Nothing Special   »   [go: up one dir, main page]

KR100914449B1 - Manufacturing method of nanoporous TiO2-VrO2 hybrid thin film with adjustable band gap - Google Patents

Manufacturing method of nanoporous TiO2-VrO2 hybrid thin film with adjustable band gap Download PDF

Info

Publication number
KR100914449B1
KR100914449B1 KR1020070121358A KR20070121358A KR100914449B1 KR 100914449 B1 KR100914449 B1 KR 100914449B1 KR 1020070121358 A KR1020070121358 A KR 1020070121358A KR 20070121358 A KR20070121358 A KR 20070121358A KR 100914449 B1 KR100914449 B1 KR 100914449B1
Authority
KR
South Korea
Prior art keywords
thin film
zro
weight
zirconium
tio
Prior art date
Application number
KR1020070121358A
Other languages
Korean (ko)
Other versions
KR20090054604A (en
Inventor
정현담
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020070121358A priority Critical patent/KR100914449B1/en
Publication of KR20090054604A publication Critical patent/KR20090054604A/en
Application granted granted Critical
Publication of KR100914449B1 publication Critical patent/KR100914449B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 졸-겔(sol-gel)법을 이용하여 밴드갭 에너지(band gap energy)가 조절 가능하며 나노 크기의 미세 기공이 형성된 TiO2-ZrO2 하이브리드(hybrid) 박막을 제조하는 방법에 관한 것으로, 상세하게 본 발명의 제조방법은 지르코늄 전구체 100 중량부에 대하여 상기 지르코늄 전구체의 활성도를 낮추는 안정화제 15 내지 25 중량부, 알콜 70 내지 90 중량부 및 티타늄 전구체 60 내지 100 중량부을 혼합하여 혼합용액을 제조하는 단계; (b) 상기 혼합용액에 지르코늄 전구체 100 중량부에 대하여 산 20 내지 30 중량부 및 10 내지 20 중량%의 유기고분자 알콜용액 250 내지 400 중량부를 첨가하여 지르코늄-티타늄 전구체 용액을 제조하는 단계; 및 (c) 상기 지르코늄-티타늄 전구체 용액을 기판위에 코팅한 후 건조 및 열처리하는 단계;를 포함하는 특징을 갖는다. The present invention relates to a method for manufacturing a TiO 2 -ZrO 2 hybrid thin film in which band gap energy is controlled using a sol-gel method and nano-sized micropores are formed. In detail, the preparation method of the present invention is a mixed solution by mixing 15 to 25 parts by weight of a stabilizer for lowering the activity of the zirconium precursor, 70 to 90 parts by weight of alcohol and 60 to 100 parts by weight of titanium precursor with respect to 100 parts by weight of zirconium precursor. Preparing a; (b) preparing a zirconium-titanium precursor solution by adding 20 to 30 parts by weight of acid and 250 to 400 parts by weight of an organic polymer alcohol solution of 10 to 20% by weight based on 100 parts by weight of zirconium precursor to the mixed solution; And (c) coating the zirconium-titanium precursor solution on a substrate, followed by drying and heat treatment.

다공성 박막, 금속산화물, 고유전율, 밴드갭, 하이브리드 박막 Porous thin film, metal oxide, high dielectric constant, band gap, hybrid thin film

Description

밴드갭 조절 가능한 나노포러스 TiO2-ZrO2 하이브리드 박막의 제조방법{Fabrication Method of Nano-porous TiO2-ZrO2 Hybrid Thin Film Having Controlled Band Gap Energy}Fabrication Method of Nano-porous TiO2-ZrO2 Hybrid Thin Film Having Controlled Band Gap Energy

본 발명은 졸-겔(sol-gel)법을 이용하여 밴드갭 에너지(band gap energy)가 조절 가능하며 나노 크기의 미세 기공이 형성된 TiO2-ZrO2 하이브리드(hybrid) 박막을 제조하는 방법에 관한 것이다. The present invention relates to a method for manufacturing a TiO 2 -ZrO 2 hybrid thin film in which band gap energy is controlled using a sol-gel method and nano-sized micropores are formed. will be.

금속산화물들은 유사한 결정 구조를 갖고 있음에도 불구하고, 도체, 반도체, 부도체, 초전도체, 압전체, 강유전체, 강자성체, 자기저항성, 비선형 광학성질 등의 다양한 특성을 지니고 있다. 이러한 특성으로 인해, 광전소자, 광촉매, 전자 소자등 다양한 분야에서 금속산화물 박막에 대한 연구가 진행되고 있다. Although metal oxides have similar crystal structures, they have various characteristics such as conductors, semiconductors, nonconductors, superconductors, piezoelectrics, ferroelectrics, ferromagnetic materials, magnetoresistance, and nonlinear optical properties. Due to these characteristics, research on metal oxide thin films is being conducted in various fields such as optoelectronic devices, photocatalysts, and electronic devices.

특히 전자 소자의 고집적, 고성능 및 저전력을 위해 소자의 스케일다운(scale down)이 심화되면서 로직 회로 또는 디스플레이에 사용되는 MOSFET(Metal Oxide Semiconductor Field-Effect Transistor)의 고 유전율(high-K) 게이트 산화막, DRAM(Dynamic Random Access Memory)의 셀 캐패시터(cell capacitor)로의 활용 이 기대되며, 염료감응 태양전지(Dye-Sensitized Solar Cell)의 광양극(photoanode)으로 활발히 사용 중인 TiO2 박막에 대한 관심이 증대되고 있다. In particular, the high-K gate oxide film of a metal oxide semiconductor field-effect transistor (MOSFET) used in logic circuits or displays as the scale down of the device is increased for high integration, high performance, and low power of the electronic device, The use of DRAM (Dynamic Random Access Memory) as a cell capacitor is expected, and interest in TiO 2 thin films actively being used as photoanode of dye-sensitized solar cells is increasing. have.

산화물 박막을 제조하는 종래의 기술로 전자-빔 증착(e-beam evaporation), 스퍼터링(sputtering), CVD(Chemical Vapor Deposition), 졸-겔(sol-gel)법등이 있다. 이중 가장 실용적인 방법은 졸-겔(sol-gel)법으로, 액체상인 금속전구체 졸을 단순히 기판 상에 코팅하여 박막을 제조할 수 있으며, 조성의 조절이 용이하고, 균질한 막을 형성 시킬 수 있으며, 최종 산화물 박막을 얻기 위한 열처리 온도가 낮고, 대면적이 가능하며, 고가의 장비를 사용하지 않는 장점들이 있다. 이러한 졸-겔법은 최신 나노화학 기술과 결합하여 다양한 분야로 응용되고 있다. 계면활성제의 집합체를 구조 유도체로 이용하는 주형제법(surfactant-templating routes)을 이용한 졸-겔법은 금속산화물 박막에 나노 기공을 형성시킬 수 있는 새로운 기술로 각광받고 있다. 특히 나노 기공이 형성된 TiO2 박막은 염료감응 태양전지의 광양극으로 활용이 기대되는데, 이는 염료가 코팅될 수 있는 박막의 비표면적이 증가되어 큰 광전 전류를 얻을 수 있기 때문이다. Conventional techniques for producing oxide thin films include e-beam evaporation, sputtering, chemical vapor deposition (CVD), and sol-gel methods. The most practical method is the sol-gel method, by coating a liquid metal precursor sol simply on the substrate to produce a thin film, easy to control the composition, to form a homogeneous film, The low heat treatment temperature to obtain the final oxide thin film, large area is possible, and does not use expensive equipment. This sol-gel method is applied to various fields in combination with the latest nanochemical technology. The sol-gel method using surfacant-templating routes using aggregates of surfactants as structural derivatives has been spotlighted as a new technology for forming nanopores in metal oxide thin films. In particular, the TiO 2 thin film having nano pores is expected to be utilized as a photoanode of a dye-sensitized solar cell because the specific surface area of the dye-coated thin film can be increased to obtain a large photoelectric current.

