Nothing Special   »   [go: up one dir, main page]

KR100942952B1 - Method for fabricating semiconductor device - Google Patents

Method for fabricating semiconductor device Download PDF

Info

Publication number
KR100942952B1
KR100942952B1 KR1020070029266A KR20070029266A KR100942952B1 KR 100942952 B1 KR100942952 B1 KR 100942952B1 KR 1020070029266 A KR1020070029266 A KR 1020070029266A KR 20070029266 A KR20070029266 A KR 20070029266A KR 100942952 B1 KR100942952 B1 KR 100942952B1
Authority
KR
South Korea
Prior art keywords
semiconductor device
forming
gate pattern
manufacturing
substrate
Prior art date
Application number
KR1020070029266A
Other languages
Korean (ko)
Other versions
KR20080087278A (en
Inventor
조흥재
양홍선
임관용
성민규
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020070029266A priority Critical patent/KR100942952B1/en
Publication of KR20080087278A publication Critical patent/KR20080087278A/en
Application granted granted Critical
Publication of KR100942952B1 publication Critical patent/KR100942952B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명은 채널영역에 큰 압축성 변형을 형성하면서 소자의 단채널 마진 향상 및 신뢰성을 확보할 수 있는 반도체 소자의 제조방법을 제공하기 위한 것으로, 본 발명은 기판 상에 게이트패턴을 형성하는 단계; 상기 게이트패턴의 측벽에 분리보호막을 형성하는 단계; 상기 게이트패턴을 식각마스크로 상기 기판을 일정두께 식각하는 단계; 상기 식각된 기판에 실리콘게르마늄을 성장시키는 단계; 상기 게이트패턴의 측벽에 측벽보호막을 형성하는 단계를 포함하고, 상기 실리콘게르마늄을 성장시키는 단계에서, 상기 실리콘게르마늄에서 게르마늄의 농도는 5%∼50%로 조절하는 것을 특징으로 하여 채널영역에 실리콘게르마늄을 성장시켜 큰 압축성 변형을 형성하면서 이온주입으로 소스/드레인영역을 형성함으로써 소자의 단채널 마진 향상 및 신뢰성을 확보할 수 있는 효과가 있다.The present invention is to provide a method for manufacturing a semiconductor device that can improve the short channel margin and reliability of the device while forming a large compressive strain in the channel region, the present invention comprises the steps of forming a gate pattern on a substrate; Forming a separation protection layer on sidewalls of the gate pattern; Etching the substrate by a predetermined thickness using the gate pattern as an etching mask; Growing silicon germanium on the etched substrate; And forming a sidewall protective film on the sidewalls of the gate pattern, wherein in the growing of the germanium, the concentration of germanium in the silicon germanium is controlled to be 5% to 50%. By forming the source / drain region by ion implantation while forming a large compressive strain by growing the, it is possible to improve the short channel margin and reliability of the device.

실리콘게르마늄, LDD영역, 소스/드레인영역, 이온주입, 압축성 변형 Silicon germanium, LDD region, source / drain region, ion implantation, compressive deformation

Description

반도체 소자의 제조방법{METHOD FOR FABRICATING SEMICONDUCTOR DEVICE}Manufacturing method of semiconductor device {METHOD FOR FABRICATING SEMICONDUCTOR DEVICE}

도 1은 종래 기술에 따른 반도체 소자를 설명하기 위한 단면도,1 is a cross-sectional view for explaining a semiconductor device according to the prior art,

도 2는 게이트와 소스/드레인 거리에 따른 채널 스트레인 변화를 나타내는 그래프,2 is a graph showing channel strain variation according to gate and source / drain distances,

도 3a 내지 도 3d는 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 공정 단면도.3A to 3D are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a preferred embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

31 : 기판 32 : 소자분리막31 substrate 32 device isolation film

33 : 게이트패턴 34 : 분리보호막33: gate pattern 34: separation protective film

35 : 리세스 36 : 실리콘게르마늄35 recess 36 silicon germanium

37 : 측벽보호막 38 : 소스/드레인 영역37 sidewall protective film 38 source / drain region

본 발명은 반도체 제조 기술에 관한 것으로, 특히 단채널 마진개선을 위한 반도체 소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor manufacturing technology, and more particularly to a method of manufacturing a semiconductor device for short channel margin improvement.

