는 아날로그 디지털 변환기로 변환되어 데이터 프로세싱인 컴퓨터의 분석모듈을 통해서 그 데이터 값이 출력된다. The photodetector module 30 includes a light collector 32 for collecting near-infrared light diffused and reflected from an egg, and a spectrometer 36 for decomposing the collected light into a spectrum. The light collector 32 is installed in a 90 ° vertical direction with respect to the lamp 24, and the distance between the egg and the light collector 32 is provided at 120 mm. Experiments have confirmed that this batch structure has the highest reliability for measuring blood in eggs. The light collector 32 and the spectrometer 36 are preferably connected to the optical fiber 34 to minimize light loss. As the optical signal is introduced into the spectrometer 36, light is decomposed for each wavelength and converted into an electrical signal, and the electrical signal is converted into an analog-digital converter and the data value is output through an analysis module of a computer, which is data processing.

도 4는 본 발명의 일 실시예에 따른 혈란 기준물질(Reference material) 제작을 위해 계란에 닭의 혈액을 주입하는 것을 도시한 것이다. 혈란 계란을 모델링 하기 위해서 본 실시예에서는 정상 계란(E)에 혈액을 직접 주사하여 측정한다. 혈란은 닭의 혈액이 담긴 주사기(I)로 계란을 뚫은 다음, 일정량을 계란의 난황과 난배 사이에 주입하여 제조된다. 주입양은 0.1cc ~ 0.5cc 정도이다. FIG. 4 illustrates injecting chicken blood into an egg for preparation of a blood egg reference material according to an embodiment of the present invention. In this embodiment, in order to model the egg egg is measured by directly injecting blood into the normal egg (E). The egg is prepared by piercing the egg with a syringe (I) containing the blood of the chicken, and then injecting a certain amount between the egg yolk and the egg pear. Injection amount is about 0.1cc ~ 0.5cc.

도 5는 본 발명의 일 실시예에 따른 계란 내 혈액을 측정하기 위한 모델링 흐름도이다. 도시된 바와 같이 시스템을 켠 상태에서 기준물질(Reference material)인 혈액을 일정량 주사한 계란이 측정장치 본체로 도입되면(S100), 광원모듈(20)에서 근적외선을 주사하고 계란으로부터 확산 및 반사된 근적외선은 광검출모듈(30)의 광수집기(32)를 통해 스펙트로미터(36)로 전송된다(S200). 스펙트로미터(36)는 측정된 각 계란(기준물질)의 광 정보에서 스펙트럼을 읽게 되고(S300), 데이터분석모듈은 각각의 계란에 대해 주사한 혈액양이 실측값으로 되어 상관계수를 도출한다(S400,S500)). 상관식이 0.9 이상이면 하드웨어 조건변화 없이 검량선을 바로 도입하게 되고(S600), 그 이하가 되면 하드웨어 조건을 변화시키면서 계란 시료 도입부터 동일한 방법으로 상관계수가 0.9이상 될 때까지 반복 측정하면서 검량식을 도출하게 된다(S700). 이 과정을 거쳐야 모델링이 완료된다. 여기서, 하드웨어 조건변화란 상관계수에 따라 광원모듈(20) 및 광검출모듈(30)의 배치를 조절하는 것을 말한다. 실험을 통해 광원모듈(20)의 네 개 램프(24a,24b,24c,24d)는 계란의 이송 방향에 대해 전후방으로는 120°, 측방으로는 60°간격으로 배치되는 것이 바람직하며, 광검출모듈(30)은 계란으로부터 120mm 이격되고 광원모듈(20)과는 수직하게 배치되는 것이 바람직하다.5 is a modeling flowchart for measuring blood in an egg according to an embodiment of the present invention. As shown, when the egg is injected into the measuring device main body with a certain amount of blood as a reference material (S100) when the system is turned on (S100), the near-infrared ray is injected from the light source module 20 and reflected and reflected from the near-infrared ray Is transmitted to the spectrometer 36 through the light collector 32 of the light detection module 30 (S200). The spectrometer 36 reads the spectrum from the optical information of each measured egg (reference material) (S300), and the data analysis module derives a correlation coefficient by measuring the amount of blood injected for each egg (S400). S500)). If the correlation is more than 0.9, the calibration curve is immediately introduced without changing the hardware condition (S600). If the correlation is less than or equal to (S600), the calibration equation is derived by repeatedly measuring the correlation coefficient from 0.9 to the correlation coefficient from the egg sample while changing the hardware conditions. It is made (S700). Only after this process will the modeling be completed. Here, the hardware condition change refers to adjusting the arrangement of the light source module 20 and the light detection module 30 according to the correlation coefficient. Four lamps (24a, 24b, 24c, 24d) of the light source module 20 through the experiment is preferably arranged at intervals of 120 ° in the front and rear, 60 ° in the lateral direction with respect to the egg transport direction, the light detection module 30 is 120mm away from the egg is preferably disposed perpendicular to the light source module 20.