졸-젤법을 이용한 TiO2 박막의 제조에 관한 종래의 기술로, 대한민국 공개특허 제2003-0054616호에는 티타늄 전구체인 티타늄 테트라이소프로폭사이드 (titanium tetraisopropoxide)를 알콜에 용해시킨 후 염산을 가하여 졸을 제조하고 제조된 티타늄 전구체 졸에 담체를 담지시킨 후 열처리하여 티타늄 산화막이 코팅된 담체를 제조하는 기술이 기재되어 있다.As a conventional technique for preparing a TiO 2 thin film using a sol-gel method, Korean Patent Laid-Open Publication No. 2003-0054616 discloses that a sol is dissolved by dissolving titanium tetraisopropoxide, a titanium precursor, in alcohol and then adding hydrochloric acid. A technique of preparing a carrier coated with a titanium oxide film by supporting a carrier in a prepared and prepared titanium precursor sol and then performing heat treatment is described.

대한민국 공개특허 제2005-0114563호에는 구조 유도체인 계면활성제로 알킬트리메틸암모늄브로마이드(Alkyltrimethylammoniumbromide) 또는 알킬트리에틸암모늄브로마이드(Alkyltriethylammoniumbromide)를 사용하고, 티타늄 전구체로 티타늄아이소프로폭사이드(Titanium isopropoxide)를 이용하며 황산을 이용한 산성조건 하에서 졸-겔법을 이용하여 메조기공 TiO2 합성하는 방법이 기재되어 있으며, 합성된 메조기공 TiO2의 기공에 전이금속(백금)의 전구체로 헥사크로로플라토닉산(H2PtCl6ㅇ6H2O)을 사용하여 함침법을 이용한 농도별 백금 나노입자를 함침시키는 방법이 기재되어 있다.Korean Patent Publication No. 2005-0114563 uses alkyltrimethylammonium bromide or alkyltriethylammonium bromide as a surfactant as a structural derivative, and uses titanium isopropoxide as a titanium precursor. A method for synthesizing mesoporous TiO 2 using a sol-gel method under acidic conditions using sulfuric acid is described. Hexachloroplatonic acid (H 2 PtCl as a precursor of transition metal (platinum) to the pores of the synthesized mesoporous TiO 2 is described. o 6 6H 2 o) to have the method of impregnating the platinum nano-particle concentration by using the impregnation method used is described.

대한민국 등록특허 제10-0607171호에는 구조 유도체인 계면활성제로 폴리(에틸렌 옥시드)106-블록-폴리(프로필렌 옥시드)70-블록-폴리(에틸렌 옥시드)106를 사용하고, 티타늄 전구체로로 티타늄 이소프로폭시드 또는 티타늄 에톡시드를 이용하며, 주형틀로써 사용되는 나노기공성 알루미나 박막을 유기물질로 개질하고, 개질된 나노기공성 알루미나 박막을 전구체 용액에 침지하여 나노기공 채널 내부에서 겔화 반응을 유도한 후, 얻어진 겔화 반응물을 포함하는 나노기공성 알루미나 박막을 하소한 후 염산으로 용해하여 유기 주형 물질과 나노기공성 알루미나 박막을 제거하여 메조기공성 산화티타늄 나노섬유 제조하는 방법이 기재되어 있다.Korean Patent No. 10-0607171 uses poly (ethylene oxide) 106 -block-poly (propylene oxide) 70 -block-poly (ethylene oxide) 106 as a surfactant, which is a structural derivative. Titanium isopropoxide or titanium ethoxide is used, and the nanoporous alumina thin film used as a template is modified with an organic material, and the modified nanoporous alumina thin film is immersed in the precursor solution to gel the inside of the nanoporous channel. After the derivation of the nanoporous alumina thin film containing the obtained gelling reactant, and then calcined with hydrochloric acid to remove the organic template material and the nanoporous alumina thin film is described a method for producing mesoporous titanium oxide nanofibers. .

미국공개특허 제2005-0239644호에는 구조 유도체인 계면활성제로 폴리글리콜 또는 옥타덱실아민을 사용하고, 티타늄 전구체로 n-부틸 타이타네이트를 사용하여 유연성 기판 상에 티타늄 산화물 박막을 제조하는 방법이 기재되어 있다. US Patent Publication No. 2005-0239644 describes a method for preparing a titanium oxide thin film on a flexible substrate using polyglycol or octadexylamine as a surfactant as a structural derivative and n-butyl titanate as a titanium precursor. It is.

그러나, 산화물 박막의 특성을 조절하기 위해 2종 이상의 금속으로 구성된 복합금속산화물 박막에 대한 연구는 미미하며, 더 나아가 2종 이상의 금속이 원자적으로 섞여 단일한 상(phase)을 갖는 복합금속산화물 박막 및 이를 이용한 금속산화물 박막의 유전율, 밴드갭 에너지 조절과 같은 특성 조절에 대한 연구는 거의 전무한 실정이다. However, the research on the composite metal oxide thin film composed of two or more metals to control the characteristics of the oxide thin film is insignificant, and furthermore, the composite metal oxide thin film having a single phase by atomically mixing two or more metals. And there is almost no research on the characteristics control such as the dielectric constant, band gap energy control of the metal oxide thin film using the same.

상술한 문제점들을 해결하기 위한 본 발명의 목적은 구조 유도제(templating agent)가 첨가된 졸-겔(sol-gel)법을 이용하여 밴드갭 에너지(band gap energy)가 조절 가능하며 나노 크기의 미세 기공이 형성된 TiO2-ZrO2 하이브리드(hybrid) 박막을 제조하는 방법을 제공하는 것이다.An object of the present invention for solving the above problems is to control the band gap energy (sol-gel) method is added to the templating agent (templating agent) and nano-sized micropores It is to provide a method for producing the formed TiO 2 -ZrO 2 hybrid thin film.

본 발명의 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법은 (a) 지르코늄 전구체 100 중량부에 대하여 상기 지르코늄 전구체의 활성도를 낮추는 안정화제 15 내지 25 중량부, 알콜 70 내지 90 중량부 및 티타늄 전구체 60 내지 100 중량부을 혼합하여 혼합용액을 제조하는 단계; (b) 상기 혼합용액에 지르코늄 전구체 100 중량부에 대하여 산 20 내지 30 중량부 및 10 내지 20 중량%의 유기고분자 알콜용액 250 내지 400 중량부를 첨가하여 지르코늄-티타늄 전구체 용액을 제조하는 단계; 및 (c) 상기 지르코늄-티타늄 전구체 용액을 기판위에 코팅한 후 건조 및 열처리하는 단계;를 포함하여 제조되는 특징이 있다. According to the present invention, a method for preparing a nanoporous TiO 2 -ZrO 2 hybrid thin film in which the bandgap energy is controlled is 15 to 25 parts by weight of a stabilizer for lowering the activity of the zirconium precursor with respect to 100 parts by weight of zirconium precursor, and 70 to 70 alcohol. Preparing a mixed solution by mixing 90 parts by weight and 60 to 100 parts by weight of the titanium precursor; (b) preparing a zirconium-titanium precursor solution by adding 20 to 30 parts by weight of acid and 250 to 400 parts by weight of an organic polymer alcohol solution of 10 to 20% by weight based on 100 parts by weight of zirconium precursor to the mixed solution; And (c) coating the zirconium-titanium precursor solution on a substrate, followed by drying and heat treatment.