최근 반도체 소자의 동작 전류를 증가시키기 위해서 소자에 기계적 스트레스를 가하여 채널 영역에 스트레인(Strain)을 조절하는 방법이 연구되고 있다. 즉,채널영역에 일정한 스트레인이 형성되면 캐리어(Carrier)들의 이동성(mobility)이 영향 받는 것을 이용하여 동작 전류를 향상시키는 것이다. Recently, in order to increase the operating current of a semiconductor device, a method of controlling strain in a channel region by applying mechanical stress to the device has been studied. That is, when a constant strain is formed in the channel region, the mobility of the carriers is affected to improve the operating current by using the influence of the mobility of the carriers.

특히, PMOS채널 영역에 압축성 변형(Compressive Strain)이 형성되면 정공 캐리어(Hole carrier)들의 이동성이 향상된다. In particular, when compressive strain is formed in the PMOS channel region, mobility of hole carriers is improved.

도 1은 종래 기술에 따른 반도체 소자의 제조방법을 나타내는 단면도이다.1 is a cross-sectional view showing a method of manufacturing a semiconductor device according to the prior art.

도 1에 도시된 바와 같이, 반도체 기판(11)에 소자분리막(12)이 형성되어 활성영역이 정의되고, 반도체 기판(11) 상에 게이트패턴(13)이 형성된다. 여기서, 게이트패턴(13)은 폴리실리콘전극(13A), 텅스텐전극(13B) 및 게이트하드마스크(13C)의 적층구조로 형성된다. 그리고, 게이트패턴(13)을 포함하는 전면에 보호막(14)이 형성되고, 게이트패턴(13)의 측벽의 보호막(14) 상에 측벽보호막(15)이 형성된다. 그리고, 측벽보호막(15)과 소자분리막(12) 사이의 기판이 일부 리세스되고, 실리콘게르마늄(16)이 형성된 소스/드레인영역이 형성된다.As shown in FIG. 1, an isolation region 12 is formed on a semiconductor substrate 11 to define an active region, and a gate pattern 13 is formed on the semiconductor substrate 11. Here, the gate pattern 13 is formed in a stacked structure of the polysilicon electrode 13A, the tungsten electrode 13B, and the gate hard mask 13C. The passivation layer 14 is formed on the entire surface including the gate pattern 13, and the sidewall passivation layer 15 is formed on the passivation layer 14 of the sidewall of the gate pattern 13. Subsequently, the substrate between the sidewall protective layer 15 and the device isolation layer 12 is partially recessed to form a source / drain region in which the silicon germanium 16 is formed.

위와 같이, 종래 기술은 측벽보호막(15)을 배리어로 소스/드레인 영역의 기판을 리세스한 후, 실리콘게리마늄(SiGe)를 성장시켜 압축성 변형을 채널에 형성한다.As described above, the prior art recesses the substrate in the source / drain region with the sidewall protective film 15 as a barrier, and then grows silicon germanium (SiGe) to form compressive strain in the channel.

그러나, 소스/드레인 영역에만 한정적으로 실리콘게르마늄을 형성하면 채 널(Channel)영역에 가해지는 압축성 변형이 게이트 채널영역과 소스/드레인에 형성된 실리콘게르마늄 사이의 거리에 따라 의존하게 되어 압축성 변형을 향상시키는데 한계가 있다. 또한, 높은 압축성 변형을 형성하기 위해서는 소스/드레인 영역의 리세스 깊이를 깊게 형성하거나 또는 실리콘게르마늄 내의 게르마늄 함량을 높여야 한다. 하지만, 소스/드레인 영역의 리세스 깊이가 깊어지면 트랜지스터의 단채널 마진이 악화되는 문제점이 새기고, 실리콘게르마늄 내의 게르마늄(Ge) 함량이 높아지면 포인트 디펙트(Point Defect) 또는 전위(Dislocation) 등의 결함에 의해 접합영역 누설전류가 열화되는 문제점이 발생한다.However, if silicon germanium is formed only in the source / drain regions, the compressive strain applied to the channel region depends on the distance between the gate channel region and the silicon germanium formed in the source / drain, thereby improving compressive strain. There is a limit. In addition, in order to form a high compressive deformation, it is necessary to deepen the depth of the recess of the source / drain regions or to increase the germanium content in the silicon germanium. However, the deeper the depth of the recess in the source / drain region, the shorter channel margin of the transistor deteriorates, and the higher the germanium (Ge) content in the silicon germanium, such as point defects or dislocations. There arises a problem that the junction region leakage current is degraded by the defect.