도 6은 본 발명의 일 실시예에 따른 계란 내 혈액을 측정하기 위한 광원세기 에 의한 신호 증가 결과를 스펙트럼으로 도시한 것이다. 도시된 바와 같이 계란 내 혈액을 측정하기 위하여 직접 투과식으로 주사되는 광원의 세기를 75Watt에서 250Watt로 높이게 되면, 광원의 세기가 증가함에 따라 계란 내 혈액을 측정하여 나타나는 신호가 증가함을 알 수 있다. 이는 파장대에서의 계란 내 혈액을 측정한 신호의 증가로 혈액과 관련한 흡수 스펙트럼이 다량 나타나므로, 흡수 스펙트럼에 대한 모델링에 의해서 표시되는 혈란 상관성이 좋아지게 되는 것이다. 이는 감도의 향상을 동반한다.6 is a spectrum illustrating a signal increase result by light source intensity for measuring blood in an egg according to an embodiment of the present invention. As shown in the drawing, when the intensity of the light source directly injected through the light source to measure the blood is increased from 75 Watts to 250 Watts, as the intensity of the light source increases, the signal displayed by measuring blood in the egg increases. . This is due to the increase in the signal measured in the blood in the egg in the wavelength band, because the absorption spectrum associated with the blood appears a lot, the better the correlation of the hemoglobin displayed by modeling the absorption spectrum. This is accompanied by an improvement in sensitivity.

도 7은 본 발명의 일 실시예에 따른 혈란 스펙트럼 결과를 그래프로 도시한 것이다. 도면은 네 개로 구성된 램프(24)의 근적외선을 혈란에 직접 주사하여 확산 반사되어 얻어진 혈란 스펙트럼이다. 기준물질을 먼저 측정한 후에 혈란을 측정하면 기준물질에 대한 흡수 스펙트럼이 나타난다. 이 스펙트럼이 혈란 스펙트럼이며, 스펙트럼의 세기는 Y축의 흡광도인 Absorbance Unit(AU)값으로 나타낸다.7 is a graph showing the results of the blood spectral spectrum according to an embodiment of the present invention. The figure is a blood spectrum obtained by diffusing and reflecting near infrared rays of four lamps 24 into the blood cells. The measurement of the reference substance first and then the measurement of the ovule reveals the absorption spectrum of the reference substance. This spectrum is a blood spectral spectrum, and the intensity of the spectrum is represented by an Absorbance Unit (AU) value, which is the absorbance on the Y axis.

도 8은 본 발명의 일 실시예에 따른 혈란 모델링 결과를 검량선 그래프로 도시한 것이다. 일상분석(routine analysis)을 하기 위하여 검량선 도입은 혈란을 이송 컨베이어(10)에 부착되어 있는 근적외선 측정장치 본체 내 시료 도입부에 도입하여 측정하게 되는데, 먼저 기준물질을 측정하고 난 후 혈란을 측정하여 기준물질 보다 흡수된 일정한 파장을 측정하게 되며, 이것이 일반적인 스펙트럼으로 나타난다. 이 스펙트럼과 혈란의 시료를 할란하여 혈액량을 측정하며, 이 표준값을 기준으로 혈란 스펙트럼과 표준값과의 상관관계를 검량선으로 나타낸다. 이 상관 관계 가 좋고 나쁨을 나타내는 척도가 R2 이며, 통계적으로 R2 이 1에 가까울수록 혈액량에 따른 표준값과 스펙트럼과의 관계가 상관성이 좋다고 할 수 있으므로, R2이 0.90이상 인 것을 사용한다.8 is a calibration curve graph showing the results of modeling blood cloning according to an embodiment of the present invention. In order to perform routine analysis, the calibration curve is introduced by measuring blood cells at the sample introduction part inside the main body of the near infrared measuring apparatus attached to the conveying conveyor 10. First, the reference material is measured and then the blood cells are measured. It measures the wavelengths absorbed rather than the substance, which is represented by the general spectrum. The blood volume is measured by measuring the spectrum and the sample of blood eggs. The correlation between the blood spectrum and the standard value is represented by a calibration curve based on this standard value. There is a correlation between a good measure the R 2 represents a poor, as close to statistically R 2 is 1 to the relationship between the standard values and the spectrum of the blood volume is good correlation, was used as the R 2 at least 0.90.