상술한 본 발명의 제조방법상 특징은 지르코늄 전구체와 티타늄 전구체를 혼합 용해시켜 혼합용액을 제조한 후, 산 및 유기고분자 알콜용액을 첨가하여, 지르코늄 전구체와 티타늄 전구체가 원자적으로 고르게 섞인 상태로 기판 상에 필름형태로 코팅한 후, 건조 및 열처리를 수행하여 산소와 결합된 지르코늄과 산소와 결합된 티타늄이 원자적으로 고르게 섞인 상태(하이브리드)의 복합산화물 박막을 얻을 수 있으며, 동시에 상기 유기고분자를 제거하여 박막에 나노크기의 기공이 고르게 형성된 TiO2-ZrO2 하이브리드 복합 산화물 박막을 얻을 수 있게 되는 것이다. According to the above-described manufacturing method, a zirconium precursor and a titanium precursor are mixed and dissolved to prepare a mixed solution, and then, an acid and an organic polymer alcohol solution are added to the substrate in a state in which the zirconium precursor and the titanium precursor are atomically evenly mixed. After coating in the form of a film on the surface, drying and heat treatment are performed to obtain a composite oxide thin film of a hybrid state (hybrid) of the zirconium and oxygen-bonded titanium combined with oxygen and at the same time, the organic polymer By removing it, a TiO 2 -ZrO 2 hybrid composite oxide thin film having nano-sized pores evenly formed in the thin film can be obtained.

상기 지르코늄 전구체는 지르코늄 알콕사이드인 것이 바람직하며, 상기 티타늄 전구체는 티타늄 알콕사이드인 것이 바람직하다. The zirconium precursor is preferably zirconium alkoxide, and the titanium precursor is preferably titanium alkoxide.

지르코늄 전구체, 특히 지르코늄 알콕사이드는 반응활성이 높아, 산의 첨가 시 불균일하게 겔화될 위험이 크므로, 이를 방지하게 위해 자르코늄 전구체의 활성도를 낮추는 안정화제로 아세틸아세톤이 첨가되는 것이 바람직하다. Zirconium precursors, especially zirconium alkoxides have a high reaction activity, there is a high risk of uneven gelation when the acid is added, it is preferable to add acetylacetone as a stabilizer to lower the activity of the zirconium precursor to prevent this.

상기 유기고분자 알콜용액은 계면활성제인 구조유도체가 알콜에 용해된 용액이며, 상기 유기고분자는 에틸렌 옥사이드 기재 블록 공중합체인 것이 바람직하다. 상기 에틸렌 옥사이드 기재 블록 공중합체는 폴리 에틸렌 옥사이드-폴리프로필렌 옥사이드 블록 공중합체 또는 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드-폴리에틸렌 옥사이드 블록 공중합체인 것이 바람직하며, 폴리에틸렌 옥사이드-폴리프로필 렌 옥사이드-폴리에틸렌 옥사이드 블록 공중합체인 것이 더욱 바람직하다.The organic polymer alcohol solution is a solution in which a structural derivative which is a surfactant is dissolved in alcohol, and the organic polymer is an ethylene oxide based block copolymer. The ethylene oxide based block copolymer is preferably polyethylene oxide-polypropylene oxide block copolymer or polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer, and more preferably polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer. desirable.

상기 혼합용액에 사용되는 상기 알콜 또는 상기 유기고분자 알콜용액에 사용되는 상기 알콜은 메탄올, 에탄올, 아이소프로필알콜, 부탄올, 또는 이들의 혼합물인 것이 바람직하며, 부탄올인 것이 더욱 바람직하다. The alcohol used in the mixed solution or the alcohol used in the organic polymer alcohol solution is preferably methanol, ethanol, isopropyl alcohol, butanol, or a mixture thereof, and more preferably butanol.

상기 산은 염산, 황산, 질산, 포름산, 또는 이들의 혼합산이며, 염산인 것이 바람직하다. 상기 산은 고순도 또는 저순도 산일 수 있으며, 산이 첨가되는 상기 중량부는 순수한 산으로 환산된 중량부이다.The acid is hydrochloric acid, sulfuric acid, nitric acid, formic acid, or a mixed acid thereof, preferably hydrochloric acid. The acid may be high purity or low purity acid, and the weight part to which acid is added is weight part converted into pure acid.

상기 기판은 코팅막이 형성되는 물리적 지지층이므로, 기판의 물질 및 형상에 대한 한정은 무의미하나, 그 활용에 따라, 유리기판, 투명전극이 형성된 기판, 반도체 기판 또는 세라믹 기판일 수 있으며, 상기 기판은 통상의 반도체 공정을 이용한 전기/자기/광학 소자가 형성되어 있을 수 있다. Since the substrate is a physical support layer on which the coating film is formed, the material and the shape of the substrate are not limited, but depending on the application, the substrate may be a glass substrate, a substrate on which a transparent electrode is formed, a semiconductor substrate, or a ceramic substrate. An electric / magnetic / optical device using the semiconductor process may be formed.

상기 (a)단계의 혼합용액을 제조하는 단계에서 지르코늄 전구체 100 중량부에 대하여 상기 지르코늄 전구체의 활성도를 낮추는 안정화제 15 내지 25 중량부는 산의 첨가시 지르코늄 전구체를 주성분으로 겔이 형성되는 것을 방지하기 위해 적화된 중량부이며, 알콜은 뒤에 따르는 코팅성을 확보하기 위하여 70 내지 90 중량부 첨가되는 것이 바람직하다. 또한 상기 안정화제의 첨가량에 따라 상기 지르코늄 전구체의 활성도가 결정되므로, 상기 안정화제의 첨가량을 조절하여 최종적으로 얻어지는 복합 금속산화물의 조성 또한 조절할 수 있다. 15 to 25 parts by weight of a stabilizer for lowering the activity of the zirconium precursor with respect to 100 parts by weight of the zirconium precursor in the step of preparing the mixed solution of step (a) to prevent the formation of gels based on the zirconium precursor when the acid is added Is suitably added in weight parts, and the alcohol is preferably added in an amount of 70 to 90 parts by weight in order to secure the coating property following. In addition, since the activity of the zirconium precursor is determined according to the addition amount of the stabilizer, the composition of the composite metal oxide finally obtained by adjusting the addition amount of the stabilizer can also be adjusted.

이때, 상기 지르코늄 전구체, 상기 안정화제 및 상기 알콜을 혼합하여 교반한 후, 티타늄 전구체가 첨가되어 상기 혼합용액을 제조하는 것이 바람직하다. 이 때, 상기 지르코늄 전구체를 기준으로 첨가되는 티타늄 전구체의 양이 최종 제조되는 TiO2-ZrO2 하이브리드 복합 산화물 박막의 조성에 영향을 미치게 되는데, 산소와 결합된 지르코늄과 산소와 결합된 티타늄이 원자적으로 고르게 섞인 상(phase)를 얻기 위해 상기 지르코늄 전구체 100 중량부를 기준으로 티타늄 전구체 60 내지 100 중량부가 첨가되는 것이 바람직하다. In this case, the zirconium precursor, the stabilizer and the alcohol are mixed and stirred, and then a titanium precursor is added to prepare the mixed solution. At this time, the amount of the titanium precursor added on the basis of the zirconium precursor affects the composition of the TiO 2 -ZrO 2 hybrid composite oxide thin film to be finally produced, the zirconium combined with oxygen and the titanium combined with oxygen In order to obtain an evenly mixed phase, it is preferable that 60 to 100 parts by weight of the titanium precursor is added based on 100 parts by weight of the zirconium precursor.

상기 (b)단계의 지르코늄-티타늄 전구체 용액을 제조하는 단계에서 (a)단계의 혼합용액에 상기 지르코늄 전구체 100 중량부에 대하여 산 20 내지 30 중량부를 천천히 첨가하여 교반한 후, 10 내지 20 중량%의 유기고분자 알콜용액 250 내지 400 중량부를 첨가하여 2 내지 5시간 동안 교반하는 것이 바람직하다. 상기 지르코늄-티타늄 전구체 용액에 지르코늄 100 중량부에 대하여 20 내지 30 중량부의 산, 25 내지 80 중량부의 유기고분자 및 200 내지 360 중량부의 알콜이 첨가되는 것이다.In the step of preparing the zirconium-titanium precursor solution of step (b), 20 to 30 parts by weight of acid is slowly added to the mixed solution of step (a) with respect to 100 parts by weight of the zirconium precursor, followed by 10 to 20% by weight. 250 to 400 parts by weight of an organic polymer alcohol solution is preferably added and stirred for 2 to 5 hours. 20 to 30 parts by weight of acid, 25 to 80 parts by weight of organic polymer and 200 to 360 parts by weight of alcohol are added to the zirconium-titanium precursor solution based on 100 parts by weight of zirconium.