도 2는 게이트와 소스/드레인 거리에 따른 채널 스트레인 변화를 나타내는 그래프이다.2 is a graph showing channel strain variation according to gate and source / drain distances.

도 2를 참조하면, 게이트와 소스/드레인 간의 거리가 10㎚에서 30㎚로 올라가면 채널 스트레인(Channel Strain)이 -830에서 -750으로 줄어드는 것을 알 수 있다.Referring to FIG. 2, it can be seen that as the distance between the gate and the source / drain increases from 10 nm to 30 nm, the channel strain decreases from -830 to -750.

본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 제안된 것으로, 채널영역에 큰 압축성 변형을 형성하면서 소자의 단채널 마진 향상 및 신뢰성을 확보할 수 있는 반도체 소자의 제조방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems of the prior art, and provides a method of manufacturing a semiconductor device that can secure short channel margin and improve reliability of a device while forming a large compressive strain in a channel region. have.

본 발명에 의한 반도체 소자의 제조방법은 기판 상에 게이트패턴을 형성하는 단계; 상기 게이트패턴의 측벽에 분리보호막을 형성하는 단계; 상기 게이트패턴을 식각마스크로 상기 기판을 일정두께 식각하는 단계; 상기 식각된 기판에 실리콘게르마늄을 성장시키는 단계; 상기 게이트패턴의 측벽에 측벽보호막을 형성하는 단계를 포함하고, 상기 실리콘게르마늄을 성장시키는 단계에서, 상기 실리콘게르마늄에서 게르마늄의 농도는 5%∼50%로 조절하는 것을 특징으로 한다.Method of manufacturing a semiconductor device according to the present invention comprises the steps of forming a gate pattern on a substrate; Forming a separation protection layer on sidewalls of the gate pattern; Etching the substrate by a predetermined thickness using the gate pattern as an etching mask; Growing silicon germanium on the etched substrate; And forming a sidewall protective film on the sidewalls of the gate pattern, and in the growing silicon germanium, the concentration of germanium in the silicon germanium is controlled to 5% to 50%.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the most preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the technical idea of the present invention. .

도 3a 내지 도 3d는 본 발명의 바람직한 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 공정 단면도이다.3A to 3D are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a preferred embodiment of the present invention.

도 3a에 도시된 바와 같이, 기판(31)에 소자분리막(32)을 형성한다. 여기서, 기판(31)은 DRAM공정이 진행되는 반도체 기판일 수 있고 특히, PMOS영역의 기판일 수 있다. 또한, 소자분리막(32)은 STI(Shallow Trench Isolation) 공정으로 형성할 수 있다.As shown in FIG. 3A, the device isolation layer 32 is formed on the substrate 31. Here, the substrate 31 may be a semiconductor substrate in which a DRAM process is performed, and in particular, may be a substrate of a PMOS region. In addition, the device isolation layer 32 may be formed by a shallow trench isolation (STI) process.

이어서, 기판(31) 상에 게이트패턴(33)을 형성한다. 여기서, 게이트패턴(33)은 폴리실리콘전극(33A), 금속계 전극(33B) 및 게이트하드마스크(33C)의 적층구조로 형성할 수 있다. 이때, 금속계 전극(33B)은 금속 또는 금속실리사이드로 형성할 수 있는데 금속은 텅스텐, 금속실리사이드는 텅스텐실리사이드로 형성할 수 있다. 또한, 게이트하드마스크(33C)는 질화막으로 형성할 수 있다.Subsequently, a gate pattern 33 is formed on the substrate 31. The gate pattern 33 may be formed in a stacked structure of the polysilicon electrode 33A, the metal electrode 33B, and the gate hard mask 33C. In this case, the metal electrode 33B may be formed of metal or metal silicide, and the metal may be formed of tungsten and the metal silicide may be formed of tungsten silicide. The gate hard mask 33C may be formed of a nitride film.