도 9는 본 발명의 일 실시예에 따른 혈란 일상분석 결과를 그래프로 도시한 것으로서, 도 8의 검량선을 근적외선 측정장치의 데이터분석모듈(소프트웨어)에 삽입하여 일상분석을 한 것이다. 일련의 분광 분석 과정을 통하여 얻어진 혈란을 할란하여 혈액량에 따른 실측값과 측정장치에서 표시되는 예측값을 서로 비교한 결과, 도 9a처럼 혈란량의 실측값과 예측값이 실질적으로 유사함을 알 수 있다. 이는 도 9b의 종래 측정장치에 비해 본 발명의 실측값과 예측값의 편차가 현저하게 감소되었음을 알 수 있다. FIG. 9 is a graph showing the results of routine analysis of blood clots according to an embodiment of the present invention. The calibration curve of FIG. 8 is inserted into a data analysis module (software) of a near infrared measurement apparatus to perform routine analysis. As a result of comparing the measured value according to the blood volume and the predicted value displayed on the measuring device by comparing the measured value according to the blood volume, it can be seen that the measured value and the predicted value of the blood amount are substantially similar to each other. It can be seen that the deviation between the measured value and the predicted value of the present invention is significantly reduced compared to the conventional measuring apparatus of FIG. 9b.

도 1은 본 발명의 일 실시예에 따른 계란내 혈액 측정을 위한 비침습 근적외선 측정장치를 도시한 사시도이다.1 is a perspective view showing a non-invasive near infrared measurement apparatus for measuring blood in an egg according to an embodiment of the present invention.

도 2는 본 발명의 일 실시예에 따른 계란내 혈액 측정을 위한 비침습 근적외선 측정장치를 도시한 평면도이다.Figure 2 is a plan view showing a non-invasive near-infrared measuring apparatus for measuring blood in eggs according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따른 계란내 혈액 측정을 위한 비침습 근적외선 측정장치를 도시한 측단면도이다. Figure 3 is a side cross-sectional view showing a non-invasive near infrared measurement device for measuring blood in the egg according to an embodiment of the present invention.

도 4는 본 발명의 일 실시예에 따른 혈란 기준물질 제작을 위해 계란에 혈액을 주입하는 과정을 도시한 것이다.Figure 4 illustrates the process of injecting blood into the egg for the production of a reference egg blood according to an embodiment of the present invention.

도 5는 본 발명의 일 실시예에 따른 계란 내 혈액을 측정하기 위한 모델링 흐름도이다. 5 is a modeling flowchart for measuring blood in an egg according to an embodiment of the present invention.

도 6은 본 발명의 일 실시예에 따른 계란 내 혈액을 측정하기 위한 광원세기에 의한 신호 증가 결과를 스펙트럼으로 도시한 것이다. 6 is a spectrum illustrating a signal increase result by light source intensity for measuring blood in an egg according to an embodiment of the present invention.

도 7은 본 발명의 일 실시예에 따른 혈란 스펙트럼 결과를 그래프로 도시한 것이다. 7 is a graph showing the results of the blood spectral spectrum according to an embodiment of the present invention.

도 8은 본 발명의 일실 시예에 따른 혈란 모델링 결과를 검량선 그래프로 도시한 것이다. 8 is a calibration curve graph showing the results of modeling blood cloning according to an exemplary embodiment of the present invention.