이때, 상술한 바와 같이 산을 먼저 첨가한 후 유기고분자 알콜용액을 첨가하는 이유는, 지르코늄 전구체나 티타늄 전구체가 먼저 축중합 반응을 거쳐 올리고머(oligomer) 상태로 변해야 유기 고분자에 의한 나노 구조 유도가 용이해지기 때문이다. 첨가되는 산이 20 내지 30 중량부보다 더 적은 경우에는 나노 구조 유도를 위한 올리고머로의 성장이 어렵고, 그 보다 많은 경우에는 젤화 반응이 일어나기 쉬운 단점이 있다.In this case, as described above, the acid is added first, followed by the addition of the organic polymer alcohol solution. The zirconium precursor or the titanium precursor must first be converted into an oligomer state through a polycondensation reaction to facilitate the induction of nanostructure by the organic polymer. For it is done. When the added acid is less than 20 to 30 parts by weight, it is difficult to grow into oligomers for inducing nanostructures, and in more cases, the gelation reaction tends to occur.

상기 산이 첨가된 혼합 용액에 구조 유도제(templating agent)인 10 내지 20 중량%의 유기고분자 알콜용액이 250 중량부 이하로 첨가되는 경우, 박막 코팅 후에 박막내의 나노 기공의 균일한 연결성(connectivity)을 얻기가 어려우며, 360 중량부 이상으로 첨가되는 경우, 과도한 기공 형성에 의해 박막의 기계적 강도가 저하되며, 균일한 두께의 박막이 제조되기 힘든 단점이 있다. When 10 to 20% by weight of the organic polymer alcohol solution, which is a structural inducing agent, is added to 250 parts by weight or less in the acid-containing mixed solution, to obtain uniform connectivity of nano pores in the thin film after thin film coating. It is difficult, when added in more than 360 parts by weight, the mechanical strength of the thin film is reduced by excessive pore formation, there is a disadvantage that a thin film of uniform thickness is difficult to manufacture.

상술한 본 발명의 본 발명의 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법은 (c) 단계의 건조 및 열처리 단계를 제외한 모든 단계가 상온에서 수행되는 것이 바람직하며, 상기 건조는 60 내지 90℃의 온도에서 수행되는 것이 바람직하다. 상기 열처리는 400 내지 500℃에서 수행되는 것이 바람직하며, 상기 열처리 온도는 상기 유기고분자를 제거하여 균일한 크기의 나노 기공을 형성시킴과 동시에 TiO2 나노 결정립, ZrO2 나노결정립의 핵생성 및 성장을 방지하며 TiO2와 ZrO2가 원자적으로 균일하게 혼합된 단일상의 복합산화물 박막을 제조하기 위해 적화된 조건이다. In the method for preparing a nanoporous TiO 2 -ZrO 2 hybrid thin film of which the bandgap energy of the present invention is controlled as described above, all steps except the drying and heat treatment steps of step (c) are preferably performed at room temperature. Drying is preferably carried out at a temperature of 60 to 90 ℃. Preferably, the heat treatment is performed at 400 to 500 ° C., and the heat treatment temperature removes the organic polymer to form nano pores of uniform size and simultaneously nucleates and grows TiO 2 nanocrystals and ZrO 2 nanocrystals. It is a condition suitable for producing a single-phase composite oxide thin film in which TiO 2 and ZrO 2 are atomically uniformly mixed.

상기 (b) 단계 이후, 0.1 내지 0.2 ㎛ 크기의 필터를 이용하여 상기 지르코늄-티타늄 전구체 용액을 필터링하는 단계를 더 포함할 수 있다. After the step (b), it may further comprise the step of filtering the zirconium-titanium precursor solution using a filter of 0.1 to 0.2 ㎛ size.

상기 (c) 단계의 코팅은 스핀 코팅인 것이 바람직하다. The coating of step (c) is preferably a spin coating.

상술한 본 발명의 제조방법을 이용하여 제조된 TiO2-ZrO2 하이브리드 박막은 단일 상(phase)의 나노 기공이 형성된 다공성 복합산화물 박막이며, 상기 단일 상은 산소와 결합된 Ti와 산소와 결합된 Zr이 단거리질서(short range order)를 갖는 비정질(amorphous)인 특징을 갖는다. 또한 상기 TiO2-ZrO2 하이브리드 박막은 조절 된 밴드갭 에너지를 갖는 특징이 있으며, 상기 밴드갭 에너지가 결정질 TiO2 밴드갭 에너지 이상 내지 결정질 ZrO2 밴드갭 에너지 이하인 특징을 갖게 된다. 상기 밴드갭 에너지는 상기 지르코늄 전구체와 상기 티타늄 전구체의 혼합비 및 상기 안정화제의 첨가량에 의해 조절된다. The TiO 2 -ZrO 2 hybrid thin film manufactured using the above-described method of the present invention is a porous composite oxide thin film in which nanopores of a single phase are formed, and the single phase is Ti combined with oxygen and Zr combined with oxygen. It has an amorphous feature with this short range order. In addition, the TiO 2 -ZrO 2 hybrid thin film is characterized by having a controlled bandgap energy, the bandgap energy is characterized by more than the crystalline TiO 2 bandgap energy or less than the crystalline ZrO 2 bandgap energy. The band gap energy is controlled by the mixing ratio of the zirconium precursor and the titanium precursor and the amount of the stabilizer added.

본 발명의 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법은 균일한 나노 기공을 가지며 Ti와 Zr이 원자적으로 섞여있는 단일한 상(phase)의 복합금속 산화물 박막을 제조할 수 있는 장점이 있으며, Ti 전구체 및 Zr 전구체의 혼합비를 조절하여 복합금속 산화물 박막의 밴드갭 에너지를 조절할 수 있는 장점이 있다. 또한, 졸-젤 방법을 이용하므로, 저가의 코팅 장비를 이용하여 간단한 공정 및 저온 열처리를 통해 제조되는 장점이 있다. 본 발명의 제조방법을 이용하여 제조된 TiO2-ZrO2 하이브리드 박막은 트랜지스터의 게이트 산화막으로 활용될 수 있으며, 염료감응 태양전지의 광양극으로 활용이 가능하다. The method for preparing a nanoporous TiO 2 -ZrO 2 hybrid thin film in which the bandgap energy is controlled according to the present invention prepares a single phase composite metal oxide thin film having uniform nano pores and atomically mixed with Ti and Zr. There is an advantage that can be, by controlling the mixing ratio of the Ti precursor and Zr precursor has the advantage of controlling the band gap energy of the composite metal oxide thin film. In addition, since the sol-gel method is used, there is an advantage of being manufactured through a simple process and low temperature heat treatment using a low cost coating equipment. The TiO 2 —ZrO 2 hybrid thin film manufactured by using the manufacturing method of the present invention may be used as a gate oxide film of a transistor, and may be used as a photoanode of a dye-sensitized solar cell.

이하 실시예를 참조하여 본 발명의 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법을 상세히 설명한다. 다음에 소개되는 실시예는 당 업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. Hereinafter, a method of manufacturing a nanoporous TiO 2 -ZrO 2 hybrid thin film in which the bandgap energy of the present invention is controlled will be described in detail. The following embodiments are provided as examples to ensure that the spirit of the invention to those skilled in the art can fully convey.