이어서, 게이트패턴(33)을 포함하는 결과물의 전면에 분리보호막(34)을 형성한다. 여기서, 분리보호막(34)은 LDD영역의 기판(31)을 리세스(Recess)할 때 채널(Channel)영역과 리세스(Recess)영역을 물리적으로 분리시키기 위한 것으로, 절연막으로 형성할 수 있다. 이때, 절연막은 SiO2, Si3N4, SiBN 및 SiON의 그룹 중에서 선택된 어느 하나로 형성할 수 있다. 또한, 최적의 LDD extension형성(최적의 게이트와 LDD 간의 오버랩 형성) 및 채널영역의 압축성 변형(Compressive Strain)을 조절할 수 있도록 20Å∼300Å의 두께로 형성할 수 있고, 화학기상증착법(Chemical Vapor Deposition) 또는 원자층증착법(Atomic Layer Depositon)으로 형성할 수 있다.Subsequently, a separation protective film 34 is formed on the entire surface of the resultant product including the gate pattern 33. The isolation protective layer 34 may be formed of an insulating layer to physically separate the channel region and the recess region when the substrate 31 of the LDD region is recessed. In this case, the insulating film may be formed of any one selected from the group consisting of SiO 2 , Si 3 N 4 , SiBN, and SiON. In addition, it can be formed to a thickness of 20 ~ 300 Å to control the optimal LDD extension formation (optimal overlap between the gate and LDD) and the compressive strain of the channel region, and chemical vapor deposition (Chemical Vapor Deposition) Or it may be formed by the atomic layer deposit (Atomic Layer Depositon).

도 3b에 도시된 바와 같이, 게이트패턴(33) 및 분리보호막(34)을 식각배리어로 LDD영역의 기판(31)을 일정두께 식각하여 리세스(35)를 형성한다. 여기서, 리세스는 압축성 변형 및 단채널 효과를 고려하여 20Å∼500Å의 두께로 형성할 수 있다.As shown in FIG. 3B, the recess 35 is formed by etching a predetermined thickness of the substrate 31 of the LDD region using the gate pattern 33 and the isolation protective layer 34 as an etching barrier. Here, the recess can be formed to a thickness of 20 kV to 500 kV in consideration of compressive deformation and short channel effects.

따라서, 기판(31) 상에 형성된 분리보호막(34)은 리세스(35) 형성시 모두 식각되고 게이트패턴(33)에 형성된 분리보호막(34A)은 잔류한다. 또한, 게이트패턴(33) 형성된 분리보호막(34A)의 두께만큼 LDD영역의 리세스(35)와 게이트패턴(33)은 물리적으로 분리된다.Therefore, all of the separation protection layer 34 formed on the substrate 31 is etched when the recess 35 is formed, and the separation protection layer 34A formed in the gate pattern 33 remains. Further, the recess 35 and the gate pattern 33 of the LDD region are physically separated by the thickness of the isolation protective layer 34A formed on the gate pattern 33.

도 3c에 도시된 바와 같이, 리세스(35)에 실리콘게르마늄(SiGe, 36)을 성장시킨다. 여기서, 실리콘게르마늄(36)은 압축성 변형을 조절하기 위해 실리콘게르마 늄(36) 내의 게르마늄(Ge) 농도를 5%∼50%로 조절할 수 있다. 또한, 실리콘게르마늄(36)의 성장시에 목적에 따라서 도펀트를 도핑하지 않거나, 동시에 인시튜(In-Situ)로 보론(Boron)을 도핑할 수 있다. 인시튜 도핑시는 단채널 효과(Short Channel Margin)을 향상시키기 위해 보론의 농도를 1E18∼4E20/㎠로 조절할 수 있다.As shown in FIG. 3C, silicon germanium (SiGe) 36 is grown in the recess 35. Here, the silicon germanium 36 may adjust the germanium (Ge) concentration in the silicon germanium 36 to 5% to 50% in order to control compressive deformation. In addition, when the silicon germanium 36 is grown, dopants may not be doped depending on the purpose, or at the same time, boron may be doped in-situ. During in-situ doping, the boron concentration may be adjusted to 1E18 to 4E20 / cm 2 to improve short channel margin.

위와 같이, LDD영역에 체적이 큰 실리콘게르마늄(36)을 형성함으로써 높은 압축성 변형(High Compressive Strain)의 형성이 가능하여 소자의 동작 속도를 증가시킬 수 있다.As described above, by forming the silicon germanium 36 having a large volume in the LDD region, it is possible to form a high compressive strain, thereby increasing the operation speed of the device.