도 9는 본 발명의 일 실시예에 따른 혈란 일상 분석 결과를 그래프로 도시한 것이다. 9 is a graph showing the results of routine analysis of blood cloning according to an embodiment of the present invention.

*도면의 주요 참조부호에 대한 간단한 설명** Brief description of the main references in the drawings *

10..이송 컨베이어 20..광원모듈10. Transfer conveyor 20. Light source module

22..트리거 24,24a,24b,24c,24d..램프22.Trigger 24,24a, 24b, 24c, 24d..Lamp

30..광검출모듈 32..광수집기30. Light detection module 32. Light collector

36..스펙트로미터 36..Spectrometer

Claims (4)

계란내 혈액을 측정하기 위해 계란에 근적외선을 주사하기 위한 광원모듈과, 계란으로부터 확산 및 반사되는 근적외선을 수집하여 스펙트럼 데이터로 출력하는 광검출모듈과, 수집된 스펙트럼 데이터를 분석하여 혈란을 판단하는 데이터분석모듈을 포함하되,A light source module for scanning near infrared rays into the egg to measure blood in the egg, a light detection module for collecting near infrared rays diffused and reflected from the eggs and outputting them as spectral data, and data for analyzing the collected spectral data to determine blood flow Including an analysis module, 상기 광원모듈은 네 개의 램프로 구성되며 계란의 이송방향에 대해 한 쌍씩 마련되는 전후방 램프는 120° 간격으로 대향 배치되고, 상기 전후방 램프는 서로 60°간격으로 배치되며, The light source module is composed of four lamps and the front and rear lamps provided in pairs with respect to the conveying direction of the eggs are arranged facing each other at 120 ° intervals, the front and rear lamps are arranged at 60 ° intervals from each other, 상기 광검출모듈은 상기 광원모듈에 대해 수직하게 마련되며, 측정 계란으로부터 120mm 이격하여 배치되고, The photodetector module is provided perpendicular to the light source module, and disposed 120mm apart from the measuring egg, 상기 모듈들이 설치되어 있는 본체와,A main body in which the modules are installed, 계란을 상기 본체로 이송하기 위한 이송 컨베이어와,A transfer conveyor for transferring eggs to the main body, 상기 이송 컨베이어를 통해 계란이 상기 본체의 시료 도입부로 공급되는 것을 인식하기 위한 트리거를 포함하고,A trigger for recognizing that the egg is supplied to the sample introduction part of the main body through the transfer conveyor, 상기 이송 컨베이어는 장방형으로 마련되어 네 모서리에 돌출 마련되는 돌기를 구비하되, 돌기는 수직돌기와 경사돌기가 한 쌍씩 마련되는 것을 특징으로 하는 계란내 혈액 측정을 위한 비침습 근적외선 측정장치.The transfer conveyor is provided in a rectangular shape provided with protrusions protruding at four corners, the projections are non-invasive near infrared measurement apparatus for measuring blood in the egg, characterized in that the pair of vertical projections and inclined projections are provided. 삭제delete 삭제delete 삭제delete
KR1020090010948A 2009-02-11 2009-02-11 Near infrared ray spectroscopic apparatus for egg blood spot KR101066608B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090010948A KR101066608B1 (en) 2009-02-11 2009-02-11 Near infrared ray spectroscopic apparatus for egg blood spot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090010948A KR101066608B1 (en) 2009-02-11 2009-02-11 Near infrared ray spectroscopic apparatus for egg blood spot

Publications (2)

Publication Number Publication Date
KR20100091651A KR20100091651A (en) 2010-08-19
KR101066608B1 true KR101066608B1 (en) 2011-09-22

Family

ID=42756813

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090010948A KR101066608B1 (en) 2009-02-11 2009-02-11 Near infrared ray spectroscopic apparatus for egg blood spot

Country Status (1)