(실시예 1)(Example 1)

지르코늄 알콕사이드(Zr(OC4H9)4, Sigma-Aldrich, 333948) 1.1g을 노르말 부탄올(n-butanol, Duksan, Pure Chemical, 71-36-3) 0.78g에 용해시킨 후, 아세틸아세톤(acetylacetone, Jun sei chemical, 11010-0380) 0.23g을 첨가한 후 5분 동안 교반하였다. 제조된 용액에 지르코늄 : 티타늄의 원소비가 1:1이 되도록 티타늄 알콕사이드(Ti(OC4H9)4, Sigma-Aldrich, 244112) 0.78g을 첨가하여 다시 5분 동안 교반하여 혼합용액을 제조하였다. 상기 혼합용액에 35 중량%의 염산(HCl) 0.8g을 교반 하에 천천히 첨가하였다. 1.1 g of zirconium alkoxide (Zr (OC 4 H 9 ) 4 , Sigma-Aldrich, 333948) was dissolved in 0.78 g of normal butanol (n-butanol, Duksan, Pure Chemical, 71-36-3) and then acetylacetone , Jun sei chemical, 11010-0380) and then stirred for 5 minutes. 0.78 g of titanium alkoxide (Ti (OC 4 H 9 ) 4 , Sigma-Aldrich, 244112) was added to the prepared solution so that an element ratio of zirconium: titanium was 1: 1, and the mixture was stirred for 5 minutes to prepare a mixed solution. . 0.8 g of 35 wt% hydrochloric acid (HCl) was slowly added to the mixed solution under stirring.

폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 블록 공중합체(EO20PO70EO20, BASF, Pluronic P123) 0.57g을 노르말 부탄올(n-butanol, Duksan, Pure Chemical, 71-36-3) 3g에 투입하고 30분간 교반하여 유기고분자 알콜용액 3.57g을 제조하였다. 0.57 g of polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer (EO 20 PO 70 EO 20 , BASF, Pluronic P123) was added to 3 g of normal butanol (n-butanol, Duksan, Pure Chemical, 71-36-3) After stirring for 30 minutes, 3.57 g of an organic polymer alcohol solution was prepared.

상기 염산이 첨가된 혼합용액에 제조된 유기고분자 알콜용액 3.57g을 첨가한 후 3시간 동안 교반하여 지르코늄-티타늄 전구체 용액을 제조하였다. 상기 교반은 마그네틱 바(magnetic bar)를 사용하여 수행하였다. The zirconium-titanium precursor solution was prepared by adding 3.57 g of the organic polymer alcohol solution to the mixed solution to which the hydrochloric acid was added and stirring for 3 hours. The agitation was carried out using a magnetic bar.

제조된 지르코늄-티타늄 전구체 용액을 0.2 μm 크기의 필터를 이용하여 필터링 한 후, 필터링된 용액을 실리콘 기판(1~30 Ωcm, 525 nm thickness)상부에 2000 rpm의 회전 속도로 스핀 코팅하였다. 코팅된 기판을 80℃에서 1시간 동안 건조 한 후, 1.3 Pa의 진공하에서 450℃의 온도로 1시간 동안 열처리하여 다공성 복합산화물 박막을 제조하였다.After the prepared zirconium-titanium precursor solution was filtered using a 0.2 μm filter, the filtered solution was spin-coated on a silicon substrate (1-30 Ωcm, 525 nm thickness) at a rotational speed of 2000 rpm. The coated substrate was dried at 80 ° C. for 1 hour, and then heat-treated at 450 ° C. under a vacuum of 1.3 Pa for 1 hour to prepare a porous composite oxide thin film.

(비교예 1)(Comparative Example 1)

티타늄 전구체를 이용한 단일 금속산화물 박막Single Metal Oxide Thin Film Using Titanium Precursor

티타늄 알콕사이드(Ti(OC4H9)4, Sigma-Aldrich, 244112) 1.57g을 노르말 부탄올(n-butanol, Duksan, Pure Chemical, 71-36-3) 1g에 용해시킨 후, 35 중량%의 염산(HCl) 0.8g을 교반을 수행하면서 천천히 첨가하였다. 1.57 g of titanium alkoxide (Ti (OC 4 H 9 ) 4 , Sigma-Aldrich, 244112) was dissolved in 1 g of normal butanol (n-butanol, Duksan, Pure Chemical, 71-36-3), followed by 35% by weight of hydrochloric acid. 0.8 g (HCl) was added slowly with stirring.

폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 블록 공중합체(EO20PO70EO20, BASF, Pluronic P123) 0.57g을 노르말 부탄올(n-butanol, Duksan, Pure Chemical, 71-36-3) 3g에 투입하고 30분간 교반하여 유기고분자 알콜용액 3.57g을 제조하였다. 상기 산이 첨가된 용액에 상기 유기고분자 알콜용액 3.57g을 첨가한 후 3시간 동안 교반하여 티타늄 전구체 용액을 제조하였다.0.57 g of polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer (EO 20 PO 70 EO 20 , BASF, Pluronic P123) was added to 3 g of normal butanol (n-butanol, Duksan, Pure Chemical, 71-36-3) After stirring for 30 minutes, 3.57 g of an organic polymer alcohol solution was prepared. 3.57 g of the organic polymer alcohol solution was added to the acid-added solution, followed by stirring for 3 hours to prepare a titanium precursor solution.

실시예 1에서 지르코늄-티타늄 전구체 용액 대신 상기 티타늄 전구체 용액을 사용한 것을 제외하고 동일한 방법으로 티타늄산화물 박막을 제조하였다.A titanium oxide thin film was manufactured in the same manner as in Example 1, except that the titanium precursor solution was used instead of the zirconium-titanium precursor solution.

(비교예 2)(Comparative Example 2)

지르코늄 전구체를 이용한 단일 금속산화물 박막Single Metal Oxide Thin Film Using Zirconium Precursor

지르코늄 알콕사이드(Zr(OC4H9)4, Sigma-Aldrich, 333948) 2.2g을 노르말 부탄올(n-butanol, Duksan, Pure Chemical, 71-36-3) 0.56g에 용해시킨 후, 아세틸아세톤(acetylacetone, Jun sei chemical, 11010-0380) 0.46g을 첨가한 후 5분 동안 교반하였다. 아세틸아세톤이 첨가된 용액에 35 중량%의 염산(HCl) 0.8g을 교반을 수행하면서 천천히 첨가하였다. 2.2 g of zirconium alkoxide (Zr (OC 4 H 9 ) 4 , Sigma-Aldrich, 333948) was dissolved in 0.56 g of normal butanol (n-butanol, Duksan, Pure Chemical, 71-36-3), and then acetylacetone , Jun sei chemical, 11010-0380) and then stirred for 5 minutes. 0.8 g of 35% by weight hydrochloric acid (HCl) was slowly added to the solution to which acetylacetone was added while stirring.

폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 블록 공중합체(EO20PO70EO20, BASF, Pluronic P123) 0.57g을 노르말 부탄올(n-butanol, Duksan, Pure Chemical, 71-36-3) 3g에 투입하고 30분간 교반하여 유기고분자 알콜용액 3.57g을 제조하였다. 상기 산이 첨가된 용액에 상기 유기고분자 알콜용액 3.57g을 첨가한 후 3시간 동안 교반하여 지르코늄 전구체 용액을 제조하였다.0.57 g of polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer (EO 20 PO 70 EO 20 , BASF, Pluronic P123) was added to 3 g of normal butanol (n-butanol, Duksan, Pure Chemical, 71-36-3) After stirring for 30 minutes, 3.57 g of an organic polymer alcohol solution was prepared. The zirconium precursor solution was prepared by adding 3.57 g of the organic polymer alcohol solution to the acid-added solution and stirring for 3 hours.