도 3d에 도시된 바와 같이, 게이트패턴(33)의 측벽에 측벽보호막(37)을 형성한다. 여기서, 측벽보호막(37)은 분리보호막(34A)을 포함하는 결과물의 전면에 절연막을 형성하고 에치백(Etch Back)을 실시하여 게이트패턴(33)의 측벽에 잔류시켜서 형성할 수 있는데 이때, 절연막은 SiO2, Si3N4, SiBN 및 SiON의 그룹 중에서 선택된 어느 하나일 수 있다.As shown in FIG. 3D, the sidewall protective layer 37 is formed on the sidewall of the gate pattern 33. Here, the sidewall protective layer 37 may be formed by forming an insulating layer on the entire surface of the resultant including the separation protective layer 34A and etching back to remain on the sidewall of the gate pattern 33. May be any one selected from the group of SiO 2 , Si 3 N 4 , SiBN, and SiON.

이어서, 측벽보호막(37)을 이온주입 배리어로 기판(31)에 이온주입을 실시하여 소스/드레인영역(38)을 형성한다. 여기서, 이온주입은 빔라인 이온주입 또는 플라즈마 도핑(Plasma Doping)으로 실시할 수 있고, B, BF2, BF3, B+F2 및 BF2+F의 그룹 중에서 선택된 어느 하나를 도펀트로 사용할 수 있다.Subsequently, the source / drain region 38 is formed by implanting the sidewall protective film 37 into the substrate 31 using the ion implantation barrier. Here, ion implantation may be performed by beamline ion implantation or plasma doping, and any one selected from the group of B, BF 2 , BF 3 , B + F 2, and BF 2 + F may be used as a dopant. .

위와 같이, LDD영역은 실리콘게르마늄(36)을 형성하고 소스/드레인영역(38)은 이온주입을 통해 형성함으로써 기판(31)의 리세스(35) 및 실리콘게르마늄(36)에 의한 격자 결함들이 없어지게 되어 신뢰성 있는 소자를 형성할 수 있다.As described above, the LDD region forms the silicon germanium 36 and the source / drain region 38 is formed through ion implantation, thereby eliminating lattice defects caused by the recess 35 and the silicon germanium 36 of the substrate 31. It is possible to form a reliable device.

본 발명은 LDD영역은 실리콘게르마늄(36)을 성장시켜 높은 압축성 변형을 형성하고, 소스/드레인영역(38)은 이온주입을 통해 형성함으로써 격자 결함을 해소하여 신뢰성 있는 소자를 형성할 수 있는 장점이 있다.In the present invention, the LDD region grows silicon germanium 36 to form high compressive strain, and the source / drain region 38 is formed through ion implantation, thereby eliminating lattice defects, thereby forming a reliable device. have.

또한, 분리보호막(34A)의 두께 조절 및 소스/드레인(38) 영역의 이온주입 방법을 통한 낮은 접합(Shallow junction)을 형성할 수 있어서 소자의 단채널마진(Short Channel Margin)도 개선할 수 있는 장점이 있다.In addition, it is possible to form a shallow junction through the thickness control of the isolation protective film 34A and the ion implantation method of the source / drain 38 region, thereby improving the short channel margin of the device. There is an advantage.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상술한 본 발명은 채널영역에 실리콘게르마늄을 성장시켜 큰 압축성 변형을 형성하면서 이온주입으로 소스/드레인영역을 형성함으로써 소자의 단채널 마진 향상 및 신뢰성을 확보할 수 있는 효과가 있다.The present invention described above has the effect of increasing the short channel margin and reliability of the device by growing silicon germanium in the channel region to form a large compressive strain while forming a source / drain region by ion implantation.

Claims (13)