Country Link
KR (1) KR101066608B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410972B1 (en) * 2013-06-28 2014-06-26 주식회사 에그텍 Detection system for various size of blooded egg
KR20190090900A (en) * 2018-01-25 2019-08-05 한성대학교 산학협력단 Apparatus for egg selection using non-invasive spectrophotometric inspector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891146A (en) * 2016-03-29 2016-08-24 电子科技大学 Intelligent terminal for spectrum detection and detection method thereof
KR20240096027A (en) 2022-12-19 2024-06-26 충남대학교산학협력단 Method for abnormal egg detection using a different light source and wavelength optimization technique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070045636A (en) * 2005-10-28 2007-05-02 대한민국(관리부서:농촌진흥청장) Egg freshness measuring system of non-destructively using on-line system with near-infrared spectometer and method thereof
JP2007303940A (en) 2006-05-10 2007-11-22 Mitsui Mining & Smelting Co Ltd Device and method for inspecting internal quality of vegetables and fruits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070045636A (en) * 2005-10-28 2007-05-02 대한민국(관리부서:농촌진흥청장) Egg freshness measuring system of non-destructively using on-line system with near-infrared spectometer and method thereof
JP2007303940A (en) 2006-05-10 2007-11-22 Mitsui Mining & Smelting Co Ltd Device and method for inspecting internal quality of vegetables and fruits

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410972B1 (en) * 2013-06-28 2014-06-26 주식회사 에그텍 Detection system for various size of blooded egg
KR20190090900A (en) * 2018-01-25 2019-08-05 한성대학교 산학협력단 Apparatus for egg selection using non-invasive spectrophotometric inspector
KR102375581B1 (en) 2018-01-25 2022-03-18 한성대학교 산학협력단 Apparatus for egg selection using non-invasive spectrophotometric inspector

Also Published As

Publication number Publication date
KR20100091651A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
Fan et al. Non-destructive evaluation of soluble solids content of apples using a developed portable Vis/NIR device
JP2003527594A (en) Apparatus and method for measuring and correlating fruit properties with visible / near infrared spectra
KR101066608B1 (en) Near infrared ray spectroscopic apparatus for egg blood spot
Patel et al. Performance of different portable and hand-held near-infrared spectrometers for predicting beef composition and quality characteristics in the abattoir without meat sampling
CN105548070B (en) A kind of apple soluble solid near infrared detection position compensation method and system
CN109211829A (en) A method of moisture content in the near infrared spectroscopy measurement rice based on SiPLS
Zhang et al. Use of signal to noise ratio and area change rate of spectra to evaluate the Visible/NIR spectral system for fruit internal quality detection
Wang et al. Determination of the moisture content of fresh meat using visible and near-infrared spatially resolved reflectance spectroscopy
Xu et al. Quantitative evaluation of impact damage to apple by hyperspectral imaging and mechanical parameters
KR100934410B1 (en) Simple determination of seed weights in crops using near infrared reflectance spectroscopy
Temma et al. Measuring the sugar content of apples and apple juice by near infrared spectroscopy
CN109799224A (en) Quickly detect the method and application of protein concentration in Chinese medicine extract
BR112018017343B1 (en) METHOD AND APPARATUS FOR DETECTING THE PRESENCE OF MYCOTOXINS IN CEREALS, AND COMPUTER READABLE MEDIUM.
Xia et al. Principles, developments, and applications of spatially resolved spectroscopy in agriculture: a review
CN110231306A (en) A kind of method of lossless, the quick odd sub- seed protein content of measurement
CN101694462B (en) Tenderness detection method and system based on steady-state spatially resolved spectroscopy
Subedi et al. Assessment of titratable acidity in fruit using short wave near infrared spectroscopy. Part B: intact fruit studies
CN107328733A (en) A kind of method of the content of starch added in quick detection minced fillet
Rittiron et al. Useful tips for constructing a near infrared-based quality sorting system for single brown-rice kernels
Lee et al. Measurement of sugar contents in citrus using near infrared transmittance
KR100859131B1 (en) Analyzer for estimating milk freshness by using NIR
CN2733343Y (en) Internal non-destructive integral analytical equipment for agricultural products such as fruit and vegetable
JP2012058130A (en) Non-destructive inspection method and device in agricultural product
Yu et al. Parameter optimization in soluble solid content prediction of entire bunches of grape based on near infrared spectroscopic technique
Wang et al. Influence of the peel on predicting soluble solids content of navel oranges using visible and near-infrared spectroscopy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140916

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150915

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161018

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170914

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180913

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190821

Year of fee payment: 9