실시예 1에서 지르코늄-티타늄 전구체 용액 대신 상기 지르코늄 전구체 용액을 사용한 것을 제외하고 동일한 방법으로 지르코늄산화물 박막을 제조하였다.A zirconium oxide thin film was manufactured in the same manner as in Example 1, except that the zirconium precursor solution was used instead of the zirconium-titanium precursor solution.

도 1은 실시예 1(도 1a), 비교예 1(도 1b) 및 비교예 2(도 1c)의 고배율 주사전자현미경(Field-emission Scanning Electron Microscopy)이다. 실시예 및 모든 비교예에서 5~10 nm의 크기를 갖는 기공이 균일한 분포로 형성된 것을 알 수 있으며, 기공이 규칙적으로 배열되지 않은 것을 알 수 있다. 1 is a high magnification scanning electron microscope (Field-emission Scanning Electron Microscopy) of Example 1 (FIG. 1A), Comparative Example 1 (FIG. 1B), and Comparative Example 2 (FIG. 1C). In the examples and all comparative examples it can be seen that the pores having a size of 5 ~ 10 nm is formed in a uniform distribution, the pores are not regularly arranged.

도 2는 실시예 1(도의 TiO2-ZrO2 hybrid), 비교예 1(도의 TiO2) 및 비교예 2(ZrO2)의 X-선 회절 결과를 도시한 것이다. X-선 회절 평가는 20~60도의 2θ구간, 분당 2도의 스캔 속도, Cu Kα, 40 kV의 조건으로 수행되었으며, 도 2의 X-선 회절 결과에서 55도 부근의 회절픽은 금속산화물 박막이 형성된 실리콘 기판의 (311)면에 의한 것이다. FIG. 2 shows X-ray diffraction results of Example 1 (TiO 2 -ZrO 2 hybrid in FIG.), Comparative Example 1 (TiO 2 in FIG.), And Comparative Example 2 (ZrO 2 ). X-ray diffraction evaluation was performed under the conditions of 20-60 degrees 2θ, scan rate of 2 degrees per minute, Cu Kα, 40 kV. In the X-ray diffraction results of FIG. This is due to the (311) surface of the formed silicon substrate.

도 2의 결과로부터 티타늄 전구체 단독 또는 지르코늄 전구체 단독으로 금속산화물 박막을 제조한 경우 결정성(티타늄전구체의 경우 아나타제 구조, 지르코늄전구체의 경우 테트라고날 구조)을 갖는 금속산화물 박막이 제조되나, TiO2-ZrO2 하이브리드 박막의 X-선 결과는 전형적인 단거리규칙성만을 갖는 비정질 상의 결과임을 알 수 있다. 따라서, 본 발명의 제조방법에 의해 TiO2 결정립, ZrO2 결정립, 또는 TiO2-ZrO2가 고용체(solid solution)를 형성하는 결정립이 형성되지 않은 비정질상의 TiO2-ZrO2 하이브리드 박막이 제조됨을 알 수 있다. In some cases to prepare a Ti precursor alone or zirconium precursor single metal oxide thin film from the result of the second crystal (in the case of the titanium precursor anatase structure, in the case of the Zr precursor tetra polygonal structure) the metal, but the oxide thin film is produced having, TiO 2 - X-ray results of the ZrO 2 hybrid thin film can be seen that the result of the amorphous phase having only a typical short-range regularity. Accordingly, it can be seen that an amorphous TiO 2 -ZrO 2 hybrid thin film in which TiO 2 grains, ZrO2 grains, or crystal grains in which TiO 2 -ZrO 2 forms a solid solution is not formed is produced. have.

하기의 표 1은 실시예 1(sample TiO2-ZrO2 hybrid), 비교예 1(sample TiO2) 및 비교예 2(sample ZrO2)의 XPS(X-ray Photoelectron spectroscopy)결과이다. 하기의 표 1에서 알 수 있듯이 실시예 1의 경우, Ti와 Zr이 모두 검출되었으며, 실시예 1에서 지르코늄:티타늄의 원소비가 1:1이 되도록 지르코늄-티타늄 전구체 용액을 제조하였음에도 불구하고, 제조된 복합산화물 박막은 Zr이 Ti에 비해 2배 이상 큰 값을 가짐을 알 수 있다. 이를 통해 지르코늄 전구체가 용해된 용액에 첨가된 안정화제의 양 및 티타늄 전구체의 첨가량에 의해 최종 복합산화물 박막의 조성이 조절됨을 알 수 있다. Table 1 below shows the results of X-ray photoelectron spectroscopy (XPS) of Example 1 (sample TiO 2 -ZrO 2 hybrid), Comparative Example 1 (sample TiO 2 ) and Comparative Example 2 (sample ZrO 2 ). As can be seen in Table 1 below, in the case of Example 1, both Ti and Zr were detected, although the zirconium-titanium precursor solution was prepared such that the element ratio of zirconium: titanium in Example 1 was 1: 1. The composite oxide thin film can be seen that Zr has a value more than twice as large as Ti. Through this, it can be seen that the composition of the final composite oxide thin film is controlled by the amount of the stabilizer added to the solution in which the zirconium precursor is dissolved and the amount of the titanium precursor added.

(표 1) Table 1

Figure 112007085174039-pat00001
Figure 112007085174039-pat00001

도 3은 실시예 1(도의 TiO2-ZrO2 hybrid), 비교예 1(도의 TiO2) 및 비교예 2(ZrO2)의 분광타원계(spectroscopic ellipsometry) 측정 결과이다. 도 3(a)의 왼쪽 Y축은 굴절률(refractive index, n)이며, 오른쪽 Y축은 흡광계수(extinction coefficient, k)이다. 도 3(b)는 도 3(a)의 흡광계수 측정결과를 바탕으로 계산된 타우 플롯(Tauc plot)이다. 분광타원계의 측정결과 실시예 1의 TiO2-ZrO2 하이브리드 박막의 두께는 131nm 이었으며, 비교예 1의 TiO2 박막의 두께는 192nm, 비교예 2의 ZrO2 박막의 두께는 112nm 이었다. 도 3(a)의 굴절률 측정 그래프에서 알 수 있듯이 본 발명의 TiO2-ZrO2 하이브리드 박막은 비교예 1의 TiO2 박막의 굴절률 1.78과 비교예 2의 ZrO2 박막의 굴절률 1.87 사이 값인 1.85의 굴절률을 갖는다. 비교예 1 및 비교예에서 제조된 박막들의 굴절률이 알려진 굴절률보다 더 작은 값을 갖게 되는데(아나타제 구조 TiO2의 굴절률이 2.49~2.66의 값을 가지고 테트라고날(tetragonal) 구조 ZrO2의 굴절률이 2.12의 값을 갖는 것으로 알려져 있다.), 이 러한 차이는 구조 유도체인 유기고분자가 상기 열처리에 의해 제거되어 박막에 형성된 나노기공에 의한 영향으로 해석할 수 있다. 또한 도 2의 각 회절 픽의 픽 브로드닝(peak broadening) 정도를 기반으로 쉐러의 공식(Scherrer formular)을 이용하여 비교예 2 내지 비교예 3의 결정립 크기를 계산하고, 이를 고배율 SEM사진과 비교한 결과 수나노의 결정립이 비정질 매트릭스 상에 분포하는 것을 알 수 있는데, 이러한 비정질 매트릭스가 비교예 1 내지 비교예 2에서 제조된 산화물 박막의 굴절률에 영향을 줄 수 있다. 3 shows the results of spectroscopic ellipsometry of Example 1 (TiO 2 -ZrO 2 hybrid in FIG.), Comparative Example 1 (TiO 2 in FIG.), And Comparative Example 2 (ZrO 2 ). The left Y axis of FIG. 3A is a refractive index n, and the right Y axis is an extinction coefficient k. FIG. 3 (b) is a Tauc plot calculated based on the absorbance coefficient measurement result of FIG. 3 (a). The thickness of the TiO 2 -ZrO 2 hybrid thin film of Example 1 was 131 nm, the thickness of the TiO 2 thin film of Comparative Example 1 was 192 nm, and the thickness of the ZrO 2 thin film of Comparative Example 2 was 112 nm. As can be seen from the refractive index measurement graph of FIG. 3 (a), the TiO 2 -ZrO 2 hybrid thin film of the present invention has a refractive index of 1.85, which is a value between 1.78 of the refractive index of the TiO 2 thin film of Comparative Example 1 and 1.87 of the ZrO 2 thin film of Comparative Example 2 Has The refractive indices of the thin films prepared in Comparative Example 1 and Comparative Example have a smaller value than the known refractive index (the refractive index of the anatase structure TiO 2 is 2.49 to 2.66 and the refractive index of the tetragonal structure ZrO 2 is 2.12). This difference can be interpreted as the effect of nanopores formed on the thin film by removing the organic polymer as a structural derivative by the heat treatment. In addition, based on the degree of peak broadening of each diffraction pick of Figure 2 using the Scherrer formular (Scherrer formular) to calculate the grain size of Comparative Examples 2 to 3, and compared with the high magnification SEM picture As a result, it can be seen that the grains of Sunano are distributed on the amorphous matrix, which may affect the refractive index of the oxide thin film prepared in Comparative Examples 1 to 2.