기판 상에 게이트패턴을 형성하는 단계;Forming a gate pattern on the substrate; 상기 게이트패턴의 측벽에 분리보호막을 형성하는 단계;Forming a separation protection layer on sidewalls of the gate pattern; 상기 게이트패턴을 식각마스크로 상기 기판을 일정두께 식각하는 단계;Etching the substrate by a predetermined thickness using the gate pattern as an etching mask; 상기 식각된 기판에 실리콘게르마늄을 성장시키는 단계; 및Growing silicon germanium on the etched substrate; And 상기 게이트패턴의 측벽에 측벽보호막을 형성하는 단계Forming a sidewall protective layer on sidewalls of the gate pattern; 를 포함하고,Including, 상기 실리콘게르마늄을 성장시키는 단계에서,In the step of growing the silicon germanium, 상기 실리콘게르마늄에서 게르마늄의 농도는 5%∼50%로 조절하는 것을 특징으로 하는 반도체 소자의 제조방법.The method of manufacturing a semiconductor device, characterized in that the concentration of germanium in the silicon germanium is adjusted to 5% to 50%. 제1항에 있어서,The method of claim 1, 상기 분리보호막은 절연막인 것을 특징으로 하는 반도체 소자의 제조방법.The separation protective film is a method of manufacturing a semiconductor device, characterized in that the insulating film. 제2항에 있어서,The method of claim 2, 상기 절연막은 SiO2, Si3N4, SiBN 및 SiON의 그룹 중에서 선택된 어느 하나인 것을 특징으로 하는 반도체 소자의 제조방법.The insulating film is a semiconductor device manufacturing method, characterized in that any one selected from the group of SiO 2 , Si 3 N 4 , SiBN and SiON. 제3항에 있어서,The method of claim 3, 상기 절연막은 화학기상증착법(Chemical Vapor Deposition) 또는 원자층증착법(Atomic Layer Deposition)으로 20Å∼300Å의 두께로 형성하는 것을 특징으로 하는 반도체 소자의 제조방법.The insulating film is a method of manufacturing a semiconductor device, characterized in that formed by the chemical vapor deposition (Chemical Vapor Deposition) or atomic layer deposition (Atomic Layer Deposition) to a thickness of 20 ~ 300Å. 제1항에 있어서,The method of claim 1, 상기 기판을 일정두께 식각하는 단계는,Etching the substrate a predetermined thickness, 20Å∼500Å의 두께를 식각하는 것을 특징으로 하는 반도체 소자의 제조방법.A method for manufacturing a semiconductor device, characterized by etching a thickness of 20 kV to 500 kV. 삭제delete 제1항에 있어서,The method of claim 1, 상기 실리콘게르마늄을 성장시키는 단계에서,In the step of growing the silicon germanium, 인시튜로 보론을 1E18∼4E20/㎠의 도즈로 도핑하는 것을 특징으로 하는 반도체 소자의 제조방법.A method of manufacturing a semiconductor device, wherein the boron is doped with a dose of 1E18 to 4E20 / cm 2 in situ. 제1항에 있어서,The method of claim 1, 상기 측벽보호막은 절연막으로 형성하는 것을 특징으로 하는 반도체 소자의 제조방법.And the sidewall protective film is formed of an insulating film. 제8항에 있어서,The method of claim 8, 상기 절연막은 SiO2, Si3N4, SiBN 및 SiON의 그룹 중에서 선택된 어느 하나인 것을 특징으로 하는 반도체 소자의 제조방법.The insulating film is a semiconductor device manufacturing method, characterized in that any one selected from the group of SiO 2 , Si 3 N 4 , SiBN and SiON. 제1항에 있어서,The method of claim 1, 상기 측벽보호막을 형성하는 단계는,Forming the sidewall protective film, 상기 게이트패턴을 포함하는 전면에 절연막을 형성하는 단계; 및Forming an insulating film on the entire surface including the gate pattern; And 상기 절연막을 에치백하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 제조방법.And etching back the insulating film. 제1항에 있어서,The method of claim 1, 상기 측벽보호막을 형성하는 단계 후,After forming the sidewall protective film, 상기 기판에 이온주입을 실시하여 소스/드레인을 형성하는 단계Implanting ions into the substrate to form a source / drain 를 더 포함하는 것을 특징으로 하는 반도체 소자의 제조방법.Method of manufacturing a semiconductor device further comprising. 제11항에 있어서,The method of claim 11, 상기 이온주입은 빔라인 이온주입 또는 플라즈마 도핑으로 실시하는 것을 특징으로 하는 반도체 소자의 제조방법.The ion implantation method of the semiconductor device, characterized in that performed by beamline ion implantation or plasma doping. 제12항에 있어서,The method of claim 12, 상기 이온주입은 B, BF2, BF3, B+F2 및 BF2+F의 그룹 중에서 선택된 어느 하나를 소스가스로 사용하여 실시하는 것을 특징으로 하는 반도체 소자의 제조방법.The ion implantation is a semiconductor device manufacturing method characterized in that carried out using any one selected from the group of B, BF 2 , BF 3 , B + F 2 and BF 2 + F as a source gas.
KR1020070029266A 2007-03-26 2007-03-26 Method for fabricating semiconductor device KR100942952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070029266A KR100942952B1 (en) 2007-03-26 2007-03-26 Method for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070029266A KR100942952B1 (en) 2007-03-26 2007-03-26 Method for fabricating semiconductor device