도 3(b)는 실시예 1 및 비교예 2 내지 3의 밴드갭 에너지를 알아보기 위해 도 3(a)의 흡광계수 결과를 바탕으로 도시한 타우 플롯이며, 도 3(b)에서 알 수 있듯이 본 발명의 TiO2-ZrO2 하이브리드 박막은 비교예 1의 TiO2 박막의 밴드갭 에너지 3.43 eV과 비교예 2의 ZrO2 박막의 밴드갭 에너지 5.34 eV 사이 값인 3.61의 밴드갭 에너지를 가짐을 알 수 있다. Figure 3 (b) is a tau plot shown on the basis of the extinction coefficient results of Figure 3 (a) to determine the band gap energy of Example 1 and Comparative Examples 2 to 3, as can be seen in Figure 3 (b) The TiO 2 -ZrO 2 hybrid thin film of the present invention has a band gap energy of 3.61, which is a value between 3.43 eV of the bandgap energy of the TiO 2 thin film of Comparative Example 1 and 5.34 eV of the bandgap energy of the ZrO 2 thin film of Comparative Example 2 have.

이상과 같이 본 발명에서는 구체적인 물질과 같이 특정된 사항들과 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described by specific matters and limited embodiments, such as specific materials. However, the present invention is provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments. Various modifications and variations can be made by those skilled in the art to which the invention pertains.

따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있 는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the scope of the claims as well as the claims to be described later belong to the scope of the present invention. will be.

도 1은 실시예 1(도 1a), 비교예 1(도 1b) 및 비교예 2(도 1c)의 고배율 주사전자현미경(Field-emission Scanning Electron Microscopy)이며, 1 is a high magnification scanning electron microscope (Field-emission Scanning Electron Microscopy) of Example 1 (FIG. 1A), Comparative Example 1 (FIG. 1B), and Comparative Example 2 (FIG. 1C),

도 2는 실시예 1(도의 TiO2-ZrO2 hybrid), 비교예 1(도의 TiO2) 및 비교예 2(ZrO2)의 X-선 회절 결과를 도시한 것이며, FIG. 2 shows X-ray diffraction results of Example 1 (TiO 2 -ZrO 2 hybrid in FIG. 1), Comparative Example 1 (TiO 2 in FIG.), And Comparative Example 2 (ZrO 2 ),

도 3은 실시예 1(도의 TiO2-ZrO2 hybrid), 비교예 1(도의 TiO2) 및 비교예 2(ZrO2)의 분광타원계(spectroscopic ellipsometry) 측정 결과이며, 도 3(a)의 왼쪽 Y축은 굴절률(refractive index, n)이고, 오른쪽 Y축은 흡광계수(extinction coefficient, k)이며, 도 3(b)는 도 3(a)의 흡광계수 측정결과를 바탕으로 계산된 타우 플롯(Tauc plot)이다.FIG. 3 is a spectroscopic ellipsometry measurement result of Example 1 (TiO 2 -ZrO 2 hybrid of FIG. 1), Comparative Example 1 (TiO 2 of FIG.) And Comparative Example 2 (ZrO 2 ), and of FIG. The left Y-axis is the refractive index (n), the right Y-axis is the extinction coefficient (k), Figure 3 (b) is a tau plot (Tauc) calculated based on the absorption coefficient measurement results of Figure 3 (a) plot).

Claims (11)

(a) 지르코늄 전구체 100 중량부에 대하여 상기 지르코늄 전구체의 활성도를 낮추는 안정화제 15 내지 25 중량부, 알콜 70 내지 90 중량부 및 티타늄 전구체 60 내지 100 중량부을 혼합하여 혼합용액을 제조하는 단계;(a) preparing a mixed solution by mixing 15 to 25 parts by weight of a stabilizer for lowering the activity of the zirconium precursor, 70 to 90 parts by weight of alcohol and 60 to 100 parts by weight of the titanium precursor with respect to 100 parts by weight of zirconium precursor; (b) 상기 혼합용액에 지르코늄 전구체 100 중량부에 대하여 산 20 내지 30 중량부 및 10 내지 20 중량%의 유기고분자 알콜용액 250 내지 400 중량부를 첨가하여 지르코늄-티타늄 전구체 용액을 제조하는 단계; 및 (b) preparing a zirconium-titanium precursor solution by adding 20 to 30 parts by weight of acid and 250 to 400 parts by weight of an organic polymer alcohol solution of 10 to 20% by weight based on 100 parts by weight of zirconium precursor to the mixed solution; And (c) 상기 지르코늄-티타늄 전구체 용액을 기판위에 코팅한 후 건조 및 열처리하여 비정질상의 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막을 제조하는 단계;(c) coating the zirconium-titanium precursor solution on a substrate, followed by drying and heat treatment to prepare a nanoporous TiO 2 -ZrO 2 hybrid thin film in which an amorphous band gap energy is controlled; 를 포함하여 수행되는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. Method for producing a nanoporous TiO 2 -ZrO 2 hybrid thin film is controlled bandgap energy is carried out, including. 삭제delete 제 1항에 있어서, The method of claim 1, 상기 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 밴드갭 에너지는 결정질 TiO2 밴드갭 에너지 이상 내지 결정질 ZrO2 밴드갭 에너지 이하인 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. The bandgap energy of the control nanoporous TiO 2 -ZrO 2 hybrid thin film of the band gap energy of crystalline TiO 2 band gap energy than the band gap energy to the crystalline ZrO 2 has an energy band gap adjusting nanoporous TiO 2, characterized in that not more than -ZrO 2 hybrid thin film manufacturing method. 제 3항에 있어서, The method of claim 3, wherein 상기 밴드갭 에너지는 상기 지르코늄 전구체와 상기 티타늄 전구체의 혼합비에 의해 조절되는 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. The bandgap energy is controlled by the mixing ratio of the zirconium precursor and the titanium precursor, characterized in that the bandgap energy controlled nanoporous TiO 2 -ZrO 2 hybrid thin film manufacturing method. 제 1항에 있어서, 상기 (a) 단계는 The method of claim 1, wherein step (a) 상기 지르코늄 전구체, 상기 안정화제 및 상기 알콜을 혼합하여 교반한 후, 티타늄 전구체를 첨가하여 수행되는 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. And mixing the zirconium precursor, the stabilizer, and the alcohol, followed by adding a titanium precursor, to prepare a bandgap energy-controlled nanoporous TiO 2 -ZrO 2 hybrid thin film. 제 1항에 있어서, 상기 (b) 단계는The method of claim 1, wherein step (b) 상기 혼합용액에 산을 첨가하여 교반한 후, 상기 유기고분자 알콜용액을 첨가하여 수행되는 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. The method of manufacturing a nanoporous TiO 2 -ZrO 2 hybrid thin film having a bandgap energy controlled by adding an acid to the mixed solution and then stirring, followed by adding the organic polymer alcohol solution. 제 1항에 있어서, The method of claim 1, 상기 지르코늄 전구체는 지르코늄 알콕사이드이며, 상기 티타늄 전구체는 티타늄 알콕사이드인 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. The zirconium precursor is a zirconium alkoxide, the titanium precursor is a method for producing a bandgap energy-controlled nanopore TiO 2 -ZrO 2 hybrid thin film, characterized in that the titanium alkoxide. 제 7항에 있어서,The method of claim 7, wherein 상기 안정화제는 아세틸아세톤인 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. The stabilizing agent is a method of producing a nanopore TiO 2 -ZrO 2 hybrid thin film having a band gap energy controlled, characterized in that acetylacetone. 제 1항에 있어서,The method of claim 1, 상기 유기고분자 알콜용액은 에틸렌 옥사이드 기재 블록 공중합체가 알콜에 용해된 용액인 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. The organic polymer alcohol solution is a method for producing a bandgap energy-controlled nanoporous TiO 2 -ZrO 2 hybrid thin film, characterized in that the ethylene oxide based block copolymer is a solution dissolved in alcohol. 제 9항에 있어서, The method of claim 9, 상기 에틸렌 옥사이드 기재 블록 공중합체는 폴리에틸렌 옥사이드-폴리프로필렌 옥사이드-폴리에틸렌 옥사이드 블록 공중합체인 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. The ethylene oxide-based block copolymer is a polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer, characterized in that the bandgap energy controlled nanoporous TiO 2 -ZrO 2 hybrid thin film manufacturing method. 제 1항에 있어서, (c) 단계의 The process of claim 1, wherein 상기 열처리는 400 내지 500℃에서 수행되는 것을 특징으로 하는 밴드갭 에너지가 조절된 나노기공 TiO2-ZrO2 하이브리드 박막의 제조방법. The heat treatment is a method for producing a nanopore TiO 2 -ZrO 2 hybrid thin film with a band gap energy, characterized in that performed at 400 to 500 ℃.
KR1020070121358A 2007-11-27 2007-11-27 Manufacturing method of nanoporous TiO2-VrO2 hybrid thin film with adjustable band gap KR100914449B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070121358A KR100914449B1 (en) 2007-11-27 2007-11-27 Manufacturing method of nanoporous TiO2-VrO2 hybrid thin film with adjustable band gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070121358A KR100914449B1 (en) 2007-11-27 2007-11-27 Manufacturing method of nanoporous TiO2-VrO2 hybrid thin film with adjustable band gap

Publications (2)

Publication Number Publication Date
KR20090054604A KR20090054604A (en) 2009-06-01
KR100914449B1 true KR100914449B1 (en) 2009-08-28

Family

ID=40986523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070121358A KR100914449B1 (en) 2007-11-27 2007-11-27 Manufacturing method of nanoporous TiO2-VrO2 hybrid thin film with adjustable band gap

Country Status (1)

Country Link
KR (1) KR100914449B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154390B1 (en) 2010-06-30 2012-06-15 연세대학교 산학협력단 Titanium dioxide film with high surface area and hierarchical pore using inorganic complex grafted by polymer, synthesis thereof and its use in photo-electrode of dye-sensitized solar cells
KR101308063B1 (en) 2010-12-08 2013-09-12 포항공과대학교 산학협력단 Method for forming metal oxide nano plate on interfacial area between non-polar organic solvent and ice and metal oxide nano plate prepared thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279464A (en) * 2000-03-29 2001-10-10 Seiko Epson Corp Preparation method of ferroelectric thin film
JP2006248846A (en) 2005-03-10 2006-09-21 Tokyo Institute Of Technology Method for producing composite oxide porous body
JP2007137738A (en) 2005-11-21 2007-06-07 Fujifilm Corp Method for producing oxide thin film and radiation image detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279464A (en) * 2000-03-29 2001-10-10 Seiko Epson Corp Preparation method of ferroelectric thin film
JP2006248846A (en) 2005-03-10 2006-09-21 Tokyo Institute Of Technology Method for producing composite oxide porous body
JP2007137738A (en) 2005-11-21 2007-06-07 Fujifilm Corp Method for producing oxide thin film and radiation image detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154390B1 (en) 2010-06-30 2012-06-15 연세대학교 산학협력단 Titanium dioxide film with high surface area and hierarchical pore using inorganic complex grafted by polymer, synthesis thereof and its use in photo-electrode of dye-sensitized solar cells
KR101308063B1 (en) 2010-12-08 2013-09-12 포항공과대학교 산학협력단 Method for forming metal oxide nano plate on interfacial area between non-polar organic solvent and ice and metal oxide nano plate prepared thereof

Also Published As

Publication number Publication date
KR20090054604A (en) 2009-06-01

Similar Documents

Publication Publication Date Title
Ohya et al. Microstructure of TiO2 and ZnO films fabricated by the sol‐gel method
US9982140B2 (en) Inorganic-organic hybrid oxide polymer and manufacturing method thereof
Mali et al. Hydrothermal synthesis of rutile TiO 2 with hierarchical microspheres and their characterization
WO2008118422A1 (en) Metal oxide nanocrystals: preparation and uses
KR20110110538A (en) Graphene on which uniform nanoparticles are deposited and its manufacturing method
KR20100075764A (en) Method for manufacturing inorganic nano-fiber
Borlaf et al. Rare earth-doped TiO2 nanocrystalline thin films: Preparation and thermal stability
Miki et al. Preparation of nanoporous TiO2 film with large surface area using aqueous sol with trehalose
Khalili et al. The influence of ZrO2 addition on the morphological, structural, vibrational, and optical characteristics of composite fibers based on ZnO
CN101205139A (en) A preparation method of strontium bismuth titanate film with adjustable microwave dielectric
KR100914449B1 (en) Manufacturing method of nanoporous TiO2-VrO2 hybrid thin film with adjustable band gap
Mohammadi et al. Low-temperature perovskite-type cadmium titanate thin films derived from a simple particulate sol–gel process
CN104877152B (en) A kind of method for preparing copper-based nano zinc oxide polyvinylidene fluoride composite material
KR100952570B1 (en) Method for manufacturing titanium oxide aerogel thin film or thick film used as electrode support of transparent solar cell
Amole et al. Sol-gel spin coating synthesis of TiO2 nanostructure and its optical characterization
Lourduraj et al. Effect of molarity on sol–gel routed nano TiO2 thin films
Tahir et al. Development of Sol Gel Derived Nanocrystalline TiO 2 Thin Films via Indigenous Spin Coating Method
KR101227087B1 (en) Morphology control method of nano-structured material
Rørvik et al. Template-assisted synthesis of PbTiO3 nanotubes
Limmer et al. Electrochromic and transparent conducting oxide nanorods
Sinthiya et al. Development of pure rutile TiO _ 2 TiO 2 and Magneli titanium sub-oxide microstructures over titanium oxide-seeded glass substrates using surfactant-free hydrothermal process
Roy et al. Morphological and electrical study of porous TiO 2 films with various concentrations of Pluronic F-127 additive
Khanlary et al. Influence of Ce doping concentration on the structural and optical properties of sol–gel derived ZnO: Ce nanostructures
Dros et al. Niobia-stabilised anatase TiO2 highly porous mesostructured thin films
CN116970193A (en) Composite heat insulation film prepared from room temperature phase change material based on high transparency and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20071127

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20090128

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20090707

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20090821

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20090824

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20120810

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20130814

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20130814

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20140710

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20140710

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20150805

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20150805

Start annual number: 7

End annual number: 7

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20170705