Publications (2)

Publication Number Publication Date
KR20080087278A KR20080087278A (en) 2008-10-01
KR100942952B1 true KR100942952B1 (en) 2010-02-22

Family

ID=40149954

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070029266A KR100942952B1 (en) 2007-03-26 2007-03-26 Method for fabricating semiconductor device

Country Status (1)

Country Link
KR (1) KR100942952B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101797964B1 (en) 2010-10-01 2017-11-15 삼성전자주식회사 Fabricating method of semiconductor device and the semiconductor device fabricated using the same method
WO2014014149A1 (en) 2012-07-20 2014-01-23 현대중공업 주식회사 Drillship having block for preventing vortex with concave type flow stabilizer part in moonpool
US9040394B2 (en) 2013-03-12 2015-05-26 Samsung Electronics Co., Ltd. Method for fabricating a semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040056034A (en) * 2002-12-23 2004-06-30 주식회사 하이닉스반도체 Method for manufacturing a semiconductor device
KR20070029711A (en) * 2004-06-24 2007-03-14 어플라이드 머티어리얼스, 인코포레이티드 Methods for forming a transistor
KR20070089073A (en) * 2006-02-27 2007-08-30 후지쯔 가부시끼가이샤 Semiconductor device and method for fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040056034A (en) * 2002-12-23 2004-06-30 주식회사 하이닉스반도체 Method for manufacturing a semiconductor device
KR20070029711A (en) * 2004-06-24 2007-03-14 어플라이드 머티어리얼스, 인코포레이티드 Methods for forming a transistor
KR20070089073A (en) * 2006-02-27 2007-08-30 후지쯔 가부시끼가이샤 Semiconductor device and method for fabricating the same

Also Published As

Publication number Publication date
KR20080087278A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
KR101618465B1 (en) Embedded transistor
US7332439B2 (en) Metal gate transistors with epitaxial source and drain regions
US7553717B2 (en) Recess etch for epitaxial SiGe
US8772878B2 (en) Performance enhancement in PMOS and NMOS transistors on the basis of silicon/carbon material
KR100844933B1 (en) Transistor in semiconductor device and method for manufacturing the same
KR100703967B1 (en) CMOS transistor and method for fabricating the same
US10103245B2 (en) Embedded shape sige for strained channel transistors
KR100487922B1 (en) A transistor of a semiconductor device and a method for forming the same
US7060576B2 (en) Epitaxially deposited source/drain
KR100621546B1 (en) Method and Apparatus For Making MOS Transistors With Elevated Source/Drain
US7238561B2 (en) Method for forming uniaxially strained devices
US8361895B2 (en) Ultra-shallow junctions using atomic-layer doping
US7615435B2 (en) Semiconductor device and method of manufacture
US20080150041A1 (en) Method of removing a spacer, method of manufacturing a metal-oxide-semiconductor transistor device, and metal-oxide-semiconductor transistor device
US7892930B2 (en) Method to improve transistor tox using SI recessing with no additional masking steps
US20130292774A1 (en) Method for forming a semiconductor device having raised drain and source regions and corresponding semiconductor device
WO2012055198A1 (en) Semiconductor structure and manufacturing method thereof
US20110127614A1 (en) Reducing the series resistance in sophisticated transistors by embedding metal silicide contact regions reliably into highly doped semiconductor material
JP2005033098A (en) Semiconductor device and its manufacturing method
KR100942952B1 (en) Method for fabricating semiconductor device
EP1488453A1 (en) Ion implantation of silicon oxide liner to prevent dopant out-diffusion from source/drain extensions
US9412869B2 (en) MOSFET with source side only stress
KR100942959B1 (en) Method for fabricating semiconductor device
KR101116336B1 (en) Method for fabricating semiconductor device
US20080283936A1 (en) Silicon germanium flow with raised source/drain regions in the nmos

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee